
Compact structure for sparse undirected graphs based
on a clique graph partition

Felipe Glariaa, Cecilia Hernándezb,a,∗, Susana Ladrac, Gonzalo Navarrob,d,e,
Lilian Salinasa

aDepartment of Computer Science, University of Concepcion, Concepción, Chile
bCeBiB — Center for Biotechnology and Bioengineering, Chile.

cUniversidade da Coruña, Centro de investigación CITIC, A Coruña, Spain
dIMFD — Millennium Institute for Foundational Research on Data, Chile
eDepartment of Computer Science, University of Chile, Santiago, Chile

Abstract

Compressing real-world graphs has many benefits such as improving or en-

abling the visualization in small memory devices, graph query processing, com-

munity search, and mining algorithms. This work proposes a novel compact

representation for real sparse and clustered undirected graphs. The approach

lists all the maximal cliques by using a fast algorithm and defines a clique graph

based on its maximal cliques. Further, the method defines a fast and effective

heuristic for finding a clique graph partition that avoids the construction of the

clique graph. Finally, this partition is used to define a compact representation of

the input graph. The experimental evaluation shows that this approach is com-

petitive with the state-of-the-art methods in terms of compression efficiency and

access times for neighbor queries, and that it recovers all the maximal cliques

faster than using the original graph. Moreover, the approach makes it possible

to query maximal cliques, which is useful for community detection.

Keywords: graph compression, clustering, compact data structures, network

analysis, maximal cliques

∗Corresponding author
Email addresses: fglaria@udec.cl (Felipe Glaria), cecihernandez@udec.cl (Cecilia

Hernández), susana.ladra@udc.es (Susana Ladra), gnavarro@dcc.uchile.cl (Gonzalo
Navarro), lilisalinas@udec.cl (Lilian Salinas)

Preprint submitted to Journal of Information Sciences July 10, 2020

1. Introduction

A wide variety of real systems are modeled by graphs, including commu-

nication, transit, web, social, and biological networks [1, 2]. The process of

discovering relevant information from graphs is called graph mining [3]. This is

usually a time-consuming task, especially with the current trend of data growth5

size [4]. The main challenges are triggered by different aspects. This includes

the data volume itself, data complexity (i.e., many relationships among the

data), and application needs [4]. Several schemes have been proposed for ana-

lyzing graphs that aim at understanding the properties and patterns found in

them to serve different application purposes. Some known applications include10

disease analysis [5], community discovery [1, 2, 6], recommender systems [7],

graph compression [8, 9, 10], measuring relevance of network actors [11, 12],

and network visualization [13, 14]. Recent works on graph mining postulate

that dense patterns are prominent and describe different dense substructures.

Some examples include maximal cliques [15, 16], communities [17], and oth-15

ers [3, 9, 18, 19]. These substructures have been used for improving network

analysis, graph compression [9, 20], and visualization [13].

Given the space required to store and analyze large graphs, the research com-

munity has proposed graph compression formats that support basic navigation

queries directly over the compressed structure without requiring decompres-20

sion. This approach enables the simulation of any graph algorithm in the main

memory, requiring less space than plain representations. Even though these

compressed structures are usually slower than uncompressed representations,

they are still attractive in devices with limited memory. This includes devices,

such as tablets or cell phones. Moreover, these in-memory representations can25

provide faster access than plain representations incurring I/O costs [21, 22].

Although there are different types of real-world graphs of interest, this work

aims at processing highly clustered and sparse graphs. Clustered graphs contain

vertices grouped in highly connected subgraphs. These graphs have high clus-

tering coefficient and transitivity [23] measures. In practice, many real-world30

2

graphs are sparse, such as graphs with low degeneracy [16].

This work proposes a compact data structure for clustered sparse undirected

graphs that exploits the cliques to represent the edges implicitly. Further, it

makes use of the vertex redundancy of the cliques by partitioning them into

components that share many vertices. This structure enables neighbor queries,35

as well as queries for recovering all or subsets of the maximal cliques. Finding

maximal cliques is an important step in the clique percolation method (CPM).

This has been successfully used for community searches in biological networks

[1], social group evolution [24], human disease pattern discovery [5], and comput-

ing and visualizing topological features using persistence homology in network40

analysis [14].

The structure is built on a partition of the clique graph, where each node

is a maximal clique in the original graph. The proposed method uses a fast

algorithm for listing all maximal cliques and defines an effective heuristic for

finding a clique graph partition avoiding the construction of the clique graph.45

From this, a compact representation of the partitioned clique graph is proposed.

The experimental evaluation shows that the compressed graph representa-

tion is competitive with the state-of-the-art methods in terms of compression

efficiency for large real graphs, obtaining the smallest representation for clus-

tered graphs. This high compression is achieved, in some cases, at the expense50

of slower access times when answering neighbor queries. As discussed, in a con-

text of limited memory or steep memory hierarchies, using less space can be of

special interest. This may allow the representation to fit into faster memory lev-

els and, in the case of larger datasets, prevents it from being handled on slower

ones, such as disks [21, 22]. In addition, according to our knowledge, beside55

neighbor queries, the structure presented in this study is the first proposal that

enables maximal clique queries. This is an important operation for applications

that use clique communities. Furthermore, retrieving maximal cliques from the

compressed representation is much faster than listing them from the original

graph.60

The implementation of the proposed method is available at

3

http://www.inf.udec.cl/~chernand/sources/cliquecomp/cliquecomp.tgz.

2. Related work

Boldi and Vigna [25] proposed in 2004 one of the best-known techniques for

web graph compression, which offered the best space/time trade-off for many65

years. They presented the WebGraph framework, which obtains very compact

representations of web graphs by exploiting their regularities and statistical

properties. More concretely, they exploit the locality of reference, since web

pages generally include links to other web pages of the same domain. They

also exploited the similarity of the adjacency lists or the “copy property”, since70

the web pages from the same domain usually tend to have the same links.

In addition to achieving very compact representations, this method allows for

fast access to any adjacency list and offers different trade-offs depending on

the desired navigation performance. The WebGraph framework outperformed

many techniques that were previously proposed, which exploited the statistical75

properties of the graphs [26, 27, 28].

In the last decade, different authors addressed this problem using alternative

approaches. Claude and Navarro [29] used a phrase-based compressor, Re-Pair,

to capture the regularities present in the adjacency lists in order to compress the

graph. Asano et al. [30] obtained very compact space by capturing patterns of80

the adjacency matrix, such as horizontal, vertical, and diagonal runs. Buehrer

and Chellapilla [8] proposed the Virtual Node Miner method, which finds bi-

cliques inside the web graph and represents them in a compact way. More

concretely, for each biclique, a new virtual node is generated and all of the links

within the biclique are replaced to edges to/from this new node. This signifi-85

cantly reduces the number of represented edges. Grabowski and Bieniecki [31]

proposed a method based on list merging. This method compactly represents

sets of consecutive adjacency lists with bitmaps while exploiting the similarities

among those lists.

Apostolico and Drovandi [32] proposed a technique that combines the re-90

4

http://www.inf.udec.cl/~chernand/sources/cliquecomp/cliquecomp.tgz

ordering of the nodes of the graph following a Breadth-First Search (BFS) strat-

egy, which improves the locality, and a new family of universal codes for integers

that follows power law distribution with an exponent close to one. This tech-

nique requires little space (about one to four bits per edge) while maintaining

a retrieval time comparable to that of the WebGraph framework.95

Brisaboa et al. proposed the k2-tree method [20], which focuses on the com-

pression of the adjacency matrix. They proposed a succinct representation for

a special kind of tree inspired in region quad-trees. More concretely, the k2-

tree subdivides the adjacency matrix into k × k submatrices, which are further

subdivided in case they are non-zero. This subdivision is represented in a tree100

following a Z-order and is then compactly represented using bitmaps. Unlike

other methods, k2-trees support the efficient retrieval of predecessors and range

queries in addition to the retrieval of the original adjacency lists.

