
Engineering Practical Lempel-Ziv Tries∗

Diego Arroyuelo1,2 Rodrigo Cánovas3 Johannes Fischer4

Dominik Köppl5 Marvin Löbel4 Gonzalo Navarro 1,6

Rajeev Raman7

1 Millennium Institute for Foundational Research on Data (IMFD), Chile.

2 Department of Informatics, Universidad Técnica Federico Santa Maŕıa, Chile.

3 Cambridge Baker Systems Genomics Initiative,

Baker Heart Research Institute - BHRI, Melbourne, Australia.

4 Department of Computer Science, TU Dortmund, Germany.

5 M&D Data Science Center, Tokyo Medical and Dental University, Japan.

6 Department of Computer Science, University of Chile, Chile.

7 Department of Informatics, University of Leicester, UK.

Abstract

The Lempel-Ziv 78 (lz78) and Lempel-Ziv-Welch (lzw) text factor-

izations are popular, not only for bare compression but also for building

compressed data structures on top of them. Their regular factor structure

makes them computable within space bounded by the compressed output

size. In this paper we carry out the first thorough study of low-memory

lz78 and lzw text factorization algorithms, introducing more efficient al-

ternatives to the classical methods, as well as new techniques that can run

within less memory space than the necessary to hold the compressed file.

Our results build on hash-based representations of tries that may have

independent interest.

1 Introduction

A text factorization, in the following just called factorization, is a partitioning

of a given text into substrings. Factorizations are the essential preprocessing

step of many compression and text indexing data structures. One of the most

famous factorizations with focus on compression is the Ziv-Lempel factoriza-

tion of 1978 [72], known as lz78. Its variants, especially Lempel-Ziv-Welch

∗Parts of this work have already been presented at the 24th International Symposium on
String Processing and Information Retrieval [6, 29].

1

(lzw) [69], are used in compression software like unix compress, compression

standards like V.42bis, and image and document formats like GIF, TIFF, PDF,

and PostScript.

Compared to the stronger lz77 format [71], lz78 has a more regular struc-

ture, which has made it the preferred choice for direct searching in compressed

texts [2, 32, 33, 41, 43, 44, 56, 58], implementing string dictionaries [7], com-

pressed sequence representations supporting optimal-time access [66], compressed

text indexes for pattern matching [4, 27, 65], and document retrieval [25, 26].

Another important advantage of lz78 over lz77 is that lz78 allows for

an easy construction within compressed space and in near-linear time, which is

(to date) impossible for lz77. Still, although lz77 factorizations often lead to

marginally better compression rates, the output of lz78 is usually small enough

to be useful in practice as the basis of a compressor (especially the lzw variant),

and to be the preferred choice in the scenarios mentioned above (where the lz78

variant is more popular to build compressed data structures).

Computing the lzw and lz78 factorizations both fast and space-economically

allows us to compress larger files without splitting them into chunks. This not

only yields better compression in general, but it is the only attractive choice

when building data structures based on a Lempel-Ziv factorization. A simple

and classical lz78 or lzw implementation factorizes a text of length n over

an alphabet [1..σ] into z factors, where
√
n ≤ z = O(n/ logσ n), in O(n lg σ)

worst-case time (and O(n) expected time) using O(z lg n) bits of main memory

space, while reading the text from disk by small buffers. This working space is

O(n lg σ) in the worst case, but more importantly, it is proportional to the size

of the input text. Comparable results for lz77, using O(n lg σ) bits of working

space, were obtained only recently [31, 47, 54] and require much more sophis-

ticated algorithms. Another line of research (e.g., [10, 59, 63]) computes the

lz77 factorization in O(r lg n) bits of space, where r is the number of runs in

the Burrows-Wheeler transform [15]. The only other lz77 construction we are

aware of with working space bounded by a function of the compressed file size

poses a superlogarithmic penalty factor [60] on the time, or only approximates

the factorization within a constant factor [30].

1.1 Our Contribution

We introduce and study various lz78 and lzw factorization algorithms that

use lower memory space than the classical one. Some of them may run within

memory sizes unable to fit even the compressed file. Most of our algorithms

are streaming : On reading the text, they compute the factorization online and

output a compressed stream, which can be written to external memory or to a

2

network stream.

Our ideas are heavily based on hash-based trie representations, which repre-

sent nodes by identifiers of entries in a hash table. We present two such repre-

sentations, where a node uses either (a) O(lg(zσ)) bits or just (b) O(lg σ) bits.

The former (a) can be used directly in conjunction with the classic lz78 and

lzw factorization algorithms running in O(n) expected time with O(z lg(zσ))

bits of working space (cf. Theorem 4.1). The latter (b) uses an implicit repre-

sentation of the identifiers in the hash table that are immutable until rehashing.

For (b), the main challenge is to design a factorization algorithm that supports

the rehashing of the hash table in such a way that

• the identifiers can be efficiently migrated during a rehashing, while

• the hash table is limited to have O(z) cells without knowing z in advance.

With the representation (b), we present a specialized family of algorithms that

carry out the lz78 factorization within O(z lg σ) bits of main memory, which is

less than any other previous lz78 algorithm, and asymptotically less than the

size of the encoded output, z(lg z + lg σ) bits.1 One of our algorithms requires

O(n) expected compression time (cf. Theorem 5.3), but may rewrite and reread

the output multiple times, whereas the other takes O(n lg σ) expected time but

writes the output only once in a streaming fashion (cf. Theorem 5.4). Both

algorithms produce a compressed output that can be decompressed in O(n)

time while using O(z lg σ) bits of main memory, where previous decompression

algorithms need to fit the whole compressed text in main memory. This com-

pressed output consists of a serialized compact hash table of O(z lg σ) bits and

an array of z integers where the x-th integer is a pointer to the cell in the hash

table representing the x-th factor. Consequently, our solution of (b) computes

a special output format based on hash values.

Our results hold under some simplifying assumptions on randomness (cf.

Section 3.5.3). Nevertheless, our experimental results demonstrate that these

assumptions do not affect the practical competitiveness of the new algorithms,

which outperform current alternatives in space by a factor from 2 to 5. We

elaborate on these results by presenting, together with other trie representations,

the first thorough study of lz78 and lzw factorization algorithms. We highlight

different algorithm engineering techniques supporting fast computation of the

lz78 and lzw factorization in practice. Our compact trie implementations may

have independent interest beyond Lempel-Ziv factorization.

1Our output is a rather naive representation of the factorization, i.e., we do not consider
to further compress the representation of our factors; see Section 2.1.

3

Reference Time Working Space in Bits

Ziv and Lempel [72] O(n lg σ) O(z lgn)
O(n)∗ O(z lgn)

Nakashima et al. [55] O(n) O(n lgn)
Fischer et al. [31] O(n/ε2) (1 + ε)n lgn+ n lg σ +O(n)
Fischer et al. [31] O(n) O(n lg σ)
Köppl and
Sadakane [47]

O(n lg lg σ) O(n lg σ)

Fischer and
Gawrychowski [28]

O
(
n+ z (lg lg σ)2

lg lg lg σ

)
O(z lgn)

Jansson et al. [39] O
(
n lg σ · (lg lgn)2

lgn lg lg lgn

)
O(z lgn)

Arroyuelo and
Navarro [3, Lem. 8]

O(n lg σ + n lg lgn) z(2 lgn+ lg σ +O(1))

Arroyuelo et al. [5,
Thm. 2]

O
(
n lg σ · 1

lg lgn

)
z(lgn+ lg σ + 2) + o(z lg σ)

Theorem 4.1 O(n/α2)
∗ z

1−α (3 lg(zσ) + 11)

Theorem 5.4 O(n lg σ)∗ O(z lg σ)

Table 1: Previous and new lz78 compression algorithms. Expected times are
annotated with a star (∗). ε ∈ (0, 1] and α ∈ (0, 1) are user-defined constants.
We first list the classic approaches, then all deterministic ones, from most to
least space-consuming (and, generally, from fastest to slowest). At the end,
we present our randomized approaches. The methods that are asymptotically
dominated by another in space and time are grayed.

1.2 Article Outline

We first set our contribution in relation to previous achievements for computing

the lz78 factorization in Section 1.3. Subsequently, we review the lz78 and

lzw factorizations as well as two coding variants, the classic coding and the

coding with the lz trie, in Section 2. In Section 3, we review compact hash

tables and propose a sparse layout for open-addressing compact hash tables.

Next, we propose in Sections 4 and 5 factorization algorithms that are partially

based on these hash tables. While we use the classic coding in Section 4, a

variant of the lz trie coding allows us in Section 5 to slim down the working

space, at the expense of using external memory, additional running time, or

worse compression ratio.

1.3 Related Work

Although our focus is set on practically space-efficient algorithms, in what fol-

lows we give a theoretical overview of other algorithms that compute the lz78

factorization, and draw a comparison with ours.

Unlike the preceding lz77 factorization, lz78 was designed [72] so that it

4

Reference Time Working Space in Bits I/Os in Bits

Arroyuelo and
Navarro [3]

O(n(lg σ + lg lgn)) z(lgn+ lg σ +O(1)) 2z lg z

Theorem 5.3 O(n)∗ O(z lg σ) z lg2 z

Table 2: Semi-external approaches computing the lz78 factorization. Expected
times are annotated with a star (∗).

could be parsed easily using a trie called the lz trie, within space proportional

to the output of the factorization (i.e., to the size of the compressed text). A

classic pointer-based implementation of the lz trie with balanced binary trees to

handle the children of each node carries out the lz78 factorization in O(n lg σ)

time and O(z lg n) bits of space, where z is the size of the factorization. The

same can be obtained for Welch’s variant, lzw [69]. Using hashing to store the

children of each node, the expected factorization time becomes O(n). Despite

some spare results we describe next, we are not aware of any practical systematic

study of lz78/lzw factorization algorithms.

With the trie representation of Fischer and Gawrychowski [28], we can ac-

celerate the time of the classic implementation to O(n + z lg2 lg σ
lg lg lg σ). Spending

O(n(lg σ + lg logσ n)/ logσ n) bits of space, Jansson et al. [39] can compute the

factorization in O(n lg σ(lg lg n)2/(lg n lg lg lg n)) time. Their algorithm needs

two sequential passes over the text, which involves I/Os if the text is stored in

external memory.

Nakashima et al. [55] obtained the first O(n) worst-case time factorization

algorithm for lz78, though it uses O(n lg n) bits of space. This space was

recently improved by Fischer et al. [31], who need only min(O(n lg σ), (1 +

ε)n lg n + n lg σ + O(n)) bits of working space, where ε with 0 < ε ≤ 1 is a

selectable constant trade-off parameter, and n lg σ bits are used for the input

text stored in a read-only memory with constant-time random access.

Considering that the computed lz78 factorization can be stored in two arrays

with z lg σ and z lg z bits to represent the last character and the referred index,

respectively, of each factor, the z lg(σz) bits of the factorization can be smaller

than a working space of O(z lg n) bits, even if asymptotically similar for σ =

nO(1). Closest to the exact output space is the approach of Arroyuelo and

Navarro [3, Lem. 8], taking z(2 lg n+lg σ+O(1)) bits andO(n(lg σ+lg lg n)) time

for the lz78 factorization. Having external memory, they manage to perform

a single pass over the text, in exchange for 2z lg z additional bits of I/O (on

external memory), and a total time of O(n(lg σ + lg lg n)), where the peak

memory usage is z(lg n + lg σ + O(1)) bits. Measuring bits of I/Os instead of

blocks differs from common approaches working in the external memory model.

Here, each bit of I/O is read or written by a random access on disk.

5

They use the compact lz trie representation described in Section 2.1.4, where

z lg z bits are used for an array L storing preorder numbers of the lz trie.

An obstacle to further reduce the space is that they need to build the whole

lz trie before they can build the array L because preorder numbers vary as

new leaves are inserted. Later improvements on dynamic tries introduced by

Arroyuelo et al. [5, Thm. 2] reduce the time toO(n log σ· 1
lg lg σ), while consuming

z(lg n + lg σ + O(1)) bits of space (in this theorem, we set b := lg n for the

number of bits used by a satellite data entry). Their time result can be improved

to O(n lg σ · 1
lg lgn) by changing the arity of the used trie representation from

Θ(lg σ) to (lg n)/2. This introduces an extra term of o(
√
n) bits of space, which

is bounded by o(z) according to Lemma 2.1. The time is now O(n) for small

alphabet sizes σ = O(polylog(n)). However, the peak space usage remains the

same.

For comparison, we list the aforementioned results in Tables 1 and 2, and

put our contribution in this context.

2 Preliminaries

With logx we denote the logarithm to base x, and with lg the logarithm log2

to base two. Our computational model is the word RAM model with machine

word size w := Ω(lg n) for the input size n. Accessing a word costs O(1) time.

Let T be a text of length n over an integer alphabet Σ = [1..σ] with σ =

nO(1). Given X,Y, Z ∈ Σ∗ with T = XY Z, then X, Y and Z are called a prefix,

substring and suffix of T , respectively. We call T [i..] the i-th suffix of T , and

denote a substring T [i] · · ·T [j] with T [i..j].

Given a binary string T ∈ {0, 1}∗, a bit c ∈ {0, 1}, and an integer j, the rank

query T. rankc(j) counts the occurrences of c in T [1..j], and the select query

T. selectc(j) gives the position of the j-th c in T . We stipulate that rankc(0) =

selectc(0) = 0. There are data structures [19, 38] that use o(|T |) extra bits of

space, and can compute rank and select in constant time, respectively. Each

of those data structures can be constructed in time linear in |T |. We say that

a bit vector has a rank-support and a select-support if it is endowed by data

structures providing constant time access to rank and select, respectively.

Finally, a factorization of T of size z partitions T into z substrings F1 · · ·Fz =

T . Each such substring Fx is called a factor. In this article, we are interested

in the lz78 and lzw factorizations.

6

0

1

2

5

4

3

6

a

a

a

b

b
a

i 1 2 3

Factor a aa b

Coding (0,a) (1,a) (0,b)

i 4 5 6

Factor ab aaa ba

Coding (1,b) (2,a) (3,a)

Figure 1: The lz78 factorization and its lz trie for the text T = aaababaaaba.
The x-th factor is the concatenation of the edge labels of the path from the root
to the node labeled with x.

0

-1

1

2

6

4

-2

3

5

a

a

b
a

b

b

a
a

i 1 2 3 4

Factor a aa b a

Coding -1 1 -2 -1

i 5 6 7

Factor ba aab a

Coding 3 2 -1

Figure 2: The lzw factorization and its lz trie for the text T = aaababaaaba.
The x-th factor is the concatenation of the edge labels of the path from the root
to the parent of the node labeled with x.

2.1 Factorization and Coding

Stipulating that F0 is the empty string, a factorization F1 · · ·Fz = T is called

the lz78 factorization [72] of T iff, for all x ∈ [1..z], the factor Fx is the longest

prefix of T [|F1 · · ·Fx−1| + 1..] such that Fx = Fyc for some y ∈ [0..x − 1]

and c ∈ Σ, that is, Fx is the longest possible previous factor Fy appending

by the following character in the text. Formally, y = argmax{|Fy′ | : Fy′ =

T [|F1..Fx−1|+ 1..|F1..Fx−1|+ |Fy′ |]}. We say that y is the referred index of the

factor Fx. Figure 1 gives an example. All factors Fx are distinct except maybe

the last factor Fz, which needs to be treated as a border case. In what follows,

we omit this border case analysis for the sake of simplicity (in lz78 as well as

in lzw). If T terminates with a character appearing nowhere else in T , then

the last factor is also distinct from the others.

A factorization F1 · · ·Fz = T is called the lzw factorization [69] of T iff, for

all x ∈ [1..z], it holds that the factor Fx is the longest prefix of T [|F1 · · ·Fx−1|+

7

a

b

c

A possible Eulerian circuit of the left graph
is (a,a), (a,b), (b,b), (b,c), (c,c), (c,a), (a,c),
(c,b), (b,a). For the depth d = 1, the number
of all distinct strings of length d− 1 = 0 is one,
namely the empty string S. Hence, we only ap-
pend b1Sb2Sb3S · · · · · · bσ2Sb1 = aabbccacba to
our (yet empty) text. The lzw parsing of this
text inserts the strings aa, ab, bb, bc, cc, ca,
ac, cb, and ba into the lz trie, thus creating all
possible nodes at depth 2.

Figure 3: Example for the graph described in the proof of Lemma 2.1 in the
lzw part with Σ = {a, b, c}.

1..] such that (a) Fx = FyFy+1[1] for some y ∈ [0..x − 1], or (b) Fx = c ∈ Σ

if no such y exists. Formally, if Fx = FyFy+1[1], then y = argmax{|Fy′ | :

Fy′Fy′+1[1] = T [|F1..Fx−1|+1..|F1..Fx−1|+ |Fy′ |+1]}, and we call y the referred

index of the factor Fx. Otherwise (Fx = c ∈ Σ), we have that Fx = F−c for

a c ∈ Σ, and say that the referred index of Fx is −c < 0. The difference with

lz78 is that we do not include the symbol c that follows Fy when outputting

the code of Fx, yet we take it as part of Fx when we reference it. The advantage

of lzw is that, although it may produce more factors, encoding them requires

just to output the referred indices, whereas lz78 requires also to output the

final characters. Figure 2 gives an example.

2.1.1 LZ Trie

As shown in Figures 1 and 2, the factors can be represented in a trie, the so-called

lz trie. The root node corresponds to F0. In lzw, the root has additionally

σ children, where the c-th child has the label −c (representing F−c) and is

connected to the root with an edge with label c ∈ Σ.2 In both lz78 and lzw,

the node of Fx = Fy · T [j] is the child of the node of the factor Fy with the

edge labeled by T [j]. Consequently, the lz trie stores z + 1 indices that can be

referred for lz78, and z + σ + 1 for lzw.3 The node corresponding to the x-th

factor is labeled with the factor index x. The set of factors is prefix-closed for

both lz78 and lzw.

