
Practical Indexing of Repetitive Collections using

Relative Lempel-Ziv

Gonzalo Navarro∗† and Vı́ctor Sepúlveda∗

∗CeBiB — Center for Biotechnology and Bioengineering, Chile
† Department of Computer Science, University of Chile, Chile

gnavarro@dcc.uchile.cl, palabragris@gmail.com

Abstract

We introduce a simple and implementable compressed index for highly repetitive sequence
collections based on Relative Lempel-Ziv (RLZ). On a collection of total size n compressed
into z phrases from a reference string R[1..r] over alphabet [1..σ] and with hth order empir-
ical entropy Hh(R), our index uses rHh(R) + o(r log σ) +O(r + z log n) bits, and finds the
occ occurrences of a pattern P [1..m] in time O((m + occ) log n). This is competitive with
the only existing index based on RLZ, yet it is much simpler and easier to implement. On
a 1GB collection of 80 yeast genomes, a variant of our index achieves the least space among
competing structures (slightly over 0.1 bits per base) while outperforming or matching them
in time (1–10 microseconds per occurrence found). Our largest variant (below 0.3 bits per
base) offers the best search time (1–3 microseconds per occurrence) among all structures
using space below 1 bit per base.

Introduction

Many types of text collections are growing at a pace that outperforms Moore’s Law
[1]. A key tool to handle this growth is to exploit the high degree of repetitive-
ness featured by several of the fastest growing collections: genomes of the same
species, versioned repositories of documents or software, etc. Lempel-Ziv (LZ) com-
pression [2] is used as the gold standard to decrease the storage requirements of these
collections. Reductions of two orders of magnitude have been reported on reposito-
ries like the 1000-genomes project [3] (www.internationalgenome.org) or Wikipedia
(en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia). To obtain such reduc-
tions, one must not compress each document independently, but the collection as
a whole. Since accessing individual documents then requires decompression of a
significant part of the collection, however, LZ compression can be regarded as an
archival-only solution.

Relative Lempel-Ziv (RLZ) [4] is a more recent technique to exploit repetitiveness.
It chooses a reference sequence and represents the others as a concatenation of strings
appearing in the reference. Those sequences are then encoded with a sequence of
pointers to the reference. RLZ obtains compression ratios close to those of LZ, but
it is more convenient because it allows direct access to the compressed data.

Other than retrieving the compressed data, the next goal is to efficiently search it.
We consider the most fundamental search problem: find the occurrences of a given

Funded with Basal Funds FB0001, Conicyt, Chile. First author also funded by Fondecyt grant 1-170048, Chile.

pattern in the collection. The extremely efficient access provided by RLZ promises
to yield much faster compressed indexes than those that build on LZ. Somewhat
surprisingly, while there are practical compressed indexes for repetitive collections
that build on LZ compression [5], and also on grammar compression [6] and on the
Burrows-Wheeler transform [7, 8], the only compressed index based on RLZ [9] is
complicated and has not been implemented.

In this paper we present a compressed index based on RLZ that offers theoretical
guarantees comparable with those of the existing index [9], but it is much simpler
to implement. On a collection S of total size n compressed into z phrases from a
reference string R[1..r] ∈ S over alphabet [1..σ] and with hth order empirical entropy
Hh(R) [10], our index uses rHh(R)+o(r log σ)+O(r+z log n) bits, for any h ≤ α logσ r
and constant 0 < α < 1. It finds the occ occurrences of a pattern P [1..m] in time
O((m + occ) log n). Three implementations of our index are shown to offer the least
space among competing indexes, while matching or outperforming them in search
time, or the least times, only outperformed by structures using much more space.