Most of the previous methods that were designed for web graphs were also

successfully applied to other types of graphs such as social networks. For in-105

stance, Boldi et al. presented an improvement of WebGraph framework, based

on vertex ordering, which also works well in this domain [33]. Hernández and

Navarro [9] addressed the compression of web and social graphs by combin-

ing several techniques that include virtual nodes, k2-trees, and node order-

ing. In addition, some proposals were specifically designed for social networks.110

Chierichetti et al. [34] proposed a compression scheme that takes advantage

not only of the locality of reference and similarity, but also of the reciprocity, a

property that is common in social networks. Maserrat and Pei [35] proposed the

linearization of the input graph while exploiting regularities such as clustering.

Recently, Rossi and Zhou presented GraphZIP [36], which decomposes a115

graph into a set of large cliques, and then compresses and represents the graph

succinctly. This clique-based method can be used as a disk-resident or as an

in-memory graph representation and it is scalable for large datasets; it includes

a parallel implementation.

Maximal cliques have also been used for identifying communities. For in-120

stance, clique communities have been effectively used for discovering patterns

5

in human diseases [5] and finding influential communities in social networks [2].

Pournoor et al. [5] considered maximal cliques in protein-protein networks and

found common super cliques inside disease families. A well-known algorithm

for identifying clique communities is the Clique Percolation Method (CPM) [1].125

This method first lists all of the maximal cliques and later builds a clique-clique

overlap matrix. This is used to retrieve clique communities formed by overlap-

ping cliques of size k. This algorithm has been made available as a tool for the

most common programming languages, for instance, it has been included into

R packages and Python libraries.130

3. Proposed method

This section describes a new method for compressing real sparse undirected

graphs using a compact data structure that takes advantage of the vertex redun-

dancy of the graph represented by its maximal cliques. In this method, vertex

redundancy refers to vertices that belong to multiple maximal cliques. Such135

vertices can be stored only once to reduce space.

The proposed compression method includes three steps. The first step (clique

listing) lists all the maximal cliques of size at least two in the input graph.

The second step (clique graph partitioning) creates a clique graph based on the

maximal cliques of the graph and a partition-based clustering heuristic for the140

clique graph representation, without building the clique graph. The last step

(compact graph representation) defines a compact data structure based on the

symbol and bit sequences for the clique graph partitions found during the second

step.

3.1. Clique listing145

Let G(V,E) be a graph where V is the set of vertices and E ⊆ V × V is

the set of edges. For any vertex, u ∈ V , let N(u) = {v ∈ V |(u, v) ∈ E} be its

neighborhood. A clique is a complete subgraph of G(V,E), and we regard it as

a set of vertices. In other words, every pair of distinct elements in a clique is

6

connected by an edge. A maximal clique is a clique that cannot be extended150

by including an additional vertex. The set of all maximal cliques with at least

two nodes contains all the edges in E and thus is called an edge clique cover of

G(V,E). We obtained them using the fast algorithm proposed by Eppstein and

Strash [16].

3.2. Clique graph partitioning155

Let C = {c1, c2, . . . , cµ} be the collection of all of the maximal cliques of

an undirected graph G(V,E). The graph of cliques, called the clique graph, is

defined such that each vertex in the graph is a maximal clique and there is

an edge between two vertices if the corresponding cliques share nodes of the

original graph [37, 38]. The formal definition for a clique graph is as follows.160

Definition 1. Clique graph

Given a graph G = (V,E) and C = {c1, c2, . . . , cµ} being the collection of maxi-

mal cliques that cover G, the clique graph CGc = (Vc, Ec) of G is defined as

1. Vc = C

2. ∀c, c′ ∈ C, (c, c′) ∈ Ec ⇐⇒ c ∩ c′ 6= ∅165

Definition 2. Clique graph partition

Given a clique graph CGc = (Vc, Ec), a clique graph partition CP =

{cp1, cp2, . . . , cpM} is a partition of the vertices of Vc into pairwise disjoint

subsets cpi.

The problem of finding a good clique graph partition is defined as follows:170

Problem 1. Find a graph partition of the vertices in the clique graph CGc.

Given a clique graph CGc = (Vc, Ec), output a clique graph partition CP =

{cp1, cp2, . . . , cpM}, aiming to maximize the shared nodes of V within the parti-

tions while minimizing the sum of the number of partitions in which each node

appears.175

7

By definition, different partitions cannot share maximal cliques. However,

it is possible to have a subset of vertices of the original graph G belonging to

different partitions in the clique graph partition.

The proposed method aims at finding a clique graph partition that takes

advantage of the vertex redundancy in maximal cliques. The basic goal of180

applying a partitioning scheme is to group maximal cliques that share many

vertices, so that different partitions of the maximal cliques share none or only

a few vertices.

The problem of finding a clique graph partition has been addressed recently

[39]. A naive approach to find a clique graph partition is to first evaluate the185

similarity between all of the maximal cliques in CGc using a method such as

SimRank [40]. Afterwards, a clustering algorithm, such as spectral clustering

[41] or hierarchical clustering [42], is applied. However, evaluating the similar-

ity between the maximal cliques is time-consuming for large graphs [39]. In

addition, using spectral clustering often yields separate clusters consisting of190

low-degree vertices [39]. The new method by Lu et al. [39] introduces a bal-

ancing factor to avoid this problem; however, as discussed by the authors, this

solution is very time-consuming (O(n3)), which makes it applicable for very

small graphs only.

Instead, we propose an effective heuristic for finding a clique graph partition195

that is based on using a ranking function without the need of building the clique

graph.

3.2.1. Algorithm for finding a clique graph partition

This section presents our partitioning clustering algorithm for a clique graph,

which is effective for a compact representation of the input graph G.200

This approach first defines a ranking function for each vertex in G. A ranking

function assigns a score to each vertex based on some properties of the clique

graph. The ranking functions consider the number and sizes of the maximal

cliques where a vertex in G belongs.

The clustering heuristic is given in Algorithm 1. The output of the ranking205

8

Algorithm 1 Clique graph partition algorithm.

Input: Graph G = (V,E), maximal clique collection C, ranking function r(u)

Output: Returns clique graph partition CP

1: (C,R)← computeRanking(r, C)

2: Initialize bit array Z of size |C| and set each bit to 0

3: for u ∈ V in decreasing order of score in R[u] do

4: cpid← ∅

5: for id ∈ C[u] do

6: if Z[id] = 0 then

7: Z[id]← 1

8: cpid← cpid ∪ {id}

9: if cpid 6= ∅ then

10: CP ← CP : cpid

11: return CP

computation are the arrays C and R (line 1). Array C contains a list with the

clique ids where each vertex in G is found, and the array R contains a score

for each vertex in G. The time complexity of the ranking computation includes

first passing through all of the vertices of G in the set C of maximal cliques,

and then sorting R from highest to lowest score. The total time complexity is210

O(L logL), where L =
∑
ci∈C |ci| (i.e., all vertices in all of the maximal cliques).

Next, the array R is examined in decreasing score order. For each vertex

u, we collect from C[u] all the cliques where u belongs that are not already in

previous partitions (we use Z to mark this). Those cliques we collect, ni cpid,

form the next partition. The time complexity of this step is O(|C|+ |V |). The215

algorithm finally returns the clique graph partition in the collection CP, where

each partition is represented as a set of clique ids.