The following bounds on the number of lz trie nodes will be useful.

Lemma 2.1. The number m of nodes in the lz trie of lz78 and lzw satisfies√
2n+ 1/4 + 1/2 ≤ m ≤ cn/ logσ n, for a fixed positive constant c. The upper

2A different way is to represent the trie for lzw by a forest of σ trees, where the i-th root
has label −i ∈ [−σ..−1]. This saves one node since an lzw factor never refers to the factor F0.

3The number of factors z differs for lz78 and lzw in general.

8

bound can be refined to (m− 1)(logσm− 3) < n if we do not count the root of

the lzw trie.

Proof. For lz78, the number of nodes is exactly the size of the factorization plus

1 (for the root, F0). A lower bound of
√

2n+ 1/4−1/2 for the number of lz78

factors was proved by Bannai et al. [9, Lem. 1], using the only property that

the length of each new factor is at most one plus the length of some previous

factor. This fact holds for lzw too if we count the σ values −c ∈ [−σ..− 1] as

factors. Since those nodes are included in the lz trie of lzw, the same bound

holds.

The upper bound holds for lz78 because, for any factorization into z distinct

factors (which is the case for all lz78 factors except possibly the last one), we

have that z < n
logσ n−2 logσ(1+logσ n)−2

[50, Thm. 2], which is z ≤ cn/ logσ n for

some suitable constant c. In the case of lzw, we have that the strings FyFy+1[1]

are all distinct, therefore we can form a text of length n + z by concatenating

those unique substrings. A crude upper bound n+z ≤ 2n yields z ≤ 2cn/ logσ n.

To obtain the precise upper bound, we build a worst-case text with all the

shortest possible factors, as follows4. For lz78, consider a text concatenating

all distinct strings of length 1, then all distinct strings of length 2, and so on up

to length k. The text is of length nk =
∑k
d=1 dσ

d = σk+1

σ−1

(
k − 1

σ−1

)
+ σ

(σ−1)2 .

Each distinct string produces a new factor, so the text has zk =
∑k
d=1 σ

d =
σk+1−σ
σ−1 < σk+1

σ−1 − 1 factors. Therefore, nk >
σk+1

σ−1 (k − 1) > (zk + 1)(k − 1).

To reach any arbitrary length nk ≤ n < nk+1, we complete the text with

∆ < σk+1 distinct factors of length k+ 1, plus a final possibly shorter one, each

of which becomes a new lz78 factor. Therefore, the total number of factors is

z = zk+∆+1 < nk
k−1−1+ n−nk

k+1 +1 < n
k−1 . Since z ≤ zk+1 <

σk+2

σ−1 −1, it follows

that k+2 > logσ(σ−1)+logσ(z+1) ≥ logσ(z+1), thus k−1 > logσ(z+1)−3.

We then conclude that z < n
logσ(z+1)−3 and thus z(logσ(z + 1)− 3) < n. Since

the trie of lz78 has m = z + 1 nodes, we obtain (m− 1)(logσ(m)− 3) < n.

Forming a worst-case text for lzw is slightly more complicated. Let Σ =

{a1, . . . , aσ}. Assume we have already formed all the trie nodes of depth d.

Let S1, . . . , Sσd−1 be all the distinct strings of length d − 1. Consider the

complete directed graph with σ nodes and σ2 edges (ai, aj) for all i, j. This

graph is Eulerian because all indegrees and outdegrees are σ; let e1, . . . , eσ2 =

(b1, b2)(b2, b3) · · · (bσ2 , b1) be an Eulerian circuit, where each bk for k ∈ [1..σ2]

is some a ∈ Σ. For each Si, if we append b1Sib2Sib3Si · · · bσ2Sib1, the lzw

factorization will find each factor bjSi (for j ∈ [1..σ2]) in the trie and output

it, inserting the new node corresponding to bjSibj+1 mod σ2 . See Fig. 3 for an

4Generalized from https://ocw.mit.edu/courses/mathematics/18-310-principles-of-

discrete-applied-mathematics-fall-2013/lecture-notes/MIT18 310F13 Ch20.pdf

9

example. Because of the Eulerian circuit, all the strings aSia
′ for all a, a′ ∈ Σ

are then formed. The last symbol we append, b1, is then reused as the first char-

acter of a new string b1Si′b2Si′b3Si′ · · · · · · bσ2Si′b1 for another string Si′ 6= Si.

After repeating this for all the strings S of length d− 1, we have created all the

trie nodes of depth d+ 1. We have appended 1 + σd−1σ2d = 1 + dσd+1 symbols

and have created σd−1σ2 = σd+1 factors. The last b1 emitted can always be

used as the first symbol of the next level.

Since the trie of lzw starts with the first level completed, we do this process

for depths d = 1, . . . , k − 1, forming a text of length nk = 1 +
∑k−1
d=1 dσ

d+1 =
σk+1

σ−1

(
k − σ

σ−1

)
+ σ2

(σ−1)2 + 1 that is parsed into zk =
∑k−1
d=1 σ

d+1 = σk+1−σ2

σ−1 <

σk+1

σ−1 − σ factors. Therefore, nk >
σk+1

σ−1 (k − 1) > (zk + σ)(k − 1).

Analogously as for lz78, we complete the text of length nk ≤ n < nk+1 with

∆ distinct strings of length k, plus a final possibly shorter one, each of which

becomes a new lzw factor (and creates a new trie node). The total number of

factors is then z = zk + ∆ + 1 < nk
k−1 − σ + n−nk

k + 1 < n
k−1 − σ + 1. Since

z ≤ zk+1 <
σk+2

σ−1 −σ, it follows that k+2 > logσ(σ−1)+logσ(z+σ) ≥ logσ(z+σ),

thus k − 1 > logσ(z + σ) − 3. We then conclude that z < n
logσ(z+σ)−3

− σ + 1

and thus (z + σ − 1)(logσ(z + σ) − 3) < n. Since the trie of lzw without the

root has m = z + σ nodes, we obtain (m− 1)(logσ(m)− 3) < n.

The lower and the upper bounds of Lemma 2.1 yield lg z = Θ(lg n).

2.1.2 Factorization Algorithm

To describe the classic factorization algorithm, we implement the lz trie as a

dynamic trie supporting two operations:

• insert(x, c) inserts a leaf ` connected to a node v with an edge

labeled with c ∈ Σ, where v represents the x-th factor. If the

lz trie contains y nodes (not counting those corresponding to

Fd for d ≤ 0) before inserting `, the label of ` is the factor

index y + 1.

x

y + 1

c

v

`

• lookup(x, c) returns the index of the factor Fy = Fx c whose

corresponding node is connected to its parent v with an edge

labeled with c, where the node v represents the x-th factor. If

v does not have such a child, it returns an invalid index ⊥.

x

y

c

v

u

The classic lz78 factorization algorithm scans the text T [1..n] from left

to right. Suppose we have already factorized T [1..i − 1] into x − 1 factors

F1F2 · · ·Fx−1. To compute Fx, we find the longest prefix T [i..i + ` − 2] (with

i + ` − 1 ≤ n) that is equal to some Fy, with y ∈ [0..x − 1] with F0 being the

empty string. Then we define Fx := Fy ·T [i+`−1], and we continue the parsing

from T [i+ `].

10

We can use the lz trie for the lz78 factorization in the following way: To

process Fx = T [i..i + ` − 1], we traverse the lz trie from the root downwards

following the characters T [i], T [i + 1], . . ., traversing the nodes y0 := 0 and

yk+1 := lookup(yk, T [i + k]), until i + ` − 1 = n or we fall out of the tree at

lookup(y`−1, T [i+ `− 1]) = ⊥. By doing so, we know that the referred index of

Fx is y`−1. Finally, we create a new node for Fx with insert(y`−1, T [i+`−1]) = x.

Given that z is the number of lz78 factors, the algorithm performs z searches

for a text substring. It inserts z times a new leaf in the lz trie. Since the total

length of all factors is n, it traverses n times an edge from a node to one of its

children. In total, it calls insert z times, and lookup n times.

The case of lzw is very similar. We start with the lz trie having the σ

children y−c of the root representing the single characters c ∈ [1..σ]. We traverse

the trie with T [i], T [i+ 1], . . . via lookup until finding the node y`−1, where we

perform insert exactly as before (now the limit is i + ` ≤ n). The difference is

that we continue the factorization from T [i+`−1], not from T [i+`]. Therefore,

for lzw we call insert z times and lookup n+ z times.

A straight-forward representation of the lz trie storing z nodes consists of

• an array storing the labels within z lg σ bits,

• an array of the referred indices with z lg z bits, and

• a data structure of O(z lg n) bits for navigating from a node v to a child

connected to v by an edge with a given label.

In total, this representation requires O(z(lg n + lg σ)) ⊆ O(n lg σ) bits for the

factorization, which can be performed in O(n lg σ) deterministic time by imple-

menting the child navigation data structure with balanced search trees, or in

O(n) randomized time by implementing this data structure with hash tables

whose sizes double when needed.

2.1.3 Classic Coding

Having computed the factorization, we can achieve compression by encoding the

factors. For that, we transform the list of factors into a list of integer values.

In detail, we linearly process each factor Fx for x ∈ [1..z], as follows:

lz78: Given Fx = Fy c for a c ∈ Σ and y ∈ [0..x− 1], we output the pair (y, c).

lzw: If Fx = FyFy+1[1], we output y. Otherwise, Fx = c ∈ Σ and we output

−c.

Both factorizations also differ in how their output is encoded and decoded:

11

LZ78 Coding. The usual way to represent the lz78 tuples in the compressed

output consists of two (separate or interlaced) arrays S[1..z] and R[1..z] such

that R[x] = y ∈ [0..x − 1] and S[x] = c ∈ Σ for Fx = Fy c. We can naively

store S[1..z] in zdlg σe bits, and R[1..z] in zdlg ze bits. However, the referred

index y (with y > 0) of a factor Fx can actually be stored in dlg xe bits, because

a factor Fx can have a referred index y only with y < x. We can restore the

referred index encoded in dlg xe bits on decompression since we know the index

of the x-th factor and hence the number of bits dlg xe used to store its referred

index.5 This yields

z∑
i=1

dlg ie = zdlg ze − (lg e)z +O(lg z) bits (1)

for storing the referred indices. In total, we can represent S and R in z(dlg ze+

dlg σe − lg e) +O(lg z) bits.

LZ78 Decoding. Having S and R, we can decode each factor Fx in turn: Fx

is equal to S[x] in case R[x] = 0, or otherwise it is the concatenation of the

R[x]-th factor (which we decode recursively) with S[x], Fx = FR[x] · S[x]. If

we have random access to R[y] and S[y] for y ∈ [1..x], we can decode the x-th

factor in O(|Fx|) time, and then decode the complete text in O(n) time.

LZW Coding. For lzw, we cope with the negative integer values by adding

σ to all output values, so its output consists of non-negative integers. With

the same coding for the referred indices as in lz78, the x-th factor requires

dlg(x + σ)e bits. By splitting up the sum
∑z
i=1dlg(i + σ)e =

∑z+σ
i=1 dlg ie −∑σ

i=1dlg ie, we get the total number of bits of the lzw output using Equation (1),

z(dlg(z+σ)e−lg e)+σdlg z+σ
σ e+O(lg(z+σ)). Assuming that both factorizations

have the same number of factors, the coding of lzw uses less bits than lz78 if

σ � z. However, the number of factors of the lz78 and the lzw factorization

for the same text differ in general, so a comparison is not immediate.

LZW Decoding. A factor Fx with negative referred index, R[x] = −c, is

decoded directly (we output c ∈ Σ). Any other factor is of the form Fx =

FyFy+1[1]. We extract Fy as for lz78 and repeat the process for Fy+1, just to

obtain its first symbol. To recover the linear-time complexity, we can make a

first pass over the z factors to obtain the first character of each: F−c is associated

with c and Fx = FyFy+1[1] inherits the first character of Fy. Once this is done,

requiring z lg σ extra bits of memory, we can obtain any Fy+1[1] in constant

time and decompress in total time O(n).

5This is a folklore idea, see for example http://www.cplusplus.com/articles/iL18T05o.

12

http://www.cplusplus.com/articles/iL18T05o

2.1.4 LZ Trie Coding

An alternative way [4] to represent the lz78 (or lzw) factorization uses a suc-

cinct encoding of the lz trie, with:

• 2z + o(z) bits to represent the trie topology in a way that constant-time

node navigation operations are supported, such as balanced parenthe-

ses [57] or depth-first unary degree sequence [12],

• z lg σ bits for the edge labels in preorder, and

• z lg z bits for an array L[1..z] whose entry L[x] stores the preorder number

of the lz trie node corresponding to the factor Fx.

All three data structures combined allow us to answer lookup in constant time.

To extract an lz78 factor Fx, we start from the node with preorder L[x] in the

lz trie, and use the trie topology to climb the trie upwards to the root. While

climbing up, we read the edge labels of the visited path, which constitute Fx. In

total, we need O(|Fx|) time for decompressing Fx. To extract an lzw factor Fx,

we proceed similarly, but start reading the characters at the parent of the node

with preorder L[x].

The lz78 coding based on the lz trie is more complex than that with the

two arrays R and S. It also uses slightly more space than the former, namely,

the 2z + o(z) bits for the tree topology. Yet, it is sometimes preferred because

it enables operations other than just decompressing T . For instance, Sadakane

and Grossi [66] showed how to obtain any substring of length ` of T in optimal

time O((` lg σ)/w). In Section 5, a different representation of the lz trie with a

similar coding allows us to carry out the factorization within just O(z lg σ) bits

of main memory.

2.2 Experimental Setup

We describe the common setting of our experiments throughout this article. We

performed the experiments on an Intel Xeon CPU X5670 at 2.93GHz with 49 GB

of RAM running a 64-bit version of Arch Linux 2020 with Linux kernel 5.4.23-

1-lts. We used a single execution thread for the experiments. We wrote our

code in C++17 and compiled it with gcc version 9.2.1 via the compile flags -O3

-march=native -DNDEBUG. We measured the number of allocated bytes with

tudostats6, which overrides the standard memory allocation (new and malloc)

to additionally monitor the maximum allocated memory during execution.

The texts considered in this article are:

6https://github.com/tudocomp/tudostats

13

https://github.com/tudocomp/tudostats

text n [M] σ zlz78 [M] clz78 [MB] zlzw [M] clzw [MB]

commoncrawl 10,739.46 127 679.55 3093.66 740.40 2642.29
dna 3336.57 51 227.42 989.84 247.50 832.71
english 1073.74 237 96.99 407.54 105.30 338.62
fibonacci 1836.31 2 1.52 5.26 1.52 3.74
gutenberg 1000.00 95 63.43 261.17 68.37 213.96
proteins 1184.05 27 147.48 630.11 169.40 559.33
wikipedia 244.73 204 24.21 95.68 26.47 78.53
xml 296.14 97 16.21 62.72 18.05 52.21

Table 3: Text files used in the experiments. Columns marked with ‘[M]’ are
divided by 10−6; zlz78 and zlzw are the number of factors of the lz78 and lzw
factorization, respectively; clz78 and clzw are the size of the encoding of the
lz78 and the lzw factors as described in Section 2.1.3 (with σ = 28).

xml : a highly compressible XML text;

english : an English text;

proteins : a not very compressible proteins file;

dna : a DNA file consisting of a prefix of a human genome7;

commoncrawl : ASCII webpages from commoncrawl;

fibonacci : the 31-th Fibonacci word;

gutenberg : an excerpt of the Gutenberg project; and

wikipedia : Wikipedia’s most vital articles.

The texts english, protein, and xml are from the Pizza&Chili Corpus8. The

other texts (except dna) are from the tudocomp project9. Table 3 lists the

texts with their main characteristics. Throughout all evaluations, we assume

that the input sequence is drawn from a byte alphabet (i.e., σ = 28). It can

be seen that, in all cases, zlz78 < zlzw but clzw < clz78, that is, lz78 produces

fewer factors but lzw outperforms it by encoding them better.

3 Compact Hash Tables

We start with an analysis of space-efficient dictionaries, as we will use dictio-

naries for representing the lz trie. In particular, we focus on compact hash

tables, and propose a new variant of them using a so-called sparse layout. To

7http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
8http://pizzachili.dcc.uchile.cl/texts
9https://github.com/tudocomp/datasets

14

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
http://pizzachili.dcc.uchile.cl/texts
https://github.com/tudocomp/datasets

understand what compact hash tables are used for, we start with some abstract

dictionary data types and then draw a connection between them and compact

hash table instances.

A set data structure is a dynamic data structure storing keys from a uni-

verse K. It provides the following methods:

• insert(K): inserts the key K ∈ K.

• lookup(K): returns whether the key K ∈ K has been inserted.

The information-theoretic lower bound for storing n keys in a dynamic set is

B(|K|, n) bits of space, where B(|K|, n) := lg
(|K|
n

)
. A set data structure can be

augmented with satellite data, making it a dictionary. The satellite data can

then be retrieved with lookup.

For our purposes, it is desirable to assign each key stored in a set data

structure a unique identifier. For instance, when using a dynamic array A as

the underlying data structure for the dictionary, A can give each key K the

index ι of its stored entry A[ι] = K as its identifier. An ID dictionary is a set

data structure that assigns each inserted key an identifier from a range [1..ρ] for

a variable ρ dependent on the number of stored elements n. These identifiers

are unique and immutable up to at least Ω(n) update operations. The methods

of the ID dictionary are:

• insert(K): inserts the key K ∈ K and returns its identifier.

