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Abstract. We explore an extension to straight-line programs (SLPs)
that outperforms, for some text families, the measure δ based on sub-
string complexity, a lower bound for most measures and compressors
exploiting repetitiveness (which are crucial in areas like Bioinformatics).
The extension, called iterated SLPs (ISLPs), allows rules of the form
A → Πk2

i=k1
Bic1

1 · · ·Bict
t , for which we show how to extract any sub-

string of length λ, from the represented text T [1 . . n], in time O(λ +
log2 n log logn). This is the first compressed representation for repetitive
texts breaking δ while, at the same time, supporting direct access to ar-
bitrary text symbols in polylogarithmic time. As a byproduct, we extend
Ganardi et al.’s technique to balance any SLP (so it has a derivation tree
of logarithmic height) to a wide generalization of SLPs, including ISLPs.

Keywords: Grammar compression · Substring complexity · Repetitive-
ness measures

1 Introduction

Motivated by the data deluge, and by the observed phenomenon that many
of the fastest-growing text collections are highly repetitive, recent years have
witnessed an increasing interest in (1) defining measures of compressibility that
are useful for highly repetitive texts, (2) develop compressed text representations
whose size can be bounded in terms of those measures, and (3) provide efficient
(i.e., polylogarithmic time) access methods to those compressed texts, so that
algorithms can be run on them without ever decompressing the texts [23,24].
We call lower-bounding measures those satisfying (1), reachable measures those
(asymptotically) reached by the size of a compressed representation (2), and
accessible measures those reached by the size of representations satisfying (3).

For example, the size γ of the smallest “string attractor” of a text T is a
lower-bounding measure, unknown to be reachable [14], and smaller than the
size reached by known compressors. The size b of the smallest “bidirectional
macro scheme” of T [31], and the size z of the Lempel-Ziv parse of T [20], are
reachable measures. The size g of the smallest context-free grammar generating
(only) T [5] is an accessible measure [3]. It holds γ ≤ b ≤ z ≤ g for every text.

⋆ Funded with Basal Funds FB0001, ANID, Chile; and ANID-Subdirección de Capital
Humano/Doctorado Nacional/2021-21210580.
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One of the most attractive lower-bounding measures devised so far is δ [29,6].
Let T [1 . . n] be a text over alphabet [1 . . σ], and Tk be the number of distinct
substrings of length k in T , which define its so-called substring complexity. Then
the measure is δ(T ) = maxk Tk/k. This measure has several attractive properties:
it can be computed in linear time and lower-bounds all previous measures of
compressibility, including γ, for every text. While δ is known to be unreachable,
the measure δ′ = δ log n log σ

δ logn has all the desired properties: Ω(δ′) is the space

needed to represent some text family for each n, σ, and δ; within O(δ′) space it
is possible to represent every text T and access any length-λ substring of T in
time O(λ+ log n) [18], together with more powerful operations [18,17,13].

As for g, a straight-line program (SLP) is a context-free grammar that gen-
erates (only) T , and has size-2 rules of the form A → BC, where B and C are
nonterminals, and size-1 rules A → a, where a is a terminal symbol. The SLP
size is the sum of all its rule sizes. A run-length SLP (RLSLP) may contain, in
addition, size-2 rules of the form A→ Bk, representing k repetitions of nonter-
minal B. A RLSLP of size grl can be represented in O(grl) space, and within
that space we can offer fast string access and other operations [6, App. A]. It
holds δ ≤ grl = O(δ′), where grl is the smallest RLSLP that generates T [23,18]
(the size g of the smallest grammar or SLP, instead, is not always O(δ′)).

While δ lower-bounds all previous measures on every text, δ′ is not the small-
est accessible measure. In particular, grl is always O(δ′), and it can be smaller by
up to a logarithmic factor. Indeed, grl is a minimal accessible measure as far as
we know. It is asymptotically between z and g [23]. An incomparable accessible
measure is zend ≥ z, the size of the LZ-End parse of the text [19,15].

The belief that δ is a lower bound to every reachable measure was disproved
by the recently proposed L-systems [26,27]. L-systems are like SLPs where all
the symbols are nonterminals and the derivation ends at a specified depth in
the derivation tree. The size ℓ of the smallest L-system generating T [1 . . n] is a
reachable measure of repetitiveness and was shown to be as small as O(δ/

√
n)

on some text families, thereby sharply breaking δ as a lower bound. Measure ℓ,
however, is unknown to be accessible, and thus one may wonder whether there
exist accessible text representations that are smaller than δ.

In this paper we devise such a representation, which we call iterated SLP
(ISLP). ISLPs extend SLPs (and RLSLPs) by allowing a more complex version
of the rule A → Bk, namely A → Πk2

i=k1
Bic1

1 · · ·Bict
t of size 2 + 2t. We show

how to extract a substring of length λ from the ISLP of a text T in time O(λ+
log2 n log log n) provided the ISLP is balanced, that is, its derivation tree is of
height O(log n).