Definition 3. Ranking function

Given a graph G and its clique collection C, a ranking function is a function

r : V → R>0 that gives a rank score for each vertex u ∈ V .220

9

The ranking functions are defined for each vertex based on the number and

sizes of the maximal cliques where the vertex is found. Denoting C(u) = {c ∈

C|u ∈ c} for a vertex u ∈ V , we consider the following possible ranking functions.

rf (u) = |C(u)| (1)

rc(u) =
∑

c∈C(u)

|c| (2)

rr(u) =
rc(u)

rf (u)
(3)

3.3. Compact graph representation

This section describes a compact data structure for representing G using the225

clique graph partition CP that was obtained in the previous step. The final

representation contains compact data structures for symbol and bit sequences

that include support for rank, select, and access operations: rankv(B, i) is the

number of occurrences of bit/symbol v in B[1, i], selectv(B, j) is the position of

the j-th occurrence of the bit/symbol v in B, and access(B, k) is the bit/symbol230

at position k in B. The three operations can be computed in time logarithmic

on the alphabet size of B by adding sublinear space on top of B [21].

The graph representation is composed of two sequences, X and Y , a bitmap

B, and a byte sequence BB. For each partition cpp ∈ CP, a sequence Xp is

created to store the vertices of G that are present in any of the cliques in cpp.235

The sequences Xp are concatenated to obtain the sequence X. Bitmap B is used

to mark the starting position of each partition in X. In addition, a byte sequence

BB is implemented to register, for each vertex in X, the maximal cliques where

it participates within the corresponding partition. More concretely, for each

partition cpp, a matrix of bits BBp is created where each row represents a vertex240

u in the partition in the same order as in Xp, and each column represents a clique

in cpp. The columns of BBp corresponding to the cliques where u participates

are marked with 1. Each bit matrix BBp is then converted into a byte-aligned

sequence and all the sequences BBp are concatenated to create the byte sequence

10

BB. If there is only one maximal clique in a partition in cpp, then BB stores no245

bytes for that partition. Finally, sequence Y stores the position in BB where

each partition BBp starts. The data structure is described as follows.

Definition 4. Compact representation of G(V,E)

Let CP = {cp1, . . . , cpM}, cpp ∈ CP, and cpp = {c1, ..., cmp}, where mp is

the number of maximal cliques in partition cpp. Let bpup =
⌈mp

8

⌉
be the number250

of bytes per row of BBp, except that bpup = 0 if mp = 1 (say there are M ′

partitions with bpup > 0). We then define X, B, BB, and Y as follows:

Xp = {u ∈ c, c ∈ cpp} = {u1, ...u|Xp|} (4)

Bp = 1 : 0|Xp|−1 (5)

BBp = BBp[1..|Xp|][1..bpup] if mp > 1, empty otherwise (6)

BBp[i][j] =

8∑
k=1

2k−1 · (ui ∈ c8(j−1)+k)

X = X1 · · ·XM , B = B1 · · ·BM , BB = BB1 · · ·BBM ′ (7)

Y [p] = |Xp−1| · bpup−1 + Y [p− 1], Y [0] = 0 (8)

Figure 1 shows an example of the three steps in creating the data structure.

The first step finds five maximal cliques in the 11-vertex input graph. Maximal

cliques and the clique graph are also displayed in the top-center of the figure.255

The second step uses Algorithm 1 to compute the clique graph partition. The

figure shows the content of the ranking array R using the function rr and the

resulting clique graph partition stored in CP. As seen in the example, partitions

with more than one maximal clique are located first in X to reduce the space

of Y . The first partition in CP contains two maximal cliques, C1 and C2, the260

second partition contains C3 and C4, and the final partition contains only the

maximal clique C0. The third step builds the compact representation; Figure 1

shows the content for X, B, BB, and Y . Array X contains the vertices in all of

the partitions in CP. The first vertex in each partition in X is marked in bitmap

B with a bit set to 1. For this example, BB contains bytes for the first two265

11

Step1

C0 : 0, 1, 2, 3

C1 : 3, 4, 6, 7

C2 : 3, 4, 5, 6

C3 : 2, 8, 9

C4 : 2, 9, 10

Step2

u ∈ G 0 1 3 4 5 6 7 2 8 9 10
Rr 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.3 3.0 3.0 3.0

CP: C1 C2 C3 C4 C0

Step3

X: 3 4 5 6 7 2 8 9 10 0 1 2 3
B: 1 0 0 0 0 1 0 0 0 1 0 0 0
BB: 3 3 2 3 1 3 1 3 2
Y: 0 5 9

Figure 1: Example of our compression method. The first step enumerates all the maximal

cliques. The second step computes the clique graph partition. Finally, the last step (bottom

part of the figure) obtains the compact representation using sequences X, B, BB, and Y .

partitions. Since the partitions have two cliques, one byte per vertex is enough

for representing the clique ids where each node participates. As a result, BB

contains five bytes in the first partition and four bytes in the second. Given

that in the first partition, vertices 3, 4, and 6 participate in both cliques C1 and

C2, their corresponding byte at BB encodes “11” as a byte with a value of 3.270

Meanwhile, vertex 7 is included only in clique C1; therefore, its byte encodes

“01” as a byte with a value of 1. Further, vertex 5 is included only in clique C2;

therefore, its corresponding byte at BB encodes “10” as the byte with a value

of 2. A similar encoding is performed in the second partition. Finally, sequence

Y indicates the starting position of each partition in BB.275

4. Query algorithms

This section describes how the main queries are solved using the compact

data structure. Algorithm 2 displays a sequential algorithm that retrieves the

12

input graph G in a single pass. The time complexity of the sequential algorithm

is O(
∑M
p=1 |Xp|2 · (1 + bpup)).280

The algorithm goes through each partition p of the compact representation,

retrieves all of the edges in that partition and adds all those edges to build

E. If a partition Xp contains only one clique, then all the possible edges are

generated. Otherwise, two vertices are neighbors if both participate in some

clique of cpp. To compute this, the algorithm checks if the bitwise and between285

the bitarrays of BBp of those vertices is nonzero.

Algorithm 3 retrieves the vertices adjacent to a given u ∈ V (i.e., its neigh-

bors). The time complexity for retrieving the neighbors of a vertex is the same

as above, but the sum ranges only over the partitions where u participates. We

use rank and select on sequence X and bitvector B to find those partitions.290

Note that the same vertex can be inserted multiple times in N(u), so we must

use a set data structure that avoids repetitions.

Algorithm 4 retrieves the maximal cliques of G in time O(
∑M
p=1 |Xp| · (1 +

bpup)). It iterates over each partition and, inside each, it distributes every node

into all the clusters where it belongs.295

Let us illustrate the neighbor query algorithm using the example of Figure 1.

First, let us find the neighbors of node 3. Algorithm 3 first counts the number of

partitions where node 3 occurs, occur = rank3(X, 12) = 2. The two partitions

are then examined to find the neighbors within each. For the first partition,

the position where node 3 appears is computed along with the identifier of300

the partition, its starting and ending positions, the number of bytes used for

each element at that position, and its elements (up = select3(X, 1) = 0, p =

rank1(B, 0) = 1, s = select1(B, 1) = 0, e = select1(B, 2) − 1 = 4, Xp =

[3, 4, 5, 6, 7], bpup = Y [1]−Y [0]
4−0+1 = 5/5 = 1). Then, for each element of Xp, the

algorithm checks if it is a neighbor of node 3 or not. This is done by testing if305

they share at least one clique of that partition, by performing the bitwise and

with a byte value of 3, which is the BB element of node 3 in this partition.

It omits Xp[0] = 3, then it checks Xp[1] = 4, and since its associated BB

element is 3, and the bitwise and with 3 is non-zero, then 4 is a neighbor of

13

Algorithm 2 Retrieve the complete list of edges E.