Basic Concepts

Definitions

A sequence or string S[1..|S|] = S[1] · S[2] · · ·S[|S|] is an array of symbols over an
alphabet [1..σ], and its substrings are denoted S[i..j] = S[i] · · ·S[j]. The concatena-
tion of two strings S and S ′ is denoted S · S ′. A collection is a set S = {S1, . . . , St}
of sequences, each terminated with a special symbol $. We identify the set S with
the string S = S1 · · ·St, whose length is n = |S| = |S1| + · · · + |St|, the size of the
collection. We say that S is repetitive if any sequence Sk can be obtained by concate-
nating a few substrings (called phrases) from other sequences in S. Such a coverage
with phrases is called a parse of Sk.

The pattern matching (or the search) problem is, given a string P [1..m] with no
$s, find all the occ positions in S where P occurs. A self-index is a data structure
that (i) obtains any substring Sk[i..j] from any sequence, and (ii) solves the pattern
matching problem efficiently (at least faster than a sequential scan of S).

Our logarithms are to the base 2 by default. The hth order empirical entropy of
a string R [10], denoted Hh(R) ≤ Hh−1(R) ≤ log σ, is a lower bound of the bits-per-
symbol achievable by any hth order semistatic statistical compressor on R.

A Karp-Rabin fingerprint [11] is a hash for strings computed as KR(s1 . . . sn) =
(
∑n

i=1 sib
n−i) mod p, for some b and p. Karp-Rabin fingerprints allow computing

KR(S1·S2) in constant time given KR(S1) and KR(S2), as well as computing KR(S1)
or KR(S2) from KR(S1 · S2) and KR(S2) or KR(S1), respectively.

Some Compressed Data Structures

A bitvector B[1..n] can be represented using n+ o(n) bits so that it answers queries
rankb(B, i) (number of bits equal to b in B[1..i]) and selectb(B, j) (position of the jth
bit equal to b in B) in time O(1) [12]. If B has m� n 1s, a compressed representation
[13] uses m log(n/m) + O(m) bits and solves rankb in time O(log(n/m)), select1 in
time O(1), and select0 in time O(logm).

A Range Maximum Query (RMQ) structure built on array A[1..z] is able to find,
given a range A[i..j], the leftmost position of a minimum in A[i..j]. Such a structure
can use 2z + o(z) bits and answer queries in O(1) time without accessing A [14].

A permutation π in [z] can be stored in z log z+O(z) bits so that we can compute
any π(i) in O(1) time and any inverse π−1(j) in time O(log z) [15].

A wavelet tree structure [16, 17] stores z points in [1..z]×[1..z] in z log z+o(z log z)
bits and returns all the occ points in any rectangular range in time O((occ+ 1) log z).

An FM-index [18, 19] is built on a string R[1..r] over alphabet [1..σ] and uses
rHh(R) + o(r log σ) +O(r) bits, for any h ≤ α logσ n and constant 0 < α < 1. It can
find the occ occurrences of any pattern P [1..m] in R in time O(m + occ log r) and
retrieve any substring R[i..j] in time O(log r + j − i).

Relative Lempel-Ziv Compression

Relative Lempel-Ziv (RLZ) [4] compression builds a reference string R[1..r] from S
and represents it in plain form (in our case, we assume R is simply some string
Sk ∈ S). All the sequences of S are then represented as the concatenation of phrases
(substrings of R). More formally, if Sk = R[p1..p1 + `1 − 1] · · ·R[ps..ps + `s − 1], then
we represent Sk as the sequence of pairs (p1, `1), . . . , (ps, `s).

1

The minimum number sk of phrases to cover Sk with substrings of R can be
obtained with an FM-index on R, which finds, at each point, the longest prefix of the
remaining text of Sk that appears in R, say in R[pi..pi + `i− 1], in time O(`i + log r).
Let z = s1 + · · · + st be the total number of phrases added over the sequences Sk.
Then the whole RLZ compression of S is carried out in time O(n + z log r), and the
output of the RLZ compressor uses rHh(R) + o(r log σ) +O(r + z log r) bits.

With O(z log(n/z)) further bits we can store a compressed bitvector B[1..n] that
marks where phrases start in S, so that any substring Sk[i..j] is retrieved in time
O(log(n/z) + j − i) by determining the phrase that contains i and fetching the sub-
sequent characters from R, switching to the next phrase when the current one ends.

