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Abstract
Fischer and Heun [SICOMP 2011] proposed the first Range Minimum Query (RMQ) data
structure on an array A[l,n] that uses 2n + o(n) bits and answers queries in O(1) time
without accessing A. Their scheme converts the Cartesian tree of A into a general tree,
which is represented using DFUDS. We show that, by using instead the BP representation,
the formula becomes simpler since border conditions are eliminated. This leads to the
fastest and most compact practical implementation to date.

Introduction

The Range Minimum Query (RMQ) problem is, given an array A[l,n] with elements
from a totally ordered set, build a data structure that receives any pair of positions
1 <17 <75 <n and returns

rmau(i,7) = argminigkgg‘A[k]a

that is, the position of a minimum value in A[i, j]. In many cases one prefers the
leftmost position when there are ties.

The RMQ problem is a fundamental one and has a long history, intimately related
to another key problem: the LCA (lowest common ancestor) problem on general
ordinal trees is, given nodes w and v, return lca(u,v), the lowest node that is an
ancestor of both u and v. Gabow et al. [1] showed that RMQs can be reduced to
computing LCAs on a particular tree, called the Cartesian tree [2] of A[1,n]. Later,
Berkman and Vishkin [3] showed that the LCA problem on any tree can be reduced
to an RMQ problem, on an array derived from the tree. In this array, consecutive
entries differ by +1. Bender and Farach [4] then gave a solution for this so-called
+1-RMQ problem in constant time and linear space (i.e., O(n) words). Sadakane [5]
improved the space of that solution, showing that LCAs on a tree of n nodes can
be handled in constant time using 2n + o(n) bits (including the tree representation
[6]). Finally, Fischer and Heun [7] showed that the Cartesian tree can be represented
using 2n + o(n) bits so that RMQs on A can be transformed into LCA queries on the
succinct tree, and this lead to an RMQ solution that also uses 2n+ o(n) bits and does
not need to access A at query time.

Fischer and Heun’s solution has become a fundamental building block for many
succinct data structures, for example for ordinal trees [5,8,9], suffix trees [5,10],
document retrieval [11,12], two-dimensional grids [13], Lempel-Ziv parsing [14], etc.
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Their RMQ computation [7] uses three kinds of operations: several rank/selects
on bitvectors [15,16], one £1-RMQ [4], and one open on parentheses [6]. Although
all can be implemented in constant time, in practice the last two operations are
significantly slower than rank/select [17]. In particular, open is needed just to cover a
border case where one node is an ancestor of the other in the Cartesian tree. Grossi
and Ottaviano [18] replaced open by further rank/selects in this case, thus improving
the time significantly.

Their formula [7, 18] represents the Cartesian tree using DFUDS [19]. In this pa-
per we show that, if we use instead the BP representation for the tree [6], the RMQ
formula can be considerably simplified because the border case does not need special
treatment. The result is the fastest and most compact RMQ implementation so far:
our structure uses 2.2n bits of space and answers RMQs in 1-4 microseconds. Current
implementations in Simon Gog’s SDSL (https://github. com/simongog/sdsl-1lite)
and Giuseppe Ottaviano’s Succinct (https://github.com/ot/succinct) use 2.6n to
2.8n bits. Our implementation is also 3—4 times faster than that in SDSL and takes
50%-80% of the time of the implementation in Succinct. It is also 2-7 times faster
than our own implementation of Fischer and Heun’s RMQ), while using less space.

State of the Art

Gabow et al. [1] showed that RMQs can be reduced to computing LCAs on a particular
tree, called the Cartesian tree [2] of A[l,n|. This is a binary tree whose root is
the position p of a minimum in A[1,n] (the leftmost/rightmost one if we want that
RMQs return the leftmost/rightmost minimum). Then its left and right children are
the Cartesian trees of A[l,p — 1] and Alp + 1, n], respectively. Any cell A[p] is thus
represented by the Cartesian tree node with inorder position p, and it holds

rmq(i,j) = inorder(lca(innode(7), innode(j))), (1)

where inorder and innode map from nodes to their inorder values and vice versa.
Figure 1 shows an example array A and its Cartesian tree, and the translation of a
query (ignore the other elements for now).