• lookup(K): returns the identifier of the key K ∈ K if K has been inserted.

• key(ι): returns the key K ∈ K of the identifier ι ∈ [1..ρ] if such a key has

been inserted.

A dictionary can be converted into an ID dictionary by using as identifier the ad-

dress where each key is stored internally, provided this is sufficiently immutable.

A compact hash table H [20] is a set data structure geared towards repre-

senting the keys memory-efficiently. It is associated with a hash function h with

h(K) ∈ [1..|H|] for every key K ∈ K, where |H| is the number of cells of H.10

There is a restriction on the choice of the hash function h, as we request h to be

accompanied by a quotient function q such that (h, q) is a bijective transforma-

tion, that is, we can restore K from the values h(K) and q(K) for all keys K.

The idea is that we infer h(K) from the position in H where K is stored, and

thus only need to store q(K) for retrieving K. This saves space if the number

of bits needed to store q(K), |q| := maxK∈Kdlg q(K)e, is less than that to store

K, maxK∈KdlgKe [24, 46].

10The number of cells is not smaller than the number of stored entries n, and it is at least
n/α for open-addressing hash tables with a maximum load factor of α ∈ (0, 1].

15

Table 4: Overview of known Bonsai tables. ε > 0 is a user-specified constant.
tBonsai is the expected time for an insert or lookup operation. The column Rebuild-
ing shows the asymptotic number of insertion operations after which the hash
table must be rebuilt. We abbreviate B(|K|, n) to B and write lg(k) = lg(k−1) lg

with lg(1) = lg for k ≥ 2.

Ref. Space [bits] ρ Rebuilding tBonsai

cleary [21] (1 + ε)B Θ
(
n lgn
lg lgn

)
whp Θ(εn) O(1

ε2)

elias [64] (1 + ε)B Θ(n) Θ(εn) O(1
ε)

layered3 [64] (1 + ε)B +O(n lg(5) |K|) Θ(n) Θ(εn) O(1
ε)

layered2

(Sect. 3.2.3)
(1 + ε)B +O(n lg(3) |K|) Θ(n) Θ(εn) O(1

ε)

bucket [48] B + O(n lg(2) |K|) Θ(n) Θ(n) O(lg |K|)

Interestingly, the works of Darragh et al. [21] and Poyias et al. [64] implic-

itly introduce compact hash tables that are implementations of ID dictionaries,

which we call Bonsai tables in the following. We give an overview of these,

together with a practically engineered hash table [48], in Table 4. The major

design difference is that Darragh et al. [21] and Poyias et al. [64] apply open

addressing, while Köppl et al. [48] apply closed addressing. In what follows, we

briefly review the open-addressing approaches, and present a variation of their

table layout that uses less space in practice. The following scheme summarizes

the various combinations to implement an open-addressing Bonsai table:

layout × displacement

plain cleary [20]

sparse array [64, Sect. 3.1]

elias [64, Sect. 3.2]

layered [64, Sect. 3.3]

open-addressing Bonsai table =

Collisions in the open-addressing Bonsai hash tables are resolved by open

addressing with linear probing11, that is, a call to insert(K) looks for the first

vacant space in H[h(K) + i mod |H|] iteratively, for increasing integers i ≥ 0,

and inserts the quotient q(K) at that place, that is,

H[h(K) + min{i ≥ 0 : H[h(K) + i mod |H|] is empty}]← q(K).

In this article, we stipulate that x mod n := x if x ≤ n and x − n mod n

otherwise, for an integer x ≥ 1. Hence, n mod n = n, but n+ 1 mod n = 1.

11Actually, Darragh et al. [21] used bidirectional probing, but we stick to linear probing to
simplify the explanation (all results explained here also work with bidirectional probing).

16

. . . 0 0 0 1 0 0 0 0 1 0 1 0 . . .BS =

Bj Bj+1 Bj+2

b

39 53

5Aj
Aj+2

Figure 4: Sparse hash table layout. The bit vector BS of length |H| is the
concatenation of the bit vectors B1 · · ·B|H|/b with |Bj | = b for all j ∈ [1..|H|/b],
where b = 4 in this example. BS stores at position i whether H[i] stores an
entry. The actual values of H are stored in dynamic arrays Aj . The value of
H[i] can be retrieved by following the respective dashed arrow from BS[i].

3.1 Sparse Table Layout

In its plain layout, a hash table H with open addressing uses |H| lg|q| bits

for storing its entries, regardless of the number of entries. On the one hand,

this is wasteful for low load factors. On the other hand, open-addressing hash

tables become exponentially slower at high load factors (cf. Section 3.5.2). As

a remedy, we propose the sparse table layout, which does not allocate memory

pages for all entries at once, but uses an array of pointers to small tables that

are allocated dynamically when needed. It is inspired by Google’s sparse hash

table12, and consists of a bit vector BS of length |H| and dynamic arrays. The

entries of the hash table are mapped to entries of the arrays with BS. Figure 4

sketches this layout.

In detail, we partition the hash table into |H|/b sections, where b is a (small)

constant that is a power of two. We assume that |H| is divisible by b, so that

all sections have the same length b. For instance, this is the case when |H| and

b are powers of two (with b < |H|). Given that we want to access the k-th

cell of the hash table for k ∈ [1..|H|], there are integers i := k mod b ∈ [1..b]

and j := dk/be ∈ [1..|H|/b] such that k = i + (j − 1)b. Then H[k] is mapped

to the i-th entry of the j-th section. By interpreting BS as the concatenation

B1 · · ·B|H|/b of bit vectors of length b, the j-th section is represented by the

bit vector Bj and a dynamic array Aj . We maintain Bj and Aj such that the

i-th entry of the j-th section is stored at position Bj . rank1(i) in Aj . For a

sufficiently small b, the rank query can be answered with a constant number of

CPU instructions (on a modern CPU architecture) on the bit vector Bj without

the need of a (dynamic) rank support. Finally, we store pointers to the dynamic

arrays Aj of the sections in an array of length |H|/b.
We can insert an entry in the j-th section by setting the appropriate bit

12https://github.com/sparsehash/sparsehash

17

https://github.com/sparsehash/sparsehash

in Bj and rearranging the elements in Aj . We can rearrange Aj efficiently if

the elements of Aj (which are at most b) fit into the CPU cache. Whenever we

want to insert an element into a full array Aj with |Aj | < b, we double Aj ’s

size. Initially, all arrays Aj for j ∈ [1..|H|/b] are empty. In total, we need |H|
bits and (|H|/b)(w + lg b) bits for the bit vector BS and the arrays Aj (each

consisting of a pointer with w bits and a counter with lg b bits maintaining its

size), respectively, in addition to the actual entries in Aj , which use n lg |q| bits.

Compared to the plain layout using |H| lg |q| bits, the sparse layout is more

space-economical for low load factors and large values of q. Specifically, for

b = w, the sparse layout is more space-economical if

2|H|+ (|H| lgw)/w + n lg |q| < |H| lg |q| ⇔ 2 + (lgw)/w ≤ |H| − n
|H|

lg |q|

If we use a maximum load factor α ∈ (0, 1], double the size of H when reach-

ing α|H| elements, and neglect deletions (as we do throughout this article), then

|H| ∈ [n/α..2n/α]. Hence, |H|−n|H| ∈ [1− α, 1− α/2]. A consequence is that the

sparse layout pays off at least when the bit widths of the quotients is larger than

(2 + (lgw)/w)/(1− α).

On the downside, the sparse layout is slower in practice due to the indi-

rect access to BS needed to determine the corresponding position in a dynamic

array Aj . Additionally, an insert operation may cause the reallocation of a

dynamic array.

The sparse table layout resembles a hash table of size |H|/b with closed

addressing using bucketing (cf. Section 3.4). The difference arises when one of

the dynamic arrays Aj becomes full. In such a case (|Aj | = b), when trying to

add a new element in Aj , the sparse table layout probes the next array Aj+1

(due to the linear probing) instead of enlarging Aj or rehashing the entire hash

table (cf. [48, Sect. 2.3]).

3.2 Displacement

Given that the quotient q(K) of a key K is stored in the h(K)-th cell of the hash

table, it is easy to retrieve K since we have q(K) and h(K) at hand. In case a

key K cannot be stored in the cell h(K) due to a collision, we need to resolve

this collision and store q(K) in a different cell. For restoring the value h(K) of

a stored entry H[i] = q(K) we need additional information about the difference

i − h(K). This difference is called a displacement. It can be represented as an

array or with bit vectors, as we describe in the following.

18

3.2.1 Array Displacement

The array displacement maintains an integer array D of size |H|, and hence

needs |H| lg |H| additional bits of space. Given a key K whose quotient is

stored in H[i], its entry D[i] is i−h(K) mod |H| ∈ [1..|H|], except that D[i] = 0

means that K is stored directly in H[h(K)]. Having D at hand, h(K) = i−D[i]

mod |H| is the hash value of a key K with H[i] = q(K). Further, we stipulate

the invariant that D[i] = −1 signals that the i-th cell is empty.

An insertion works as follows: Suppose that we want to insert a key K into

the cell H[p] with p = h(K). If H[p] is free, we are done, and set D[p] = 0.

Otherwise, we probe consecutive positions H[p] with p = h(K) + j mod |H|,
for j = 1, 2, . . ., where one of the following cases is met:

1. H[p] is free. In this case we terminate with H[p] ← q(K) and D[p] ← j,

so that D[p] indicates the number of probes between h(K) and the final

position p where K is finally written.

2. H[p] is not free, H[p] = q(K), and (p − D[p]) mod |H| = h(K). This

means that the key K is already stored in H, thus there is no need to

insert it.

3. H[p] is not free, but H[p] 6= q(K) or (p −D[p]) mod |H| 6= h(K). Thus

the cell is occupied by another key and we continue probing.

Operation lookup(K) works in the same way, except that Case 1 implies that

K is not stored in the set and Case 2 implies that we have found K.

3.2.2 Displacement Elias

The displacement elias divides the array D of the array displacement into blocks

of a fixed size b. Each block stores its associated displacement values in a bit

string encoded with Elias-γ [23]. For b = (lg|H|)3/2, the displacement informa-

tion uses O(|H|) bits of additional space in expectation [64, Lem. 6].

3.2.3 Displacement Layered

The displacement layered3 (called recursive in [64, Sect. 3.3]) is parameterized

with two integer constants b0, b1 with 0 ≤ b0 ≤ b1 ≤ |H|. It uses a three-layer

approach (hence the 3 in the subscript) to store the values of D, consisting of

(a) an array D′ with D′[i] = D[i] if D[i] can be represented within b0 bits or

D′[i] = ⊥, for an escape symbol ⊥, otherwise,

(b) a compact hash table storing all remaining displacement values that can be

represented within b1 bits, and finally

19

. . . 1 1 1 0 0 1 0 0 1 0 0 1 . . .

. . . 0 0 1 1 0 1 0 0 0 0 0 0 . . .

. . . ⊥ ⊥ 35 71 3 7 11 2 1 0 5 ⊥ . . .

BC =

BV =

H =

s v i

Figure 5: Hash table H of quotients with cleary displacement storing the bit
vectors BC and BV. The hash value v of the entry stored in cell H[i] = 11 is
equal to that of the entries H[i−1] = 7 and H[i+1] = 2 because they are in the
same group (marked by the rectangle in BC). The number of ones from s + 1
up to this group is 2, so the hash value of the group is the second one in BV

staring with s+ 1, which is s+ 2 in this example.

(c) a dictionary (e.g., a plain hash table) for all displacement values that cannot

be represented within b1 bits.

In addition to layered3 we introduce the simplification layered2, which uses

two layers by omitting b1 and the compact hash table. We prove next that our

simplification has an overhead of O(lg(3) n) bits per entry, while layered3 has an

overhead of only O(lg(5) n) bits per entry.

Lemma 3.1. Assuming full randomness, the Bonsai table layered2 takes con-

stant expected time for lookup and insert with an overhead of O(lg(3) n) bits per

entry.

Proof. Our idea is to choose a sufficiently large b0 for the bit width of the

array D′ in the first layer such that the probability of a larger displacement

becomes O(1/ lg n). Thus, the dictionary of the second layer only needs to

store O(n/ lg n) elements in expectation. We can implement this dictionary

with a classical dynamic search structure like an AVL tree, which takes O(lg n)

time per operation and needs O(n) bits in expectation. Assuming randomness

for queries, we use this dictionary expectedly once per O(lg n) operations, and

hence an operation on the hash table costs O(1) expected time. We show that

these space and time bounds are guaranteed with b0 ≥ lg(3) n: Poyias et al. [64,

Thm. 7] show that the probability of storing a number larger than k in D′ is

O(ck) for some 0 < c < 1; therefore the probability of an overflow in D′ is

O(c2
b0

). Choosing b0 ≥ lg(3) n− lg lg(1/c), this probability is O(1/ lg n).

3.2.4 Cleary Displacement

A different approach [20] that does not store the displacement values explicitly

is cleary, which uses two bit vectors BV and BC to represent the displacement.13

13‘V’ for virgin and ‘C’ for change [20].

20

The bit vectors BV and BC are of length |H| and are defined as follows:

• BV[i] = 1 if and only if there is a key K stored in the hash table with

h(K) = i.

• BC[i] = 1 if and only if

– the cells H[i] = q(K) and H[i−1] = q(K ′) have different hash values

h(K) 6= h(K ′), or

– the cell H[i] is empty.

Suppose that BC[i] = 1 and H[i] is non-empty, then all cells H[k] for k ∈
[i, BC. select1(BC. rank1(i) + 1)) have the same hash value. We say that these

cells belong to the same group. To determine their hash value v, we search the

largest position s smaller than i that is empty. This position s has the property

that BC[s] = BC[s+1] = BV[s+1] = 1. With s we can compute the hash value v

with v = BV. select1(BV. rank1(s+ 1) +BC. rank1(i)−BC. rank1(s+ 1)). This

formula is correct because we maintain the key order across contiguous groups,

as we show soon in the insertion process.

The rank/select operations are computed by linearly scanning the two bit

vectors. This is not a time bottleneck since i− s is small in expectation for low

load factors. Figure 5 gives an example.

With BV and BC, cleary needs only 2|H| additional bits of space. The

rearranging strategy is similar to Hopscotch hashing [37], where entries are

rearranged such that the distance of an entry q(K) to h(K) is within a cache

line.

Insertions are done in the following way: Suppose that we want to insert

K into the cell H[p] with p = h(K). If H[p] is empty, we are done by setting

H[p] ← q(K), BC[p] ← 1, and BV[p] ← 1. If H[p] is not empty, then we check

in BV[p] whether there is a group with hash value p.

• If this is the case, we find this group as above by locating the largest

position s < p with H[s] being empty, and then linearly scanning the cells

until we find this group. We scan to the end of this group, checking if one

of the stored quotients matches the quotient q(K) we want to insert.

– If we find such a quotient, we are done since the element we want to

insert has already been inserted.

– Otherwise, we reach the end of this group at position i. We shift

all succeeding consecutive cells (i.e., the contents of H, BC and BV)

that are not empty by one position to the right, and then insert q(K)

at position i+ 1, setting BC[i+ 1]← 0.

21

• Lastly, if there is no such group, we find the group with the preceding

hash value, ending at position i, and do the same steps (we shift the cells

and insert q(K)). However, this time we set BV[p]← 1 and BC[i+1]← 1.

In our sparse layout, we partition not only H but also BV and BC into

sections. We can handle the bit vectors with the same logic as for handling

satellite data. This works well because we do not rely on rank or select support

data structures, that is, we naively scan both bit vectors.

3.3 Identifier

The identifier is an integer in the range [1..ρ], where ρ = Ω(n) is defined inde-

pendently for each hash table (cf. Table 4).

Displacement array D. All approaches maintaining the displacement ar-

ray D (such as elias and layered) can guarantee that a hashed element will not

be moved until rehashing. Therefore, the identifier is the position in the hash

table at which an element is stored, thus ρ = |H|.

cleary. Because cleary might move elements upon insertions, we cannot simply

use the positions in H as identifiers. Instead, we use the pair (h(K), g) for a

key K, where g is the number of keys that are in the same group as K and

have been inserted in H prior to K. This identifier stays unchanged upon

insertions [21, p. 282] and can be stored in lg(|H|λ) bits, where λ is the maximum

group size. For λ = Ω(lg n/ lg lg n), it is guaranteed that a rehashing can be

delayed for Θ(n) insertions [64, Sect. 2.3], which yields the bounds for ρ in

Table 4.

3.4 Other Collision Resolutions

A displacement strategy is usually based on the collision resolution, which is

linear probing in our case. In fact, we can also use bidirectional linear prob-

ing [1], as originally proposed by Cleary [20], by considering negative values in

the displacement array. Other strategies like Cuckoo-Hashing, instead, do not

make much sense as ID dictionaries since we would need to store the identi-

fiers explicitly to support element swapping. If the identifiers are not necessary

(e.g., our lz78 and lzw trie representation cht in Section 4.2.2 only needs a

compact hash table), then other strategies like Hopscotch hashing [37] or Robin-

Hood hashing [16] can also be combined with our displacement strategies above,

yielding other interesting compact hash tables.

Here, we focus on a compact hash table resorting to closed addressing by

hashing entries to a bucket with a limited maximum size. Besides the one given

22

in Table 4, which we name bucket (it is called cht in [48]), Köppl et al. [48]

proposed another compact hash table called grp, using B(|K|, n) + O(n) bits

and with O(lg |K|) worst-case time for insert and O(1) expected time for lookup.

Unfortunately, this table groups the buckets similarly to cleary but in such a

way that it is not clear how to represent the identifiers in a space-friendly way

to guarantee Ω(n) insertions before a rehashing.

3.5 Open-Addressing Implementations

For the practical implementation of our open-addressing hash tables, we describe

how to perform resizes and which hash function we choose.

