
BAT-LZ Out of Hell1

Zsuzsanna Lipták # �2

Dipartimento di Informatica, University of Verona, Italy3

Francesco Masillo #�4

Dipartimento di Informatica, University of Verona, Italy5

Gonzalo Navarro # �6

Center for Biotechnology and Bioengineering (CeBiB)7

Department of Computer Science, University of Chile, Chile8

Abstract9

Despite consistently yielding the best compression on repetitive text collections, the Lempel-Ziv10

parsing has resisted all attempts at offering relevant guarantees on the cost to access an arbitrary11

symbol. This makes it less attractive for use on compressed self-indexes and other compressed12

data structures. In this paper we introduce a variant we call BAT-LZ (for Bounded Access Time13

Lempel-Ziv) where the access cost is bounded by a parameter given at compression time. We design14

and implement a linear-space algorithm that, in time O(n log3 n), obtains a BAT-LZ parse of a15

text of length n by greedily maximizing each next phrase length. The algorithm builds on a new16

linear-space data structure that solves 5-sided orthogonal range queries in rank space, allowing17

updates to the coordinate where the one-sided queries are supported, in O(log3 n) time for both18

queries and updates. This time can be reduced to O(log2 n) if O(n log n) space is used.19

We design a second algorithm that chooses the sources for the phrases in a clever way, using an20

enhanced suffix tree, albeit no longer guaranteeing longest possible phrases. This algorithm is much21

slower in theory, but in practice it is comparable to the greedy parser, while achieving significantly22

superior compression. We then combine the two algorithms, resulting in a parser that always chooses23

the longest possible phrases, and the best sources for those. Our experimentation shows that, on24

most repetitive texts, our algorithms reach an access cost close to log2 n on texts of length n, while25

incurring almost no loss in the compression ratio when compared with classical LZ-compression.26

Several open challenges are discussed at the end of the paper.27

2012 ACM Subject Classification Theory of computation → Data structures design and analysis28

Keywords and phrases Lempel-Ziv parsing, data compression, compressed data structures, repetitive29

text collections30

Digital Object Identifier 10.4230/LIPIcs.CPM.2024.31

Supplementary Material The code is available at https://github.com/fmasillo/BAT-LZ32

Funding Zsuzsanna Lipták: Partially funded by the MUR PRIN project Nr. 2022YRB97K ’PINC’33

(Pangenome INformatiCs. From Theory to Applications) and by the INdAM-GNCS Project34

CUP_E53C23001670001 (Compressione, indicizzazione, analisi e confronto di dati biologici).35

Gonzalo Navarro: Funded by Basal Funds FB0001, Mideplan, Chile, and Fondecyt Grant 1-230755,36

Chile.37

© Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro;
licensed under Creative Commons License CC-BY 4.0

35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zsuzsanna.liptak@univr.it
https://orcid.org/0000-0002-3233-0691
mailto:francesco.masillo@univr.it
https://orcid.org/0000-0002-2078-6835
mailto:gnavarro@dcc.uchile.cl
https://orcid.org/0000-0002-2286-741X
https://doi.org/10.4230/LIPIcs.CPM.2024.
https://github.com/fmasillo/BAT-LZ
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Zs. Lipták, F. Masillo, G. Navarro XX:1

1 Introduction38

The sharply growing sizes of text collections, particularly repetitive ones, has raised the39

interest in compressed data structures that can maintain the texts all the time in compressed40

form [43, 42, 41]. For archival purposes, the original Lempel-Ziv (LZ) compression format [36]41

is preferred because it yields the least space among the methods that support compression42

and decompression in polynomial time—actually, Lempel-Ziv compresses and decompresses43

a text T [1 . . n] in O(n) time [48]. For using a compression format as a compressed data44

structure, however—in particular, to build a compressed text self-index on it [34]—, we need45

that arbitrary text snippets T [i . . i + ℓ] can be extracted efficiently, without the need of46

decompressing the whole text up to the desired snippet. Grammar compression formats [31]47

allow extracting such text snippets in time O(ℓ + log n) [5, 22], which is nearly optimal [51].48

So, although the compression they achieve is always lower-bounded by the size of the LZ49

parse [49, 8], grammar compression algorithms are preferred over LZ compression in the50

design of text indexes [42, 12], and of compressed data structures in general.51

The LZ compression algorithm parses the text T into a sequence of so-called phrases,52

where each phrase points backwards to a previous occurrence of it in T and stores the next53

symbol in explicit form. While this yields a simple linear-time left-to-right decompression54

algorithm, consider the problem of accessing a particular symbol T [i]. Unless it is the final55

explicit symbol of a phrase, we must determine the text position j < i where T [i] = T [j]56

was copied from. We must then determine T [j], which again may be—with low chance—the57

end of a phrase, or it may—most likely—refer to an earlier symbol T [j] = T [k], with k < j.58

The process continues until we hit an explicit symbol. The cost of extracting T [i] is then59

proportional to the length of that referencing chain i→ j → k → . . . Despite considerable60

interest in algorithms to access arbitrary text positions from the LZ compression format,61

and apart from some remarkable results on restricted versions of LZ [30], there has been no62

progress on the original LZ parse (which yields the strongest compression).63

In this paper we introduce and study an LZ variant we call Bounded Access Time Lempel-64

Ziv (BAT-LZ), which takes a compression parameter c and produces a parse where no symbol65

has a referencing chain longer than c, thereby guaranteeing O(c) access time.1 As opposed to66

classical LZ, BAT-LZ parses allow very fast access to the text, indeed, like a bat out of hell.67

We design a Greedy BAT-LZ parser, which at each step of the compression chooses the68

longest possible phrase. Finding such a phrase boils down to solving a 4-sided orthogonal69

range query in a 3-dimensional grid (in rank space), where one of the coordinates undergoes70

updates as the parsing proceeds. We design such a data structure, which turns out to handle71

5-sided queries and support updates on the coordinate where the query is one-sided. Our data72

structure handles queries and updates in time O(log3 n), yielding a greedy BAT-LZ parsing73

in time O(n log3 n) and space O(n). We then design another BAT-LZ parser, referred to as74

Minmax, which runs on an enhanced suffix tree. It looks for the “best” possible sources of the75

chosen phrases, that is, with symbols having shorter referencing chains, while not necessarily76

choosing the longest possible phrase. Finally, we combine the two ideas, resulting in our77

Greedier parser, which runs again on an enhanced suffix tree. These last two algorithms, while78

their running time is upper bounded by O(n3 log n), both run in decent time in practice.79

We implemented and tested our three BAT-LZ parsers on various repetitive texts of80

different sorts, comparing them with the original LZ parse and with two simple baselines that81

1 A parsing like BAT-LZ was described as a baseline in the experimental results in previous work [33] of
one of the authors, but without a parsing algorithm, see Sec. 3 for more details.