Later, Berkman and Vishkin [3] showed that the LCA problem on any tree can be
reduced to an RMQ problem, on an array D[1,2n] containing the depths of the nodes
traversed along an Eulerian tour on the tree: the LCA corresponds to the minimum
in D between a cell of u and a cell of v in the array. Note that consecutive cells in D
differ by £1. Bender and Farach [4] represented those entries as a bitvector E|[1, 2n]:
El[i| =1if D[i]—D[i—1] = +1 and E[i| = 0 if D[i]— D[i—1] = —1, with E[1] = 1. On
top of E, they gave a simple O(1)-time solution to this restricted £1-RMQ problem
using O(n) words of space. Figure 1 also shows this arrangement.

Therefore, one can convert an RMQ problem on A into an LCA problem on the
Cartesian tree of A, then convert this problem into a £1-RMQ problem on the depths
of the Eulerian tour of the Cartesian tree, and finally solve this restricted £1-RMQ
problem in constant time. This solution requires O(n) words of space.

Interestingly, the bitvector E[1,2n] used to answer LCA queries on a tree of n
nodes defines the topology of the tree. If we traverse the tree in DFS order and write
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Figure 1: An example array A[l,12] (top right) and its Cartesian tree (left). We choose
preorder numbers as node identifiers (in bold under the nodes), and also write inorder values
on top of the nodes, in slanted font. The left rectangle on the bottom shows how query
rmq4(2,10) translates into query Ica(4,6) on the Cartesian tree. We also show how this
query, in turn, maps into rmqp (4, 10), on the array D of depths of the tree. Array E tells
if consecutive entries of D increase or decrease, and is the same as a BP representation
of the tree. The right rectangle on the bottom shows how query Ica(4,10) is solved using
rmqz(4,10) and parent on the parentheses. This rmqg query is a simpler +1-RMQ problem.
Now the nodes 4, 10, and 1 do not refer to preorders but to positions in BP, obtained from
preorders with prenode. The corresponding preorder values are written below the BP array.

an opening parenthesis when we first arrive at a node and a closing one when we leave
it, the resulting sequence of parentheses, P[1,2n], is exactly E[1,2n] if we interpret
the opening parenthesis as a 1 and the closing one as a 0. In particular, consider the
following two operations on bitvectors: rank, (£, %) is the number of bits equal to b in
E[1,1], and select,(E, j) is the position of the jth bit b in E. Both operations can be
implemented in O(1) time using just o(n) additional bits on top of E [15,16]. Then,
if we identify a node x with the position of its opening parenthesis in P (which is a
1 in E), then the preorder position of z is preorder(z) = rank;(E, x), the node with
preorder i is prenode(i) = select; (E, i), x is a leaf iff Ex + 1] = 0, and the depth of =
is D[z] = rank,(E, z) — ranko(E,z) = 2 - rank,(E, z) — .

This parentheses representation (called BP, for Balanced Parentheses) was indeed
known, and it was even possible to navigate it in constant time by using just 2n+o(n)
bits [6,20]. This navigation was built on top of three primitives on parentheses:
open(x)/close(x) gave the position of the opening/closing parenthesis matching the
closing/opening one at P[z], and enclose(z) gave the opening parenthesis position y
so that [y, close(y)] contained P[x] most tightly. Many tree traversal operations are
built on top of those primitives, for example the parent of x is parent(x) = enclose(z),
its next sibling is close(z) + 1 (if it exists), its first child is  + 1 (if it exists), its
subtree size is (close(z) —x + 1)/2, x is an ancestor of y iff z <y < close(x), etc.