Just like SLPs and RLSLPs can be balanced [10,28] while retaining their
asymptotic size, we show how to balance a more general class of SLP extensions
we call generalized SLPs (GSLPs). GSLPs, which include ISLPs, allow rules of
the form A → x, where x is a program that outputs the right-hand side of the
rule. We show that, if every nonterminal appearing in x’s output does it at least
twice, then the GSLP can be balanced in the same way as SLPs. This byproduct



Iterated Straight-Line Programs 3

of our results can be of independent interest to provide polylogarithmic-time
access to other extensions of context-free grammars.

2 Preliminaries

We explain some concepts and notation used in the rest of the paper.

Strings Let Σ = [1 . . σ] be an alphabet. A string T [1 . . n] of length n is a
finite sequence T [1]T [2] . . . T [n] of n symbols in Σ. We denote by ε the unique
string of length 0. We denote by Σ∗ the set of all finite strings with symbols
in Σ. The i-th symbol of T is denoted by T [i], and the sequence T [i] . . . T [j] is
denoted by T [i . . j]. The concatenation of X[1 . . n] and Y [1 . .m] is defined as
X ·Y = X[1] . . . X[n]Y [1] . . . Y [m] (we omit the dot when there is no ambiguity).
If T = XY Z, thenX (resp. Y , resp. Z) is a prefix (resp. substring, resp. suffix ) of
T . A power T k stands for k consecutive concatenations of the string T . We denote
by |T |a the number of occurrences of the symbol a in T . A string morphism is
a function φ : Σ∗ → Σ∗ such that φ(xy) = φ(x) · φ(y) for any strings x and y.

Straight-Line Programs A straight-line program (SLP) is a context-free gram-
mar [30] that contains only terminal rules of the form A → a with a ∈ Σ, and
binary rules of the form A → BC for variables B and C whose derivations
cannot reach again A. These restrictions ensure that each variable of the SLP
generates a unique string, defined as exp(A) = a for a rule A → a, and as
exp(A) = exp(B) · exp(C) for a rule A → BC. A run-length straight-line pro-
gram (RLSLP) is an SLP that also admits run-length rules of the form A→ Bk

for some k ≥ 3, with their expansion defined as exp(A) = exp(B)k. The size of
an SLP is the sum of the lengths of the right-hand sides of its rules; the size of
an RLSLP is defined similary, assuming that rules A → Bk are of size 2 (i.e.,
two integers to represent B and k).

The derivation tree of an SLP is an ordinal tree where the nodes are the
variables, the root is the initial variable, and the leaves are the terminal vari-
ables. The children of a node are the variables appearing in the right-hand side
of its rule (in left-to-right order). The height of an SLP is the length of the
longest path from the root to a leaf node in the derivation tree. The height of an
RLSLP is obtained by unfolding its run-length rules, that is, writing a rule Bk

as BB . . . B where B appears k times, to obtain an equivalent SLP (actually, a
slight extension where the right-hand sides can feature more than two variables).

SLPs and RLSLPs yield measures of repetitiveness g and grl, defined as the
size of the smallest SLP and RLSLP generating the text, respectively. Clearly,
it holds that grl ≤ g. It also has been proven that g is NP-hard to compute [5].

Other Repetitiveness Measures For self-containedness, we describe the most
important repetitiveness measures and relate them with the accessible measures
g and grl; for more details see a survey [23].



4 Gonzalo Navarro and Cristian Urbina

Burrows-Wheeler Transform. The Burrows-Wheeler Transform (BWT) [4] is a
reversible permutation of T , which we denote by bwt(T ). It is obtained by sorting
lexicographically all the rotations of the string T and concatenating their last
symbols, which can be done in O(n) time. The measure r is defined as the size
of the run-length encoding of bwt(T ). Usually, T is assumed to be appended
with a sentinel symbol $ strictly smaller than any other symbol in T , and then
we call r$ the size of the run-length encoding of bwt(T$). This measure is then
reachable, and fully-functional indexes of size O(r$) exist [8], but interestingly, it
is unknown to be accessible. While this measure is generally larger than others,
it can be upper-bounded by r$ = O(δ log δ log n

δ ) [16].

Lempel-Ziv Parsing. The Lempel-Ziv parsing (LZ) [20] of a text T [1 . . n] is a
factorization into non-empty phrases T = X1X2 . . . Xz where each Xi is either
the first occurrence of a symbol or the longest prefix of Xi . . . Xz with a copy in
T starting at a position in [1 . . |X1 . . . Xi−1|]. LZ is called a left-to-right parsing
because each phrase has its source starting to the left, and it is optimal among
all parsings satisfying this condition. It can be constructed greedily from left to
right in O(n) time. The measure z is defined as the number of phrases in the
LZ parsing of the text, and it has been proved that z ≤ grl [25]. While z is
obviously reachable, it is unknown to be accessible. A close variant zend ≥ z [19]
that forces phrase sources to be end-aligned with a preceding phrase, has been
shown to be accessible [15].