First of all, we double the number of cells of H on rehashing, that is, when

reaching the maximum number of entries α|H| for a user-defined constant α ∈
(0, 1], which we call the maximum load factor.

3.5.1 Table Size

We choose the hash table size |H| to be a power of two. Having |H| = 2k for k ∈
N, we can compute the remainder of the division of a hash value by the hash table

size with a bitwise-and operation: h(K) mod 2k = 1 + ((h(K)− 1) & (2k − 1)),

which is faster in practice (see, e.g., [53]).

3.5.2 Reasons for Linear Probing

Linear probing inserts a tuple with key K at the first free entry, starting at the

hash value h(K). It is cache-efficient if the keys have a small bit width (i.e.,

fitting in a computer word). Using large hash tables and small keys, the cache-

efficiency can compensate the chance of more collisions [8, 36]. Linear probing

excels if the load ratio is below 50%, and it is still competitive up to a load ratio

of 80% [14, 52]. Nevertheless, its main drawback is clustering : Linear probing

creates runs, that is, entries whose hash values are equal. With a sufficiently

high load, it is likely that runs merge and long sequences of entries with different

hash values emerge. When looking up a key K, we have to search the sequence

of successive cells starting at the h(K)-th cell until finding a tuple whose key

is K or an empty entry. Fortunately, this search is fast if the maximum load

factor α ∈ (0, 1] is not too close to 1, since it takes O(1/(1 − α)2) expected

time [46] under the assumption that the used hash function h distributes the keys

independently and uniformly. In practice, even weak hash functions (like those

we use in this article) tend to behave as truly independent hash functions [18].

23

3.5.3 Bijective Transform

We follow the ideas of Poyias et al. [64] for the bijective transform: We use

f(K) = aK mod p with h(K) := f(K) mod |H| and q(K) := bf(K)/|H|c,
where a ∈ [1..p− 1] is a randomly chosen constant, and p is the first prime such

that p > |K|.
Since p ≤ 2|K| [35, p. 343] (see also [17]), it holds that q(K) = O(|K|/|H|),

and thus the quotients stored in H require lg |K| − lg |H| + O(1) bits. With

this information we can reconstruct aK mod p = q(K)|H| + h(K), and then

K = a−1 · (a ·K) mod p, where a−1 is the modular multiplicative inverse of a

with modulus p, which can be computed with the extended Euclidean algorithm

in O(lg |K|) time in a precomputation step [45, Sect. 4.5.2].

Note that the obtained hash function h(K) = f(K) mod |H| is only 1-

independent for randomly chosen a and p. Just 1-independence is not sufficient

to ensure randomness in the case of linear probing; this has been proven only

for 5-independence [61, 62]. To make the hash function 5-independent, the

component a · K of our bijective transform f should become a polynomial of

degree four, f(K) = (a0 + a1K + a2K
2 + a3K

3 + a4K
4) mod p. However, we

do not know how to invert this function f for arbitrarily chosen constants a1,

a2, a3, a4 ∈ [1..p− 1].

Luckily, the following experiments reveal that those theoretical reservations

do not have a significant impact on the practical performance of the scheme.

3.6 Experiments

We evaluate our proposed sparse layout with experiments measuring their use-

fulness compared to the plain layout. Our focus lies on inserting and querying

elements, which are the main tasks for the lz78 construction.

For the open-addressing Bonsai tables, we append subscripts ‘P’ or ‘S’ if the

respective variant uses the plain or sparse form, respectively. We set the load

factor of all open-addressing hash tables to α← 0.95. For layered = layered2, we

set b0 := 4, and use std::unordered map as the dictionary for all values with

bit width > b0. For elias, we set the block lengths to 1024.

We evaluated all the compact hash tables mentioned in Figure 6 on ran-

domly generated inputs consisting of 32-bit keys and 8-bit values. The first

observation is that the sparse variants indeed save space while being somewhat

slower than their plain counterparts. The variant layeredP is one of the extreme

solutions, being the fastest option both for insertion and querying but also the

worst solution regarding space requirements. While its sparse variant layeredS

has nearly as good query times, it is outpaced by several other approaches for

insertions. clearyS and clearyP are always superior to eliasS and eliasP with re-

24

spect to time and mostly to memory, and are better balanced than the layered

variants. The most space-economical approaches are grp, followed by clearyS,

eliasS, and bucket. For the insertions, bucket is faster than grp, which is again

faster than clearyS. At querying, all these variants behave roughly the same.

Comparison and Outlook. We conclude that grp and cleary are well-suited

as compact hash tables. If we focus on small identifiers, both approaches are

inferior to layered, which is a well-suited Bonsai table. In the rest of this article,

we stick to

• grp and cleary for compact hash table representations, and to

• layered2 and layered3 for Bonsai table representations, where layered3 uses

bucket as the compact hash table in the middle layer.

4 LZ Trie Representations

In this section, we focus on the classic lz78 and lzw algorithms described in

Section 2.1.2. These algorithms compute the respective factorization by main-

taining the lz trie in memory. For the lz trie, we study five representations

providing different trade-offs between computation speed and memory consump-

tion. All representations have in common that they work with dynamic arrays.

Resize Hints. The usual strategy for dynamic arrays is to double the size of

an array when it becomes full. To reduce the memory consumption, a hint on

how large the number of factors z might be is convenient for a dynamic lz trie

data structure. We provide such a hint based on Lemma 2.1. At the beginning

of the factorization, we let a dynamic trie reserve enough space to store at least√
2n elements without resizing, as this is the lower bound on the number of

factors. Upon enlarging a dynamic trie, we usually double its size. However, if

the number r of remaining characters to parse is below a certain threshold, we

scale the data structure up to a value with which we expect that all factors can

be stored without resizing the data structure again. Let z′ be the computed

number of factors up to now. If r > n/2 we use z′+ 3r/ lg r as an estimate (the

number 3 is chosen empirically14), derived from z − z′ = O(r/ logσ r) based on

Lemma 2.1. Otherwise, we interpolate z′+z′r/(n−r) with the assumption that

the ratio between z′ and n− r will be roughly the same as between z and n.

25

20 22 24 26
0

1

2

3

number of elements [lg]

av
g.

ti
m

e
p

er
el

em
en

t
[µ

s/
#

]
Insertion Time

20 22 24 26
0

0.5

1

number of elements [lg]
av

g.
ti

m
e

p
er

el
em

en
t

[µ
s/

#
]

Query Time

20 22 24 26

5

10

15

number of elements [lg]

av
g.

m
em

o
ry

p
er

el
em

en
t

[b
y
te

s/
#

] Space bucket clearyP
clearyS eliasP
eliasS grp

layeredP layeredS

Top Left : Time for inserting 210 · (3/2)n

elements for n ≥ 0. Top Right: Time
for querying all inserted elements. Bot-
tom Left : Maximum space needed dur-
ing the insertions.

Figure 6: Managing randomly generated 32-bit keys and 8-bit values with the
compact hash tables described in Section 3.

4.1 Deterministic LZ Tries

We first cover two trie implementations that use arrays to store at position x

the node labeled with the factor index x ∈ [1..z].

4.1.1 Binary Search Trie

The first-child next-sibling representation binary maintains its nodes in three

arrays. A node stores a pointer to one of its children, and a pointer to one of

its siblings. It additionally stores the label (i.e., a character) of the edge to its

parent. The trie binary takes 2z lg z+ z lg σ bits when storing z nodes. Figure 7

gives an example. To navigate from a node v to its child with label c ∈ Σ,

14There are artificial texts like an for which we overestimate the number of factors.

26

index 1 2 3 4 5 6

first child 2 5 6
next sibling 3 4
character a a b b a a

Figure 7: Array data structures of binary built on the lz78 example given in
Figure 1

we take the first child of v and then sequentially scan all its next siblings until

finding a node storing the character c. We propose three variants regarding the

order of the siblings: In the first variant, called binary, we store the siblings in

the order in which they are inserted. In the second variant, called binarymtf,

we apply a move-to-front heuristic: We store a new child as the leftmost child,

shifting all other children to the right. Similarly, we make each child we visit

the leftmost child. This heuristic is 2-competitive with the number of accesses

needed by the optimal child ordering [67]. In the last variant, called binarys, we

sort the nodes according to the character on their incoming edge. This helps us

to speed up unsuccessful searches, as we can stop when accessing a node whose

incoming edge has a label larger than the label of the query.

4.1.2 Ternary Search Trie

The Ternary Search Trie [13], ternary, differs from binary in that a ternary node

stores one more pointer to a sibling: A node of ternary stores a character, a

pointer to one of its children, a pointer to one of its smaller siblings, and a

pointer to one of its larger siblings. The trie ternary then takes 3z lg z + z lg σ

bits when storing z nodes. Similarly to binary, we do not rearrange the nodes.

To navigate from a node v to its child with label c ∈ Σ, we take the pointer to

one of its children and then binary search for the sibling storing the character

c: Given that we are at a node storing a character d, we

• take its smaller sibling if c < d,

• take its larger sibling if c > d, or otherwise

• descend to the current child, since c = d.

4.1.3 Space Analysis

Since we double the arrays when they become full, our peak memory usage

happens during the last resizing, where we keep the old trie with m cells and

the new trie with 2m cells in memory, where z ∈ (m, 2m]. The best and worst

27

Space [bits] Space [bytes]

Trie Entry Best Case Upper Bound Practice

binary lg(z2σ) 3
2z(lg(z2σ)− 2

3) 3z(lg(z2σ) + 4
3) 27m

ternary lg(z3σ) 3
2z(lg(z3σ)− 1) 3z(lg(z3σ) + 2) 39m

hash lg(z2σ) 3
2αz(lg(z2σ)− 2

3) 6
αz(lg(z2σ) + 4

3) 27
αm

cht lg(2αzσ) 3
2αz(lg(αzσ) + 8

3) 3
αz(lg(αzσ) + 11

3) 129
8αm

rolling w 3
αz(w + lg(z)− 1

3) 3
αz(w + lg(z) + 2

3) 36
αm

Table 5: Upper and lower bound of the maximum memory used during an
lz78/lzw factorization with z factors. The size of a fingerprint is w bits.
The best case and the upper bound are the values for z = 2m and z = m,
respectively, where m is the capacity of the respective trie (i.e., the maximum
number of storable nodes without a reallocation of memory). The last column
gives the maximum memory peak when setting w = 64, lgm = 32, and lg σ = 8
to constant, which is the setting in our practical evaluation in Section 4.4.

cases are z = 2m and z = m + 1, respectively. Let m be the last size of a

trie before doubling its size. For binary, we need m lg(m2σ) + 2m lg(4m2σ) =

3m(lg(m2σ)+4/3) bits of space, which is (3/2)z(lg(z2σ)−2/3) bits for the best

case z = 2m. For ternary, we need m lg(m3σ)+2m lg(8m3σ) = 3m(lg(m3σ)+2),

which is (3/2)z(lg(z3σ) − 1) bits for the best case. Table 5 puts these space

bounds in relation to the following trie data structures.

4.2 LZ Tries with Hashing

A dictionary (such as a hash table) can simulate a trie by representing the trie

nodes as elements in the dictionary: Given a trie edge (u, v) with label c, we use

the unique key (`, c) to store v, where ` is the label (factor index) of u; the root

is assigned the label 0. This allows us to find and create nodes in the trie by

simulating top-down-traversals. This trie implementation is called hash in the

following. If an operation on the dictionary of hash can be carried out in O(1)

expected time, then we can carry out the whole factorization in O(n) expected

time.

We use a hash table as underlying implementation of the dictionary of hash.

If the resize hint described at the beginning of Sect. 4 suggests that the next

power of two is sufficient for storing all factors, we set the maximum load factor α

to 0.95 before enlarging the size (if necessary). We also implemented a hash table

variant that changes its size to fit the provided hint. This variant then cannot use

the fast bit mask (cf. Section 3.5.1) to simulate the operation mod |H|. Instead,

it uses a practical alternative that scales the hash value by |H| and divides this

28

value by the largest possible hash value15, that is, |H|h(K)/(maxK′ h(K ′)).

We mark those hash table variants with a plus sign, for example hash+ is the

respective variant of hash.

4.2.1 Space Analysis

Let m be the capacity of H, that is, the maximum number of elements H can

store before a rehashing is needed (this is α|H| for open-addressing hash tables

having |H| cells). The hash table always stores trie nodes with labels that are

at most m; this is an invariant since we enlarge the hash table and consequently

let m grow before inserting a node with label m + 1. Therefore, the key of a

node can be represented by a dlg(mσ)e-bit integer by interpreting a key as a

single integer with

[1..m]× Σ→ [0..mσ − 1], (y, c) 7→ (σy + c). (2)

Consequently, the hash table needs (m/α)dlg(m2σ)e bits of space. Since an

entry of binary has the same space cost, the total space cost of hash is the same

as that of binary divided by the maximum load factor α.

4.2.2 Compact Hashing

We can further reduce the space requirements by switching to one of the compact

hash tables described in Section 3. We call this approach cht, which works as

follows: When enlarging the compact hash table, we choose a new bijective

transform, and rebuild the entire table with the new size and a newly chosen

transform. We first choose a bijective transform f according to Section 3.5.3,

adjusting the prime number p ∈ [mσ..2mσ] of f such that f maps from [1..p] to

[1..p] bijectively. Since f is a bijection, the function

[0..mσ − 1]→ [1..|H|]× [0..b(2mσ − 1)/|H|c]

i 7→ (h(K), q(K)) := (f(K) mod |H|, bf(K)/|H|c)

is injective. Consequently, a quotient costs lg(2ασ) bits, and therefore an entry

uses lg(2ασm) bits in total. With cleary using two bit vectors of total size 2|H|
for the displacement, we obtain that cht uses |H|(2+lg(2ασm)) bits. Given that

m is the capacity of H before the last rehashing, our peak memory usage during

this rehashing needs |H| lg(2ασm) + 2|H| lg(4ασm) = (3m/α)(lg(ασm) + 11/3)

bits. In the best case, this is 3z(lg(αzσ) + 8/3)/2α bits for z = 2m. This yields

the following result.

15http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-

tiny-memory-footprints/

29

http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/
http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/

Theorem 4.1. We can compute the lz78 or lzw factorization online inO(n/(1−
α2)) expected time using at most z(3 lg(zσα) + 11)/α bits of working space, for

a user-defined constant α ∈ (0, 1).

4.2.3 Rolling Hashing

Lastly, we present an alternative trie representation with hashing called rolling.

The idea is to maintain the Karp-Rabin fingerprints [42] of all computed factors

in a hash table such that the navigation in the trie is simulated by matching

the fingerprint of a substring of the text with the fingerprints in the hash table.

Given that the fingerprint of the substring T [i..i + ` − 1] matches the finger-

print of a node u, we can compute the fingerprint of T [i..i+ `] to find the child

of u that is connected to u by an edge with label T [i + `]. We compute a fin-

gerprint with the randomized Karp-Rabin fingerprint family ID37 [49]16 with

ID37(T) =
∑|T |
i=1 h(T [i])37|T |−i mod 2w, where w is the machine word size and

h is a hash function that maps the alphabet uniformly to the range [0..232− 1].

This rolling hash function discards the classic modulo operation with a prime

number in favor of integer overflows due to performance reasons; this trick was

already suggested by Gonnet and Baeza-Yates [34]. The lz78/lzw factoriza-

tion algorithm using rolling is a Monte Carlo algorithm since the computation

can produce a wrong factorization if the computed fingerprints of two different

strings are the same (because the fingerprints are the hash table keys). With

wrong we mean that some computed referred indexes might differ from the cor-

rect ones, and thus the decompression might produce a different string. Given

that rolling has a capacity to store m entries, an entry takes lgw + lgm bits.

On rehashing, we need m(w + lgm) + 2m(w + lg(2m)) = 3m(w + lgm + 2/3)

bits. In the optimal case (z = 2m), this is (3z/2)(w + lgm− 1/3) bits.

4.3 Algorithm Engineering Aspects

We consider the following options for tweaking the presented trie data structures

in order to improve time and/or space requirements. First, we propose jump

pointers (Section 4.3.1), which help us traverse the lz trie more quickly when

parsing a long factor. Next, we propose two adaptations that use multiple lz

tries for the factorization. While the first variant (Section 4.3.2) is independent

from the actual LZ trie implementation, the second variant (Section 4.3.3) only

makes sense with the hash tries hash and cht. Finally, we propose a combination

of these two variants (Section 4.3.4).

16https://github.com/lemire/rollinghashcpp

30

https://github.com/lemire/rollinghashcpp

4.3.1 Jump Pointers

Similarly to the word-packed lookup techniques of compacted tries [11, 68], we

can speed up the lz trie traversal by augmenting certain nodes with dictionaries

to jump over multiple heights: Given an integer parameter δ, we augment each

node u having a depth of the form δd with a dictionary Du mapping strings

of length δ to its descendants at depth δ(d + 1) whose heights are at least δ.

Suppose that, during the factorization, we look for the factor having the longest

common prefix with the remaining text by traversing the lz trie. Whenever

we reach a node u having a depth of the form δd, we query Du for the string

consisting of the next δ text characters. If this string exists in Du, it directly

leads us to a descendent of u at depth δ(d+1), so we have processed δ characters

in one step. Otherwise, we proceed character-wise from u. See Figure 8 for an

illustration.

We can maintain the jump pointer dictionaries Du as we build the trie:

Suppose that we did an lz trie traversal to add a new leaf `, where we visited

the last 2δ nodes including the leaf ` without using a pointer of one of the

dictionaries (i.e., we traversed the last 2δ nodes character-wise). This means

that the ancestor u of ` at distance 2δ from ` does not have a jump pointer to

the ancestor v of ` at distance δ, which can only happen because v was of height

less than δ. However, the new leaf ` has made v of height δ and thus now we

can add a jump pointer from u to v. By keeping the last 2δ characters read

from the text and the two last visited nodes whose depths are multiples of δ in

memory, we can easily augment the dictionary Du with v.