Self-Indexes

There are various self-indexes appropriate for repetitive collections. For lack of space,
we mention only those that have been implemented and proved to be most successful
in practice, referring the reader to a recent work [8, extended version] for the rest.
The LZ Index [5] is a self-index based on the LZ parsing [2]: If S is parsed into
lz phrases with parsing depth hz, then the LZ Index uses O(lz) space and searches
in time O(m2 hz + (m + occ) log n); we will compare with its tuned version [20].
The r-index [8] builds on the Burrows-Wheeler Transform (BWT) [21] of S: if the
BWT has b equal-letter runs, then the r-index uses O(b) space and searches in time
O((m+ occ) log logw n) on a w-bit RAM machine. Finally, the Hybrid Index [22, 23]
is a practical LZ-based index that does not provide worst-case time guarantees but
performs very well.

1An exception occurs if the next symbol of Sk does not appear in R. To avoid this case, we
(virtually) append the symbols [1..σ] at the end of R, so this case is handled as a phrase of length 1.

As said, there exists only one self-index building on RLZ [9]. It uses O(r + z)
space (more precisely, (2 + 1

ε
)rHh(R) + o(r log σ) + O(r + z log r) bits) and searches

in time O(m(logε r + log σ
log log r

) + occ(logεσ r + logr z + log σ)). With O(z log r log log r)

further bits, it searches in time O(m(log log r+ log σ
log log r

) + occ(logεσ r+ logr z+ log σ)),
for any constant ε > 0. These times are slightly lower than ours, but they use more
space associated with the reference R. This index has not been implemented.

Our Index

We follow the basic design of the previous RLZ-based index [9] (which is, in turn,
analogous to that of most LZ-based indexes). We divide the occurrences into three
sets: within the reference R, inside a phrase of the RLZ parse, and crossing RLZ
phrases. We discuss how to handle each kind of occurrence.

Occurrences within the Reference

We search for P using the FM-index of R. Since we assume R ∈ S, all those occur-
rences are reported. The total time of this step is O(m+ occ log r).

Occurrences within Phrases

For each occurrence R[i..i + m − 1] reported in the previous step, we find all the
phrases Sk[pu..pu + `u − 1] = R[tu..tu + `u − 1] in the RLZ parse whose source covers
R[i..i+m− 1], that is, [i..i+m− 1] ⊆ [tu..tu + `u− 1]. Then we report an occurrence
starting at Sk[pu + i− tu].

The structure to find the relevant sources is as follows (cf. [5]). We sort all the
sources of phrases by their starting point and store a plain bitvector S[1..z+ r] where
we traverse R left to right and for each position R[i] we append a 1 for each source
starting at tu = i, and then a 0. We also store a permutation π in [z] that maps
target order to source order in phrases. We also build an RMQ data structure on
the (virtual) array E[1..z] of the ending points tu + `u − 1 of the sources. All these
structures add up to O(r + z log r) bits.

We know that the sources that start at or before R[i] are those referred to in
E[1..s], with s = select0(S, i)− i. If the maximum E[t] in E[1..s] is E[t] < i+m− 1,
then no source covers R[i..i + m − 1]. Otherwise, the source corresponding to E[t]
covers the occurrence and we must report its corresponding target, and recurse in
E[1..t − 1] and E[t + 1..s]. This technique [24] ensures that we perform O(1) steps
per occurrence reported. The RMQs do not access E, but we need to determine
if E[t] < i + m − 1, that is, if tu + `u < i + m, where E[t] represents the target
[tu, tu + `u − 1]. We find out tu = select1(S, t) − t + 1, pu = select1(B, π(t)), and
`u = select1(B, π(t) + 1)− pu + 1, all in O(1) time.

Therefore, from every occurrence found within R we find each of its occurrences
copied inside RLZ phrases in O(1) time. All the occurrences within phrases are then
found in time O(occ).