Now, since E coincides with P, one could add the powerful Ica operation to



the BP representation! Bender and Farach’s solution [4] applied on the bitvec-
tor E[l,2n] actually implements RMQs on the virtual array D. However, their
+1-RMQ solution used O(n) words. Sadakane [5] improved their solution to use
O(n(loglogn)?/logn) = o(n) bits, and thus obtained a constant-time algorithm for
Ica(z,y) on the BP representation (let x < y):

if y < close(x) then return x

else return parent(rmqg(z,y) + 1)

where the first line addresses the special case where x is an ancestor of y, and rmqy
refers to the +£1-RMQ solution on E[1,2n]. The rationale of the second line is that,
since z and y descend from two distinct children of z = lca(z,y), then D[z, y| is
minimized at the closing parenthesis that terminates each child of z, from the one
that contains x to the one preceding that containing y. Adding 1 we get to the next
sibling of that child, then we return its parent z. See Figure 1 once again.

Benoit et al. [19] presented an alternative format to represent a general tree using
2n parentheses, called DFUDS. We traverse the tree in DF'S order, but this time, upon
arriving for the first time to a node with d children, we write d opening parentheses and
a closing one (in particular, a leaf is represented with a closing parenthesis). Nodes are
identified with that closing parenthesis®. It can be shown that the resulting sequence
is also balanced if we append an artificial opening parenthesis at the beginning, and
many traversal operations can be carried out with the primitives open, close, and
enclose. In particular, we can directly arrive at the ith child of 2 with nextq((close(x —
i)+1), where next,(t) = selecty(ranky(t—1)+1) finds the first 0 from ¢. The number of
children of z can be computed as d = x—prev,(x)+1, where prev,(t) = selecty(rankq(t—
1)) finds the last 0 before t. In DFUDS, nodes are also listed in preorder, and there
is a closing parenthesis terminating each, thus preorder(z) = rankq(FE, x).

Jansson et al. [8] showed that Ica(z,y) can also be computed on the DFUDS
representation, as follows (let z < y):

return parent(nexty(rmqg(z,y — 1) + 1)),

where no check for ancestorship is needed?. The rationale is similar as before: since
in DFUDS D decreases by 1 along each subtree area, rmqg(x,y — 1) finds the final
closing parenthesis of the child of z = Ica(x,y) that precedes the one containing y.
Adding 1 and finding the parent gives z. The formula for parent(w) in DFUDS is
nexto(open(prevy(w))). Figure 2 shows our example, now on DFUDS. The formula
with DFUDS turns out to be simpler than with BP.

Now we could represent a tree of n nodes in 2n + o(n) bits and compute Ica on it
in constant time, and Eq. (1) allowed us to convert rmq, into an Ica operation on its
Cartesian tree. It seems that the road to constant-time rmq, using just the 2n+o(n)
bits of its Cartesian tree, and without accessing A, was paved! However, there was
still a problem: how to support the operations inorder and innode on the Cartesian

'In some cases, the first opening parenthesis is used, but the closing one is more convenient here.
2The check is present in their paper, but it is unnecessary (K. Sadakane, personal communication).
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Figure 2: The same arrangement of Figure 1, now on the DFUDS representation of the
Cartesian tree. The query rmq,4(2, 10) becomes Ica(4, 6), which we translate into lca(10, 14)

when the node identifiers become positions in DFUDS instead of preorders (the translation
is shown on the bottom of the sequence Ppryps).
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tree. Sadakane [5] had solved the problem on suffix trees, but in his case the tree
had exactly one leaf per entry in A, so he only needed to find the ith leaf, and this
could be done by extending rank/select operations to find 10s (BP) or 00s (DFUDS)
in £. In the general case, one could add artificial leaves to every node, but this would
increase the space to 4n + o(n) bits.

Fischer and Heun [7] found a solution that used just 2n + o(n) bits, which also
turned out to be asymptotically optimal. The idea is to use a known isomorphism
(see, e.g., [6]) between binary trees of n nodes and general ordinal trees of n + 1
nodes: We create an extra root for the general tree, and its children are the nodes in
the leftmost path of the binary tree. Recursively, the right subtree of each node z in
the leftmost path is converted into a general tree, using x as its extra root. A key
property of this transformation is that inorders in the binary tree become preorders
(plus 1) in the general tree. As seen, we can easily map between nodes and their
preorders in general trees. Figure 3 continues our example.