A hash table equipped with a hash function treating an input string as

an integer array (by means of word-packing) can hash a string of length δ in

O(δ(lg σ)/w) expected time, and check two strings for equality within the same

time. Implementing Du as such a hash table results in O(δ(lg σ)/w) expected

time for retrieving a pointer.

The number of pointers is O(z/δ), since we only add a node into a jump

pointer dictionary when (a) its depth is a multiple of δ and (b) its height is at

least δ. This ensures that every node v inserted in some Du has at least δ − 1

descendants that are not inserted in any dictionary. This gives us an overhead

of O((z/δ)w) bits. Matching a string of length ` with the lz trie then costs

O(`/δ + δ) time, since we need to compare less than 2δ edges without using a

jump pointer. This gives us O(n/δ + δz) time for the entire factorization. If

we implement the dictionaries of the jump pointers with a hash table and set

δ := O(w/ lg σ), we pay O(((z lg σ)/w)w) = O(z lg σ) bits of additional space for

storing the pointers, but can query for a jump pointer in constant expected time,

and therefore conduct the whole factorization in O(n lg σ/w + wz/ lg σ) time,

31

...

u

v

...

d

b

a

c

depth(u)

depth(u) + δ

S = ab

r

a

t

b

s

c

u

k

u

d

m

o g

e

a

f

m

i

Dr

string node

ot a
ou b
om d
ia e
im f

Db

string node

ku c

Figure 8: Jump pointers with δ = 2. Top Left : We augment the node v whose
depth is a multiple of δ with a dictionary that helps us to directly traverse the
δ characters of the string S downwards to the descandant u. Top Right: An
example trie. Bottom: The two dictionaries Dr and Db of the example trie.

which is o(n) for small alphabets and compressible texts with z = o(n lg σ/w).

Especially for trie representations with (practically) slow lookup times like

the compact hash tables, this technique can help boost the factorization. On

our datasets, we could observe a benefit with δ = 8 (so that the keys fit into

a 64-bit machine word) when storing only jump pointers from the root. We

could not observe a benefit for deeper nodes since it is less likely to query those

dictionaries, and it is even less likely to find the desired substrings.

4.3.2 Key-Split Variant

The idea is to represent the lz trie with multiple trie instances with different

index ranges (for binary and ternary of Section 4.1) or different key bit widths

(for hash and cht of Section 4.2). For the former group, we store an array A

of pointers to trie instances such that A[k] stores the trie nodes whose labels

are in the range [2k−1..2k − 1] for k ≥ 1. For the latter group, this array A

stores hash tables for each key bit width such that the k-th hash table A[k]

manages keys whose binary representation uses exactly k bits. All solutions

start with the array A where only A[1] points to an allocated trie while the

rest of pointers are null. The number of pointers is lg z for the deterministic

32

tries, and lg(zσ) for the hash tries. Starting with k = 1, whenever the trie A[k]

becomes full, we allocate A[k + 1] with twice the number of cells of A[k], that

is, |A[k]| = 2|A[k − 1]| =
∑k−1
j=1 |A[j]| + 1. On a global perspective, such an

allocation increases the total number of cells from m to 2m+ 1.

On the upside, this technique can yield a speedup since we omit the resize

operations. cht can profit from this technique with respect to memory con-

sumption since each compact hash table can tailor its quotient bit width dlg|q|e
individually according to the key bit width, whereas trie data structures like

binary represent a factor index implicitly as an array index or explicitly (as

a content in the arrays for the first child or next sibling) needing lg z bits in

general.

On the downside, this method needs an additional pointer indirection from A

to delegate a call of insert or lookup with the key K (resp., factor index K

for the non-hash-based tries) to the trie A[dlgKe], which can slow down the

computation. Here, dlgKe is computable in constant time on most architectures

(and in theory by using small precomputed tables).

4.3.3 Key/Value-Split Variant

When working with hash or cht, another possibility is to maintain multiple hash

tables for each possible key and value bit widths, resulting in a matrix A of hash

tables such that the hash table A[k][v] stores keys and values with bit width

k and v, respectively. A has dlg zσe rows and dlg ze columns, where the v-th

column stores all hash tables with value bit width v.

A disadvantage is that, to find the value of a key K, we may need to query

all (k, v)-th hash tables with k = dlgKe. Hence, the expected time for lookup
becomesO(lg z). Nevertheless, we can bound a root-to-leaf traversal on a path of

length ` in the lz trie toO(`+lg z) expected time with the following amortization

argument: While descending from the root to a leaf, the labels of the visited

nodes on the path are in increasing order, meaning that the returned values of

lookup are in increasing order. Therefore, whenever we query the (k, v)-th hash

table during a traversal, we will never query a hash table with key and value bit

widths smaller than k and v, respectively. In total, we selected at most `+dlg ze
hash tables. This gives us a total expected running time of O(n+ z lg z) for the

whole factorization.

On the upside, we can improve the memory footprint since each hash table

can store the values bit-optimally. On the downside, we maintain more hash

tables that might be far from being full. This could be mitigated with the

sparse hash table layout, or by storing only entries with high key and value bits

in the matrix while keeping small entries in a single hash table (in particular,

33

the (k, v)-th hash table with v < k − lg σ is always empty). We present next

an engineered version aiming to combine the best from this representation with

previous ones.

4.3.4 Combined Four-Tier Approach

We implement the compact hash table grp of Section 3 as a four-tier trie data

structure, where

1. the children of the root are stored in a plain array,

2. the keys whose bit widths are at most 8 + dlg σe are stored in a single grp

table,

3. the remaining keys, subtracting 28+dlg σe from each, whose bit widths are

below an integer parameter β ≥ 0 are put in an array of grp tables for

different key bit widths as described in Section 4.3.2, and

4. all other keys are put in a matrix of grp tables with different key and value

bit widths as described in Section 4.3.3.

We call this variant grpβ in the following experiments.

4.4 Experiments

We implemented our lz trie representations in the C++ framework tudocomp [22]17.

The framework provides the implementation of an lz78 and an lzw compres-

sor. Both compressors are parameterized with an lz trie and an encoder. The

encoder is a function that takes the output of the factorization and generates the

final binary output. We selected the encoder bit, which produces the encoding

as described in Section 2.1.3.

The lz78 and lzw compressors are independent of the lz trie implementa-

tion, that is, all the trie data structures described in the previous sections can

be easily plugged into the lzw or lz78 compressors. Moreover, hash and cht

work with any hash table or compact hash table, respectively. Here, we used

a simple linear-probing hash table for hash, and the compact hash table cleary

from Section 3 for cht. We additionally add unordered (the C++17 standard

implementation std::unordered map of a hash table) and grp as alternative

implementations of hash and cht, respectively. Finally, we incorporated the

Judy array judy into tudocomp, which is advertised to be optimized for avoid-

17The source code of our implementations is freely available at https://github.com/

tudocomp

34

https://github.com/tudocomp
https://github.com/tudocomp

ing CPU cache misses (cf. [40, 51] for evaluations). We added a lightweight

wrapper around it to provide the same interface for all tries.18

Our implementation of cht uses clearyS as the default. Its variants using an

array for each different key bit width (cf. Section 4.3.2) or a matrix for each

different key and value bit width (cf. Section 4.3.3) have subscripts ‘k’ and ‘kv’,

respectively. We also add grp and grpβ parameterized with β (cf. Section 4.3.4)

as alternative implementations of cht.

We represent the indices of the factors with 32-bit integers. Hence, the

values stored by hash, rolling and cht are 32-bit integers. Since we use a byte

alphabet representing a character in 8 bits, the keys of hash and cht are 40-bit

integers. The fingerprints of rolling are 64-bit integers. For all variants working

with open-addressing hash tables, we initially set α to 0.3.

4.4.1 Structure of the Benchmarks

We study the time and space trade-offs of all the aforementioned trie imple-

mentations during the factorization of all the data sets described in Table 3.

To ease the visualization, we put each trie in one of three groups. The first

group comprises those tries that do not show interesting characteristics, and

are therefore evaluated only in Section 4.4.2. The lz78 and lzw factorization

benchmark results of all the other tries are visualized in Figures 10 and 11 and

in Figures 12 and 13, respectively. We provide a joint evaluation in Figures 10

and 12, and then separate time-efficient (Section 4.4.3) from memory-efficient

(Section 4.4.4) implementations in Figures 11 and 13. In each plot, a vertical

dashed line at eight bits marks the size of a single character such that every

approach to the left of this line uses less memory than the space of the input

data.

4.4.2 Preliminary Evaluation

A preliminary benchmark in Figure 9 allows us to discard some alternatives

upfront.

First, we observe that binarys is always less performant than binary, while

binarymtf is sometimes a little bit faster and sometimes a little bit slower than

binary. An empirical conclusion is that applying sorting seems not to pay off.

Indeed, we see a similar behavior when using a hash table with a sorting tech-

nique like ordered hash tables [1] or Robin-Hood hashing [16] for hash. We

also apply the trie split techniques introduced in Sections 4.3.2 and 4.3.3 only

to the compact hash tables, as we do not see any benefits for the other trie

18Unfortunately, the cedar trie [70] evaluated by Fischer and Köppl [29] fails to handle our
datasets, which are many times larger than the 200 MiB datasets studied there.

35

5
.8 6

6
.2

0.15

0.2

0.25

0.3

ti
m

e
[µ

s/
n

]
dna

8

1
0

1
2

0.2

0.4

0.6

english

1
5

2
0

0.34
0.36
0.38
0.4

proteins

4
4
.5 5

5
.5

0.1

0.15

0.2

xml

6 7 8

0.2
0.4
0.6
0.8

1

8

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0
.0

8
2

0
.0

8
4

0
.0

8
6

0
.0

8
8

0.020
0.030
0.040
0.050

memory
[bits/n]

fibonacci

5
5
.5 6

6
.5

0.15

0.2

0.25

memory
[bits/n]

gutenberg

1
0

1
2

0.2
0.3
0.4
0.5

memory
[bits/n]

wikipedia

binary binarymtf binaryk binaryJ
k

binarys

0

1
0

2
0

3
0

0.2

0.4

0.6 8

ti
m

e
[µ

s/
n

]

dna

1
0

2
0

3
0

0.2

0.4

0.6 8

english
2
0

4
0

0.2
0.4
0.6
0.8 8

proteins

5
1
0

1
5

0.1

0.2

0.3

8

xml

2 4 6 8
1
0

0.2
0.4
0.6
0.8

8

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0

0
.2

0
.4

0.1
0.2
0.3
0.4

memory
[bits/n]

fibonacci

1
0

2
0

0.2
0.3
0.4
0.5

8

memory
[bits/n]

gutenberg
1
0

2
0

3
0

0.2
0.3
0.4
0.5 8

memory
[bits/n]

wikipedia

grp0 grpJ
0

unordered hash

Figure 9: Evaluation of the lz78 factorization with the trie implementations
studied in Section 4.4.2, namely binarymtf (binary using MTF-encoding), binaryk
(binary using the technique of Section 4.3.2), binaryJk (binaryk combined with
the jump pointer technique of Section 4.3.1), binarys (binary with sorting), grpJ

0

(jump pointers applied to grp0 defined in Section 4.3.4 for β = 0), and unordered
(hash with the C++ STL hash table), which we omit in the following evalua-
tions.

variants. For instance, we observe that the variant binaryk using multiple binary

tries for different key bit widths (Section 4.3.2) is inferior to the plain binary

representation.

Second, unordered always uses much more space than hash, to the extent

that we could not benchmark unordered on commoncrawl without running

36

out of memory (therefore, there is no data point available for that instance).

Except for fibonacci, hash is also always faster that unordered.

Lastly, we study the jump pointer technique applied to binaryk and grp0,

tagged with the names binaryJk and grpJ
0, respectively. We see only a slight time

improvement, which is always tied with an increase in the memory requirement

for storing these pointers.

Therefore, to simplify the following benchmarks, we omit the variants of

binary (such as binarys) and unordered, as well as the jump pointer technique of

Section 4.3.1.

4.4.3 Time-Efficient Tries

From Figs. 10 and 12, we observe that rolling, followed by its variant rolling+,

is the most memory-hungry option, but also in multiple cases the fastest (for

english, proteins, and wikipedia). Remember that hash+ and rolling+ are

variants of hash and rolling, respectively, following our resize hint as explained

in Sect. 4.2. The size of its fingerprints is a trade-off between space and the

probability of a correct output. When space is an issue, rolling with 64-bit fin-

gerprints is no match for more space-saving trie data structures. hash follows

rolling and its variants in terms of memory consumption. With 40-bit keys, it

uses less memory than rolling, but it is slightly slower on most datasets (an

exception is commoncrawl). Depending on the quality of the resize hint, the

variants hash+ and rolling+ take 50% to 100% of the size of hash and rolling,

respectively. hash+ and rolling+ are mostly always slower than their respec-

tive standard variants, sometimes slower than the deterministic data structures

ternary and binary (cf. fibonacci, xml or gutenberg). binary’s speed excels

in texts with very small alphabets (cf. dna, fibonacci), while ternary usually

outperforms binary on larger ones (cf. commoncrawl, wikipedia, and en-

glish). However, binary is always smaller than ternary. The third-party data

structure judy is always outperformed by ternary or/and binary. Only cht and

its variants can compete with binary in terms of space, but it is significantly

slower than all aforementioned implementations.

4.4.4 Space-Efficient Tries

We evaluated cht with cleary as the default hash table and with grp (cf. Sec-

tion 3.4) and grpβ (cf. Section 4.3.4). The variants of cht described in Sec-

tion 4.3.2 and Section 4.3.3 are denoted chtk and chtkv, respectively. From the

results shown in Figures 11 and 13, we can conclude that chtkv is the most

memory-efficient variant, but most of the times the slowest (an exception is

wikipedia). chtk is often faster and more memory-efficient than cht (using just

37

10 20
0

0.2

0.4

0.6

8
ti

m
e

[µ
s/
n

]
dna

5 10 15
0

0.2

0.4

0.6

0.8

8
english

10 20 30
0

0.5

1

8

ti
m

e
[µ

s/
n

]

proteins

5 10 15
0

0.2

0.4

8
xml

5 10 15
0

0.5

1

8

ti
m

e
[µ

s/
n

]

commoncrawl

0 0.2 0.4 0.6
0

0.2

0.4

fibonacci

5 10 15 20
0

0.5

1

8

memory [bits/n]

ti
m

e
[µ

s/
n

]

gutenberg

5 10 15 20
0

0.2

0.4

0.6

0.8

8

memory [bits/n]

wikipedia

binary grp0 grp10 grp20 grp30

cht chtk chtkv hash hash+

judy grp rolling rolling+ ternary

Figure 10: Juxtaposition of all lz trie implementations for the lz78 factoriza-
tion.

a single cleary hash table). When comparing the alternative hash tables cleary

and grp for cht, we see that grp is most of the times faster, but not a winner

with respect to the space. Here, we see an improvement when using grpβ , which

is grp with the technique of Section 4.3.4.

38

5
1
0

1
5

2
0

0.15

0.2

0.25

8

ti
m

e
[µ

s/
n

]
dna

1
0

1
5

0.15

0.2

0.25 8

english

2
0

3
0

0.2

0.3

proteins

5

1
0

1
5

0.08
0.1

0.12
0.14 8

xml

6 8
1
0

1
2

1
4

0.2

0.25

0.3 8

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0
.2

0
.4

0
.6

0.05
0.1

0.15

memory
[bits/n]

fibonacci

1
0

1
5

2
0

0.14
0.16
0.18

8

memory
[bits/n]

gutenberg

1
0

1
5

2
0

0.12
0.14
0.16
0.18
0.2

memory
[bits/n]

wikipedia

binary hash hash+ judy rolling

rolling+ ternary

2
.8

2
.9 3

0.4
0.5
0.6
0.7

ti
m

e
[µ

s/
n

]

dna

3
.6

3
.8

0.4

0.6

0.8

english

5

5
.5 6

0.4
0.6
0.8

1

proteins

2

2
.2

2
.4

0.3

0.4

0.5

xml

2
.7

2
.7

5
2
.8

2
.8

5

0.6

0.8

1

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0
.0

3
0

0
.0

3
5

0.2
0.3
0.4
0.5

memory
[bits/n]

fibonacci

2
.4

2
.5

2
.6

2
.7

2
.8

0.4
0.6
0.8

1

memory
[bits/n]

gutenberg

3
.6

3
.8 4

4
.2

0.4

0.6

0.8

memory
[bits/n]

wikipedia

grp0 grp10 grp20 grp30 cht

chtk chtkv grp

Figure 11: Evaluation of our lz trie implementations for the lz78 factorization.

For grpβ , we conducted our experiments with β = {0, 10, 20, 30}, where β = 0

disables the key-split array of Section 4.3.2, while β = 30 disables the key-value-

split matrix of Section 4.3.3 for our datasets with dlg ze ≤ 32 and dlg σe = 8. The

evaluation shows that the larger the parameter β, the faster and less memory-

efficient the data structure becomes. Overall, grpβ parameterized by β forms

most of the time a Pareto-front dominating the cleary variants (cht, chtk, and

chtkv) and grp (an exception is fibonacci and commoncrawl, respectively).