The structures B, S, and π can replace the sequence of pointers used in our basic
RLZ description. To extract a substring Sk[i..j] we must now use B, π−1, S, and the
FM-index on R, which gives worst-case time O((j − i+ 1) log n).

Occurrences Crossing Phrases

To report the occurrences of P that cross phrases [5], we take every phrase beginning,
Sk[pu], and add the reverse of the prefix Sk[1..pu− 1], Sk[1..pu− 1]rev, to a set X , and
the suffix Sk[pu + 1..|Sk|] to a set Y . Then, every occurrence of P corresponds to a
prefix P [1..i] that matches a suffix of some Sk[1..pu − 1] and a suffix P [i+ 1..m] that
matches a prefix of the corresponding Sk[pu + 1..|Sk|].

By lexicographically sorting X and Y to form X1, . . . , Xz and Y1, . . . , Yz, the
strings of interest form a range in each set. We store a wavelet tree on the points
(x, y) such that Xx corresponds to Yy. We can then search for P [1..i]rev in X and for
P [i+ 1..m] in Y , obtaining ranges [x1..x2] and [y1..y2]. Therefore, all the wavelet tree
points within [x1..x2] × [y1..y2] are occurrences. We store an array T [1..z] such that
Yy is the beginning of phrase number T [y]. Thus, if the wavelet tree reports point
(x, y), we can report an occurrence at position select1(B, T [y]) − i + 1. Array T is
also useful to access any desired Xx or Yy when searching for a prefix/suffix of P .

All these structures use O(z log z) bits and find all the occ occurrences crossing
phrases in time O((m + occ) log z), once the ranges [x1, x2] and [y1, y2] for the m
partitions of P are given.

Previous indexes required Ω(m2) time to find all the ranges [5, 25]. We use a more
recent result [8, and references therein] that reduces this time to O(m log n).

Lemma 1 ([8]) Let X be a set of strings and assume we have some data structure
supporting extraction of any length-` substring of strings in X in time fe(`) and
computation of the Karp-Rabin fingerprint of any substring of strings in X in time
fh. We can then build a data structure of O(|X |) words such that, later, we can solve
the following problem in O(m log(σ)/w+ t(fh + logm) + fe(m)) time: given a pattern
P [1..m] and t > 0 suffixes Q1, . . . , Qt of P , discover the ranges of strings in (the
lexicographically-sorted) X prefixed by Q1, . . . , Qt.

With the lemma, we find the t = m − 1 ranges of X prefixed by Q1, . . . , Qt =
P [1..1]rev, . . . , P [1..m− 1]rev. We use the lemma analogously on Y , to find the ranges
of Q1, . . . , Qt = P [2..m], . . . , P [m..m]. The data structure then uses O(z log n) bits.
Since we support extraction of any substring of length ` in time O(` log n), we find the
O(m) ranges on X and Y in time O(m log n+mfh). We now show how to compute
fingerprints in time O(log n) as well.

We use fingerprints of O(log n) bits. Let S ′ be the string S without R, and
let p1, . . . , pz be the starting points of the RLZ phrases. Then we store an array
KS[1..z] with the Karp-Rabin fingerprints of prefixes of S ′: KS[s] is the fingerprint of
S ′[1..ps+1 − 1]. Then we can compute the fingerprint of a sequence of phrases, from
the sth to the tth, by operating KS[s− 1] and KS[t] in constant time.

In addition, we store an array KR[1..r/ log n], with the fingerprints of the prefixes
of R whose length is a multiple of log n. We can therefore compute the fingerprint of
any substring of R in time O(log n), by operating two cells of KR and adding O(log n)
individual symbols to the signatures.

Arrays KS and KR use O(z log n+ r) bits, and allow computing any signature on
S in time fh = O(log n): We identify with bitvector B the phrases involved. The

signature for the whole phrases contained in the substring is computed with KS,
whereas the signature of the remaining phrase prefix and suffix is computed with KR

by going to the source of the phrases in R, found in O(log z) time with π−1 and S.
Although we use fingerprints, the resulting ranges are deterministically correct.