CPM 2024

XX:2 BAT-LZ Out of Hell

ensure BAT-LZ parses without any optimization. The results show that all three algorithms82

run in a few seconds per megabyte and produce much better parses than the baselines. For83

values of c = O(log n) with a small constant, they produce just a small fraction of extra84

phrases on top of LZ. In particular, Greedier increases the size of the LZ parse by less than85

1% with c values that are about log2 n (i.e., 20–30 in our texts).86

We note that, unlike the original LZ parse, a greedy parsing does not guarantee obtaining87

the minimal BAT-LZ parse. Indeed, finding the optimal BAT-LZ parse has recently been88

shown to be NP-hard for all constant c, and also hard to approximate for any constant89

approximation ratio [10]. Our results show that, on repetitive texts, a polylog-linear time90

greedy algorithm can nonetheless achieve good compression while guaranteeing fast access to91

text snippets. The other two algorithms are still polynomial time and offer fast access with92

almost no loss in compression compared to the classical LZ-compression. In our scenarios of93

interest (i.e., accessing the compressed text at random) the data is compressed only once94

and accessed many times, so slower compression algorithms can be afforded in exchange for95

faster access. We discuss at the end this and some other problems our work opens.96

2 Basic Data Structures97

A string (or text) T is a finite sequence of characters from an alphabet Σ. We write98

T = T [1..n] for a string T of length n, and assume that the final character is a unique99

end-of-string marker $. We index strings from 1 and write T [i..j] for the substring T [i] . . T [j],100

T [i . .] for the suffix starting in position i, and T [. . j] for the prefix ending in position i.101

Bitvectors and Wavelet Matrices. A bitvector B[1 . . n] can be stored using n bits, or102

actually ⌈n/w⌉ words on a w-bit word machine, while providing access and updates to103

arbitrary bits in constant time. If the bitvector is static (i.e., does not undergo updates) then104

it can be preprocessed to answer rank queries in O(1) time using o(n) further bits [11, 39]:105

rankb(B, i), where b ∈ {0, 1} and 0 ≤ i ≤ n, is the number of times bit b occurs in B[1 . . i].106

A wavelet matrix [13] is a data structure that can be used, in particular, to represent a107

discrete [1, n] × [1, n] grid, with exactly one point per column, using n log2 n + o(n log2 n)108

bits. Let S[1 . . n] be such that S[i] is the row of the point at column i. The first wavelet109

matrix level contains a bitvector B1[1 . . n] with the highest (i.e., ⌈log2 n⌉th) bit of every110

value in S. For the second level, the sequence values are stably sorted by their highest bit,111

and the wavelet matrix stores a bitvector B2[1 . . n] with the second highest bits in that order.112

To build the third level, the values are stably sorted by their second highest bit, and so on.113

Every level i also stores the number zi = rank0(Bi, n) of zeros in its bitvector.114

The value S[i] can be retrieved from the wavelet matrix in O(log n) time. Its highest bit115

is b1 = B1[i1], with i1 = i. The second highest bit is b2 = B2[i2], with i2 = rank0(B1, i1) if116

b1 = 0 and i2 = z1 + rank1(B1, i1) if b1 = 1. The other bits are obtained analogously.117

The wavelet matrix can also obtain the grid points that fall within a rectangle [x1, x2]×118

[y1, y2] (i.e., the values (i, S[i]) such that x1 ≤ i ≤ x2 and y1 ≤ S[i] ≤ y2) in time O(log n),119

plus O(log n) per point reported. We start at the first level, in the range B1[sp1, ep1] =120

B1[x1, x2]. We then map the range into two ranges of the second level: the positions i where121

B1[i] = 0 are all mapped to the range B2[sp2, ep2] = B2[rank0(B1, sp1−1)+1, rank0(B1, ep1)],122

and those where B1[i] = 1 are mapped to B2[sp′
2, ep′

2] = B2[z1 + rank1(B1, sp1 − 1) + 1, z1 +123

rank1(B1, ep1)]. The recursive process stops when the range becomes empty; when the124

sequence of highest bits makes the possible set of values either disjoint with [y1, y2] or125

included in [y1, y2]; or when we reach the last level. It can be shown that the recursion ends126

Zs. Lipták, F. Masillo, G. Navarro XX:3

in O(log n) ranges, at most two per level, so that every value in those ranges is an answer.127

The corresponding y values can be obtained by tracking them downwards as explained.128

These data structures, and our results, hold in the RAM model with computer word size129

w = Θ(log n). The wavelet matrix is then said to use O(n) space—i.e., linear space—, which130

is counted in w-bit words. The wavelet matrix is easily built in O(n log n) time, and less [40].131

Another relevant functionality that can be offered within 2n + o(n) bits is the so-called132

range maximum query (RMQ): given a static array A[1 . . n], we preprocess it in O(n) time133

so that we can answer RMQs in O(1) time [19]: rmq(A, i, j) is a position p, i ≤ p ≤ j, such134

that A[p] = max{A[k], i ≤ k ≤ j}. The data structure does not need to maintain A. In this135

paper we will use RMQs where A can undergo updates, see Sec. 5.136

Suffix Arrays and Trees. The suffix tree [52] is a classic data structure on texts which137

is able to answer efficiently many different kinds of string processing queries [24, 1], which138

uses linear space and can be built in linear time [52, 38, 17, 50]. We give a brief recap; see139

Gusfield [24] for more details.140

The suffix tree ST(T) of a text T is the compact trie of the suffixes of T ; it is a rooted141

tree whose edges are labeled by substrings of T (stored as two pointers into T), and whose142

inner nodes are branching. The label L(v) of a node v is the concatenation of the labels143

of the edges on the root-to-v path. There is a one-to-one correspondence between leaves144

and suffixes of T ; leafi is then the unique leaf whose label equals the ith suffix T [i . .]. The145

stringdepth sd(v) of a node v is the length of its label, and we assume sd(v) is stored in v.146

The suffix array SA of T is a permutation of the index set {1, . . . , n} such that SA[i] = j147

if the jth suffix of T is the ith in lexicographic order among all suffixes. The suffix array can148

be computed from the suffix tree, or directly from the text, in linear time and space [47, 45].149

The inverse suffix array, denoted ISA, can be computed in linear time using ISA[SA[i]] = i.150

3 The Lempel-Ziv (LZ) Parsing and its Bounded Version (BAT-LZ)151

The Lempel-Ziv (LZ) parsing of a text T [1 . . n] [36] produces a sequence of z “phrases”,152

which are substrings of T whose concatenation is T . Each phrase is formed by the longest153

substring that has an occurrence starting earlier in T , plus the character that follows it.154

▶ Definition 1. A leftward parse of T [1 . . n] is a sequence of substrings T [i . . i + ℓ] (called155

phrases) whose concatenation is T and such that there is an occurrence of each T [i . . i+ ℓ−1]156

starting before i in T (the occurrence is called the source of the phrase). The LZ parse of T157

is the leftward parse of T that, in a left-to-right process, chooses the longest possible phrases.158

The algorithm moves a pointer i along T , from i = 1 to i = n. At each step, the algorithm159

has already processed T [1 . . i− 1], and it must form the next phrase. As said, the phrase is160

formed by (1) the longest prefix T [i . . i + ℓ− 1] of T [i . .] that has an occurrence in T starting161

before position i, and (2) the next symbol T [i + ℓ]. If ℓ > 0, then the occurrence of (1),162

T [s . . s+ℓ−1] = T [i . . i+ℓ−1] with s < i, is called the source of T [i . . i+ℓ−1]. Once suitable163

s and ℓ have been determined, the next phrase is T [i . . i + ℓ] and the algorithm proceeds164

from i← i + ℓ + 1 onwards. The phrase T [i . . i + ℓ] is encoded as the triple (s, ℓ, T [i + ℓ]),165

and if ℓ = 0 we can encode just the character (T [i + ℓ]).166

This greedy parsing, which maximizes the phrase length at each step, turns out to be167

optimal [36], that is, it produces the least number z of phrases among all the leftward parses168

of T . Further, it can be computed in O(n) time [48, 9, 46, 25, 26, 23, 20, 32, 3, 27, 21].169

Note that phrases can overlap their sources, as sources must start—but not necessarily170

end—before i. For example, the LZ parse of T = an−1$ is (a) (0, n− 1, $). For illustrative171