39

10 20
0

0.2

0.4

0.6

0.8
8

ti
m

e
[µ

s/
n

]
dna

5 10 15
0

0.2

0.4

0.6

0.8

8
english

10 20 30
0

0.5

1

8

ti
m

e
[µ

s/
n

]

proteins

5 10 15
0

0.2

0.4

0.6
8
xml

5 10 15
0

0.5

1

1.5

8

ti
m

e
[µ

s/
n

]

commoncrawl

0 0.2 0.4 0.6
0

0.1

0.2

0.3

fibonacci

5 10 15 20
0

0.5

1

8

memory [bits/n]

ti
m

e
[µ

s/
n

]

gutenberg

5 10 15 20
0

0.5

1

8

memory [bits/n]

wikipedia

binary grp0 grp10 grp20 grp30

cht chtk chtkv hash hash+

judy grp rolling rolling+ ternary

Figure 12: Juxtaposition of all lz trie implementations for the lzw factorization.

4.4.5 Evaluation of rolling

Selecting a strong rolling hash function for rolling is crucial to avoid the possi-

bility of a hash collision. Hash collisions happened during the experiments when

using a simple rolling hash function such as h(T) =
∑|T |
i=1(T [i]− 1)(σ + 1)|T |−i

40

1
0

1
5

2
0

0.15

0.2

0.25 8

ti
m

e
[µ

s/
n

]
dna

1
0

1
2

1
4

1
6

1
8

0.15

0.2

0.25

english

1
5

2
0

2
5

3
0

0.2

0.3

proteins

5

1
0

1
5

0.08
0.1

0.12
0.14
0.16

8

xml

8
1
0

1
2

1
4

0.2

0.25

0.3 8

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0
.2

0
.4

0
.6

0.05

0.1

0.15

memory
[bits/n]

fibonacci

5

1
0

1
5

2
0

0.15
0.2

0.25
0.3 8

memory
[bits/n]

gutenberg

1
0

1
5

2
0

0.2

0.3

memory
[bits/n]

wikipedia

binary hash hash+ judy rolling

rolling+ ternary

3

3
.1

3
.2

0.5
0.6
0.7
0.8

ti
m

e
[µ

s/
n

]

dna

3
.8 4

4
.2

4
.4

0.5
0.6
0.7
0.8

english

5
.8 6

6
.2

0.6

0.8

1

proteins

2
.2

2
.4

2
.6

2
.8

0.3

0.4

0.5

0.6

xml

2
.9

2
.9

5 3
3
.0

5

1

1.5

memory
[bits/n]

ti
m

e
[µ

s/
n

]

commoncrawl

0
.0

3
0

0
.0

3
5

0.2

0.3

memory
[bits/n]

fibonacci

2
.6

2
.8 3

3
.2

3
.4

0.5

1

memory
[bits/n]

gutenberg

4
4
.2

4
.4

4
.6

4
.8

0.6
0.8

1
1.2

memory
[bits/n]

wikipedia

grp0 grp10 grp20 grp30 cht

chtk chtkv grp

Figure 13: Evaluation of our lz trie implementations for the lzw factorization.

mod 2w, where w is the word size and the modulo by the maximum value 2w

surrogates the integer overflow.

The likelihood that the fingerprints of two different substrings match is anti-

correlated to the number of bits used for storing the fingerprint if we assume

that the used rolling hash function distributes uniformly. This means that the

domain of the Karp-Rabin fingerprints can be made large enough to be ro-

bust against collisions when hashing large texts. In our case, we used 64-bit

fingerprints because, unlike 32-bit and 40-bit fingerprints, the factorization pro-

duced by rolling is correct for all test instances with the rolling hash function

41

ID37. Nevertheless, this bit width can be considered as too weak for processing

massive datasets: Even if the rolling hash function distributes uniformly, the

probability of a collision is 1/264. Although this number is very small, pro-

cessing 109 datasets, each 200 MiB large, would give a collision probability of

roughly 1%. This probability can be reduced by enlarging the bit width, and

hence improving the correctness probability by sacrificing working space. We

reran our experiments with 64-bit and 128-bit fingerprints, and measured time

and space usage in Table 6. There, we observe that switching to a greater bit

width slightly degrades the running time, but severely degrades the space us-

age. On all instances, the + variants (cf. Sect. 4.2) use less memory than the

standard variants; on fibonacci, rolling128+ uses even less memory than the

default rolling.

Another option to sustain a correct computation is to check the output of

the factorization. This check can be done by reconstructing the text with the

output and the lz trie built. However, a compression with rolling combined with

a decompression step takes more time than other approaches like hash or binary.

Hence, a Las Vegas algorithm based on rolling is practically not interesting.

4.4.6 Compression Ratio

Finally, we compare the compression ratios obtained with the classic encoding

described in Section 2.1.3 with the Unix tool compress19. This tool uses a

modified LZW coding and has the upper bound of 216 on the lz trie nodes.

Whenever this upper bound is reached, it no longer inserts new nodes into

the lz trie; instead, it clears the trie based on a heuristic. Despite being fast

and memory friendly, its compression ratios are inferior to the classic encoding

working without such kind of restriction, as can be seen in Figure 14.

In what follows, we study an alternative coding of the lz78 factors based on

the Bonsai tables (which are a sub-class of compact hash tables).

5 LZ78 Computation with Bonsai Tries

An application for the Bonsai tables introduced in Section 3 is the Bonsai trie

introduced by Darragh et al. [21]. A Bonsai trie is an ID dictionary (defined

in Section 3) with K := [1..ρ]× Σ,20 where [1..ρ] is the domain of all identifiers

of the ID dictionary. A node of the trie is represented by an identifier. Given

that the root is present as an entry in the hash table, every other node v with

identifier ιv is represented by the key (ιu, c) such that lookup(ιu, c) = ιv, where

19We used the implementation ncompress version 4.2.4.6.
20We can represent elements of K by integers, transforming a pair (i, c) ∈ K into an inte-

ger iσ + (c− 1) ∈ [1..(ρ+ 1)σ), similarly to Equation (2) of Section 4.2.1.

42

lz78 lzw

dataset / time space time space
trie [µs/n] bits

n [µs/n] bits
n

dna

rolling 0.16 23.17 0.15 23.17
rolling+ 0.15 16.63 0.17 16.90
rolling128 0.16 38.62 0.17 38.62
rolling128+ 0.17 27.72 0.19 28.17
english

rolling 0.12 18.00 0.13 18.00
rolling+ 0.13 16.15 0.18 16.34
rolling128 0.17 30.00 0.15 30.00
rolling128+ 0.16 26.92 0.17 27.23
proteins

rolling 0.14 32.65 0.16 32.65
rolling+ 0.19 23.56 0.20 26.02
rolling128 0.15 54.41 0.18 54.41
rolling128+ 0.23 39.26 0.34 43.37
xml

rolling 0.09 16.32 0.09 16.32
rolling+ 0.09 14.87 0.10 15.25
rolling128 0.09 27.19 0.13 27.19
rolling128+ 0.10 24.78 0.12 25.42

lz78 lzw

dataset / time space time space
trie [µs/n] bits

n [µs/n] bits
n

commoncrawl

rolling 0.18 14.40 0.21 14.40
rolling+ 0.20 13.55 0.20 13.74
rolling128 0.21 24.00 0.20 24.00
rolling128+ 0.21 22.59 0.22 22.89
fibonacci

rolling 0.12 0.66 0.12 0.66
rolling+ 0.13 0.33 0.10 0.33
rolling128 0.11 1.10 0.13 1.10
rolling128+ 0.11 0.55 0.12 0.55
gutenberg

rolling 0.15 19.33 0.16 19.33
rolling+ 0.17 15.42 0.18 15.65
rolling128 0.13 32.21 0.18 32.21
rolling128+ 0.14 25.70 0.20 26.08
wikipedia

rolling 0.12 19.74 0.13 19.74
rolling+ 0.18 17.55 0.13 17.77
rolling128 0.12 32.91 0.13 32.91
rolling128+ 0.18 29.25 0.21 29.61

Table 6: Performance comparison of 64-bit and 128-bit fingerprints of rolling
with its variant rolling+ when computing the lz78 and lzw factorization.

ιu is the identifier of the parent u of v, and c is the character labeling the

edge connecting u with v. The methods insert, lookup, and key can be directly

translated to trie methods:

• insert(ιu, c) creates a leaf v as a child of the node with identi-

fier ιu, connecting them by an edge labeled with c ∈ Σ, and

returns the identifier ιv of v.

• lookup(ιu, c) returns the identifier of the child of the node u

with identifier ιu that is connected to u with an edge labeled

with c ∈ Σ, or ⊥ if such a child does not exist.

• key(ιv) returns the key (ιu, c) of a node v with identifier ιv,

where ιu is the identifier of the parent u of v connected with

v by an edge with label c.

ιu

ιv

c

u

v

For instance, we can insert a new child of a node with identifier ι with

connecting edge label c by inserting (ι, c) into H. We additionally need the

function root(), returning the identifier of the root in the trie.

43

c
o
m
m
o
n
c
r
a
w
l

d
n
a

e
n
g
l
is
h

f
ib
o
n
a
c
c
i

g
u
t
e
n
b
e
r
g

p
r
o
t
e
in
s

w
ik
ip
e
d
ia

x
m
l

0

20

40

60

80

2
8.

8
1

2
9
.6

7 3
7
.9

6

0
.2

9

26
.1

2

53
.2

2

3
9.

1

21
.1

8

2
4.

6

24
.9

6 31
.5

4

0
.2

2
1
.4

47
.2

4

32
.0

9

1
7
.6

3

5
8
.3

8

2
8
.9

5

4
3
.1

3

0
.7

6

23
.7

4

57
.9

7

4
3

24
.9

2

lz78 lzw compress

Figure 14: Compression ratios of the classic coding of lz78 and lzw described in
Section 2.1.3, compared with the Unix tool compress with its best compression.

With the Bonsai trie, we can create the lz trie in a top-down manner.

However, performing DFS or BFS traversals on this trie implementation is not

efficient: Although we can move with lookup to a specific child, enumerating

all children can only be done by trying out all characters, which is costly for

non-constant alphabets.

Our following solutions for the lz78 factorization use a Bonsai table as an

ID dictionary taking O(tBonsai) time for any of the above operations (see Ta-

ble 4 for concrete implementations), and are based on a technique similar to

hash (Section 4.2) along with its simplifying assumptions on the hash function

(Section 3.5.3): A usual analysis assumes that the hash function is chosen inde-

pendently of the set of keys to hash. For the Bonsai trie, however, a key (ι, c)

to hash depends on the identifier ι, which in turn depends on the hash function

for all known Bonsai tables. So, at least in principle, the typical assumptions

to prove 2-independence do not hold, even if we change our bijective transform

to the standard h(K) = (a0 + a1K) mod p for randomly chosen a0 and a1.

Assuming that we can read/write from/to disk sequentially with constant

time per machine word, we give an overview of our following results, which we

additionally have collected in Table 7. In Section 5.1, we start with a solution

running in O(n) expected time while using O(n lg σ/ logσ n) bits of working

space. The space can be lowered to O(z lg σ) bits by running the algorithm

44

Theorem Time Internal Space External Space

Theorem 5.1 O(n) O(n lg σ/ logσ n) streaming
Theorem 5.2 O(n lg z) O(z lg σ) streaming, overwritable
Theorem 5.3 O(n) O(z lg σ) sequential reads/writes
Theorem 5.4 O(n lg σ) O(z lg σ) streaming

Table 7: Overview of the results of Section 5. Times are the expected time for
the lz78 factorization. Internal space is measured in bits. Each solution has
an external memory working space of z lgdρe bits, which can be used only for
streaming the final output, rewriting the streamed output, or used for reading
and writing.

O(lg z) times, giving O(n lg z) expected time. We improve this time bound to

O(n) expected time in Section 5.2 with the help of external memory as working

space. Finally, we can avoid working with the external memory with the solution

of Section 5.3, running in O(n lg σ) time. The output of all solutions consists of

the Bonsai trie representing the LZ trie, and a list of the identifiers of the LZ

nodes sorted by creation time.

5.1 A Bonsai Table of Fixed Size

We start with a solution, called fix, which manages a Bonsai trie whose underly-

ing Bonsai table is sufficiently large such that it can guarantee no rehashing while

populating the trie with all lz trie nodes. To this end, we set the upper bound

on the number of nodes m to the smallest number with (m−1)(logσ(m)−3) ≥ n;

recall Lemma 2.1. Thus m = Θ(n/ logσ n). Further, we use an array L[1..z] to

store in L[x] the position in H where the lz trie node of the x-th factor is stored.

Each entry of L takes dlg ρme bits, where [1..ρm] is the domain of identifiers for

a Bonsai table that can store m entries. This array is generated on external

memory in a streaming fashion.

To compute the next factor Fx = T [i..i + ` − 1], we start from the trie

root with identifier ι0 := root(), and recursively lookup the identifiers ιk =

(ιk−1, T [i+ k− 1]) with k ≥ 1 until lookup(ι`−1, T [i+ `− 1]) = ⊥ does not exist

in the trie. At this point we

• insert the node representing the factor Fx = FyT [i + ` − 1] with ι` :=

insert(ι`−1, T [i+ `− 1]), where Fy is represented by the node with identi-

fier ι`−1, subsequently

• write the next value L[x]← ι` to disk, and

• continue with T [i+ `..n].

45

The working space is dominated by the large allocated Bonsai table. After

we have computed the factorization, we serialize the Bonsai trie such that it can

be later reloaded into main memory for decompression.

To improve the space needed for the serialization, we first write a bit vector

B of length ρm storing at B[ι] whether there is a key in H having identifier ι.

Hence, B has exactly z ones, and requires ρm bits. Having B, we only need

to write the (non-empty) z entries of H to the compressed file, yielding a final

compressed file size of z(lg ρm + lg σ) + ρm bits. We call this representation of

the factorization the Bonsai coding.

If we select elias as the underlying Bonsai table, then we have ρm = O(m)

and |K| = ρmσ = O(mσ). Hence, our Bonsai trie storing m = Θ(n/ logσ n)

nodes needs O(B(|K|, z)) = O(n lg σ/ logσ n) bits of space according to Table 4,

where we used that B(x, y) = Θ(y lg((x + y)/y)) for y ≤ x. With this space

bound, we obtain the following theorem:

Theorem 5.1. We can compute the lz78 factorization in O(ntBonsai) time

within O(n lg σ/ logσ n) bits of main memory working space, streaming the Bon-

sai coding to disk.

To further reduce the output size, we can postprocess L to use only z lg z

bits instead of zdlg ρme bits of disk space. For that we scan L and replace L[x]

by B. rank1(L[x]). An original value can be recovered with B. select1(L[x]).

Both operations work in constant time if B is equipped with a rank- and select-

support.

5.1.1 Decompression

We can decompress in streaming mode while using memory space only for the

Bonsai trie. For that, we only need to deserialize the Bonsai trie, keeping L still

on disk. Having the Bonsai trie representing the lz trie into memory, we read

the consecutive entries of L[1..z] in streaming mode, starting with L[1]. Suppose

we read L[x] = ι` for an identifier ι` of a node with an arbitrary depth `. Then

we know that there is a path (ι0, . . . , ι`) from the root with identifier ι0 to a node

with identifier ι`, With (ι`−1, c`−1)← key(ι`) and (ι`−k−1, c`−k−1)← key(ι`−k)

for k ∈ [1..` − 1] we climb up from the node with identifier ι` until reaching

the root with (ι0, c0) ← key(ι1). Then we append the string c0c1 · · · c`−2c`−1
to the decompressed text in streaming mode. For that, we use a stack that we

fill with up to maxx∈[1..z] |Fx| characters. The stack may require up to z lg σ

bits, but this is still within our main memory budget.21 (Alternatively, we can

read L backwards and generate T from the end to the beginning at the expense

21This stack size is a rough upper bound; a generally stricter bound is
√

2n lg σ bits [9,
Lem. 1].

46

of increased I/Os.) Depending on the size of the serialized Bonsai trie, the

decompression may require less main memory working space than the classical

method (cf. Section 2.1), where each factor is represented by a character and a

reference to an earlier factor index. There, the decompression is done in linear

time by keeping S and R in memory, which requires z lg σ + z lg z bits.

As a side note, the Bonsai coding permits retrieving the contents of any

individual factor Fx by traversing the lz trie upwards from L[x], just as done

for decompression. This observation can make our output useful as a practical

compressed data structure for substring extraction as well.

5.1.2 Space Improvement

The obvious disadvantage of our simple factorization algorithm fix is that it uses

more than O(z lg σ) bits of space when z = o(n/ logσ n), which is when it is most

interesting to compress T ! A simple workaround is to start with m =
√

2n based

on the lower bound on the number of lz78 factors (cf. Lemma 2.1). If, during

the factorization, this limit is exceeded, we double the value of m and repeat

the whole process. Since we may rerun the process O(lg z) times, the total

expected time is O(n lg z) = O(n lg n) (recall that lg z = Θ(lg n) according to

Lemma 2.1).22 In exchange, the main memory space is now always O(z lg σ)

bits. Further, the extra space added to the compressed file due to the Bonsai

trie is just O(z lg σ) + ρm with m ≤ 2z. We call this variant brute, inspired by

the fact that it uses a brute force strategy to find z.

Theorem 5.2. We can compute the lz78 factorization in O(n lg z) expected

time within O(z lg σ) bits of main memory working space, streaming the Bonsai

coding to a rewritable external memory.

Proof. Using elias as our Bonsai table representation, we have tBonsai = O(1)

expected time and ρm = O(m). Therefore, O(n lg σ/ logσ n) + ρ2z = O(z lg σ)

bits.

Apart from the increased time, a flaw of this algorithm is that it may read

T several times from disk, and thus it is not a streaming algorithm. In the next

sections we explore two faster solutions that in addition scan T only once.

5.2 A Growing Bonsai Table

We can obtain O(z lg σ) bits of working space for any input text by letting the

Bonsai table rehash when reaching the maximum supported number of entries.