Karp-Rabin parameters are found in O(n) time so that no two substrings of S have
the same signature with high probability. Otherwise, a Las Vegas procedure using
O(n log n) expected time ensures that no collisions arise [26].

Implementation

We use several structures from sdsl library [27] (github.com/simongog/sdsl-lite)
to implement the different components of our indexes. The sparse bitvector B[1..n]
that marks the beginning of each phrase in the collection is stored using structure
sd vector, which is optimized for very sparse bitvectors [28, 13]. For the FM-index
of the reference R, we use the the csa wt structure, which stores the BWT [21] as a
wavelet tree [16] with a sample density of 16 for the suffix array and 32 for its inverse.

The bitvector S[1..z + r] used to find the secondary occurrences is stored in plain
form (bit vector) since it is short. To speed up searches, we represent both permuta-
tions π and π−1 explicitly. For the RMQs we use structure rmq succinct sct [14].

Also to speed up searches, we explicitly store the lexicographically sorted arrays
X and Y (to access the text in combination with B), instead of array T . The two-
dimensional search structure is implemented with a wavelet tree variant (structure
wt int supported by a plain bit vector).

Using these structures as a base, we implemented three versions of our index.

RLZ Basic Index. The first version does not use Lemma 1, resorting instead to a
quadratic-time procedure that binary searches for all the prefixes and suffixes of P .
The characters of X and Y needed for the string comparisons are extracted from the
FM-index of R. Since each substring access in the FM-index has an additive overhead
related to the sampling of the inverse suffix array, we do not extract each symbol
separately, but rather extract the whole substring we may need for the comparison
(up to m symbols). The substring read is nevertheless limited by the length of the
phrases: reading a string of X or Y may require accessing various consecutive phrases
of some Sk, each of which will incur in the described additive penalty when extracted
from R. This is the slowest version but it uses the least space.

RLZ Ref Index. This index adds to the previous one an explicit and plain repre-
sentation of R, using r log σ further bits (and it removes the sampling of the inverse
suffix array, as it is not used). In exchange for this extra space, the binary search for
prefixes and suffixes of P is considerably sped up, since we can directly access the
text of any arbitrary phrase Sk[pu..pu + `u − 1] = R[tu..tu + `u − 1] by using B, π−1

and S, as described at the end of the section on occurrences within phrases. In this
case we extract the symbols one by one, as we compare them with the appropriate
symbols of P .

RLZ Hash Index. The third version of our index is the fastest and most space-
consuming. In addition to the explicit reference R, it includes a simplified implemen-

tation of the structure of Lemma 1. Essentially, we implement the m− 1 searches in
X and Y on an O(z)-word Patricia Tree [29] that is enhanced with the Karp-Rabin
fingerprints of the edge labels, in order to reduce the chance of false positives (which
in our scenario are relatively expensive to verify).

We use one of these structures for the array X of the reverse phrases and another
for the array Y of the suffixes. On each node of this tree we store the position of the
rightmost leaf descendant in the arrays X or Y (dlg ze bits); the leftmost descendant is
inferred from the traversal. We also store the first letter (dlg σe), the length (dlg `maxe
given the maximum length in bits `max), and the Karp-Rabin fingerprint of the text
associated with each child node (24 bits to have a low probability of collisions). The
pointers to other nodes add up to 2dlg(4z)e bits per node because there are 4z nodes.

Before all the prefix and suffix searches, we compute the Karp-Rabin fingerprint
of each prefix of P , in a single pass of time O(m). We can then combine two elements
of this array to find the fingerprint of any substring of P in constant time. Like any
Patricia tree, we must check one text occurrence after each search, but the chance
of error is extremely small (much smaller than on a standard Patricia tree search)
because the Karp-Rabin hashes of the pattern substrings and the tree edges match,
at least up to the last edge traversed, if the search finishes in the middle of that edge.