CPM 2024

XX:4 BAT-LZ Out of Hell

purposes, we describe the parsings by writing bars, “|”, between the formed phrases. The172

parsing of the example is then written as a|an−1$. To illustrate the access problem, consider173

the LZ parsing of the text alabaralalabarda$ (disregard for now the numbers below):174

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

175

Assume we want to extract T [11] = a. The position is the first of the 6th phrase, abard,176

and it is copied from the third phrase, ab. In turn, the first position of that phrase is copied177

from the first phrase, where a is stored in explicit form. We need then to follow a chain178

of length two in order to extract T [11], so the length of that chain is the access cost. The179

numbers we wrote below the symbols in the parse are the lengths of their chains.180

Bounded Access Time Lempel-Ziv (BAT-LZ). We define a leftward parse we call Bounded181

Access Time Lempel-Ziv (BAT-LZ), which takes as a parameter the maximum length c any182

chain can have. A BAT-LZ parse is a leftward parse where no chain is longer than c. Note183

that we do not require a BAT-LZ parse to be of minimal size. For example, a BAT-LZ parse184

for the above text with c = 1 is as follows:185

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0

186

When the LZ parse produces the phrase T [i . . i + ℓ] from the source T [s . . s + ℓ− 1] and187

the extra symbol T [i + ℓ], the character T [i + ℓ] is stored in explicit form, and thus its chain188

is of length zero. The chain length of every other phrase symbol, T [i + l] for 0 ≤ l < ℓ, is one189

more than the chain length of its source symbol, T [s + l].190

A special case occurs when sources and targets overlap. If we want to extract T [n− 1]191

from T = an−1$, we could note that it is copied from T [n − 2], which is in turn copied192

from T [n− 3], and so on, implying a chain of length n− 1. Instead, we can note that our193

phrase T [2 . . n] overlaps its source T [1 . . n− 2]. In general, when the phrase T [i . . i + ℓ− 1]194

overlaps its source T [s . . s + ℓ− 1] by 0 < b = i− s characters, this implies that the word195

S = T [s . . s + ℓ− 1] = T [i . . i + ℓ− 1] has a border (a prefix which is also a suffix) of length b.196

It is well known that if S has a border of length b, then S has a period p = |S| − b, see [37,197

Ch. 8]. Therefore, S can be written in the form S = U⌊|S|/p⌋V , where U is the p-length198

prefix of S and V a proper prefix of U , and thus, for all l > p, S[l] = S[l mod p].199

▶ Definition 2 (Chain length). Let T [i . . i + ℓ] be a phrase in a leftward parse of T [1 . . n],200

whose source is T [s . . s + ℓ− 1]. The chain length of the explicit character is C[i + ℓ] = 0. If201

ℓ ≤ i− s (i.e., there is no overlap between the source and the phrase), then for all 0 ≤ l < ℓ,202

C[i + l] = C[s + l] + 1. Otherwise, for 0 ≤ l < i− s, the chain length is C[i + l] = C[s + l] + 1,203

and for i− s ≤ l < ℓ, the chain length is C[i + l] = C[i + (l mod (i− s))].204

We remark that a parsing like BAT-LZ is described as a baseline in the experimental205

results of one of the current authors’ previous work [33], under the name LZ-Cost, but as no206

efficient parsing algorithm was devised for it, it could be tested only on the tiny texts of the207

Canterbury Corpus (https://corpus.canterbury.ac.nz). It also did not handle overlaps208

between sources and targets, so it did not perform well on the text T = an. For testing the209

BAT-LZ parsing on large repetitive text collections we need an efficient parsing algorithm.210

Zs. Lipták, F. Masillo, G. Navarro XX:5

4 A Greedy Parsing Algorithm for BAT-LZ211

In this section we describe an algorithm that, using O(n) space and O(n log3 n) time, produces212

a BAT-LZ parse of a text T [1 . . n] by maximizing the next phrase length at each step. We213

then show how to reduce the time to O(n log2 n) at the price of increasing the space to214

O(n log n). Of course, unlike in LZ, this greedy algorithm does not in general produce an215

optimal BAT-LZ parse, since the problem is NP-hard.216

▶ Definition 3. A BAT-LZ parse of T [1 . . n] with maximum chain length c is a leftward217

parse of T where the chain length of no position exceeds c. A greedy BAT-LZ parse is a218

BAT-LZ parse where each phrase, processed left to right, is as long as possible.219

Let T [1 . . i− 1] be already processed. We call a prefix T [i . . i + ℓ− 1] of T [i . .] valid if220

C[j] ≤ c for all j = i, . . . , i + ℓ− 1. A leftward parse of T is therefore a BAT-LZ parse if and221

only if all phrases are valid. Our Greedy BAT-LZ parser proceeds then analogously to the222

original LZ parser. At each step, it has already processed T [1 . . i− 1], and it must find the223

next phrase, which is formed by (1) the longest valid prefix T [i . . i + ℓ− 1] of T [i . .] that has224

an occurrence T [s . . s + ℓ− 1] with s < i, and (2) the next symbol T [i + ℓ]. In other words,225

the algorithm enforces that every symbol in T [s . . s + ℓ− 1] must have a chain length less226

than c, the maximum chain length allowed. The phrase T [i . . i + ℓ] is encoded just as in the227

standard LZ, as a triple (s, ℓ, T [i + ℓ]).228

To efficiently find s and ℓ, our BAT-LZ parsing algorithm stores the following structures:229

1. The suffix array SA[1 . . n] of T , represented as a wavelet matrix [13].230

2. The inverse suffix array ISA[1 . . n] of T , represented in plain form.231

3. An array C[1 . . n], where C[i] is the chain length of i. Note that C[i] is defined only for232

the already parsed positions of T .233

4. An array D[1 . . n], where D[s] is the minimum d ≥ 0 such that C[s + d] = c. If no such a234

d exists (in particular, because C[i] is defined only for the parsed prefix), then D[s] =∞235

(which holds initially for all s).236

5. For each level of the wavelet matrix of SA, a special dynamic RMQ data structure to237

track the text positions that can be used. This structure is related to the values of D238

and therefore it changes along the parsing.239

Note that the definition of BAT-LZ implies that, if the source of T [i . . i + ℓ − 1] is240

T [s . . s + ℓ− 1], then it must be that ℓ ≤ D[s]. This motivates the following observation:241

▶ Observation 4. Let T [1 . . i− 1] be already processed. A prefix T [i . . i + ℓ− 1] of T [i . .] is242

valid if and only if there exists a source T [s . . s + ℓ− 1] such that243

(i) its lexicographic position satisfies ISA[s] ∈ [sp . . ep], where [sp . . ep] is the suffix array244

range of T [i . . i + ℓ− 1] (i.e., T [s . . s + ℓ− 1] = T [i . . i + ℓ− 1]);245

(ii) its starting position in T is s < i; and246

(iii) it does not use forbidden text positions, that is, ℓ ≤ D[s].247

The parsing then must find the longest valid prefix T [i . . i + ℓ− 1] of T [i . .]. We do so248

by testing the consecutive values ℓ = 1, 2, Note that, once we have determined the next249

phrase T [i . . i + ℓ], we must update C and D as follows: (1) C[i + l]← C[s + l] + 1 for all250

0 ≤ l < ℓ, and C[i + ℓ]← 0.2, and (2) Every time we obtain C[t] = c in the previous point,251

2 Recall that a special case occurs if T [i . . i + ℓ − 1] overlaps T [s . . s + ℓ − 1]: we start copying from k = s
and increasing k and, whenever k = s + l = i, we restart copying from k = s.