Bidirectional macro schemes. A bidirectional macro scheme (BMS) [31] is a
factorization of a text T [1 . . n] where each phrase can have its source starting
either to the left or to the right. The only requeriment is that by following the
pointers from phrases to sources, we should eventually be able to fully decode
the text. The measure b is defined as the size of the smallest BMS representing
the text. Clearly, b is reachable, but it is unknown to be accessible. It holds that
b ≤ z, and it was proved that b ≤ r$ [25]. Computing b is NP-hard [9].

String Attractors. A string attractor for a text T [1 . . n] is a set of positions Γ ⊆
[1 . . n] such that any substring of T [i . . j] has an occurrence T [i′ . . j′] crossing at
least one of the positions in Γ (i.e., there exist k ∈ Γ such that i′ ≤ k ≤ j′). The
measure γ is defined as the size of the smallest string attractor for the string T ,
and it is NP-hard to compute [14]. It holds that γ lower bounds the size b of
the smallest bidirectional macro scheme and can sometimes be asymptotically
smaller [2]. On the other hand, it is unknown if γ is reachable.

Substring Complexity. Let T [1 . . n] be a text and Tk be the number of distinct
substrings of length k in T , which define its so-called substring complexity. Then
the measure is δ = maxk Tk/k [29,6]. This measure can be computed in O(n) time
and lower-bounds γ, and thus all previous measures of compressibility, for every
text. On the other hand, it is known to be unreachable [18]. The related measure
δ′ = δ log n log σ

δ logn is reachable and accessible, and still lower-bounds b and all other

reachable measures on some text family for every n, σ, and δ [18]. Besides, grl
(and thus z, b, and γ, but not g) are upper-bounded by O(δ log n log σ

δ logn ).
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L-systems. An L-system (for compression) is a tuple L = (V, φ, τ, S, d, n) ex-
tending a Lindenmayer system [21,22], where V is the set of variables (which are
also considered as terminal symbols), φ : V → V + is the set of rules (and also a
morphism of strings), τ : V → V is a coding, S ∈ V the initial variable, and d
and n are integers. The string generated by the system is τ(φd(S))[1 . . n]. The
measure ℓ is defined as the size of the smallest L-system generating the string.
It has been proven that ℓ is incomparable to δ (ℓ can be smaller by a

√
n factor)

and almost any other repetitiveness measure considered in the literature [26,27].

3 Iterated Straight-Line Programs

We now define iterated SLPs and show that they can be much smaller than δ.
Some proofs in this section are omitted due to space constraints.

Definition 1. An iterated straight-line program of degree d (d-ISLP) is an

SLP that allows in addition iteration rules of the form A→
∏k2

i=k1
Bic1

1 · · ·Bict
t ,

where 1 ≤ k1, k2, 0 ≤ c1, . . . , ct ≤ d are integers and B1 . . . Bt are variables that
cannot reach A (so the ISLP generates a unique string). Iteration rules have size

2 + 2t = O(t) and expand to exp(A) =
∏k2

i=k1
exp(B1)

ic1 · · · exp(Bt)
ict , where if

k1 > k2 the iteration goes from i = k1 downwards to i = k2. The size size(G) of
a d-ISLP G is the sum of the sizes of all of its rules.

Definition 2. The measure git(d)(T ) is defined as the size of the smallest d-
ISLP that generates T , whereas git(T ) = mind≥0 git(d)(T ).

The following observations show that ISLPs subsume RLSLPs, and thus, can
be smaller than the smallest L-system.

Proposition 1. For any d ≥ 0, it always holds that git(d) ≤ grl.

Proof. Just note that a rule A →
∏k

i=1 B
i0 from an ISLP simulates a rule

A→ Bk from a RLSLP. In particular, 0-ISLPs are equivalent to RLSLPs. ⊓⊔

Proposition 2. For any d ≥ 0, there exists a string family where git(d) = o(ℓ).

Proof. Navarro and Urbina show a string family where grl = o(ℓ) [27]. Hence,
git(d) is also o(ℓ) in this family. ⊓⊔

We now show that d = 1 suffices to obtain ISLPs that are significantly smaller
than δ for some string families.

Lemma 1. Let d ≥ 1. There exists a string family with git(d) = O(1) and
δ = Ω(

√
n).

Proof. Such a family is formed by the strings sk =
∏k

i=1 a
ib. The 1-ISLPs with

initial rule Sk →
∏k

i=1 A
iB, and rules A → a, B → b, generate each string

sk in the family using O(1) space. On the other hand, it has been proven that
δ = Ω(

√
n) in the family csk [27]. As δ can only decrease by 1 after the deletion

of a character [1], δ = Ω(
√
n) in the family sk too. ⊓⊔
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On the other hand, ISLPs can perform worse than other compressed repre-
sentations; recall that δ ≤ γ ≤ b ≤ r$.

Lemma 2. Let µ ∈ {r, r$, ℓ}. There exists a string family with git(d) = Ω(log n)
and µ = O(1).