Experimental Evaluation

Our experiments ran on an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with 32GB of
RAM, running version 4.15.0-30-generic x86 64 of the linux kernel. We compare our
index variants with the most competitive representatives of previous work for repet-
itive text collections: the LZ Index (github.com/migumar2/uiHRDC), the r-index
(github.com/nicolaprezza/r-index), and the Hybrid Index with default parame-
ters (github.com/hferrada/HydridSelfIndex). As our repetitive collection, we use
a set of 80 fully assembled yeast genomes, with a total size of 1GB, from which we
choose one random genome as the RLZ reference. To obtain each search time, we
average over 10,000 searches for patterns of lengths 10, 20, 40 and 80 extracted at
random text positions. The index spaces are given in bits per symbol (bps), whereas
the (user) times are given in microseconds per pattern occurrence. Our index and
testbed are available at https://github.com/vsepulve/relz search.

Figure 1 shows the breakdown of the space of our index. The RLZ Basic Index
uses 0.089 bps, the RLZ Ref Index uses 0.104 bps, and the RLZ Hash Index uses
0.277 bps. The total collection has n = 1,013,782,646 symbols over an alphabet of
size σ = 4, the reference is of length r = 12,069,408 and we obtain z = 605,505 phrases
(the average phrase length is ≈ 1,654). The space of the RLZ Basic Index is not far
from the 0.077 bps obtained with GDC2 [30], a state-of-the-art RLZ compressor.

Figure 2 (top left) shows the average number of occurrences of each type for each
pattern length. Patterns of length 10 appear a few tens of times in the reference and
crossing phrases, and thousands of times inside phrases. Longer patterns appear once
in the reference, a hundred of times inside phrases, and almost never crossing phrases.
We report those occurrences inside phrases in constant time, using B, S, E, and π.

Figure 2 (bottom) gives the average time per query, classified into the time to find

π
−1

tree
wavelet

Basic Index

B

8.1 6.6

Index
FM−

12.5

S E

1.6

π

11.9 11.9

X

11.9

Y

11.9 12.3

Reference R

23.8 (− sampling)

Patricia

173

Figure 1: Space breakdown of our index, showing bits per 1000 symbols of the components
of the Basic Index, the Ref Index (which adds the explicit reference R), and the Hash Index
(which adds the Patricia tree).

 0.01

 0.1

 1

 10

 100

 1000

 10000

length 10 length 20 length 40 length 80

within reference
within phrases

crossing phrases

 1

 10

 100

 0.1 1

T
im

e
 (

m
ic

ro
se

c/
o
cc

)

Index Size (bits/symbol)

r-index
Hybrid Index

LZ Index
RLZ Basic Index

RLZ Ref Index
RLZ Hash Index

 1

 10

 100

 1000

 10000

Basic Reference Hash

FM-index
Copies

Pref/Suf
Grid

 1

 10

 100

 1000

 10000

Basic Reference Hash

FM-index
Copies

Pref/Suf
Grid

 1

 10

 100

 1000

 10000

Basic Reference Hash

FM-index
Copies

Pref/Suf
Grid

 1

 10

 100

 1000

 10000

 100000

Basic Reference Hash

FM-index
Copies

Pref/Suf
Grid

Figure 2: Searching patterns of lengths 10, 20, 40, and 80. Top left: number of occurrences
of each type. Top right: Search time per occurrence versus index space (higher times for
longer patterns). Bottom: total microseconds per search phase, for each length. Logscale.

the occurrences in the reference (FM-index), to find those inside phrases (Copies), to
search for suffixes and reversed prefixes of P (Pref/Suf), and to extract from the grid
the occurrences that cross phrases (Grid). The time for Pref/Suf decreases sharply as
we move from the Basic to the Reference to the Hash version, as expected. It is almost
irrelevant for length 10 (except for the Basic version), but it grows in importance until
being dominant; only the Hash version keeps its time under control. The Grid time,
instead, loses importance as fewer occurrences crossing phrases are found.