However, the Ica in the Cartesian tree (which is what we want) is not the same Ica
in the resulting general tree; some adjustments are necessary. Fischer and Heun chose
to use DFUDS for their rmq (7, j) solution, where it turns out that the adjustments
to use a general tree actually remove the need to compute parent, but add back the
need to check for ancestorship:

w <— rmqg(selecty(i 4 1), selecty(j))
if ranko(open(w)) = i then return 4 (2)
else return rankg(w)

The selecty operations find the nodes with preorder i and j — 1 (recall there is an

extra root with preorder 1), then w is the position of the closing parenthesis of the
result. The next line verifies that x is not an ancestor of y, and the last line returns
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Figure 3: The general tree derived from the example Cartesian tree. Note how inorder
numbers of the binary Cartesian tree became preorder numbers in the general tree (we
start preorders from 0 to help see the mapping). On the right, the formulas used by Fischer
and Heun based on DFUDS (on the top) and the one proposed in this paper, based on BP
(on the bottom). To reuse the same isomorphism of Fischer and Heun, we illustrate the
variant of our formula that uses the leftmost path of the tree as the root children.

the corresponding preorder value. For this formula to be correct, it is necessary that
rmq g returns the position of the leftmost minimum. Figure 3 (top left) shows a query.

Grossi and Ottaviano [18] replaced the ancestorship test by one that does not use
the costly open operation:

w 4— rmqg(selecty(i + 1), selecty (7))
if D(selecty(i) + 1] < D[w — 1] then return i (3)

else return rankg(w)
where as explained we can compute D[k] = 2 - rank((E, k) — k.

A Simplified Implementation

The current implementations of rmq, build on the DFUDS representation of the
general tree derived from the Cartesian tree, and follow either the formula of Fischer
and Heun [7] (Eq. (2), in SDSL), or that of Grossi and Ottaviano [18] (Eq. (3), in
Succinet). We show that, if we use the BP representation instead of DFUDS, we
obtain a simpler formula. Let us assume, as before, that rmqy returns the leftmost
minimum. Then, our conversion from the binary Cartesian tree into a general tree
must go in the opposite direction: the children of the extra root are the nodes in the
rightmost path of the binary tree, and so on recursively. With this representation, it
turns out that a correct formula is

rmq4(i,7) = rankg(rmqg(selecty(i), selecty(5))) (4)

where no checks for ancestorship are necessary. Now we prove this formula is correct.



Lemma 1 On a rightmost-path general tree built from the Cartesian tree of A, Eq. (4)
holds.

Proof. On the rightmost-path representation, the binary tree node with inorder ¢
becomes the general tree node with postorder i, which easily seen by induction. The
closing parentheses of nodes x and y, which have postorders ¢ and j, are thus found
with p = selecty(i) and ¢ = selecty(j). Now let z = Ica(x,y). Then, in the Cartesian
tree, x descends from the left child of z, z;, and y descends from the right child, z,.
In the general tree, z; is the first child of z, whereas z, is its next sibling. Therefore
the closing parenthesis of z, at position r, is between p and ¢. Further, y descends
from some sibling z’ to the right of z. Between p and ¢, the minima in D occur at the
closing parentheses of z and of its siblings to the right, up to (but not including) z’.
Thus the leftmost of those positions is precisely r, where z closes. Finally, rankq(r) is
the postorder position of z, and the inorder position of the cell in A.

The formula also works if y descends from x in the Cartesian tree. Since 7 < 7,
the inorder of x is smaller than the inorder of y, and thus y can only descend from the
right child of z. Then the first minima in [p, ] is precisely p, the closing parenthesis
of x, and thus z = x. O

If we want to use the leftmost-path mapping, we need that rmqy returns the
rightmost minimum position in the range. In this case, it holds

rmq4(i,j) = ranks(rmqg(select; (i + 1) — 1,select;(j + 1))).

In this case, we must subtract 1 from p (which is now the position where node z
opens) to ensure that the rightmost minimum in [p — 1,¢| is actually p — 1 when y
descends from z. Figure 3 (bottom right) shows a query.