CPM 2024

XX:6 BAT-LZ Out of Hell

Text positions

SA
positions

i

sp
ep

ℓ

ℓ

D
values (undergo updates)

Figure 1 General scheme of our translation of queries onto a 3-dimensional data structure.

we set D[k] ← t − k for all k′ < k ≤ t, where k′ is the last position where D[k′] < ∞ (so252

k′ = 0 in the beginning and we reset k′ ← t after this process).253

Note that points (i) and (ii) above correspond to the classic LZ parsing problem. In254

particular, they correspond to determining whether there are points in the range [sp, ep]×255

[1, i− 1] of the grid represented by our wavelet matrix, which represents the points (j, SA[j]).256

As the wavelet matrix answers this query in time O(log n), this yields an O(n log n) LZ parsing257

algorithm. Point (iii), however, is exclusive to BAT-LZ. It can be handled by converting258

the grid into a three-dimensional mesh, where we store the values (j, SA[j], D[SA[j]]) and259

look for the existence of points in the range [sp, ep]× [1, i− 1]× [ℓ, n]. Note that we need to260

determine whether the range is empty and, if it is not, retrieve a point from it (whose second261

coordinate is the desired s). In addition, as the array D is modified along the parsing, we262

need a dynamic 3-dimensional data structure: every time we modify D in point 2 above, our263

data structure changes (this occurs up to n times). See Fig. 1.264

Our 3-dimensional problem, then, (a) is essentially a range emptiness query (where we265

must return one point if there are any), (b) the search is 4-sided (though our solution handles266

5-sided queries), and (c) the updates in D occur only to convert some D[k] = ∞ into a267

smaller value, so each value D[k] changes at most once along the parsing process (yet, our268

solution handles arbitrary updates along the coordinate where the query is one-sided). We269

have found no linear-space solutions to this problem in the literature; only solutions to less270

general ones or using super-linear space (indeed, more than O(n log n)): (1) linear space for271

two dimensions, with O(log n) query time and O(log3+ϵ n) update time [44]; (2) linear space272

for three dimensions with no updates, with O(log n/ log log n) query time [6]; (3) super-linear273

space (at least O(n log1.33 n) for three dimensions), with O((log n/ log log n)2) query time274

and O(log1.33+ϵ n) update time [7]. In the next section we describe our data structures for275

this problem: one uses linear space and O(log3 n) query and update time; the other uses276

O(n log n) space and O(log2 n) query time. This yields our first main result.277

▶ Theorem 5. A Greedy BAT-LZ parse of a text T [1 . . n] can be computed using O(n) space278

and O(n log3 n) time, or O(n log n) space and O(n log2 n) time.279

5 A Geometric Data Structure280

To solve the 3-dimensional search problem we associate, with each level of the wavelet matrix,281

a data structure that represents the sequence of values D[k] in the order the text positions k282

Zs. Lipták, F. Masillo, G. Navarro XX:7

sp1 ep1

RMQ on D1

RMQ on D2

RMQ on D3

sp2 ep2

sp3 ep3

candidate pos

candidate value

track
position
along
wavelet
matrix

D

max

D3

= candidates to max

H3

= roots of subtrees covering the query interval

Figure 2 On the left, we reach a candidate area [sp3, ep3] of the wavelet matrix and must obtain
its maximum D value using the (dynamic) RMQ data structure for D3. The tree H3 for this RMQ
structure is shown on the right. Arrows point to the child holding the maximum value in D3. Blue
diamonds are the roots v1

3 , . . . , v4
3 of the subtrees that cover the query area [sp3, ep3] and red circles

are the candidates in the range. The left plot shows how we find the actual value of one of those
circles by tracking it down in the wavelet matrix.

are listed in that level. Because in linear space we cannot store the actual values in every283

wavelet matrix level, we store only a dynamic RMQ data structure on the internal levels,284

and store the explicit values only in (the order corresponding to) the last level (in a wavelet285

matrix, that final level is not the text order, thus we need another array to map it to D).286

Let Dl be the array D permuted in the way it corresponds to level l of the wavelet287

matrix. The dynamic RMQ structure for level l is then a heap-shaped perfectly balanced288

tree Hl[1 . . n] whose leaves (implicitly) point to the entries of Dl. The nodes Hl[p] store289

only one bit, 0 indicating that the maximum in the subtree is to the left and 1 indicating290

that it is to the right. By navigating Hl from the root p of any subtree, moving to Hl[2p]291

if Hl[p] = 0 and Hl[2p + 1] if Hl[p] = 1, we arrive in O(log n) time at the position p where292

Dl[p] is maximum below that subtree. The actual value Dl[p] is obtained in other O(log n)293

time by tracking position p downwards in the wavelet matrix, from level l until the last level,294

where the values of D are explicitly stored. See Fig. 2 (right); ignore the query for now.295

Updates. When a value D[k] decreases from∞, we obtain its position in the top-level of the296

wavelet matrix as p = ISA[k]; thus we must reflect in H1 the decrease in the value of D1[p].297

By halving p successively we arrive at its ancestors, H1[ph] for ph = ⌊p/2h⌋, h = 1, 2, . . .298

We traverse the path upwards, recomputing the maximum value m below ph and modifying299

accordingly the bits of H1[ph]. Initially, this new maximum is m = D1[p] = D[k]. At any300

point in the traversal, if the parent H1[ph] of the current node indicates that the maximum301

below ph descends from the other child of ph, then we can stop updating of H1, because302

decreasing D1[p] does not require further changes. Otherwise, we must obtain the maximum303

value m′ below the other child of H1[ph] and compare it with m. The value m′ is obtained304

in O(log n) time as explained in the previous paragraph. We set H1[ph] depending on which305

is larger between m and m′, update m← max(m, m′), and continue upwards. This process306

takes O(log2 n) time as we traverse all the levels of H1. We then track position p downwards307

to the second level of the wavelet matrix, update H2 in the same way, and continue updating308

Hl on all the wavelet matrix levels l, for a total update time of O(log3 n).309

CPM 2024

XX:8 BAT-LZ Out of Hell

Searches. The search for a range [sp, ep]× [1, i−1]× [ℓ, n] first determines, as in the normal310

wavelet matrix search algorithm, the O(log n) maximal ranges that cover [1, i− 1] along the311

wavelet matrix levels l (there is at most one range per level because the range [1, i− 1] is312

one-sided; otherwise there could be two), and maps [sp, ep] to [spl, epl] on each such range313

(see Sec. 2), all in time O(log n). We then need to determine if there is some value Dl[p] ≥ ℓ314

below some of the ranges [spl, epl] (see the top-left part of Fig. 2). Each such range is then,315

again, decomposed into O(log n) maximal nodes v1
l , v2

l , . . . of Hl (see the right of Fig. 2). We316

find, in O(log n) time, the maximum value of Dl below each node vj
l , stopping as soon as we317

find some value ≥ ℓ. Note that we use O(log n) time to find the position of the maximum318

in Dl using Hl, and then O(log n) time to find the value of that maximum by tracking the319

position down in the wavelet matrix (see the bottom left of Fig. 2). Since we have O(log n)320

ranges [spl, epl], each yielding O(log n) candidates vi
l , and the maximum of each candidate is321

computed in O(log n) time, the whole search process takes time O(log3 n).322

Generalizations. Though not necessary for our problem, we remark that our update process323

can be extended to arbitrary updates on the third coordinate, D[k], not only to reductions324

in value. Further, our search could support five-sided ranges, not only four-sided, because we325

would still have O(log n) ranges [spl, epl] if the range of the second coordinate was two-sided.326