Input: X, B, BB, Y

Output: The edge set E

E ← ∅

for p = 1 to |Y | − 1 do

s← select1(B, p)

e← select1(B, p+ 1)− 1

bpup ← Y [p]−Y [p−1]
e−s+1

Xp ← X[s..e]

for j = 0 to |Xp| − 1 do

for k = j + 1 to |Xp| − 1 do

for b = 1 to bpup do

if BBp[bpup · j + b] & BBp[bpup · k + b] 6= 0 then

E ← E ∪ {(Xp[j], Xp[k])} (unoriented edge)

break

for p = |Y | to rank1(B, |B|) do

s← select1(B, p)

e← select1(B, p+ 1)− 1

Xp ← X[s..e]

for j = 0 to |Xp| − 1 do

for k = j + 1 to |Xp| − 1 do

E ← E ∪ {(Xp[j], Xp[k])} (unoriented edge)

return E

3. The same happens for the rest of the elements of Xp. Therefore, 3 is a310

neighbor of 4, 5, 6, and 7 in this partition. Then, the second partition where 3

appears is examined. That is, up = select3(X, 12) = 0, p = rank1(B, 12) = 3,

s = select1(B, 3) = 9, e = select1(B, 4) − 1 = 12, Xp = [0, 1, 2, 3]. Since p = 3

is equal to |Y | = 3, all of the nodes in this partition are in the same clique;

therefore, 3 is a neighbor of all of these nodes: 0, 1, and 2. The answer of the315

query is then N(3) = {0, 1, 2, 4, 5, 6, 7}.

14

Algorithm 3 Retrieve the neighbors N(u) of vertex u ∈ V .

Input: u, X, B, BB, Y

Output: The set N(u)

N(u)← ∅

occur ← ranku(X, |X| − 1)

for i = 1 to occur do

up ← selectu(X, i)

p← rank1(B, up)

s← select1(B, p)

e← select1(B, p+ 1)− 1

Xp ← X[s..e]

if p ≥ |Y | then

for j = 0 to |Xp| − 1 do

if Xp[j] 6= u then

N(u)← N(u) ∪ {Xp[j]}

else

bpup ← Y [p]−Y [p−1]
e−s+1

for j = 0 to |Xp| − 1 do

if Xp[j] 6= u then

for b = 1 to bpup do

if BBp[bpup · j + b] & BBp[bpup · (up − s) + b] 6= 0 then

N(u)← N(u) ∪ {Xp[j]}

break

return N(u)

Let us now find the neighbors of node 8. This node appears in one par-

tition only, since occur = rank8(X, 12) = 1. This partition is then checked:

up = select8(X, 1) = 6, p = rank1(B, 6) = 2, s = select1(B, 2) = 5, e =

select1(B, 3) − 1 = 8, Xp = [2, 8, 9, 10], bpup = Y [2]−Y [1]
4−0+1 = (9 − 5)/4 = 1.320

The BB values that correspond to Xp are examined and, for each of them, the

bitwise and with the BB value for 8, that is, a byte value of 1, are computed.

15

Algorithm 4 Retrieve the maximal cliques of G(V,E).

Input: X, B, BB, Y

Output: The collection CC of maximal cliques

CC ← ∅

for p = 1 to |Y | − 1 do

s← select1(B, p)

e← select1(B, p+ 1)− 1

bpup ← Y [p]−Y [p−1]
e−s+1

Xp ← X[s..e]

for j = 0 to |Xp| − 1 do

cluster ← 0

Initialize empty sets C[1], . . . , C[8 · bpup]

for b = 1 to bpup do

for k = 1 to 8 do

cluster ← cluster + 1

if BBp[bpup · j + b][k]=1 then

Insert vertex Xp[j] to C[cluster]

CC ← CC ∪ {C[1], C[2], . . . , C[cluster]}

for p = |Y | to rank1(B, |B|) do

s← select1(B, p)

e← select1(B, p+ 1)− 1

CC ← CC ∪ {Xp[s..e]}

return CC

In this case, nodes 2 and 9 are neighbors since their BB value is 3. Instead,

node 10 is not a neighbor, as its BB value is 2, and the bitwise and with value

1 is zero. Therefore, N(8) = {2, 9}.325

5. Experimental evaluation

This section describes several experiments to tune and compare our method

with the state-of-the-art algorithms for compressing graphs, including version

16

3.6.1 of WebGraph (WG) [33], the graph compression by BFS from Apostolico

and Drovandi (AD) [32], and the k2-tree [20]. The results of the compression330

efficiency reported by Rossi and Zhou for GraphZIP [36] are also included,

although they do not support query operations. All of the experiments ran on

a machine with an Intel i7-7500U CPU @ 2.70GHz, 12 GB RAM, and 4 MB

cache. We used a g++ version 8.2.1 compiler with optimization flag -O3.

Our implementation uses succinct data structures to represent the sequences335

of symbols and bits. Concretely, we use compact data structures based on the

wavelet matrix [43] for X and Y and compressed bitmaps [44] for B. Such

representations are available in the Succinct Data Structure Library (SDSL)

version 2.01 [45]. For the byte sequence BB, plain Huffman compression [46]

was used.340

Real-world graphs from different sources were selected: the sparse social net-

work graphs dblp2010 and dblp2011 from the Laboratory for Web Algorith-

mics (LAW)2, the snapdblp dataset from SNAP3, markastro, markcmat2003,

markcmat2005 from Mark Newman4, coPapersDBLP and coPapersCiteseer

from the 10th DIMACS Implementation Challenge5, and the other graphs avail-345

able from the Network Repository Project6. Table 1 lists the main statistics of

those graphs, including the number of vertices, the number of edges, the average

degree, and the maximum degree of the vertices of each graph.

It is important to note that our approach is being compared with techniques

that encode directed graphs. WG and AD compress adjacency lists; therefore,350

their queries are focused on retrieving out-neighbors of any vertex. To make

them represent undirected graphs, we duplicated the edges of the graphs. On

the other hand, the k2-tree can efficiently retrieve both in- and out-neighbors of

the graphs, thus it can represent undirected graphs without duplicating edges.

1https://github.com/simongog/sdsl-lite
2http://law.di.unimi.it/datasets.php
3https://snap.stanford.edu/data/
4http://www-personal.umich.ed/~mejn/netdata/
5https://www.cc.gatech.edu/dimacs10/archive/coauthor.shtml.
6https://networkrepository.com/

17

https://github.com/simongog/sdsl-lite
http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/
http://www-personal.umich.ed/~mejn/netdata/
https://www.cc.gatech.edu/dimacs10/archive/coauthor.shtml
https://networkrepository.com/

Table 1: Main properties of the datasets used in the experiments.

Dataset |V | |E| avg degree max degree

ca-CondMat 21,363 182,572 8.54 279

ca-MathSciNet 332,689 1,641,288 4.93 496

ca-AstroPh 17,903 393,944 22.00 504

ca-HepPh 11,204 235,238 20.99 491

bio-wormnetv3 2,445 157,472 64.40 347

markastro 16,706 242,502 14.51 360

markcmat2003 30,460 240,058 7.88 202

markcmat2005 39,577 351,386 8.69 278

snapdblp 317,080 2,099,732 6.62 2,752

dblp2010 326,186 1,615,400 4.95 238

dblp2011 986,324 6,707,236 6.80 979

coPapersDBLP 540,486 30,491,458 56.41 3,299

coPapersCiteseer 434,101 32,073,440 73.88 1,188

coAuthorsDBLP 299,067 1,955,352 6.53 336

coAuthorsCiteseer 227,320 1,628,268 7.16 1,372

bcsstk33 8,738 583,166 66.73 140

crankseg-1 52,804 10,561,406 200.01 2,702

crankseg-2 63,838 14,085,020 220.63 3,422

mixtank-new 29,957 1,965,084 65.59 153

dblp-coauthors 1,314,050 10,724,828 8.16 1,545

ns3Da 20,414 1,660,392 81.33 305

sme3Dc 42,930 3,105,790 72.34 404

18

5.1. Analysis of ranking functions355

This section discusses how the proposed method behaves depending on the

ranking function chosen. Tuning this parameter allows our method achieve its

best performance.