Lemma 3. There exists a string family satisfying that z = O(log n) and git(d) =

Ω(log2 n/ log log n).

One thing that makes ISLPs robust is that they are not very sensitive to
reversals, morphism application, or edit operations (insertions, deletions, and
substitutions of a single character). This makes git(d) more robust than measures
like r and r$, which are sensitive to all these transformations [11,12,7,1].

Lemma 4. Let G be a d-ISLP generating T . Then there exists a d-ISLP of size
|G| generating the reversed text TR. Let φ be a morphism. Then there exists a d-
ISLP of size |G|+ cφ generating the text φ(T ), where cφ is a constant depending
only on φ. Moreover, there exists a d-ISLP of size at most O(|G|) generating T ′

where T and T ′ differ by one edit operation.

4 Accessing ISLPs

We have shown that git(d) breaks the lower bound δ already for d ≥ 1. We now
show that the measure is accessible. Concretely, we will show that any substring
of length λ can be extracted in time O(λ + (h + log n) log n log log n), where h
is the height of the grammar tree, and in Section 5 we show that ISLPs can be
balanced so they have h = O(log n). In total, we obtain the following result.

Theorem 1. Let T [1 . . n] be represented by a d-ISLP of size git. Then, there
exists a data structure of size O(git) that extracts any substring of T of length
λ in time O(λ + log2 n log log n) on a RAM machine of Θ(log n) bits, using
O(log2 n log log n) additional words of working space.

In fact, our extraction time is O(λ+ d log d log n+ d2 log d) using O(d2 log d)
working space, which reduces to O(λ + log n) time and O(1) working space for
d = O(1) (recall that 1-ISLPs already break the δ lower-bound), and yields the
result in the theorem if d = O(log n). For larger d, we start with a technical result
that shows that we can always force d to be O(log n) without asymptotically
increasing the size. From now on in the paper, we will disregard for simplicity
the case k1 > k2 in the rules A → Πk2

i=k1
Bic1

1 · · ·Bict
t , as their treatment is

analogous to that of the case k1 ≤ k2.

Lemma 5. If a d-ISLP G generates T [1 . . n], then there is also a d′-ISLP G′

of the same size that generates T , for some d′ ≤ log2 n.

Proof. For any rule A =
∏k2

i=k1
Bic1

1 · · ·Bict
t , any i ∈ [k1 . . k2], and any cj , it

holds that n ≥ |exp(A)| ≥ icj , and therefore cj ≤ logi n, which is bounded by
log2 n for i ≥ 2. Therefore, if k2 ≥ 2, all the values cj can be bounded by some
d′ ≤ log2 n. A rule with k1 = k2 = 1 is the same as A→ B1 · · ·Bt, so all values
cj can be set to 0 without changing the size of the rule at all. ⊓⊔
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4.1 Data Structures

We define some data structures that extend ISLPs allowing us to efficiently
navigate it within O(git) space. Per Lemma 5, we assume d = O(log n).

Consider a rule A →
∏k2

i=k1
Bic1

1 . . . Bict
t . Though t can be large, there are

only d+ 1 distinct values cj . We will make use of auxiliary polynomials

fr(i) =

r∑
j=1

|exp(Bj)| · icj ,

for r ∈ [1, t], to navigate within the “blocks” i: fr(i) computes cumulative lengths
inside the product expression Bic1

1 . . . Bict
t , up to the variable Br, for a given i.

We now show how to compute any fr(i) in time O(d) using O(t) space
for each A. An array SA[1 . . t] stores cumulative length information, as follows
SA[r] =

∑
1≤j≤r,cj=cr

|exp(Bj)|. That is, SA[r] adds up the lengths of the symbol

expansions up to Br that must be multiplied by icr . A second array, CA[1 . . t],
stores the values c1, . . . , ct. We preprocess CA to solve predecessor queries of the
form pred(A, r, c) = max{j ≤ r, CA[j] = c}, that is, the latest occurrence of c in
CA to the left of position r, for every c = 0, . . . , d. This query can be answered in
O(d) time because the elements in CA are also in {0, . . . , d}: cut CA into chunks
of length d + 1, and for each chunk CA[(d + 1) · j + 1 . . (d + 1) · (j + 1)] store
precomputed values pred(A, (d + 1) · j, c) for all c ∈ {0, . . . , d}. This requires
O(t) space. To compute the values rc = pred(A, r, c) for all c, find the chunk
j = ⌈r/(d + 1)⌉ − 1 where r belongs, initialize every rc = pred(A, (d + 1) · j, c)
for every c (which is stored with the chunk j), and then scan the chunk prefix
CA[(d + 1) · j + 1 . . r] left to right, correcting every rc ← k if c = CA[k], for
k = (d+1) · j+1 . . r. We can then evaluate fr(i) in O(d) time by computing all
values rc as explained (i.e., the last position to the left of r where the exponent
is c), and adding up SA[rc] · ic (because SA[rc] adds up all |exp(Bj)| that must
be multiplied by ic in fr(i)). We also define the polynomial

f+(k) =

k∑
i=k1

ft(i)

to select a “block”: f+(k) computes the cumulative sum of the length of the
whole expressions Bic1