Only the range of the third coordinate (the one supporting the updates) must be one-sided.327

Faster and larger. By storing the values of Dl in each node of Hl for each wavelet matrix328

level l, the space increases to O(n log n) but the time of updates and searches decreases to329

O(log2 n), as we have now the maximum below any Hl[ph] readily available in O(1) time.330

6 The Minmax Parsing Algorithm331

We note that our Greedy BAT-LZ algorithm does not necessarily produce the smallest greedy332

parse, because it may fail in choosing the best source for the longest phrase. Consider, say,333

the text T = alabaralalabarda$ and c = 2. Our implementation parses it into 8 phrases as334

a l a b a r a l a l a b a r d a $
0 0 1 0 2 0 1 1 2 0 2 1 0 1 0 1 0

335

because it chooses T [3] as the source for the 4th phrase, ar, and then T [5] has a chain of336

length two and cannot be used again. If, instead, we choose T [1] as the source of the 4th337

phrase, the chain of T [5] will be of length 1 and we could parse T into 7 phrases, just as the338

first parse shown in Sec. 3.339

Our second algorithm, the Minmax parser, always chooses a source that minimizes the340

maximum chain length in the phrase, among all possible sources. It compromises however341

on the length of the phrase, by not always choosing the longest admissible phrase. As we will342

see, this is well worth it: Minmax always produces a much better compression than Greedy.343

High-level description of the Minmax parser. Let T [1 . . i− 1] be already processed. We344

will call a prefix T [i . . i + ℓ− 1] of T [i . .] admissible if it has a source T [s . . s + ℓ− 1] with345

max C[s . . s + ℓ− 1] < c. We would ideally like to find the longest admissible prefix of T [i . .],346

and then choose its best source if there is more than one. We will use an enhanced suffix347

tree of the text; this will allow us to store additional information in the nodes. Navigating in348

the suffix tree, we will then be able to choose the longest admissible prefix which ends in349

some node (i.e., not necessarily the longest), and then choose the best source of this prefix.350

Zs. Lipták, F. Masillo, G. Navarro XX:9

In order to do this, we will match the current suffix T [i . .] in the usual way in the suffix351

tree, using the desired information written in the nodes. As this information is dynamic,352

however, we will have to update it during the algorithm. The algorithm thus proceeds by (1)353

matching the suffix T [i . .] in the suffix tree and returning the next phrase and its source,354

and (2) updating the annotation.355

Annotation of the suffix tree. On the suffix tree of T , we annotate each node v with356

three variables minmax(v), txtpos(v), and a Boolean real(v), initializing minmax(v) to +∞,357

txtpos(v) to −1, and real(v) to 0. Recall that L(v) is the label of v and sd(v) its length. The358

variables minmax(v) and txtpos(v) will point to the current best candidate of an occurrence359

of L(v), with txtpos(v) its starting position and minmax(v) the maximum C-value within this360

occurrence. The Boolean real(v) indicates whether this value is realistic (real(v) = 1), i.e., a361

full occurrence with this value has already been seen, or only optimistic (real(v) = 0), meaning362

that no full occurrence has yet been seen. More formally, let i be the current position, and let363

us first assume that real(v) = 1. Then minmax(v) = x if x = min{max C[s . . s + sd(v)− 1] :364

T [s . . s + sd(v)− 1] = L(v) and s + sd(v)− 1 < i}, and txtpos(v) = s0 for one such s0, i.e., (i)365

T [s0 . . s0 + sd(v)− 1] = L(v), (ii) s0 + sd(v)− 1 < i, and (iii) max C[s0 . . s0 + sd(v)− 1] = x.366

Now let us look at the case real(v) = 0, we have yet to see an occurrence of L(v). Initially,367

minmax(v) = +∞; when we encounter a non-empty prefix of L(v), of length 0 < d ≤ sd(v),368

starting, say, in position s0, we update minmax(v) to max C[s0 . . s0 + d− 1] and txtpos(v)369

to s0. Thus, we have seen an occurrence of a prefix of L(v) but not yet a full occurrence of370

L(v), and we are optimistic since we are hoping to find a full occurrence whose max does371

not exceed the current one. However, as soon as we find the first full occurrence (and set372

real(v) = 1), from that point on we only update minmax(v) and txtpos(v) if we see another373

full occurrence. Therefore, real(v) is updated exactly once during the algorithm.374

Finding an admissible phrase and choosing its source. Let us now assume that we have375

processed T [1 . . i− 1] and want to find the next phrase and source. We match T [i . .] in the376

suffix tree, making sure during navigation that we only get admissible prefixes of T [i . .]. In377

particular, if we are in node v and should go to child u of v next (because T [i + sd(v)] is the378

first character of the edge label (v, u)), then we first check if minmax(u) < c. If so, then we379

can descend to u and continue from there, skipping over the next sd(u)− sd(v) positions in380

T . Otherwise, minmax(u) ≥ c and we return the new phrase (txtpos(v), sd(v), T [i + sd(v)]).381

Moreover, the C-array for j = i, . . . , i + ℓ is set according to Def. 2.382

Updating the suffix tree annotation. After the new phrase has been computed, we need383

to update the annotations in the suffix tree. For j ≤ i + ℓ, going backward in the string, we384

will update the nodes on the leaf-to-root path from leaf j. The idea is the following.385

Fix j ≤ i + ℓ. The prefix T [j . . i + ℓ] of T [j . .] now has the C-array filled in, so its386

max-value m = max C[j . . i + ℓ] is known. This may or may not necessitate updates in the387

nodes on the path from leaf leafj to the root. First, for the leaf j itself, if i ≤ j, then the388

minmax is still +∞, so we set minmax(leafj)← m. Otherwise, we are seeing a longer prefix389

of T [j . .] than before, so we update minmax(leafj)← max(minmax(leafj), m). Regarding the390

nodes v on the path from leafj to the root: their labels are increasingly shorter prefixes of391

suffix T [j . .], so they need to be updated only as long as j + sd(v)− 1 ≥ i, since otherwise,392

the prefix L(v) does not overlap with the newly assigned subinterval C[i . . i + ℓ].393

So let j + sd(v) ≥ i, there are two cases. First, if j + sd(v)−1 ≤ i + ℓ, then m is a realistic394

value, since the entire corresponding C-array interval has been filled in. Therefore, we can then395

CPM 2024

XX:10 BAT-LZ Out of Hell

compute m in a more clever way by using an RMQ on C, i.e., m = RMQ(C, j, j + sd(v)− 1).396

So if real(v) = 0, then we update minmax(v)← m and real(v)← 1. Otherwise (if real(v) = 1),397

an update is needed only if minmax(v) > m, in which case we set minmax(v) ← m and398

txtpos(v) ← j; since real(v) = 1, we have seen the label L(v) before and already had a399

realistic value for its minmax value. Second, if j + sd(v)− 1 > i + ℓ, then m is an optimistic400

value only, and therefore, we update the annotation of v only if real(v) = 0; in that case, we401

set minmax(v)← m and txtpos(v)← j.402

Finally, we use the following criterion for how far back in the string we need to go with j.403

If no node in the path from leafj to the root can be effected by the new phrase, then we do404

not need to consider position j at all in the current iteration. This holds if the label of the405

parent node does not reach i, i.e., if j + sd(parent(leafj))− 1 < i. We compute an auxiliary406

array E[1 . . n] s.t. E[j] = j + sd(parent(leafj))−1. It is easy to see that E[j] ≤ E[j′] if j < j′.407