Figure 2 presents the maximal clique size distribution of the four graphs, in-

cluding those that achieve the lowest and highest compression performance for360

the proposed method, as described later in Tables 4 and 5. The size of the cliques

are as follows: in ca-MathSciNet, they are below 25; in dblp-coauthors, they

are below 60; in coPapersDBLP, they are up to 300; and finally in crankseg 2,

they are between 50 and 150. This aspect is important in the compression effi-

ciency, because when cliques are larger, more edges can be represented implicitly,365

thus saving more space (as in the case of coPapersDBLP and crankseg 2).

The ranking functions (rr, rc, and rf) given in Definition 3 were analyzed

to determine the best options for the compressed representation.

0 5 10 15 20 25
Clique size

100

101

102

103

104

105

Nu
m

be
r o

f c
liq

ue
s

ca-MathSciNet

0 50 100 150 200 250 300
Clique size

100

101

102

103

104

Nu
m

be
r o

f c
liq

ue
s

coPapersDBLP

0 20 40 60 80 100 120
Clique size

100

101

102

103

104

105

Nu
m

be
r o

f c
liq

ue
s

dblp-coauthors

0 25 50 75 100 125 150 175 200
Clique size

100

101

102

Nu
m

be
r o

f c
liq

ue
s

crankseg_2

Figure 2: Clique size distribution for four datasets.

19

5.2. Compression performance

Figure 3 shows the space usage, in bits per edge (bpe7), of each component370

of our compressed representation, using the three ranking functions. The arrays

X and BB contribute most of the space. The ranking functions provide slight

differences in the total number of bits in the structure, though rf performs best

in most graphs.

In general, when BB increases, X decreases. This happens because, when375

there are more shared vertices in a clique partition, BB requires to encode

more cliques per vertex in a partition of X. Then, the number of elements in

X decreases because the common vertices of the cliques in the partition are

written only once. In the same way, when BB encodes fewer cliques per vertex,

it requires less space and X grows.380

The relation between clique sizes and compression performance is apparent.

For example, Figure 2 shows that the cliques in coPapersDBLP are much bigger

than those in ca-MathSciNet. As a consequence, the bpe required by the former

are much less than the latter.

Table 2 shows the number of maximal cliques, the degeneracy, the clustering385

coefficient, and the transitivity [23] of the graphs. The clustering coefficient is a

measure that indicates how nodes tend to group in a graph. Graphs with highly

connected nodes have a high clustering coefficient. Transitivity measures the

fraction of vertex pairs that are both connected to a third vertex. This indicates

how well connected the nodes are in the network. In addition, the last two390

columns show the compression ratio obtained by our method (in bpe) using two

ranking functions. We can see that the best compression (fewer bits per edge)

is achieved in graphs coPapersDBLP and coPapersCiteseer. They have the

highest clustering coefficient and the largest transitivity. The worst compression

is achieved by ca-MathSciNet, which has the lowest clustering coefficient and395

transitivity. According to the results, we suggest that this approach works well

for graphs that have a number of maximal cliques that is proportional to the

7Total number of bits in the structure divided by the number of edges in the graph.

20

ca-CondMat

ca-HepPh

ca-Astro
Ph

bio-wormnetv3

marka
stro

markc
mat2003

markc
mat2005

bcss
tk3

3

cra
nkse

g-1

cra
nkse

g-2

mixtank-n
ew
ns3Da

sm
e3Dc

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Bi

ts
1e5

r c f
r c f

r
c f

r c f

r c f

r c f

r
c f

r c f

r c f

r c f

r c f

r

c f

r

c f

Total bits for each sequence
X
B
BB
Y

ca-MathSciNet
snapdblp

dblp2010
dblp2011

coPapersD
BLP

coPapersCiteseer

coAuthorsD
BLP

coAuthorsCiteseer

dblp-coauthors

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Bi
ts

1e7

r c f r c f r c f

r c f

r c f
r c f r c f

r c f

r c f
Total bits for each sequence

X
B
BB
Y

ca-CondMat

ca-HepPh

ca-Astro
Ph

bio-wormnetv3

markastro

markcmat2003

markcmat2005
bcsst

k33

crankseg-1

crankseg-2

mixtank-new
ns3Da

sme3Dc

Datasets

0

1

2

3

4

5

bp
e

Bpe for ranking functions
rr

rc

rf

ca-MathSciNet
snapdblp

dblp2010
dblp2011

coPapersD
BLP

coPapersCiteseer

coAuthorsD
BLP

coAuthorsCiteseer

dblp-coauthors

Datasets

0

2

4

6

8

10

bp
e

Bpe for ranking functions
rr

rc

rf

Figure 3: The total number of bits used by the components of our compact representation

(top) and the space required (in bits per edge, bpe) using each ranking function over all the

datasets (bottom).

number of vertices of the graph, and that are sparse and clustered, according

to the degeneracy, the clustering coefficient, and the transitivity metrics.

Our structure is unique in that it enables the recovery of all the maximal400

cliques. Table 3 compares the time to do this from the original graph (using the

algorithm of Eppstein and Strash [16]) and from our compressed representation,

employing one or four threads. The results show that, even using one thread,

it is faster to obtain the maximal cliques from our representation, where they

are somehow preprocessed, than obtaining directly from the original graph. In405

addition, our algorithm is easily parallelizable, which yields even wider perfor-

mance differences. We remark that other compression methods would require

21

Table 2: The number of maximal cliques (µ), degeneracy (degen.), clustering coefficient (CCo-

eff.), transitivity (Tr.), bits per edge using the ranking function rr (bper), and bits per edge

using ranking function rf (bpef).

Dataset µ = |C| degen. CCoeff. Tr bpef bper

ca-CondMat 17,757 25 0.63 0.26 4.98 5.23

ca-MathSciNet 387,758 24 0.41 0.14 9.54 9.70

ca-AstroPh 36,084 56 0.63 0.32 5.28 5.00

ca-HepPh 14,588 238 0.61 0.65 3.34 3.13

bio-wormnetv3 528 125 0.83 0.72 0.49 0.49

markastro 15,724 56 0.66 0.42 3.53 3.69

markcmat2003 23,117 24 0.63 0.28 4.84 5.17

markcmat2005 34,274 29 0.64 0.24 4.99 5.33

snapdblp 257,551 113 0.63 0.30 6.12 6.50

dblp2010 196,434 74 0.61 0.39 5.83 6.10

dblp2011 806,320 118 0.63 0.20 6.59 6.86

coPapersDBLP 139,340 336 0.80 0.65 0.73 0.76

coPapersCiteseer 86,303 844 0.82 0.77 0.46 0.50

coAuthorsDBLP 240,681 114 0.63 0.32 6.10 6.48

coAuthorsCiteseer 145,904 86 0.68 0.46 4.72 4.92

bcsstk33 10,260 35 0.51 0.47 1.34 1.40

crankseq-1 2,062 128 0.60 0.48 0.18 0.18

crankseq-2 2,062 197 0.62 0.49 0.16 0.16

mixtank-new 4,771 44 0.63 0.43 0.69 0.71

dblp-coauthors 1,260,601 118 0.64 0.17 7.10 7.06

ns3Da 21,141 50 0.59 0.44 0.98 1.30

sme3Dc 8,522 44 0.62 0.46 0.66 0.74

22

full decompression of the graph and then run the maximal clique detection al-

gorithm on the original graph, thereby requiring much higher time and working

space. Further, we know of no parallel version of the algorithm to obtain the410

maximal cliques [16] from the original graph. Easily supporting clique queries

is one of our main contributions.