1 · · ·Bict
t until i = k. Note we cannot afford to store all the

k2 − k1 + 1 values f+(k), but we can exploit the fact that the polynomials ft(i)
have degree at most d, and thus f+(k) is a polynomial on k of degree at most
d+1. Storing f+ as a polynomial, then, requires only O(d) space, instead of the
O(k) space needed to store all of its values. This can still be excessive, however,

as it blows the space by an O(log n) factor in a rule like A → Πk2

i=k1
Bid , which

is of size 4 but f+ is of degree d + 1. We will instead compute f+(k) in O(d)
arithmetic operations by reusing the same data structures we store for fr(i):
for each c = 0, . . . , d, we compute tc = pred(A, t, c) and sc = SA[tc]. Instead of

accumulating sc·ic, however, we accumulate sc·
∑k

i=k1
ic = sc·(pc(k)−pc(k1−1)),

where pc(k) =
∑k

i=1 i
c.
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1 2 3 4 5 6 7 8

2 3 6 7 14 13 5 3

1 2 1 0 0 1 2 3

SA

CA

f8(i) = 3i3 + 5i2 + 13i+ 14

f+(k) = 9
12
k4 + 38

12
k3 + 117

12
k2 + 256

12
k

Fig. 1. Data structures built for the ISLP rule A→
∏5

i=1 B
iCi2DiEEEiBi2Ci3 , with

|exp(B)| = 2, |exp(C)| = 3, |exp(D)| = 4, and |exp(E)| = 7. We show some of the
polynomials to be simulated with these data structures.

We cannot afford storing all the O(kd) values pc(k), but since there are
only d + 1 = O(log n) functions pc and each one is a polynomial of degree
c+1 = O(log n), they can be represented as polynomials using O(log2 n) integers.
Further, they can be computed at query time1, before anything else, in O(d2)
arithmetic operations using, for each c, the formula2

pc(k) = kc +
1

c+ 1
·

c∑
j=0

(
c+ 1

j

)
Bj · kc+1−j ,

which is a polynomial on k of degree at most d + 1. The formula requires O(c)
arithmetic operations once the numbers Bj are computed. Those Bj are the
Bernoulli (rational) numbers. All the Bernoulli numbers from B0 to Bd can be

computed in O(d2) arithmetic operations using the recurrence
∑d

j=0

(
d+1
j

)
Bj =

0, from B0 = 1. The numerators and denominators of the rationals Bj fit in
O(j log j) = O(d log d) = O(log n log d) bits,3 so they can be operated in O(log d)
time in a RAM machine with word size Θ(log n). Therefore, the total prepro-
cessing time to later compute any f+(k) is O(d2 log d). We note, however, that
due to the length of the numerators and denominators of the fractional Bernoulli
numbers, the time to compute any f+(k) is O(d log d).

Example 1. Consider the ISLP of Proposition 2, defined by the rules S →∏k2

i=1 A
iB, A→ a, and B → b. The polynomials associated with the representa-

tion of the rule S are ic1 = i and ic2 = 1. Then, we construct the auxiliary poly-
nomials f1(i) = |exp(A)|ic1 = i and f2(i) = |exp(A)|ic1 + |exp(B)|ic2 = i+1. Fi-

nally, we construct the auxiliary polynomial f+(k) =
∑k

i=1 f2(i) =
∑k

i=1(i+1) =
1
2k

2 + 3
2k. Figure 1 shows a more complex example to illustrate CA and SA.

1 Indeed, the polynomials pc(k) are independent of the grammar, so they can be
computed once for all queries and for all grammars.

2 SeeWolframMathworld’s https://mathworld.wolfram.com/BernoulliNumber.html,
Eqs. (34) and (47).

3 See https://www.bernoulli.org, sections “Structure of the denominator”, “Struc-
ture of the nominator”, and “Asymptotic formulas”.
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4.2 Direct Access in Time O((h + logn) d log d)

We start with the simplest query: given the data structures of size O(git) defined
in the previous sections, return the symbol T [l] given an index l.

For SLPs with derivation tree of height h, the problem is easily solved in
O(h) time by storing the expansion size of every nonterminal, and descending
from the root to the corresponding leaf using |exp(B)| to determine whether
to descend to the left or to the right of every rule A → BC. This is easy to
generalize in RLSLP rules A→ Bk, because every repetition corresponds to the
same string, of length |exp(B)|. The general idea for d-ISLPs is similar, but now
determining which child to follow in repetition rules is more complex.