This means that, moving back-to-front, we can stop at the first j for which E[j] < i.408

A worst-case time complexity for a Minmax parse producing z′ phrases is O(z′n2) ⊆ O(n3),409

as in principle one can consider every j ∈ [1 . . i− 1] for every new phrase T [i . . i + ℓ], traverse410

the O(n) ancestors of leafj , and run an RMQ operation on each. While the RMQ structure411

we use on C is dynamic, it only undergoes appends to the right, in which case it is possible412

to support updates in O(1) amortized time and queries in O(1) time [18, p. 5]. We do not413

know if this cubic complexity is tight, however. In practice we expect z′ to be much less414

than n on highly repetitive texts, and the height of the suffix tree to be logarithmic, yielding415

a time complexity of O(z′n log n), which thus becomes practical on repetitive data.416

▶ Example 6. In Fig. 3, we can see the suffix tree ST for T = alabaralalabarda$ with417

some additional annotations in some nodes. In this example, the first three phrases, i.e.,418

a, l, and ab, have been already computed, with the corresponding chain lengths in C and419

annotations in ST. The annotations exhibit non-trivial updates using the colour red, namely420

updates that are different than changing the starting value for minmax, i.e., changing minmax421

from +∞ to a finite value. Nodes whose annotation is not shown have not been updated422

yet, therefore, they have minmax = +∞, txtpos = −1, and real = 0. The updates caused423

by the new phrase ar are highlighted in blue. First, to find the longest previous factor we424

have to descend to the child with label a, then we check whether the child with label ar425

has minmax < c. In this case, it was not less than c (minmax = +∞), so we stopped the426

search and output the new phrase ar. Then all suffixes j with 1 ≤ j ≤ 6 undergo an update427

starting from the corresponding leaf; e.g., leaves 5 and 6 and corresponding ancestors get428

updated to some non-initial value, whereas inner nodes with label abar, alabar, bar and429

labar change real to 1 because j + sd(v)− 1 ≤ i + ℓ.430

7 The Greedier Parser: Combining Greedy with Minmax431

We now combine the ideas of the Greedy and the Minmax parsers, using the enhanced suffix432

tree to consider only longest admissible phrases. Consider when the Minmax algorithm stops433

in a node v and returns (txtpos(v), sd(v), T [i + sd(v)]). It did not descend to the next child434

u because minmax(u) = c, i.e., every occurrence of L(v) seen so far has a value c somewhere435

in the C-array. However, it is possible that in one of these occurrences, the position of this c436

is after L(v); in other words, that we could have gone down the edge some way towards u.437

To check this, we will use the D-array from Sec. 4, in addition to the C-array and438

the enhanced suffix tree. Let v and u be as before, i.e., v is parent of u, minmax(v) < c,439

minmax(u) ≥ c, L(v) is a prefix of T [j . .] and T [j + sd(v)] is the first character of the label440

Zs. Lipták, F. Masillo, G. Navarro XX:11

$ a bar
la rda$

da$labarda$

da$

b

2

10

8

14

6

da$

12

4

da$

11

3

la

labarda$

da$

1

9

7

15

da$

13

5

r17

16

$ a
r

ba
r

bar

i 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
T a l a b a r a l a l a b a r d a $
C 0 0 1 0 1 0

a
la

la
b

a
r

d
a

$

a
la

la
b

a
r

d
a

$

a
la

la
b

a
r

d
a

$

a
la

la
b

a
r

d
a

$

a
la

la
b
a
r

d
a

$

a
la

la
b
a
r

d
a

$

minmax = 01
real = 0
txtpos = 1

minmax = 01
real = 01
txtpos = 1

minmax = 01
real = 0
txtpos = 2

minmax = 01
real = 01
txtpos = 2

minmax = 01
real = 01
txtpos = 2

minmax = 1
real = 0
txtpos = 3

minmax = 1
real = 01
txtpos = 3

minmax = 01
real = 01
txtpos = 1

minmax = 0
real = 1
txtpos = 1

minmax = 01
real = 0
txtpos = 4

minmax = 01
real = 01
txtpos = 4

minmax = 1
real = 0
txtpos = 5

minmax = 0
real = 0
txtpos = 6

minmax = 0
real = 1
txtpos = 6

minmax = 1
real = 1
txtpos = 5

Figure 3 Example of the Minmax algorithm using the suffix tree of T = alabaralalabarda$.
The vertical bars are for delimiting already parsed phrases. See Example 6 for more details.

of (v, u). Let d be the maximum value of D[k] for some occurrence of L(u) that we have441

already processed, so d is the largest distance from the start of an occurrence of L(u) to the442

next c in the C-array. We return (txtpos(v), sd(v), T [i + sd(v)]), as before, if d ≤ sd(v), and443

(k, D[k], T [i+D[k]), where k is a leaf in u’s subtree with D[k] = d, otherwise. As for updating444

the annotations, if node v has minmax(v) = c and some txtpos(v) = x, then, when performing445

the traversal from leafj up to the root, we want to change txtpos(v)← j if D[j] > D[txtpos(v)].446

It is easy to see that the Greedier algorithm now returns the longest admissible phrases;447

otherwise, it works similarly to the Minmax algorithm. The time complexity increases to448

O(z′n2 log n) ⊆ O(n3 log n), because we need dynamic RMQs on array D as well, which449

undergoes updates at arbitrary positions.450

8 Experiments451

We implemented the BAT-LZ parsing algorithms in C, and ran our experiments on an AMD452

EPYC 7343, with 32 cores at 1.5 GHz, with a 32 MB cache and 1 TB of RAM. We used the453

repetitive files from Pizza&Chili (http://pizzachili.dcc.uchile.cl) and compared the454

number of phrases produced by BAT-LZ using different maximum values c for the chains,455

with the number of phrases produced by LZ (i.e., with no limit c). We used a classic LZ456

implementation [26] where the source of each phrase is its lexicographically closest suffix.3457

As a reference point, we also implemented two simple baselines that obtain a BAT-LZ458

parse. The first, called BAT-LZ1, runs the classic LZ parse and then cuts the phrases at459

the points where the chain lengths reach c + 1. Since the symbol becomes explicit, its chain460

3 It is likely that using the variant called “rightmost LZ parse”, which chooses the rightmost source, gives
better results because it tends to distribute the uses of the sources more uniformly. Such a parse seems
to be nontrivial to compute [4, 15], however, and we are not aware of practical implementations.

CPM 2024

XX:12 BAT-LZ Out of Hell

File σ n z n/z max c g h

coreutils 236 205,281,779 1,286,070 160 66 2,409,429 28
kernel 160 257,961,616 705,791 365 70 1,374,651 32
einstein 139 467,626,545 75,779 6,171 1,736 212,902 47
leaders 89 46,968,181 155,937 301 60 399,667 27
para 5 429,265,758 1,879,635 228 38 5,344,477 26
influenza 15 154,808,555 557,349 278 63 1,957,370 26

Table 1 Our repetitive text collections and some statistics: alphabet size σ, length n, number z

of phrases in the LZ parse, average phrase length n/z, maximum chain length in our LZ parse, size
g of a balanced grammar, and height h of that grammar.

length becomes zero and the chain lengths of the symbols referencing it decrease by c + 1.461

We should then find the new positions that reach c + 1, and so on. It is not hard to see that462

this laborious postprocessing can be simulated by just adding, to the original z value of LZ,463

the number of positions i where C[i] mod (c + 1) = 0.464

The second baseline, BAT-LZ2, is slightly stronger: when it detects that it has produced465

a text position exceeding the maximum c, it cuts the phrase there (making the symbol466

explicit), and restarts the LZ parse from the next position. This gives the chance of choosing467

a better phrase starting after the cut, unlike BAT-LZ1, which maintains the original source.468