In the next section we show that our formula yields a significant time reduction
compared to DFUDS-based ones.

Experimental Results

Our implementation of the formula in Eq. (4) uses RMM-trees [9,17], where only
the field min is needed on the RMM-tree nodes in order to compute rmqy. The
operations rank and select are implemented by ourselves, using one level of counters
for rank and binary search for select.

We compare our implementation with those in SDSL and Succinct, which are
based on DFUDS (Egs. (2) and (3), respectively). As a control, we also implement
ourselves the DFUDS-based solution of Eq. (2) using RMM-trees and our rank/select
components; this is called DFUDS in our charts.

Our first experiment compares the four implementations on randomly generated
arrays A of sizes from n = 10* to n = 10'° with randomly chosen ranges [i, j] of
fixed length 10,000. Figure 4 shows the results (Succinct did not build on the largest
arrays). Our implementation uses almost always 2.2 bits per element (bpe), that is,
0.2 on top of the 2 bpe needed by the BP (or DFUDS) representation. Our DFUDS
implementation, instead, increases the space because the average excess grows with n
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Figure 5: Query time on random arrays, for ranges of increasing size and two values of n.

in this format, and thus the RMM-tree counters need more bits. The implementations
in SDSL and Succinct use at least 2.6-2.8 bpe. Our solution is also the fastest, taking
1-4 microseconds (usec) per query as n grows. It is followed by Succinct and, far
away, by SDSL. Our DFUDS implementation is fast for short arrays, but it becomes
slower when n grows. This is probably because operation open matches a farther
parenthesis as n grows.

Figure 5 shows how the times are affected by the size of the query range. As
it can be seen, our implementation and Succinct show a very slow increase, whereas
times grow much faster in SDSL and DFUDS. This may be due to the open operation,
whose time grows in practice with the distance to its parent. Larger intervals return
nodes closer to the root, whose former siblings are larger, and so is the distance to
the parent in DFUDS.

Our final experiment measures the effect of the order in A on the space and
time of the structures. Given a parameter A, our entry A[i] is chosen at random in
[i—Ayi+ A],orin [n—i— A,;n—i+ A], thus the smaller A, the more sorted is A
in increasing/decreasing order. Figure 6 shows the results.

Our implementation maps the leftmost path of the Cartesian tree to the children
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Figure 6: Query time on pseudo-sorted arrays, n = 10% and ranges of size 10,000.

of the general tree. As a result, the structure takes more space and time when the
array is more sharply increasing, because the general tree is deeper and the RMM-
tree stores larger values. Instead, it does not change much when A is decreasing (one
could use one mapping or the other as desired, since we know A at construction time).
DFUDS shows the opposite effect, because the DFUDS excesses are smaller when the
tree is deeper. It is not clear how can one use the rightmost-path mapping in the
case of DFUDS, however, as it is not symmetric. The space of SDSL and Succinct is
not affected at all by the lack of randomness, but SDSL turns out to be faster on less
random arrays, regardless of whether they are increasing or decreasing.

Conclusions

We have presented an alternative design to Fischer and Heun’s RMQ solution that
uses 2n + o(n) bits and constant time [7]. Our implementation uses 2.2n bits and
takes 1-4 microseconds per query. This is noticeably smaller and faster than the
current implementations in libraries SDSL and Succinct, which follow Fischer and
Heun’s design. By using BP instead of DFUDS succinct tree representation, our RMQ
formula simplifies considerably. We have left our implementation publicly available
at https://github.com/hferrada/rmq.git, and our DFUDS-based implementation
at https://github.com/hferrada/rmqFischerDFUDS.git.

Any £1-RMQ implementation can be used together with our new formula. Our



current implementation of £1-RMQs is not formally constant time, as it builds on
RMDM-trees [9,17]. Although truly constant-time solutions are not promising in prac-
tice [5,9], and we have shown that the time of RMM-trees grows very slowly with n,
it would be interesting to devise a practical and constant-time solution.
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