22In fact, the time is linear in most texts because we process roughly a doubling amount
of text in each run. In some texts, however, this is not the case; consider n equal characters
followed by other n random characters.

47

We start with a Bonsai table that can store m ←
√

2n elements without re-

hashing, since
√

2n is a lower bound on z (cf. Lemma 2.1). Whenever we want

to insert a new element into H storing already m elements, we allocate a new

Bonsai table H ′ capable of storing 2m elements, and populate it with the trie

nodes stored in H. By doing so, we read T only once, but we now need to read

and rewrite L on each rehash.

The main challenge is how to relocate each lz trie node u from H to H ′

since its identifier ιu in H is mentioned not only in L but also in the identifiers

of its children H.lookup(ιu, c) for c ∈ Σ. However, as explained, to map u

from ιu to its new identifier ι′u in H ′, we need to know the new identifier ι′w of

its parent w. To resolve this dependency problem, we map the lz trie nodes

top-down. However, a simple DFS traversal on the lz trie is slow, because

enumerating the children of a node w costs O(σ) expected time: we can only

try H.lookup(ιw, c) for all possible characters c ∈ Σ.

Instead, we relocate the nodes as follows. We scan L sequentially (on disk),

starting with L[1]. Given we access L[x], we traverse the lz trie stored in H up-

wards to the root, starting at the node v with identifier L[x] (i.e., v corresponds

to the x-th factor Fx). During this traversal, we put the edge labels c1, . . . , c|Fx|

(with Fx = c1 · · · c|Fx|) of the traversed path on a stack. Since all the nodes

visited during this traversal, starting from the parent of v, must already ex-

ist in H ′, we can use the computed stack of characters to traverse downwards

in H ′. In detail, we traverse the trie of H ′ downwards from the root with

ι′0 := H ′.root() and ι′k := H ′.lookup(ι′k−1, ck) for k ∈ [1..|Fx|). Then we insert

v into H ′ with ι′|Fx| := H ′.insert(ι′|Fx|−1, c|Fx|). Finally, we rewrite L[x] ← ι′|Fx|
because we use ι′|Fx| as the identifier of v from now on. In total, our retraversal

costs O(|Fx|tBonsai) time. Given that H stores y factors, the total time for relo-

cating all nodes is O(|F1 · · ·Fy|tBonsai) = O(ntBonsai). Since we perform O(lg z)

passes, the total time reaches O(tBonsain lg z) = O(tBonsain lg n).

With a technique similar to the jump pointers of Section 4.3.1, we can re-

duce the time to O(ztBonsai logσ n) = O(ntBonsai) by storing, while relocating

nodes from H to H ′, O(z/ logσ n) sampled nodes of H in a (classic) hash table

W , which maps the identifiers of H to the identifiers of H ′. The table W uses

O(z lg σ) bits, which is within our budget. During the relocation of the nodes,

we fill it with every lz trie node whose depth is a multiple of logσ n and whose

height is at least logσ n. By doing so, we ensure that O(z/ logσ n) nodes are

sampled and that we traverse less than 2 logσ n nodes in H from any identi-

fier L[x] before reaching a sampled node, from which we can descend in H ′ and

update L[x] in time O(tBonsai logσ n). Thus we do the complete relocation in

O(tBonsai|L| logσ n) time. Since the size of L doubles each time we increase the

table, the total work amounts to O(z logσ n) Bonsai operations.

48

Once we have built H ′, we continue with H ′ and discard H. The peak space

usage is when we have both H and H ′ in memory, taking (3/α)m lg σ+O(m) =

O(z lg σ) bits with z ∈ (m..2m] and an open-addressing Bonsai table with the

maximum load factor α = m/|H|. We can always keep the entries of L within

dlg σe+O(1) bits, slightly expanding them when we retraverse L to rewrite the

new positions in H ′. At the end, L stores identifiers of the keys stored in a

Bonsai table that can store up to 2z entries, thus using z lgdρ2ze + O(z) bits,

which is O(z) bits for elias.

Theorem 5.3. We can compute the lz78 factorization in O(n) expected time

within O(z lg σ) bits of main memory working space and O(z) bits of external

memory, streaming the Bonsai encoding to disk at the end. We need z lg2 z bits

of I/O, or O((z lg2 z)/b+lg z) I/O transfers in the external memory model with

a block size of b bits.

5.3 Multiple Bonsai Tables

Similar to Section 4.3.3, a way to avoid rebuilding the Bonsai table is to main-

tain multiple Bonsai tables Hh for h ≥ 0, starting with h = 0 and a single

Bonsai table H0. When Hh becomes full (i.e., when its load factor reaches its

maximum limit), we allocate a new table Hh+1, with |Hh+1| = 2|Hh|, where all

the subsequent insertions take place from then on.

To properly address the nodes, we need to build a global identifier matching

the entry of any Bonsai table. Our idea is to regard the tables as their con-

catenation, that is, G := H0H1H2 In this perspective, we compose a global

identifier G.lookup(x) := |H0H1 . . . Hh−1| + Hh.lookup(x) of a key x stored in

table Hh by adding |H0H1 . . . Hh−1| to the (local) identifier of x with respect

to Hh.

Suppose we are at a node u with the global identifier ιu in a table Hg and

append a leaf v to u with edge label c by inserting v into the current hash

table Hh with Hh.insert(ιu, c). By doing so, we leave no indication in Hg of

the existence of v. A consequence is that, if we want to descend from u by

the character c, we must probe the tables Hg, Hg+1, . . . ,Hh to see if a child

with edge label c was inserted in one of these later tables. Therefore, the cost

of traversing towards a child worsens to O(tBonsai lg z) time because we can

build at most lg z tables during the factorization. However, since the children

are always inserted later than their parents, the current table index does not

decrease as we descend from the root towards the node where we will insert

the new leaf, and thus we do these O(lg z) probes once per inserted leaf, for a

total time of O(tBonsaiz lg z) = O(tBonsain lg σ). The Bonsai coding now stores

G = H1 · · ·Hh and L.

49

This technique has the advantage that it treats T and L in streaming mode.

The entries written in L are final (note that their bit widths grow each time we

start using a new table). These can be compacted as outlined in Section 5.1 if

we are willing to perform a second pass on L.

Theorem 5.4. We can compute the lz78 factorization in O(n lg σ) expected

time within O(z lg σ) bits of main memory working space, streaming the Bonsai

coding of the factorization to disk.

For decompression, we load all Bonsai tables H1, . . . ,Hh back into memory

and treat them as one global table G. Remembering that L stores the list of

global identifiers of the lz trie nodes, we can compute the local identifier ιv and

the corresponding Bonsai table index g ∈ [1..h] from the global identifier L[x]

such that Hg.key(ιv) = (ιu, c), where ιu is the global identifier of the parent

of the node v having the global identifier L[x]. Since |Hg| = 2|Hg−1| for every

g ≥ 1, finding the table Hg from the global identifier L[x] is a matter of dividing

L[x] by |H0| and then taking the logarithm to base 2, similarly to Section 4.3.2.

Implementation Details. Each table Hg has its own identifier domain

[1..ρ|Hg|], hash function with prime number pg, and so on. The prime pg of

its hash function must be larger than (ρ|H0| + ρ|H1| + · · · + ρ|Hg|) · σ, so that

any element (ι, c) can be stored in H, where ι is a global identifier of H0 · · ·Hg.

For the Bonsai tables using the displacement array such as layered and elias, we

have pg/ρ|Hg| = Θ(pg/|Hg|) ≤ 2σ +O(1).

5.4 Recompression

After having computed the lz78 factorization, we know the number of factors z,

and therefore can represent the lz trie with a Bonsai table that can just store z

entries. Storing this dense Bonsai table makes the bit vector B marking the free

cells useless, and can improve the compression ratio. We can directly convert a

Bonsai coding with the algorithm of Section 5.2 to this format. To see how well

this recompression may work, we add the variant fix+ of fix, which allocates a

Bonsai table that can store exactly z elements (the number of cells is then z/α,

α being the maximum load factor). fix+ requires the number of factors z of the

input as an additional parameter.

5.5 Implementation

For the following experiments, we use layered2 and layered3 of Section 3.2.3 as

the Bonsai table, indicating the use of the latter with a subscript ‘3’ in the alias

names listed in Table 8. We use bucket (Section 3.4) as the compact hash table

50

in the second layer of layered3. The last layer in both variants always uses the

C++ STL class std::map, which is a balanced binary search tree implementa-

tion. The coding consists of the bit vector B described in the paragraph before

Theorem 5.1, and the non-empty cells of the Bonsai table. Our compressors are

publicly available at https://github.com/koeppl/Low-LZ78.

We evaluated the experiments with the maximum load factors 1/α = 1.05,

1.10, 1.20, 1.40, 1.60 for layered, where the displacement values are stored in

two or three layers with the first layer being an array storing integers with a bit

width of b0 = dlg 1/(1/α − 1)e for layered2 and b0 = 3, b1 = 7 for the first and

second layer, respectively, for layered3. The idea behind b0 of layered2 is that

large displacement values become more likely with larger load factors.

We use Θ(lg σ) as our sampling rate in grows; more precisely, dlg (p+ |H|)/|H|e =

Θ(lg σ) for a prime number p with |K| = |H|σ < p ≤ 2|H|σ, where K =

[1..|H|]× Σ is the universe of keys that can be stored in a Bonsai table H.

5.6 Experimental Results

We experimentally evaluate our introduced algorithms computing the Bonsai

coding, and compare them with some space-efficient solutions empirically ob-

served in Section 4 for computing the classic lz78 code, namely grpβ , defined in

Section 4.3.4, and binary and ternary, defined in Section 4.1. We name the meth-

ods of this section as described in Table 8. Like in Section 4.4, we measure the

time and memory needed for the factorization. We also measure these features

for the decompression, and study the overhead of the different Bonsai codings

compared with the classic lz78 format of Section 2.1.3. We do not show data

points for fix and fix3 applied on fibonacci because in this instance the gap

between the number of lz78 factors and its upper bound is too large, causing

us to allocate much more memory than actually needed.

Figure 15 shows the maximum RAM used by each structure during com-

pression, and the resulting compression time. Here, it can be seen that multi

and multi3 largely outperform grow and grow3, respectively, in both space and

time, using 1.0–2.2 bits and 0.2–0.3 µsec per symbol with 1/α = 1.40 (omitting

fibonacci). For the same space, the overhead of using multiple tables is lower

than that of rebuilding the table, which implies rereading the L array from disk.

In general, the time of multi and in particular multi3 is very sensitive to high

load factors, without significantly improving the space. Especially multi3 is one

of the most memory-efficient variants. It gets close to and even beats fix on

most instances (with the exception of proteins, where the final-size guess of

fix is nearly optimal). The maximum space usage of grow occurs when it has

to expand the table, at which moment it has the old and new tables in RAM.

51

name location description

fix Section 5.1 and Thm. 5.1 fixed Bonsai table of maximum size, no
rebuilding,

fix+ Section 5.4 fix knowing z in advance,
brute Section 5.1 and Thm. 5.2 try-and-error on different fixed table

sizes,
grow Section 5.2 growing Bonsai table without node sam-

pling,
grows Section 5.2 and Thm. 5.3 growing Bonsai table with hash table W

storing the node sampling,
multi Section 5.3 and Thm. 5.4 multiple Bonsai tables.

Table 8: Alias names of the algorithms introduced in Section 5 computing the
Bonsai scheme.

This requires more space than multi even when the multi tables are emptier on

average. Compared with the tries for the classic LZ coding, we see that binary

and ternary are always the fastest, but also among the least memory efficient

approaches. The variant grpβ of cht is close to brute and fix, but it is almost

always outperformed by an instance of multi3.

Figure 16 shows the RAM used by each structure during decompression.

This time grow always obtains better space than multi, though it still requires

more time. grow uses 0.9–1.8 bits and 0.1–0.2 µsec per symbol, even outper-

forming fix, which uses much more space (except on proteins). grow does not

need to make the hash tables grow at decompression, thus it is much faster than

at compression and uses less space than multi, which has emptier tables. multi,

in turn, is faster than at compression because it traverses the paths upwards,

although it still uses multiple tables.

Our classic lz78 decoder moves the arrays S and R into RAM, storing them

in arrays with fixed bit widths (i.e., 8 bits per entry in S and 32 bits per entry

for R). We observe that decoding the classic lz78 coding is faster than any

of the Bonsai code decompressors. Its memory footprint, however, is much

larger than the codes using the lightweight layered3 Bonsai tables, though it is

competitive with the heavyweight layered2 Bonsai tables.

Our Bonsai encoders do not store the same information of a classical lz78

compressor. We expect their compression ratio to be suboptimal, because they

store hash tables with empty cells (or mark those cells in a bitmap B), and

they must store the displacements of the hash tables. An alternative approach

to store the Bonsai coding is to use the Elias-γ encoding for the displacement

values (like the hash table elias does). In Figure 17 we evaluate the use of

Elias-γ encoding [23] for the first layer of displacements stored by layered. We

can observe that the maximum load factor and the compression ratio are anti-

52

5 10 15
0

0.5

1

1.5

2
8

ti
m

e
[µ

s/
n

]
dna

5 10 15

1

2

8
english

10 20
0

1

2

3
8

ti
m

e
[µ

s/
n

]

proteins

5 10
0

0.5

1

8
xml

2 4 6 8 10
0

1

2

8

ti
m

e
[µ

s/
n

]

commoncrawl

0.1 0.2
0

0.2

0.4

0.6

fibonacci

5 10 15
0

0.5

1

1.5

8

memory [bits/n]

ti
m

e
[µ

s/
n

]

gutenberg

5 10 15
0

1

2

8

memory [bits/n]

wikipedia

fix fix3 multi multi3 grow

grow3 brute grow3s grows fix+
binary ternary grpβ

Figure 15: Maximum RAM and time used during the lz78 factorizations with
the Bonsai coding variants of Section 5 and the space-efficient variants of Sec-
tion 4.

correlated in most of the instances, that is, the higher the load factor, the smaller

the compressed size. For high load factors, however, the first displacement layer

in layered2 uses more bits per entry according to our definition of b0. Since

53

0 5 10 15 20

0.2

0.4

0.6
8

ti
m

e
[µ

s/
n

]
dna

5 10 15

0.2

0.4

8
english

5 10 15 20

0.2

0.4

0.6

8

ti
m

e
[µ

s/
n

]

proteins

5 10

0.2

0.4

8
xml

5 10

0.2

0.4

0.6

8

ti
m

e
[µ

s/
n

]

commoncrawl

5 · 10−2 0.1 0.15

0.1

0.2

fibonacci

0 5 10 15

0.2

0.4

8

memory [bits/n]

ti
m

e
[µ

s/
n

]

gutenberg

5 10 15

0.1

0.2

0.3

0.4
8

memory [bits/n]

wikipedia

fix fix3 multi multi3 grow

grow3 brute grow3s grows fix+
lz78

Figure 16: Maximum RAM and time used during decoding of a file stored with
one of the Bonsai coding variants of Section 5. This is compared with the
decompression of the same file compressed with lz78 using the classic coding
described in Section 2.1.3.

the first layer is usually mostly empty, the Elias-γ encoding produces a smaller

output than dumping this array in its plain form. This is however not true for

54

smaller load factors, where the Elias-γ encoding can be even more expensive (see

the top tables in Figure 17 for examples). Since we gain with the Elias-γ when

encoding the best compression ratios, we stick to it in the following evaluations.

Figure 18 gives the best compression ratios of our algorithms along with the

lz78 coding (see Table 3). We observe that the coding using layered3 can be

stored more compactly than the coding using layered2 except for grow, where we

observe the contrary on some instances. In general, the best compression ratios

are obtained with variants of grow and brute, which (excluding fibonacci) pose

an overhead of 24%–37% over the plain lz78 encoding. The fully streaming al-

gorithm, multi, poses an overhead of 31%–41%. These ratios are obtained when

using, roughly, the minimum memory and maximum time for the factorization.

Figure 19 relates the ratios with time needed for computing the factorization.

It can be seen that the given overheads are obtained with a compression speed

of 0.3–0.5 µsec per symbol for grow and brute, and 0.2–0.5 for multi.

6 Conclusions

We have presented the first practical evaluation of lz78 and lzw algorithms,

mostly focusing in low-memory footprints so that large files can be processed.

We introduced new compression algorithms based on compact hashing, which

can efficiently compute the lz78 and lzw factorizations in space considerably

less than the input size. For example, our most memory-efficient approaches,

grp0 and grp10, typically use 25%–60% of the space required by the input text

and compress the text at a speed of about 1–2.5 MB/sec. If speed is of concern,

we can perform the factorization 1.5–5 times faster than a standard approach

like judy, by using rolling or ternary, reaching a speed of 5–10 MB/sec.

We then pushed even more on the space usage, developing a family of lz78

compression algorithms that, under some simplifying assumptions, use O(z lg σ)

bits of main memory in expectation (where z is the number of lz78 factors and σ

is the alphabet size), that is, less memory space than the O(z lg n) bits needed

to store the compressed file (where n is the text length). These algorithms

run in O(n lg σ) expected time for compression and in O(n) expected time for

decompression. Most of them read the text and write the output in streaming

mode, producing the output in a special format.