5.3. Comparison with the state of the art

This section compares our method with several state-of-the-art alternatives:

the WebGraph representation (WG) [33], the graph compression by BFS from415

Apostolico and Drovandi (AD) [32], and the k2-tree [20]. WG is parameterized

to give support for random access. In the comparison, two variants of our

method are included, namely CCr using rr, and CCf using rf . These are the

variants that achieve the best space/time trade-off.

Table 4 displays the compression efficiency and the average time to retrieve420

the neighbors of 106 random nodes.8 We observe that CCf obtains the best

compression for more than half of the datasets, and is the second best (losing

to k2-trees) in almost all the others, except in three cases where CCr is second.

Those representations always outperform WG and AD in terms of space.

In terms of time performance, WG is the fastest by far, followed in most425

cases by AD. Those structures use much more space than ours, however. Our

times are more similar to those of the k2-tree, which is also closer to ours in

space usage. Our representation uses less space and more time than k2-trees in

12 of the 22 datasets, and more space and less time in 6 of the 22 datasets; it

loses in both aspects in the other 4.430

An alternative metric, used by Rossi and Zhou [36], measures the compres-

sion as the space saving, Sc = 1 − Gc

G , where Gc is the number of bytes of the

compressed graph and G is the number of bytes of the original graph. Unlike

8We use the same random nodes for measuring the time performance of all compression

techniques. We also use the same vertex ordering (breadth-first search) for all of the graphs;

therefore ensuring that the adjacency lists returned by all of the techniques are the same.

23

Table 3: The time for listing all the maximal cliques (in seconds) from the original graph

(time orig), from the proposed compact data structure using one thread (time compr) and

using four threads (time paral). The last column shows the speedup of the parallel execution

with respect to the time using the original graph representation.

time time time speed

Dataset |V | µ = |C| orig compr paral up

ca-CondMat 21,363 17,757 0.06 0.04 0.02 3.00

ca-MathSciNet 332,689 387,758 0.87 0.83 0.57 1.52

ca-AstroPh 17,903 36,084 0.24 0.11 0.05 4.80

ca-HepPh 11,204 14,588 0.14 0.06 0.02 7.00

bio-wormnetv3 2,445 528 0.06 0.012 0.003 20.00

markastro 16,706 15,724 0.18 0.05 0.02 9.00

markcmat2003 30,460 23,117 0.09 0.05 0.038 2.36

markcmat2005 39,577 34,274 0.28 0.11 0.05 5.60

snapdblp 317,080 257,551 1.68 0.70 0.43 3.90

dblp2010 326,186 196,434 1.12 0.51 0.29 3.86

dblp2011 986,324 806,320 5.58 2.20 1.43 3.90

coPapersDBLP 540,486 139,340 17.96 1.10 0.66 27.21

coPapersCiteseer 434,102 86,303 26.70 0.73 0.43 62.09

coAuthorsDBLP 299,067 240,681 0.90 0.67 0.44 2.04

coAuthorsCiteseer 227,320 145,904 0.61 0.43 0.23 2.65

bcsstk33 8,738 10,260 0.46 0.11 0.03 15.33

crankseg-1 52,804 2,062 10.26 0.10 0.04 256.50

crankseg-2 63,838 2,062 16.90 0.12 0.05 338.00

mixtank-new 29,957 4,771 1.64 0.10 0.05 32.8

dblp-coauthors 1,314,050 1,260,601 6.54 4.48 2.64 2.47

ns3Da 20,414 21,141 1.55 0.11 0.06 25.83

sme3Dc 42,930 8,522 1.82 0.08 0.04 45.50

24

Table 4: The compression space (in bpe) and random-access time (in µs) for the proposed

structure and other state-of-the-art methods. The two best compression results for each

dataset are marked in bold; the best one is underlined.

CCf CCr WG random k2-tree AD

Dataset space time space time space time space time space time

(bpe) (µs) (bpe) (µs) (bpe) (µs) (bpe) (µs) (bpe (µs)

ca-CondMat 4.98 2.89 5.23 2.79 10.12 0.08 5.79 2.49 7.53 2.32

ca-MathSciNet 9.54 5.45 9.70 5.31 15.26 0.14 6.43 9.20 10.11 2.52

ca-AstroPh 5.28 5.15 5.00 3.54 7.33 0.06 4.92 1.51 6.87 1.89

ca-HepPh 3.34 3.34 3.13 2.31 4.62 0.05 2.98 0.88 3.81 1.31

bio-wormnetv3 0.49 0.80 0.49 0.80 1.49 0.03 0.70 0.10 0.74 0.04

markastro 3.53 2.80 3.69 2.31 8.10 0.05 4.34 1.33 5.67 1.79

markcmat2003 4.84 2.87 5.17 2.85 11.50 0.07 5.50 2.58 7.27 2.26

markcmat2005 4.99 3.27 5.33 2.98 11.78 0.07 5.60 2.80 7.86 2.32

snapdblp 6.12 4.01 6.50 3.93 11.80 0.13 5.23 6.93 8.14 2.30

dblp2010 5.83 3.92 6.10 4.04 8.67 0.10 4.30 4.84 6.71 2.15

dblp2011 6.59 5.35 6.86 4.99 10.13 0.13 5.89 10.69 9.67 2.36

coPapersDBLP 0.73 1.60 0.76 1.42 2.71 0.05 0.94 1.16 1.81 0.80

coPapersCiteseer 0.46 1.15 0.50 1.24 1.79 0.05 0.45 0.49 0.85 0.45

coAuthorsDBLP 6.10 3.99 6.48 3.90 11.29 0.14 5.16 6.56 8.00 2.28

coAuthorsCiteseer 4.72 3.52 4.92 3.16 8.64 0.12 3.77 4.00 5.66 2.04

bcsstk33 1.34 0.70 1.40 0.72 1.67 0.04 1.41 0.14 1.71 0.94

crankseq-1 0.18 0.97 0.18 0.93 1.00 0.03 0.25 0.08 0.61 0.36

crankseq-2 0.16 0.96 0.16 0.89 0.93 0.03 0.23 0.08 0.55 0.35

mixtank-new 0.69 1.24 0.71 1.31 2.25 0.05 1.16 0.17 2.07 0.95

dblp-coauthors 7.10 7.77 7.06 5.92 15.73 0.10 6.32 13.20 10.44 2.42

ns3Da 0.98 1.73 1.30 2.02 4.15 0.06 1.41 0.16 2.00 1.01

sme3Dc 0.66 1.41 0.74 1.39 3.80 0.06 1.08 0.17 1.83 0.99

the bits-per-edge metric used in the previous tables, higher values of Sc indi-

cate a better performance. Table 5 lists the space saving Sc for the largest435

undirected graphs used by Rossi and Zhou [36]. We could not obtain the com-

pression performance for the rest of the datasets because their implementation

is not available. The table shows that our structures compress much better than

GraphZIP in all four datasets. The space savings of their version GraphZIPf

(GraphZIP with an additional compression function [36]) is much more com-440

petitive, but our CCf still outperforms it clearly in two cases, whereas in the

other two there is a positive or negative difference of about 1%.

Table 6 compares the construction times required by all the methods. Our

25

Table 5: The compression results measured as space savings (higher is better), considering

two GraphZIP variants.