Despite some optimizations, our Greedy BAT-LZ parser consistently reaches the Θ(log3 n)469

time complexity per text symbol, making it run at about 3 MB per minute. The Greedier470

and the Minmax parsers, despite their cubic worst-case time complexity, run at a similar471

pace: 1.9–4.7 MB per minute: our upper bound is utterly pessimistic, and perhaps not tight.472

Table 1 shows the main characteristics of the collections chosen. We included two473

versioned software repositories (coreutils and kernel, where the versioning has a tree474

structure), two versioned documents (einstein and leaders, where the versioning has a475

linear structure), and two biological sequence collections (para and influenza, where all476

the sequences are pairwise similar). The average phrase length is in the range 160–365 and477

the maximum chain length of a symbol is in the range 38–70. The exception is einstein,478

which is extremely compressible and also has a very large c value.479

As a point of comparison, the table also includes the grammar size and height obtained480

with a balanced version of RePair [35].4 We modified the RePair grammar so as to remove481

the nonterminals that are referenced only once, inserting their right-hand side in that unique482

referencing place. The maximum grammar height is comparable with c as a measure of access483

cost in the grammar-compressed text. We can see that the height is considerably smaller484

than c, for the price of a weaker compression method.485

Fig. 4 shows how the quotient between the number of phrases generated by the BAT-LZ486

parsers and by the optimal number of LZ phrases evolves as we allow longer chains. It487

can be seen that our Greedy BAT-LZ parser sharply outperforms the baselines in terms of488

compression performance. Our Greedy parser is, in turn, outperformed by Minmax, and489

Minmax is outperformed by our Greedier parser. The last one reaches a number of phrases490

that is only 1% over the optimal for c as low as 20–30, which is 0.7–1.1 times log2 n.491

We also show in the figures the balanced grammar method, using the values of Table 1.5492

4 From www.dcc.uchile.cl/gnavarro/software/repair.tgz, directory bal/.
5 For a fair comparison of space, we consider a tight space needed to support fast extraction: For each of

the z phrases we count log2 n bits to point to the source, log2(n/z) bits for the length (as there are z

Zs. Lipták, F. Masillo, G. Navarro XX:13

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15 20 25 30 35 40 45 50

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

coreutils (max 66)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15 20 25 30 35 40 45 50

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

kernel (max 70)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 300 500 700 900 1100 1300 1500 1700

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

einstein (max 1736)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 15 20 25 30 35 40 45 50

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

leaders (max 60)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 15 20 25 30 35

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

para (max 38)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15 20 25 30 35 40 45 50

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

influenza (max 63)

Figure 4 Overhead factor of number of BAT-LZ versus LZ phrases as a function of the maximum
length c of a chain, for our different BAT-LZ parsers and a balanced grammar.

We can see that grammars are competitive, in some cases, with the simple baselines, but493

not with our new algorithms, which yield much better tradeoffs. The only exception to this494

analysis is einstein, which features a huge maximum c value of 1,736 and whose (extremely495

low) z value is approached only with c values near 700 using our BAT-LZ parsers. On this496

text, the balanced grammar offers an access time that is not achievable with our techniques.497

Fig. 5 (left) zooms in the area where Greedier BAT-LZ reaches less than 10% extra space498

on top of standard LZ (excluding einstein).499

9 Discussion and Future Work500

A first question is whether a Greedy BAT-LZ parsing can be produced in o(n log3 n) time501

within linear space, either by solving our geometric problem faster or without recasting502

lengths adding up to n; the cumulative sequence of lengths also allow finding the desired phrase using
Elias-Fano codes [14, 16]), and 8 bits for the final symbol. For a grammar of size g and r symbols, we
count g log2 r bits for the right-hand sides, g log2 n bits for the expansion lengths (cumulative on the
right-hand sides to binary search them), and r log(g/r) bits to encode the rule lengths with Elias-Fano.

CPM 2024

XX:14 BAT-LZ Out of Hell

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 15 20 25 30 35 40 45 50

coreutils
kernel
leaders

para
influenza

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

Greedier BAT-LZ

Value
0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6 Histogram of chain length on leaders - LZ (max = 60)

0 10 20 30 40 50 60 70
Value

0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6
Histogram of chain length on leaders - Greedier BAT-LZ (max = 20)

Figure 5 Left: detail of Fig. 4, for the Greedier BAT-LZ parser, focusing on the overheads below
10% over the LZ parse. Right: a comparison of histograms with shared x and y axis representing
the chain length values on leaders; LZ on top and Greedier BAT-LZ with c = 20 on the bottom.

the parse into a geometric problem. This question seems to be answered in a very recent503

work, simultaneous with ours, that gives an O(n log σ)-time greedy algorithm [2] based504

on simulating a suffix tree construction.6 This algorithm is likely to be faster than ours505

in practice, but also to use much more space, which is relevant when compressing large506

repetitive texts. They also propose a parse similar to our BAT-LZ2, along with others that507

are incomparable to ours (in particular to Greedier, our best performing BAT-LZ parse).508

Besides our reduction to a geometric problem being of independent interest, we believe509

that its flexibility can be exploited to compute more sophisticated parses in O(n log3 n) time.510

For example, it might compute the Greedier parse if we extend the RMQ data structure to511

incorporate the additional optimization criterion (minmax of sources).512

Other heuristics may also be of interest: there may be better ways to rank sources, other513

than their maximum chain length. Further, we have so far focused on reducing the worst514

case access time, but we might prefer to reduce the average access time. Our parsings do515

reduce it (Fig. 5 right), but this is just a side effect and has not been our main aim. So we516

pose as an open problem to efficiently build a leftward parse with bounded average reference517

chain length whose number of phrases is minimal, or in practice close to that of classical LZ.518

Another intriguing line of work is to study the compression performance of BAT-LZ.519

An important result by Bannai et al. [2] shows that, letting grl be the size of the smallest520

run-length context-free grammar that generates a text T , there exists a BAT-LZ parse for T521

of size O(grl) if we let c = Θ(log n) with some convenient multiplying constant. This bound522

is nearly optimal, because existing bounds [51] forbid the existence of BAT-LZ parses of523

size O(g)—where g ≥ grl is the size of the smallest context-free grammar—with access time524

c = O(log1−ϵ n) for a constant ϵ > 0. A relevant question is whether there is a BAT-LZ parse525

of size O(z)—where z ≤ grl is the size of the Lempel-Ziv parse of T—with c = Θ(log n).526

Finally, from an application viewpoint, it would be interesting to incorporate BAT-LZ in527

the construction of the LZ-index [34] and measure how much its time performance improves528

at the price of an insignificant increase in space. Obtaining an efficient bounded version of529

the LZ-End parsing described in the same article [34] is also an interesting problem since530

efficient parsings for unrestricted LZ-End have appeared only recently [29, 28].531

6 They use a slightly modified definition of Lempel-Ziv parses, which has no explicit character at the end
of the phrases. The precise consequences of this difference are not totally clear to us.