None of the previous algorithms achieves such a low memory footprint. One

of our most memory-efficient variants, multi3, uses about half the space of the

most memory-efficient implementation computing the classic lz78 factorization

of most typical texts, at 2–5 MB/sec. Their compressed format can be decom-

pressed using typically 30%–60% of the memory requirement of the classic lz78

decoder, while taking about 50%–100% additional time, that is, 5–10 MB/sec. A

55

english, grow

Ratio

1
α plain γ

1.05 53.31 47.89
1.10 53.60 49.49
1.20 55.91 52.90
1.40 65.13 63.71
1.60 79.73 89.68

proteins, fix3

Ratio

1
α plain γ

1.05 73.58 67.80
1.10 74.12 67.57
1.20 75.33 68.01
1.40 77.84 69.11
1.60 80.45 81.63

fibonacci, fix

Ratio

1
α plain γ

1.05 20.87 7.22
1.10 18.27 7.54
1.20 16.00 8.20
1.40 14.05 9.50
1.60 10.80 10.80

c
o
m
m
o
n
c
r
a
w
l

d
n
a

e
n
g
l
is
h

f
ib
o
n
a
c
c
i

g
u
t
e
n
b
e
r
g

p
r
o
t
e
in
s

w
ik
ip
e
d
ia

x
m
l

0

20

40

60

80

100

4
6
.7

4
8
.4

5

5
9
.1

3

1
0
.8

4
6
.2

1

7
6
.2

4

6
2
.0

3

4
0
.3

1

4
5
.0

4

4
6
.5

1 5
6
.9

6

1
4
.0

4

4
4
.1

9

7
3
.5

8

5
9
.6

6

3
9
.5

5

3
8
.9

4

4
0
.0

6 5
0
.3

7
.2

2

3
7
.3

2

6
6
.9

4

5
2
.4

9

3
2
.2

2 3
8
.9

5

4
0
.0

7 5
0
.3

7

7
.2

2

3
7
.3

8

6
7
.5

7

5
2
.5

6

3
2
.2

2

fix fix3 fixγ fix3γ

Figure 17: Top: Compression ratios of the plain Bonsai coding and of the
Bonsai coding with the stored displacement values of the first layer in layered2

or layered3 encoded with Elias-γ (labeled with ‘γ’). Bottom: Compression ratios
of fix (resp. fix3) with and without Elias-γ encoding. We add γ in the subscript
if we apply Elias-γ encoding. For each dataset, we selected the best compression
ratios while varying the maximum load factor of the Bonsai table.

disadvantage is that, although they compute the correct lz78 factorization and

trie, their special encoding is 25%–40% larger than the classic lz78 encoding,

and thus they are weaker as plain compressors.

This encoding overhead makes these latter compressors more interesting for

other purposes, such as building compressed text representations for substring

extraction [66], or for the compressed-space construction of lz78-based text

56

dna english proteinsxml
0

20

40

60

80

100

40
.0

6 50
.3

6
6.

9
4

32
.2

240
.0

7 5
0.

3
7

6
7.

5
7

3
2
.2

2

4
4
.2

4

57
.1

5

8
5
.0

8

3
2
.6

339
.8

1

51
.2

6

7
4
.1

9

29
.8

3

42
.4

8

47
.8

9

66
.3

4

30
.8

93
8
.6

2 48
.8

1

67
.1

6

28
.9

43
8.

52

4
8
.7

7

67
.1

7

2
8.

9
4

29
.6

7 37
.9

6

5
3
.2

2

2
1
.1

8

commoncrawlfibonacci gutenberg wikipedia
0

20

40

60

80

100

38
.9

4

7.
22

37
.3

2

52
.4

9

38
.9

5

7.
22

3
7.

3
8

52
.5

6

41
.6

7

0.
53

40
.4

6

59
.5

4

37
.9

9

0
.4

9

35
.2

7

53
.3

8

36
.6

1

0
.4

4

39
.3

3 50
.2

9

36
.5

5

0
.4

4

34
.2

7

51
.2

3

36
.5

6

0.
44

34
.2

9

50
.9

9

28
.8

1

0.
29

26
.1

2

39
.1

fix fix3 multi multi3 grow
grow3 brute lz78

Figure 18: Compression ratios of our algorithms of Section 5 computing the
Bonsai coding. We omit the ‘s’ variants of grow and grow3 since they only make
a difference in the compression speed, not in the final output. We compare
these ratios with those of the classic coding of lz78 described in Section 2.1.3.
For each dataset, we selected the best compression ratios while varying the
maximum load factor of the Bonsai table.

57

40% 60% 80% 100%

0.5

1

1.5

2

ti
m

e
[µ

s/
n

]
dna

20% 40% 60% 80% 100%

1

2

english

20% 40% 60% 80% 100%
0

1

2

3

ti
m

e
[µ

s/
n

]

proteins

40% 60% 80% 100%

0.5

1

xml

20% 40% 60% 80% 100%

1

2

ti
m

e
[µ

s/
n

]

commoncrawl

60% 80% 100%

0.2

0.4

fibonacci

40% 60% 80% 100%

0.5

1

1.5

compression overhead

ti
m

e
[µ

s/
n

]

gutenberg

40% 60% 80% 100%

1

2

compression overhead

wikipedia

fix fix3 multi multi3 grow

grow3 brute grow3s grows

Figure 19: Compression time versus the compression overhead, i.e., the ratio
of the final compressed size over the classical lz78 output size (cf. Table 3)
minus 1. We clipped the plots at 100% compression overhead, where the output
size is twice the classical lz78 output size.

indexes [3]. In general, our insert-only compact tries can be useful for many

other applications unrelated to Lempel-Ziv compression.

As a final note for practical applications, we point out that writing a ded-

58

icated memory allocator is crucial to actually achieving the space bounds ob-

served by our experiments. This is because we monitored the sizes requested

by calls to malloc or new, neglecting the costs for actually maintaining these

requested parts of memory (i.e., both the memory allocator and our imple-

mentations maintain the lengths of the allocated arrays). In the usual setting,

malloc stores additional information about the size of the requested memory,

which is again rounded up to be a multiple of the machine word size. Having a

lot of tiny memory fragments requested by a standard malloc call considerably

wastes much more memory than when using a memory manager tailored for the

compact hash tables studied here.

Acknowledgements

Part of this collaboration started during the Dagstuhl Seminar 16431, “Com-

putation over Compressed Structured Data”. We also acknowledge the funding

from Millennium Institute for Foundational Research on Data (D.A. and G.N.)

and from JSPS KAKENHI with grant number JP18F18120. We thank Juha

Kärkkäinen for sharing some thoughts about adding jump pointers to the lz

trie.

References

[1] O. Amble and D. E. Knuth. Ordered hash tables. The Computer Journal,

17(2):135–142, 1974.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching

in Z-compressed files. Journal of Computer and System Sciences, 52(2):

299–307, 1996.

[3] D. Arroyuelo and G. Navarro. Space-efficient construction of Lempel-Ziv

compressed text indexes. Information and Computation, 209(7):1070–1102,

2011.

[4] D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based

compressed text indexing. Algorithmica, 62(1-2):54–101, 2012.

[5] D. Arroyuelo, P. Davoodi, and S. R. Satti. Succinct dynamic cardinal trees.

Algorithmica, 74(2):742–777, 2016.

[6] D. Arroyuelo, R. Cánovas, G. Navarro, and R. Raman. LZ78 compression

in low main memory space. In Proc. 24th SPIRE, volume 10508 of LNCS,

pages 38–50, 2017.

59

[7] J. Arz and J. Fischer. Lempel-Ziv-78 compressed string dictionaries. Algo-

rithmica, 80(7):2012–2047, 2018.

[8] N. Askitis. Fast and compact hash tables for integer keys. In Proc. 30th

ACSC, volume 91 of CRPIT, pages 101–110, 2009.

[9] H. Bannai, S. Inenaga, and M. Takeda. Efficient LZ78 factorization of

grammar compressed text. In Proc. 19th SPIRE, volume 7608 of LNCS,

pages 86–98, 2012.

[10] H. Bannai, T. Gagie, and T. I. Refining the r-index. Theor. Comput. Sci.,

812:96–108, 2020.

[11] D. Belazzougui, P. Boldi, and S. Vigna. Dynamic z-fast tries. In Proc. 17th

SPIRE, volume 6393 of LNCS, pages 159–172, 2010.

[12] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.

Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292,

2005.

[13] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching

strings. In Proc. 8th SODA, pages 360–369, 1997.

[14] J. R. Black, C. U. Martel, and H. Qi. Graph and hashing algorithms for

modern architectures: Design and performance. In Proc. 2nd WAE, pages

37–48, 1998.

[15] M. Burrows and D. J. Wheeler. A block sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, Palo

Alto, California, 1994.

[16] P. Celis, P. Larson, and J. I. Munro. Robin Hood hashing. In Proc. 26th

FOCS, pages 281–288, 1985.

[17] P. L. Chebyshev. Mémoire sur les nombres premiers. Journal de

Mathématiques Pures et Appliquées, 1:366–390, 1852.

[18] K. Chung, M. Mitzenmacher, and S. P. Vadhan. Why simple hash functions

work: Exploiting the entropy in a data stream. Theory of Computing, 9:

897–945, 2013.

[19] D. R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,

Canada, 1996.

[20] J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE

Transactions on Computers, 33(9):828–834, 1984.

60

[21] J. J. Darragh, J. G. Cleary, and I. H. Witten. Bonsai: a compact represen-

tation of trees. Software Practice and Experience, 23(3):277–291, 1993.

[22] P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane. Compression

with the tudocomp framework. In Proc. 16th SEA, volume 75 of LIPIcs,

pages 13:1–13:22, 2017.

[23] P. Elias. Efficient storage and retrieval by content and address of static

files. J. ACM, 21(2):246–260, 1974.

[24] J. A. Feldman and J. R. Low. Comment on Brent’s scatter storage algo-

rithm. Communications of the ACM, 16(11):703, 1973.

[25] H. Ferrada and G. Navarro. A Lempel-Ziv compressed structure for docu-

ment listing. In Proc. 20th SPIRE, volume 8214 of LNCS, pages 116–128,

2013.

[26] H. Ferrada and G. Navarro. Efficient compressed indexing for approximate

top-k string retrieval. In Proc. 21th SPIRE, volume 8799 of LNCS, pages

18–30, 2014.

[27] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the

ACM, 52(4):552–581, 2005.

[28] J. Fischer and P. Gawrychowski. Alphabet-dependent string searching with

wexponential search trees. In Proc. 26th CPM, volume 9133 of LNCS, pages

160–171, 2015.

[29] J. Fischer and D. Köppl. Practical evaluation of Lempel-Ziv-78 and Lempel-

Ziv-Welch tries. In Proc. 24th SPIRE, volume 10508 of LNCS, pages 191–

207, 2017.

[30] J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka. Approximat-

ing LZ77 via small-space multiple-pattern matching. In Proc. 23rd ESA,

volume 9294 of LNCS, pages 533–544, 2015.

[31] J. Fischer, T. I, D. Köppl, and K. Sadakane. Lempel-Ziv factorization

powered by space efficient suffix trees. Algorithmica, 80(7):2048–2081, 2018.

[32] L. Gasieniec and W. Rytter. Almost optimal fully LZW-compressed pattern

matching. In Proc. 9th DCC, pages 316–325, 1999.

[33] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algo-

rithms for Lempel-Ziv encoding (extended abstract). In Proc. 5th SWAT,

pages 392–403, 1996.

61

[34] G. H. Gonnet and R. A. Baeza-Yates. An analysis of the Karp-Rabin string

matching algorithm. Information Processing Letters, 34(5):271–274, 1990.

[35] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.

Oxford University Press, 6th edition, 2008.

[36] G. L. Heileman and W. Luo. How caching affects hashing. In Proc. 7th

ALENEX, pages 141–154, 2005.

[37] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In Proc. 22nd

DISC, volume 5218 of LNCS, pages 350–364, 2008.

[38] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS,

pages 549–554, 1989.

[39] J. Jansson, K. Sadakane, and W. Sung. Linked dynamic tries with appli-

cations to LZ-compression in sublinear time and space. Algorithmica, 71

(4):969–988, 2015.

[40] S. Kanda, D. Köppl, Y. Tabei, K. Morita, and M. Fuketa. Dynamic path-

decomposed tries. ACM JEA, 25(1):1.13:2–1.13:28, 2020.

[41] J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching

on Ziv-Lempel compressed text. Journal of Discrete Algorithms, 1(3/4):

313–338, 2003.

[42] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-

rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[43] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple

pattern matching in LZW compressed text. In Proc. 8th DCC, pages 103–

112, 1998.

[44] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-and approach

to pattern matching in LZW compressed text. In Proc. 10th CPM, pages

1–13, 1999.

[45] D. E. Knuth. Art of Computer Programming, Volume 2: Seminumerical

Algorithms. Addison Wesley, 1981.

[46] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and

Searching. Addison Wesley, 1998.

[47] D. Köppl and K. Sadakane. Lempel-Ziv computation in compressed space

(LZ-CICS). In Proc. 26th DCC, pages 3–12, 2016.

62

[48] D. Köppl, S. J. Puglisi, and R. Raman. Fast and simple compact hashing

via bucketing. In Proc. 19th SEA, LIPIcs, page to appear, 2020.

[49] D. Lemire and O. Kaser. Recursive n-gram hashing is pairwise independent,

at best. Computer Speech and Language, 24(4):698–710, 2010.

[50] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans-

actions on Information Theory, 22(1):75–81, 1976.

[51] H. Luan, X. Du, S. Wang, Y. Ni, and Q. Chen. J+-tree: A new index

structure in main memory. In Proc. 12th DASFAA, volume 4443 of LNCS,

pages 386–397, 2007.

[52] T. Maier and P. Sanders. Dynamic space efficient hashing. In Proc. 25th

ESA, volume 87 of LIPIcs, pages 58:1–58:14, 2017.

[53] V. Migliore, B. Gérard, M. Tibouchi, and P. Fouque. Masking dilithium -

efficient implementation and side-channel evaluation. In Proc. 17th ACNS,

volume 11464 of LNCS, pages 344–362, 2019.

[54] J. I. Munro, G. Navarro, and Y. Nekrich. Space-efficient construction of

compressed indexes in deterministic linear time. In Proc. 28th SODA, pages

408–424, 2017.

[55] Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda. Constructing

LZ78 tries and position heaps in linear time for large alphabets. Information

Processing Letters, 115(9):655–659, 2015.

[56] G. Navarro. Regular expression searching on compressed text. Journal of

Discrete Algorithms, 1(5/6):423–443, 2003.

[57] G. Navarro and K. Sadakane. Fully functional static and dynamic succinct

trees. ACM Transactions on Algorithms, 10(3):16:1–16:39, 2014.

[58] G. Navarro and J. Tarhio. LZgrep: A Boyer-Moore string matching tool

for Ziv-Lempel compressed text. Software Practice and Experience, 35(12):

1107–1130, 2005.

[59] T. Nishimoto and Y. Tabei. Conversion from RLBWT to LZ77. In Proc.

CPM, volume 128 of LIPIcs, pages 9:1–9:12, 2019.

[60] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index

and LZ factorization in compressed space. Discrete Applied Mathematics,

274:116–129, 2020.

[61] A. Pagh, R. Pagh, and M. Ruzic. Linear probing with 5-wise independence.

SIAM Review, 53(3):547–558, 2011.

63

[62] M. Patrascu and M. Thorup. On the k-independence required by linear

probing and minwise independence. ACM Transactions on Algorithms, 12

(1):8:1–8:27, 2016.

[63] A. Policriti and N. Prezza. Computing LZ77 in run-compressed space. In

Proc. DCC, pages 23–32, 2016.

[64] A. Poyias, S. J. Puglisi, and R. Raman. m-Bonsai: A practical compact

dynamic trie. International Journal on Foundations of Computer Science,

29(8):1257–1278, 2018.

[65] L. M. S. Russo and A. L. Oliveira. A compressed self-index using a Ziv-

Lempel dictionary. Information Retrieval, 11(4):359–388, 2008.

[66] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy

bounds. In Proc. 17th SODA, pages 1230–1239, 2006.

[67] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and

paging rules. Communications of the ACM, 28(2):202–208, 1985.

[68] T. Takagi, S. Inenaga, K. Sadakane, and H. Arimura. Packed compact

tries: A fast and efficient data structure for online string processing. IE-

ICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, 100-A(9):1785–1793, 2017.

[69] T. A. Welch. A technique for high-performance data compression. IEEE

Computer, 17(6):8–19, 1984.

[70] N. Yoshinaga and M. Kitsuregawa. A self-adaptive classifier for efficient

text-stream processing. In Proc. 25th COLING, pages 1091–1102, 2014.

[71] J. Ziv and A. Lempel. A universal algorithm for sequential data compres-

sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

[72] J. Ziv and A. Lempel. Compression of individual sequences via variable-

rate coding. IEEE Transactions on Information Theory, 24(5):530–536,

1978.

64

	Introduction
	Our Contribution
	Article Outline
	Related Work

	Preliminaries
	Factorization and Coding
	LZ Trie
	Factorization Algorithm
	Classic Coding
	LZ Trie Coding

	Experimental Setup

	Compact Hash Tables
	Sparse Table Layout
	Displacement
	Array Displacement
	Displacement Elias
	Displacement Layered
	Cleary Displacement

	Identifier
	Other Collision Resolutions
	Open-Addressing Implementations
	Table Size
	Reasons for Linear Probing
	Bijective Transform

	Experiments

	LZ Trie Representations
	Deterministic LZ Tries
	Binary Search Trie
	Ternary Search Trie
	Space Analysis

	LZ Tries with Hashing
	Space Analysis
	Compact Hashing
	Rolling Hashing

	Algorithm Engineering Aspects
	Jump Pointers
	Key-Split Variant
	Key/Value-Split Variant
	Combined Four-Tier Approach

	Experiments
	Structure of the Benchmarks
	Preliminary Evaluation
	Time-Efficient Tries
	Space-Efficient Tries
	Evaluation of rolling
	Compression Ratio

	LZ78 Computation with Bonsai Tries
	A Bonsai Table of Fixed Size
	Decompression
	Space Improvement

	A Growing Bonsai Table
	Multiple Bonsai Tables
	Recompression
	Implementation
	Experimental Results

	Conclusions