Dataset CCf CCr WGs AD k2-tree GraphZIP GraphZIPf

ca-CondMat 0.8605 0.8536 0.7539 0.7893 0.8378 0.3058 0.8046

ca-MathSciNet 0.7521 0.7478 0.6590 0.7372 0.8328 0.2014 0.7643

ca-AstroPh 0.8422 0.8505 0.7981 0.7945 0.8529 0.3289 0.6589

ca-HepPh 0.9003 0.9066 0.8785 0.8861 0.9109 0.5769 0.8949

bio-wormnetv3 0.9848 0.9848 0.9595 0.9773 0.9784

markastro 0.8963 0.8917 0.7858 0.8337 0.8427

markcmat2003 0.8656 0.8566 0.7743 0.7985 0.8475

markcmat2005 0.8594 0.8499 0.7647 0.7812 0.8419

snapdblp 0.8338 0.8235 0.7239 0.7788 0.8580

dblp2010 0.8462 0.8391 0.8180 0.8231 0.8867

dblp2011 0.8190 0.8117 0.7609 0.7347 0.8384

coPapersDBLP 0.9775 0.9766 0.9236 0.9443 0.9709

coPapersCiteseer 0.9857 0.9845 0.9497 0.9735 0.9859

coAuthorsDBLP 0.8346 0.8243 0.7383 0.7832 0.8601

coAuthorsCiteseer 0.8706 0.8649 0.8029 0.8446 0.8965

bcsstk33 0.9588 0.9569 0.9543 0.9473 0.9566

crankseg-1 0.9943 0.9942 0.9711 0.9808 0.9922

crankseg-2 0.9950 0.9950 0.9730 0.9828 0.9927

mixtank-new 0.9787 0.9780 0.9369 0.9361 0.9641

dblp-coauthors 0.8023 0.8033 0.6024 0.7093 0.8240

ns3Da 0.9697 0.9598 0.8779 0.9381 0.9562

sme3Dc 0.9794 0.9770 0.8893 0.9434 0.9665

method is competitive with the k2-tree and WG, and builds consistently faster

than AD. Rossi and Zhou [36] also report the construction times of GraphZIP;445

however, since their implementation is not available, their running times are not

included.

Finally, Table 7 shows the time required to decompress the complete graph.

Our technique generally competitive and in many cases the fastest, but it is

sharply outperformed by the other methods on the graphs where we obtain the450

best compression ratio. Since we allow querying the graph directly in com-

pressed form, however, one can actually never decompress it.

26

Table 6: Construction time in seconds.

Dataset CCf WG AD k2-tree

ca-CondMat 0.18 0.46 3.07 0.11

ca-MathSciNet 3.01 1.57 7.13 1.01

ca-AstroPh 0.61 0.64 3.69 0.14

ca-HepPh 0.27 0.38 3.19 0.34

bio-wormnetv3 0.09 0.23 3.00 0.11

markastro 0.31 0.22 3.26 0.15

markcmat2003 0.24 0.42 3.09 0.09

markcmat2005 0.48 0.61 3.36 0.13

snapdblp 3.44 1.18 7.79 1.22

dblp2010 2.35 1.07 7.74 0.81

dblp2011 12.10 3.26 16.75 5.57

coPapersDBLP 21.23 5.28 83.88 5.68

coPapersCiteseer 28.80 4.56 65.85 3.50

coAuthorsDBLP 2.55 1.18 7.81 1.11

coAuthorsCiteseer 1.67 1.20 7.16 0.57

bcsstk33 0.65 0.53 5.83 0.17

crankseg-1 10.63 1.32 25.98 0.78

crankseg-2 17.34 1.60 30.92 1.10

mixtank-new 1.88 0.78 8.41 0.32

dblp-coauthors 16.44 6.05 26.00 11.01

ns3Da 2.14 0.97 8.54 0.19

sme3Dc 2.16 1.25 15.57 0.29

27

Table 7: Decompression time, in seconds, for our structure and other state-of-the-art methods.

WGseq is WebGraph configured for sequential access. AD was not included since it does not

have a sequential access option.

Dataset CCf CCr WGseq k2-tree

ca-CondMat 0.072 0.078 0.347 0.056

ca-MathSciNet 1.121 1.120 0.990 0.350

ca-AstroPh 0.275 0.163 0.380 0.061

ca-HepPh 0.100 0.101 0.344 0.011

bio-wormnetv3 0.016 0.016 0.060 0.070

markastro 0.115 0.108 0.281 0.023

markcmat2003 0.090 0.110 0.040 0.060

markcmat2005 0.158 0.149 0.527 0.041

snapdblp 0.980 1.102 1.201 0.356

dblp2010 0.694 0.779 1.201 0.164

dblp2011 4.173 4.197 2.411 1.313

coPapersDBLP 5.140 4.318 1.596 1.012

coPapersCiteseer 3.471 3.696 1.563 0.658

coAuthorsDBLP 0.921 1.011 0.971 0.300

coAuthorsCiteseer 0.700 0.672 0.947 0.133

bcsstk33 0.090 0.100 0.330 0.014

crankseg-1 1.068 1.019 1.090 0.097

crankseg-2 1.408 1.271 1.300 0.107

mixtank-new 0.281 0.293 0.580 0.069

dblp-coauthors 10.024 7.530 1.540 1.725

ns3Da 0.348 0.319 0.491 0.055

sme3Dc 0.442 0.424 0.860 0.072

28

6. Conclusions

This work introduces a new compact representation of real sparse and clus-

tered undirected graphs based on clique graph partitioning. The method first455

lists all the maximal cliques of the input graph. Then, it defines a clique graph,

whose vertices are the cliques in the original graph. Next, it finds a partition of

the clique graph, which is finally encoded in a compressed form using compact

data structures.

Our method includes an effective heuristic to find a partition in the clique460

graph, by defining ranking functions for the vertices of the original graph. Dif-

ferent ranking functions were defined and their behavior was analyzed. We

selected the ones that obtain the best trade-offs between space and neighbor

random access time. In addition, the compressed structure supports the recov-

ery of all or a subset of maximal cliques, which might be useful for community465

search algorithms. Our compressed representation reduces the time to retrieve

all the maximal cliques, especially on large graphs, where our method is up to

two orders of magnitude faster.

We compared our compressed representation with the best-known state-of-

the-art techniques. Our structure always obtains the best or second-best space,470

while staying competitive in the time to retrieve the neighbor list of random

nodes. We obtain the best compression ratios on graphs with a high clustering

coefficient and transitivity. This trade-off can be very convenient when the

significantly smaller space usage of the structure allows it to reside in the main

memory while alternative representations must be deployed on disk. Finally, we475

show that our structure is practical in terms of compression and decompression

performance of the whole graph.

In regard to future work, we will study alternative partitioning algorithms,

including finding minimal edge clique covers and alternative compact data struc-

tures for improving the space/time tradeoffs. In addition, we will design more480

complex algorithms on top of this compact graph representation to perform

different network analyses.

29

Acknowledgments

This research has received funding from the European Union’s Horizon

2020 research and innovation programme under the Marie Sklodowska-Curie485

[grant agreement No 690941]; from the Ministerio de Economı́a y Competitivi-

dad (PGE and ERDF) [grant numbers TIN2016-77158-C4-3-R]; from Xunta

de Galicia (co-founded with ERDF) [grant numbers ED431C 2017/58; ED431G

2019/01]; from the Center for Biotechnology and Bioengineering (CeBiB), Chile;

and from the Millennium Institute for Foundational Research on Data (IMFD),490

Chile.