To access the l-th character of the expansion of A →
∏k2

i=k1
Bic1

1 · · ·Bict
t we

first find the value i such that f+(i − 1) < l ≤ f+(i) by using binary search.
Then, we find the value r such that fr−1(i) < l − f+(i − 1) ≤ fr(i) by using
binary search in the subindex of the polynomials. We then know that the search
follows by Br, with offset l − f+(i− 1)− fr−1(i) inside |exp(Br)|i

cr
. The offset

within Br is then easily computed with a modulus, as in RLSLPs. Algorithm 1
gives the details.

We carry out the first binary search so that, for every i we try, if f+(i) < l we
immediately answer i+ 1 if l ≤ f+(i+ 1); instead, if l ≤ f+(i), we immediately
answer i if f+(i−1) < l. As a result, the search area is initially of length |exp(A)|
and, if the answer is i, the search has finished by the time the search area is of
length ≤ f+(i) − f+(i − 1) = ft(i). Thus, there are O(1 + log(|exp(A)|/ft(i)))
binary search steps. The second binary search is modified analogously so that it
carries out O(1 + log(ft(i)/(i

cr |exp(Br)|))) steps, for a total of at most O(1 +
log(|exp(A)|/|exp(Br)|)) steps. As the search continues by Br, the sum of binary
search steps telescopes to O(h + log n) on an ISLP of height h, and the total
time is O((h+ log n) d log d) = O((h+ log n) log n log log n).

Example 2. We show how to access the b at position 14 of the string T =∏5
i=1 a

ib. Consider the ISLP G and its auxiliary polynomials computed in Ex-
ample 1. We start by computing f+(2) = 5. As l > 5, we go right in the binary
search and compute f+(4) = 14. As l ≤ 14 we go left, compute f+(3) = 9 and
find that i = 4. Hence, T [l] lies in the expansion of AiB = A4B at position
l1 = l − f+(i − 1) = 5. Then, we compute f1(4) = 4. As l1 > 4, we turn right
and compute f2(4) = 5, finding that r = 2. Hence, T [l] lies in the expansion of

Bi0 = B1 at position l2 = l1 − fr−1(i) = 1.

4.3 Extracting substrings

Once we have accessed T [l], it is possible to output the substring T [l . . l+λ− 1]
in O(λ+h) additional time, as we return from the recursion in Algorithm 1. We
carry the parameter λ of the number of symbols (yet) to output, which is first
decremented when we finally arrive at line 3 and find the first symbol, T [l], which
we now output immediately. From that point, as we return from the recursion,
instead of returning the symbol T [l], we return the number λ of symbols yet to
output, doing some extra work until λ = 0.
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Algorithm 1 Direct access for ISLPs in O((h+ log n) d log d) time

Input: An ISLP G of height h, a variable A of G, and a position l ∈ [1, |exp(A)|].
Output: The character exp(A)[l] at position l in exp(A).
1: function access(G,A, l)
2: if A→ a then
3: return a
4: if A→ BC then
5: if l ≤ |exp(B)| then
6: return access(G,B, l)
7: else
8: return access(G,A, l − |exp(B)|)
9: if A→

∏k2
i=k1

Bic1
1 . . . Bict

t then

10: i← arg successor([f+(k1) . . f
+(k2)], l)

11: l← l − f+(i− 1)
12: r ← arg successor([f1(i) . . ft(i)], l)
13: l← l − fr−1(i)
14: return access(G,Br, l mod |exp(Br)|)

1. If we return from line 5, we output min(λ, |exp(C)|) symbols from nontermi-
nal C, by invoking a new procedure report(G,C, λ), which returns the new
number λ of symbols yet to report; this number is then returned by access.

2. If we return from line 7, we just return the current value of λ to the caller.
3. If we return from line 13, we must report:

(a) icr − ⌈l/|exp(Br)|⌉ further copies of exp(Br).
(b) ics copies of exp(Bs), for s = r + 1, . . . , t.
(c) the expansions exp(B1)

jc1 · · · exp(Bt)
jct , for j = i+ 1, . . . , k2.

For each expansion exp(C) to report, we invoke report(G,C, λ) and update
λ to the new number of symbols yet to report. We stop if λ = 0.

Procedure report(G,C, λ) outputs exp(C) in O(|exp(C)|) time if λ ≥ |exp(C)|,
as it simply traverses the leaves of a tree without unary paths. In this case
it returns λ − |exp(C)|. Otherwise, it traverses only the first λ leaves of the
derivation tree of C, in time O(λ+ h), and returns zero. Once a call to report
returns zero, it is never called again; therefore the total time we spend is O(λ+h).

5 Balancing ISLPs

We show that any d-ISLP can be balanced so that its derivation tree is of height
O(log n). Actually, we introduce a new type of SLP, which allows us to prove a
more general balancing result that subsumes ISLPs.

Definition 3. A generalized straight-line program (GSLP) is an SLP that al-
lows special rules of the form A → x, where x is a program (in any Turing-
complete language) of length |x| whose output OUT(x) is a nonempty sequence
of variables, none of which can reach A. The rule A → x contributes |x| to the
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size of the GSLP; the standard SLP rules contribute as usual. If it holds for all
special rules that no variable appears exactly once inside OUT(x), then the GSLP
is said to be balanceable.