Zs. Lipták, F. Masillo, G. Navarro XX:15

References532

1 Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on533

Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.534

2 Hideo Bannai, Mitsuru Funakoshi, Diptarama Hendrian, Myuji Matsuda, and Simon J. Puglisi.535

Height-bounded Lempel-Ziv encodings. CoRR, abs/2403.08209, 2024.536

3 Djamal Belazzougui and Simon J. Puglisi. Range predecessor and Lempel-Ziv parsing. In537

Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2053–2071,538

2016.539

4 Djamal Belazzougui and Simon J. Puglisi. Range predecessor and Lempel-Ziv parsing. In540

Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2053–2071,541

2016.542

5 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and543

Oren Weimann. Random access to grammar-compressed strings and trees. SIAM Journal on544

Computing, 44(3):513–539, 2015.545

6 Timothy M. Chan, Yakov Nekrich, Saladi Rahul, and Konstantinos Tsakalidis. Orthogonal546

point location and rectangle stabbing queries in 3-d. Journal of Computational Geometry,547

13(1), 2022.548

7 Timothy M. Chan and Konstantinos Tsakalidis. Dynamic orthogonal range searching on the549

RAM, revisited. Journal of Computational Geometry, 9(2):45–66, 2018.550

8 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,551

and Abhi Shelat. The smallest grammar problem. IEEE Transactions on Information Theory,552

51(7):2554–2576, 2005.553

9 Gang Chen, Simon J. Puglisi, and William F. Smyth. Lempel-Ziv factorization using less time554

& space. Mathematics in Computer Science, 1:605–623, 2008.555

10 Ferdinando Cicalese and Francesca Ugazio. On the complexity and approximability of bounded556

access Lempel Ziv coding. CoRR, abs/2403.15871, 2024. Submitted.557

11 David R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.558

12 Francisco Claude, Gonzalo Navarro, and Alejandro Pacheco. Grammar-compressed indexes559

with logarithmic search time. Journal of Computer and System Sciences, 118:53–74, 2021.560

13 Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. The wavelet matrix: An561

efficient wavelet tree for large alphabets. Information Systems, 47:15–32, 2015.562

14 P. Elias. Efficient storage and retrieval by content and address of static files. Journal of the563

ACM, 21:246–260, 1974.564

15 Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen. New advances in rightmost Lempel-565

Ziv. In Proc. 30th International Symposium on String Processing and Information Retrieval566

(SPIRE), pages 188–202, 2023.567

16 R. Fano. On the number of bits required to implement an associative memory. Memo 61,568

Computer Structures Group, Project MAC, Massachusetts, 1971.569

17 Martin Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th Annual570

Symposium on Foundations of Computer Science (FOCS), pages 137–143. IEEE Computer571

Society, 1997.572

18 J. Fischer. Combined data structure for previous- and next-smaller-values. Theoretical573

Computer Science, 412(22):2451–2456, 2011.574

19 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum575

queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.576

20 Johannes Fischer, Tomohiro I, and Dominik Köppl. Lempel Ziv computation in small space577

(LZ-CISS). In Proc. 26th Annual Symposium on Combinatorial Pattern Matching (CPM),578

LNCS 9133, pages 172–184, 2015.579

21 Johannes Fischer, Tomohiro I, Dominik Köppl, and Kunihiko Sadakane. Lempel-Ziv580

factorization powered by space efficient suffix trees. Algorithmica, 80(7):2048–2081, 2018.581

22 Moses Ganardi, Artur Jez, and Markus Lohrey. Balancing straight-line programs. Journal of582

the ACM, 68(4):article 27, 2021.583

CPM 2024

XX:16 BAT-LZ Out of Hell

23 Keisuke Goto and Hideo Bannai. Simpler and faster Lempel Ziv factorization. In Proc. 23rd584

Data Compression Conference (DCC), pages 133–142, 2013.585

24 D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational586

Biology. Cambridge University Press, 1997.587

25 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing. In588

Proc. 12th International Symposium on Experimental Algorithms (SEA), pages 139–150, 2013.589

26 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factorization:590

Simple, fast, small. In Proc. 24th Annual Symposium on Combinatorial Pattern Matching591

(CPM), LNCS 7922, pages 189–200, 2013.592

27 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lazy Lempel-Ziv factorization593

algorithms. ACM Journal of Experimental Algorithmics, 21(1):2.4:1–2.4:19, 2016.594

28 Dominik Kempa and Dmitry Kosolobov. LZ-End parsing in compressed space. In Proc. 27th595

Data Compression Conference (DCC), pages 350–359, 2017.596

29 Dominik Kempa and Dmitry Kosolobov. LZ-End parsing in linear time. In Proc. 25th Annual597

European Symposium on Algorithms (ESA), pages 53:1–53:14, 2017.598

30 Dominik Kempa and Barna Saha. An upper bound and linear-space queries on the LZ-599

End parsing. In Proc. 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages600

2847–2866, 2022.601

31 John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal lossless602

source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.603

32 Dominik Köppl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space604

(LZ-CICS). In Proc. 26th Data Compression Conference (DCC), pages 3–12, 2016.605

33 Sebastian Kreft and Gonzalo Navarro. Lz77-like compression with fast random access. In606

Proc. 20th Data Compression Conference (DCC), pages 239–248, 2010.607

34 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.608

Theoretical Computer Science, 483:115–133, 2013.609

35 J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of the IEEE,610

88(11):1722–1732, 2000.611

36 Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Transactions612

on Information Theory, 22(1):75–81, 1976.613

37 M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.614

38 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,615

23(2):262–272, 1976.616

39 J. Ian Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology and617

Theoretical Computer Science (FSTTCS), LNCS 1180, pages 37–42, 1996.618

40 J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet trees.619

Theoretical Computer Science, 638:91–97, 2016.620

41 Gonzalo Navarro. Compact Data Structures – A practical approach. Cambridge University621

Press, 2016.622

42 Gonzalo Navarro. Indexing highly repetitive string collections, part I: Repetitiveness measures.623

ACM Computing Surveys, 54(2):article 29, 2021.624

43 Gonzalo Navarro. Indexing highly repetitive string collections, part II: Compressed indexes.625

ACM Computing Surveys, 54(2):article 26, 2021.626

44 Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Computational627

Geometry, 42(4):342–351, 2009.628

45 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix629

array construction. IEEE Transactions on Computers, 60(10):1471–1484, 2011.630

46 Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Proc. 22nd Annual631

Symposium on Combinatorial Pattern Matching (CPM), LNCS 6661, pages 15–26, 2011.632

47 Simon J. Puglisi, William F. Smyth, and Andrew Turpin. A taxonomy of suffix array633

construction algorithms. ACM Computing Surveys, 39(2):article 4, 2007.634

Zs. Lipták, F. Masillo, G. Navarro XX:17

48 Michael Rodeh, Vaughan R. Pratt, and Shimon Even. Linear algorithm for data compression635

via string matching. Journal of the ACM, 28(1):16–24, 1981.636

49 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-637

based compression. Theoretical Computer Science, 302(1-3):211–222, 2003.638

50 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.639

51 Elad Verbin and Wei Yu. Data structure lower bounds on random access to grammar-640

compressed strings. In Proc. 24th Annual Symposium on Combinatorial Pattern Matching641

(CPM), LNCS 7922, pages 247–258, 2013.642

52 Peter Weiner. Linear pattern matching algorithms. In Proc. 14th Annual Symposium on643

Switching and Automata Theory (SWAT), pages 1–11. IEEE Computer Society, 1973.644

CPM 2024

	1 Introduction
	2 Basic Data Structures
	3 The Lempel-Ziv (LZ) Parsing and its Bounded Version (BAT-LZ)
	4 A Greedy Parsing Algorithm for BAT-LZ
	5 A Geometric Data Structure
	6 The Minmax Parsing Algorithm
	7 The Greedier Parser: Combining Greedy with Minmax
	8 Experiments
	9 Discussion and Future Work