References

[1] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering

the overlapping community structure of complex networks in nature and

society. Nature, 435(7043):814, 2005.495

[2] Jianxin Li, Xinjue Wang, Ke Deng, Xiaochun Yang, Timos Sellis, and Jef-

frey Xu Yu. Most influential community search over large social networks.

In IEEE 33rd International Conference on Data Engineering (ICDE), pages

871–882, 2017.

[3] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent500

subgraph mining algorithms. The Knowledge Engineering Review, 28(1):

75–105, 2013.

[4] Bin Shao, Haixun Wang, and Yanghua Xiao. Managing and mining large

graphs: systems and implementations. In ACM International Conference

on Management of Data (SIGMOD), pages 589–592, 2012.505

[5] Ehsan Pournoor, Naser Elmi, Yosef Masoudi-Sobhanzadeh, and Ali

Masoudi-Nejad. Disease global behavior: A systematic study of the human

interactome network reveals conserved topological features among cate-

gories of diseases. Informatics in Medicine Unlocked, 17:100249, 2019.

30

[6] Bin Zhou. Applying the clique percolation method to analyzing cross-510

market branch banking network structure: the case of illinois. Social Net-

work Analysis and Mining, 6(1):11, 2016.

[7] Lidia Fotia. Recommending items in social networks using cliques-based

trust. In WOA, pages 51–56, 2018.

[8] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to Web515

graph compression with communities. In 1st ACM International Conference

on Web Search and Data Mining (WSDM), pages 95–106, 2008.

[9] Cecilia Hernández and Gonzalo Navarro. Compressed representations for

web and social graphs. Knowledge and Information Systems, 40(2):279–

313, 2014.520

[10] Natalie Stanley, Roland Kwitt, Marc Niethammer, and Peter J Mucha.

Compressing networks with super nodes. Scientific Reports, 8(1):10892,

2018.

[11] Øivind Wang, Nicolai Bodd, Chen Xing, B̊ard Kvalheim, and Torbjørn

Helvik. Enterprise graph search based on object and actor relationships,525

2017. US Patent 9,542,440.

[12] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos

Mamoulis, and Xiang Li. Meta structure: Computing relevance in large

heterogeneous information networks. In 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1595–1604.530

ACM, 2016.

[13] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with

interactive graph analytics and visualization. In 29th Conference on Arti-

ficial Intelligence (AAAI), 2015.

[14] Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte. Clique535

community persistence: A topological visual analysis approach for complex

31

networks. IEEE transactions on visualization and computer graphics, 24

(1):822–831, 2017.

[15] Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all

maximal cliques. In Scandinavian Workshop on Algorithm Theory (SWAT),540

pages 260–272. Springer, 2004.

[16] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal

cliques in large sparse real-world graphs. ACM Journal of Experimental

Algorithmics, 18:3–1, 2013.

[17] Zhiyuan Liu and Yinghong Ma. A divide and agglomerate algorithm for545

community detection in social networks. Information Sciences, 482:321–

333, 2019.

[18] Charalampos Tsourakakis. The k-clique densest subgraph problem. In 24th

International Conference on World Wide Web (WWW), pages 1122–1132,

2015.550

[19] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos

Tsourakakis, and Shen Chen Xu. Scalable large near-clique detection in

large-scale networks via sampling. In 21th ACM International Confer-

ence on Knowledge Discovery and Data Mining (SIGKDD), pages 815–824.

ACM, 2015.555

[20] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact repre-

sentation of web graphs with extended functionality. Information Systems,

39:152–174, 2014.

[21] Gonzalo Navarro. Compact Data Structures – A practical approach. Cam-

bridge University Press, 2016. ISBN 978-1-107-15238-0. 570 pages.560

[22] Mohammad Khavari Tavana, Yifan Sun, Nicolas Bohm Agostini, and David

Kaeli. Exploiting adaptive data compression to improve performance and

32

energy-efficiency of compute workloads in multi-gpu systems. In IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), pages

664–674, 2019.565

[23] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and

Janos Kertesz. Generalizations of the clustering coefficient to weighted

complex networks. Physical Review E, 75(2):027105, 2007.

[24] Gergely Palla, Albert-László Barabási, and Tamás Vicsek. Quantifying

social group evolution. Nature, 446(7136):664, 2007.570

[25] P. Boldi and S. Vigna. The WebGraph framework I: Compression tech-

niques. In 13th International World Wide Web Conference (WWW), pages

595–601, 2004.

[26] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the Web. Computer Net-575

works, 33(1–6):309–320, 2000.

[27] M. Adler and M. Mitzenmacher. Towards compressing Web graphs. In

11th Data Compression Conference (DCC), pages 203–212, 2001.

[28] S. Raghavan and H. Garcia-Molina. Representing Web graphs. In Proc.

19th International Conference on Data Engineering (ICDE), page 405,580

2003.

[29] F. Claude and G. Navarro. Fast and compact Web graph representations.

ACM Transactions on the Web (TWEB), 4(4):article 16, 2010.

[30] Y. Asano, Y. Miyawaki, and T. Nishizeki. Efficient compression of Web

graphs. In 14th Annual International Conference on Computing and Com-585

binatorics (COCOON), LNCS 5092, pages 1–11, 2008. ISBN 978-3-540-

69732-9.

[31] Sz. Grabowski and W. Bieniecki. Merging adjacency lists for efficient web

graph compression. In Man-Machine Interactions 2 AISC 103, pages 385–

392, 2011.590

33

[32] Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Al-

gorithms, 2(3):1031–1044, 2009.

[33] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered

label propagation: A multiresolution coordinate-free ordering for compress-

ing social networks. In 20th International Conference on World Wide Web595

(WWW), pages 587–596. ACM, 2011.

[34] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,

and P. Raghavan. On compressing social networks. In 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (SIGKDD), pages 219–228, 2009.600

[35] H. Maserrat and J. Pei. Neighbor query friendly compression of social

networks. In 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 533–542, 2010.

[36] Ryan A Rossi and Rong Zhou. GraphZIP: a clique-based sparse graph

compression method. Journal of Big Data, 5(1):10, 2018.605

[37] Ronald C. Hamelink. A partial characterization of clique graphs. Journal

of Combinatorial Theory, 5(2):192–197, 1968.

[38] Fred S. Roberts and Joel H. Spencer. A characterization of clique graphs.

Journal of Combinatorial Theory, Series B, 10(2):102–108, 1971.

[39] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. Community detection610

in complex networks via clique conductance. Scientific Reports, 8(1):5982,

2018.

[40] Weiren Yu, Xuemin Lin, Wenjie Zhang, Jian Pei, and Julie A McCann.

Simrank*: Effective and scalable pairwise similarity search based on graph

topology. The VLDB Journal, pages 1–26, 2019.615

[41] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In Advances in Neural Information Processing

Systems, pages 849–856, 2002.

34

[42] Jasmine Irani, Nitin Pise, and Madhura Phatak. Clustering techniques and

the similarity measures used in clustering: A survey. International Journal620

of Computer Applications, 134(7):9–14, 2016.

[43] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez. The wavelet

matrix: An efficient wavelet tree for large alphabets. Information Systems,

47:15–32, 2015.

[44] Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct indexable625

dictionaries with applications to encoding k-ary trees and multisets. In 13th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

233–242, 2002.

[45] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory

to practice: Plug and play with succinct data structures. In 13th Inter-630

national Symposium on Experimental Algorithms (SEA), pages 326–337,

2014.

[46] David A Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

35

	Introduction
	Related work
	Proposed method
	Clique listing
	Clique graph partitioning
	Algorithm for finding a clique graph partition

	Compact graph representation

	Query algorithms
	Experimental evaluation
	Analysis of ranking functions
	Compression performance
	Comparison with the state of the art

	Conclusions