Figure 2 (top right) compares index sizes versus average time per occurrence found.
The RLZ Basic Index is always the smallest, using less than 0.1 bps, but it is also
slow (2–100 microseconds per occurrence). For example, it uses just 61% of the space
of the next smallest index, the Hybrid Index, but it is up to an order of magnitude
slower. On patterns of length up to 40, the RLZ Basic Index outperforms the LZ
Index in space and time (using 38% of its space), but its need to extract the text
from the FM-index makes it eventually reach the LZ Index time for longer patterns.

Storing the text explicitly makes the RLZ Ref Index much faster than the RLZ
Basic Index (1–10 microseconds per occurrence), but it still depends sharply on the
pattern length. Using slightly over 0.1 bps, this index is still smaller than the Hybrid
Index (71% of its space), and about as fast (faster for lengths over 10). The RLZ Ref
Index also uses 44% of the LZ Index space, and is an order of magnitude faster.

The dependence on the pattern length is smoothed out in the RLZ Hash Index

(1–3 microseconds per occurrence), at the price of increasing the space up to 0.3 bps.
This index is way faster than all the others for lengths over 10, but it uses almost
twice the space of the Hybrid Index (and it is also slightly slower on length 10).

The r-index is the fastest index for patterns of length up to 20, but it loses to the
RLZ Hash Index on longer patterns. Further, in this collection it is more than 4.5
times larger than the RLZ Hash Index (the BWT has almost 13.5 million runs).

Conclusions

We have introduced a self-index for highly repetitive text collections based on Relative
Lempel-Ziv [4]. Our design is a simplification of a previous proposal [9] that has not
been implemented. The search complexity of our index, O((m + occ) log n) for a
pattern of length m occurring occ times in a collection of length n, is close to that of
the previous version. We reach this complexity with a much simpler design by using
a new data structure based on Patricia trees and hashing [31].

Our implementation further simplifies this design and contains an O(m2) additive
penalty in the worst-case search time, but uses small space and locates each pattern
occurrence within a few microseconds. We develop other variants that do not use
Patricia trees and thus have higher search times (up to hundreds of microseconds per
occurrence), but in exchange are about 3 times smaller, outperforming every other
structure in terms of space within competitive search time. Compared to previous
work, the variant RLZ Ref Index uses half the space of the LZ Index [5] and is an order
of magnitude faster. It is also 30% smaller than the Hybrid Index [23] and about as
fast (while providing worst-case time guarantees). Our larger RLZ Hash Index is still
4.5 times smaller than the r-index [8] and faster on all but short patterns.

Our use of hashing reduces the false positives of the Patricia trees to zero in our
experiments, and this helps decrease search times by up to 17%. Our future work
plan includes a faithful implementation of Lemma 1, using a recent practical variant
[32, Lem. 5 in extended version], so as to remove the O(m2) worst-case additive term.

References

[1] Z. D. Sthephens, S. Y. Lee, F. Faghri, R. H. Campbell, Z. Chenxiang, M. J. Efron,
R. Iyer, S. Sinha, and G. E. Robinson, “Big data: Astronomical or genomical?” PLoS
Biol., vol. 17, no. 7, p. e1002195, 2015.

[2] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE Trans. Inf.
Theor., vol. 22, no. 1, pp. 75–81, 1976.

[3] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, “Efficient storage of high
throughput DNA sequencing data using reference-based compression,” Genome Res.,
pp. 734–740, 2011.

[4] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval,” in Proc. 17th SPIRE, 2010, pp. 201–206.

[5] S. Kreft and G. Navarro, “On compressing and indexing repetitive sequences,” Theor.
Comp. Sci., vol. 483, pp. 115–133, 2013.

[6] F. Claude and G. Navarro, “Self-indexed grammar-based compression,” Fund. Inf., vol.
111, no. 3, pp. 313–337, 2010.

[7] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and retrieval of highly
repetitive sequence collections,” J. Comp. Biol., vol. 17, no. 3, pp. 281–308, 2010.

[8] T. Gagie, G. Navarro, and N. Prezza, “Optimal-time text indexing in BWT-runs
bounded space,” in Proc. 29th SODA, 2018, pp. 1459–1477, extended version in
arxiv.org/abs/1809.02792.