We can choose any desired language to describe the programs x. Though in
principle |x| can be taken as the Kolmogorov complexity of OUT(x), we will focus
on very simple programs and on the asymptotic value of x. In particular, RLSLPs
allow rules of the form A→ Bk of size 2, and we can have a program of size O(1)

that outputs k copies of B; ISLPs allow rules of the form
∏k2

k1
B

ic1
1 · · ·Bict

t of size
2 + 2t, and we can have a program of size O(t) that writes the corresponding
f+(k2) symbols. Note that in both cases the GSLP is balanceable as long as
special rules satisfy k > 1 (for RLSLPs), or if k1 ̸= k2 (for ISLPs); otherwise
they can be replaced by alternative rules of the same asymptotic size.

We will prove that any balanceable GSLP can be balanced without increasing
its asymptotic size. Our proof generalizes that of Ganardi et al. [10, Thm. 1.2]
for SLPs in a similar way to how it was extended to balance RLSLPs [28]. Just
as Ganardi et al., in this section we will allow SLPs to have rules of the form
A→ B1 · · ·Bt, of size t, where each Bj is a terminal or a nonterminal; this can
be converted into a strict SLP of the same asymptotic size.

A directed acyclic graph (DAG) is a directed multigraph D = (V,E) without
cycles (nor loops). We denote by |D| the number of edges in this DAG. For our
purposes, we assume that any DAG has a distinguished node r called the root,
satisfying that any other node can be reached from r and r has no incoming
edges. We also assume that if a node has k outgoing edges, they are numbered
from 1 to k, so edges are of the form (u, i, v). The sink nodes of a DAG are the
nodes without outgoing edges. The set of sink nodes of D is denoted by W . We
denote the number of paths from u to v as π(u, v), and π(u, V ) =

∑
v∈V π(u, v)

for a set V of nodes. The number of paths from the root to the sink nodes is
n(D) = π(r,W ).

One can interpret an SLP G generating a string T as a DAG D: There is a
node for each variable in the SLP, the root node is the initial variable, variables
of the form A→ a are the sink nodes, and a variable with rule A→ B1B2 . . . Bt

has outgoing edges (A, i,Bi) for i ∈ [1, t]. Note that if D is a DAG representing
G, then n(D) = |exp(G)| = |T |.

Definition 4. (Ganardi et al. [10, page 5]) Let D be a DAG, and define the pairs
λ(v) = (⌊log2 π(r, v)⌋, ⌊log2 π(v,W ))⌋). The symmetric centroid decomposition
(SC-decomposition) of a DAG D produces a set of edges between nodes with the
same λ pairs defined as Escd(D) = {(u, i, v) |λ(u) = λ(v)}, partitioning D into
disjoint paths called SC-paths (some of them possibly of length 0).

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP
G, then |D| is O(|G|). The following lemma justifies the name “SC-paths”.

Lemma 6. (Ganardi et al. [10, Lemma 2.1]) Let D = (V,E) be a DAG. Then
every node has at most one outgoing and at most one incoming edge from
Escd(D). Furthermore, every path from the root r to a sink node contains at
most 2 log2 n(D) edges that do not belong to Escd(D).
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Note that the sum of the lengths of all SC-paths is at most the number of
nodes of the DAG, or equivalently, the number of variables of the SLP.

The following definition and technical lemma are needed to construct the
building blocks of our balanced GSLPs.

Definition 5. (Ganardi et al. [10, page 7]) A weighted string is a string T ∈ Σ∗

equipped with a weight function || · || : Σ → N\{0}, which is extended homomor-
phically. If A is a variable in an SLP G, then we write ||A|| for the weight of
the string exp(A) derived from A.

Lemma 7. (Ganardi et al. [10, Proposition 2.2]) For every non-empty weighted
string T of length n one can construct in linear time an SLP G generating T
with the following properties:

– G contains at most 3n variables
– All right-hand sides of G have length at most 4
– G contains suffix variables S1, ..., Sn producing all non-trivial suffixes of T
– every path from Si to some terminal symbol a in the derivation tree of G has

length at most 3 + 2(log2 ||Si|| − log2 ||a||)

Theorem 2. Given a balanceable GSLP G generating a string T , it is possible
to construct an equivalent GSLP G′ of size O(|G|) and height O(log n).