[9] H. H. Do, J. Jansson, K. Sadakane, and W.-K. Sung, “Fast relative Lempel-Ziv self-
index for similar sequences,” Theor. Comp. Sci., vol. 532, pp. 14–30, 2014.

[10] G. Manzini, “An analysis of the Burrows-Wheeler transform,” J. ACM, vol. 48, no. 3,
pp. 407–430, 2001.

[11] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM J. Res. Devel., vol. 2, pp. 249–260, 1987.

[12] D. R. Clark, “Compact PAT trees,” Ph.D. dissertation, U. Waterloo, Canada, 1996.
[13] D. Okanohara and K. Sadakane, “Practical entropy-compressed rank/select dictio-

nary,” in Proc. 9th ALENEX, 2007, pp. 60–70.
[14] J. Fischer and V. Heun, “Space-efficient preprocessing schemes for range minimum

queries on static arrays,” SIAM J. Comp., vol. 40, no. 2, pp. 465–492, 2011.
[15] J. I. Munro, R. Raman, V. Raman, and S. S. Rao, “Succinct representations of per-

mutations and functions,” Theor. Comp. Sci., vol. 438, pp. 74–88, 2012.
[16] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text indexes,”

in Proc. 14th SODA, 2003, pp. 841–850.
[17] G. Navarro, “Wavelet trees for all,” J. Discr. Alg., vol. 25, pp. 2–20, 2014.
[18] P. Ferragina and G. Manzini, “Indexing compressed texts,” J. ACM, vol. 52, no. 4, pp.

552–581, 2005.
[19] D. Belazzougui and G. Navarro, “Alphabet-independent compressed text indexing,”

ACM Trans. Alg., vol. 10, no. 4, p. article 23, 2014.
[20] F. Claude, A. Fariña, M. Mart́ınez-Prieto, and G. Navarro, “Universal indexes for

highly repetitive document collections,” Inf. Sys., vol. 61, pp. 1–23, 2016.
[21] M. Burrows and D. Wheeler, “A block sorting lossless data compression algorithm,”

Digital Equipment Corporation, Tech. Rep. 124, 1994.
[22] H. Ferrada, T. Gagie, T. Hirvola, and S. J. Puglisi, “Hybrid indexes for repetitive

datasets,” CoRR, vol. abs/1306.4037, 2013.
[23] H. Ferrada, D. Kempa, and S. J. Puglisi, “Hybrid indexing revisited,” in Proc. 20th

ALENEX, 2018, pp. 1–8.
[24] S. Muthukrishnan, “Efficient algorithms for document retrieval problems,” in Proc.

13th SODA, 2002, pp. 657–666.
[25] F. Claude and G. Navarro, “Improved grammar-based compressed indexes,” in Proc.

19th SPIRE, 2012, pp. 180–192.
[26] P. Bille, I. L. Gørtz, B. Sach, and H. W. Vildhøj, “Time–space trade-offs for longest

common extensions,” J. Discr. Alg., vol. 25, pp. 42–50, 2014.
[27] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play

with succinct data structures,” in Proc. 13th SEA, 2014, pp. 326–337.
[28] P. Elias, “Efficient storage and retrieval by content and address of static files,” J. ACM,

vol. 21, no. 2, pp. 246–260, 1974.
[29] D. R. Morrison, “Patricia – practical algorithm to retrieve information coded in al-

phanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, 1968.
[30] S. Deorowicz, A. Danek, and M. Niemiec, “GDC 2: Compression of large collections

of genomes,” CoRR, vol. abs/1503.01624, 2015.
[31] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi, “LZ77-based

self-indexing with faster pattern matching,” in Proc. 11th LATIN, 2014, pp. 731–742.
[32] D. Kempa and D. Kosolobov, “LZ-End parsing in compressed space,” in Proc. 27th

DCC, 2017, pp. 350–359, extended version in arxiv.org/pdf/1611.01769.pdf.