Proof. Transform the GSLP G into an SLP H by replacing their special rules
A → x by A → OUT(x), and then obtain the SC-decomposition Escd(D) of
the DAG D of H. Observe that the SC-paths of H use the same variables of
G, so it holds that the sum of the lengths of all the SC-paths of H is less
than the number of variables of G. Also, note that any special variable A → x
of G is necessarily the endpoint (i.e., the last node of a directed path) of an
SC-path in D. To see this note that λ(A) ̸= λ(B) for any B that appears in
OUT(x), because log2 π(A,W ) ≥ log2(|OUT(x)|B · π(B,W )) ≥ 1 + log2 π(B,W )
where |OUT(x)|B ≥ 2 because G is balanceable. This implies that the balancing
procedure of Ganardi et al. on H, which transforms the rules of variables that
are not the endpoint of an SC-path in the DAG D, will not touch variables that
were originally special variables in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path of D.
It holds that for each Ai with i ∈ [0 . . p− 1], in the SLP H its rule goes to two
distinct variables, one to the left and one to the right. Thus, for each variable
Ai, with i ∈ [0 . . p − 1], there is a variable A′

i+1 that is not part of the path.
Let A′

1A
′
2 . . . A

′
p be the sequence of these variables. Let L = L1L2 . . . Ls be the

subsequence of left variables of the previous sequence. Then construct an SLP
of size O(s) ⊆ O(p) for the sequence L (seen as a string) as in Lemma 7, using
|exp(Li)| in H as the weight function. In this SLP, any path from the suffix
nonterminal Si to a variable Lj has length at most 3+2(log2 ||Si|| − log2 ||Lj ||).
Similarly, construct an SLP of size O(t) ⊆ O(p) for the sequence R = R1R2 . . . Rt

of right symbols in reverse order, as in Lemma 7, but with prefix variables Pi

instead of suffix variables. Each variable Ai, with i ∈ [0 . . p−1], derives the same
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string as wlApwr, for some suffix wl of L and some prefix wr of R. We can find
rules deriving these prefixes and suffixes in the SLPs produced in the previous
step, so for any variable Ai, we construct an equivalent rule of length at most 3.
Add these equivalent rules, and the left and right SLP rules to a new GSLP G′.
Do this for all SC-paths. Finally, add the original terminal variables and special
variables (which are left unmodified) of the GSLP G, so G′ is equivalent to G.

The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p
variables. The same happens with R. The other constructed rules also have a
length of at most 3, and there are p of them. Summing over all SC-paths, we
have O(|G|) size. The special variables cannot sum up to more than O(|G|) size.
Thus, the GSLP G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let
A0, . . . , Ap be an SC-path. Consider a path from a variable Ai to an occurrence
of a variable that is in the right-hand side of Ap in G′. Clearly, this path has
length at most 2. Now consider a path from Ai to a variable A′

j in L with
i < j ≤ p. By construction this path is of the form Ai → Sk →∗ A′

j for
some suffix variable Sk (if the occurrence of A′

j is a left symbol), and its length
is at most 1 + 3 + 2(log2 ||Sk|| − log2 ||A′

j ||) ≤ 4 + 2 log2 ||Ai|| − 2 log2 ||A′
j ||.

Analogously, if A′
j is a right variable, the length of the path is bounded by

1+3+2(log2 ||Pk||−log2 ||A′
j ||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′

j ||. Finally, consider a
maximal path to a leaf in the derivation tree of G′. Factorize it as A0 →∗ A1 →∗

· · · →∗ Ak where each Ai is a variable of H (and also of G). Paths Ai →∗ Ai+1

are like those defined in the paragraph above, satisfying that their length is
bounded by 4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||. Observe that between each Ai and
Ai+1, in the DAG D there is almost an SC-path, except that the last edge is not
in Escd. The length of this path is at most

k−1∑
i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ 4k + 2 log2 ||A0|| − 2 log2 ||Ak||

By Lemma 6, k ≤ 2 log2 n, which yields the upper bound O(log n).
The resulting GSLP can be modified to contain standard SLP rules of size

at most two, with only a constant increase in size and depth. ⊓⊔

By the above theorem, Lemma 5, and because ISLPs can be made balance-
able, we obtain the following.

Corollary 1. Given a d-ISLP G generating a string T , there is an equivalent
d′-ISLP G′ of size O(|G|), with d′ ≤ d, d′ = O(log n), and height h′ = O(log n).

6 Conclusions

We have introduced a new extension to straight-line programs (SLPs) and run-
length SLPs (RLSLPs) called iterated SLPs (ISLPs). ISLPs permit so-called
iteration rules of the form A → Πk2

i=k1
Bic1

1 · · ·Bict
t , of size O(t). While it had

already been shown that the lower-bound (and unreachable) measure δ, which
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was text-wise smaller than every preceding measure of repetitiveness, could be
outperformed by a reachable measure (L-systems) on some text families [26,27],
the size git of the smallest ISLP generating a text is the first accessible measure
that also outperforms δ (by the same margin, O(δ/

√
n) on a text of length n).

With SLPs or RLSLPs representing a text T [1 . . n], an arbitrary symbol of
T can be accessed in O(log n) time. We have shown that, just as SLPs and
RLSLPs [10,28], ISLPs can be balanced without asymptotically increasing their
space, and used it to devise an algorithm to access any arbitrary text position
in time O(log2 n log log n) within O(git) space. They are also similarly resistant
to edits and other text manipulations.
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10. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4)
(jun 2021)

11. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel
results on the number of runs of the burrows-wheeler-transform. In: Bureš, T.,
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