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Abstract The problem of parameterized range majority asks us to preprocess
a string of length n such that, given the endpoints of a range, one can quickly
find all the distinct elements whose relative frequencies in that range are more
than a threshold 7. This is a more tractable version of the classical problem
of finding the range mode, which is unlikely to be solvable in polylogarithmic
time and linear space. In this paper we give the first linear-space solution with
optimal O(1/7) query time, even when 7 can be specified with the query.
We then consider data structures whose space is bounded by the entropy of
the distribution of the symbols in the sequence. For the case when the alpha-
bet size o is polynomial on the computer word size, we retain the optimal time
within optimally compressed space (i.e., with sublinear redundancy). Other-
wise, either the compressed space is increased by an arbitrarily small constant
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factor or the time rises to any function in (1/7) - w(1). We obtain the same
results on the complementary problem of parameterized range minority.

Keywords Compressed data structures - Range majority and minority

1 Introduction

Finding frequent elements in a dataset is a fundamental operation in data
mining. Consider, for example, spotting frequent terms tweeted during a cer-
tain event, or frequently visited web pages, or items frequently purchased in
an online store during the weekend.

The most frequent elements can be difficult to spot when all the elements
have nearly equal frequencies. It is more natural, however, to be interested in
the most frequent elements only if they really are frequent. For example, Boyer
and Moore [8] showed how we can scan a given string twice using O(1) space
and find a majority element if one exists. Generalizing Boyer and Moore’s re-
sult (see [11]), Misra and Gries [31] showed how, given a string and a threshold
0 < 7 <1, we can scan the string twice using O(1/7) space and find all the dis-
tinct elements whose relative frequencies exceed 7. These elements are called
the T-majorities of the string. If the element universe is [1..0], their algorithm
can run in linear time and O(o) space. Demaine et al. [13] rediscovered the
algorithm and deamortized the cost per element; Karp et al. [26] rediscovered
it again, obtaining O(1/7) space and linear randomized time. As Cormode and
Muthukrishnan [12] put it, “papers on frequent items are a frequent item!”.

Krizanc et al. [29] introduced the problem of preprocessing the string such
that later, given the endpoints of a range, we can quickly return the mode of
that range (i.e., the most frequent element). They gave two solutions, one of
which takes O(nz_QE) space for any fixed positive ¢ < 1/2, and answers queries
in O(nlglgn) time; the other takes O(n?lglgn/lgn) space and answers
queries in O(1) time. Petersen [35] reduced Krizanc et al.’s first time bound
to O(n€) for any fixed non-negative € < 1/2, and Petersen and Grabowski [36]
reduced the second space bound to O(n?lglgn/ 1g? n). Chan et al. [9] gave an

O(n) space solution that answers queries in O (\/ n/lg n) time. They also gave

evidence suggesting we cannot easily achieve query time substantially smaller
than y/n using linear space; however, the best known lower bound [23] says
only that we cannot achieve query time o(lg(n)/lg(sw/n)) using s words of w
bits each. Because of the difficulty of supporting range mode queries, Bose et
al. [7] and Greve et al. [23] considered the problem of approximate range mode,
for which we are asked to return an element whose frequency is at least a con-
stant fraction of the mode’s frequency. Bose et al. showed, for example, how
to 4-approximate the range mode in linear space with constant query time or
(1 + €)-approximate the range mode in O(n/¢) space with O(lglgn +1g(1/¢))
query time. Among other results, Greve et al. improved Bose et al.’s second
query time to O(lg(1/e¢)).
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Karpinski and Nekrich [27] took a different direction, analogous to Misra
and Gries’ approach, when they introduced the problem of preprocessing the
string such that later, given the endpoints of a range, we can quickly return the
T-majorities of that range. We refer to this problem as parameterized range
majority. Note that, if a 7-majority exists, a random element in the range
matches it with probability at least 7, so in expectation we find a T-majority
after 1/7 attempts. The main challenges are how to obtain worst-case times
to obtain all the T7-majorities by storing suitable sets of candidates, and how
to efficiently calculate their frequency in the range.

Assuming 7 is fixed when we are preprocessing the string, Karpinski and
Nekrich [27] showed how we can store the string in O(n(1/7)) space and answer
queries in O((l/T)(lg lg n)z) time. They also gave bounds for dynamic and
higher-dimensional versions. Durocher et al. [14] independently posed the same
problem and showed how we can store the string in O(nlg(1/7 + 1)) space and
answer queries in O(1/7) time. Notice that, because there can be up to 1/7
distinct elements to return, this time bound is worst-case optimal. Gagie et
al. [20] showed how to store the string in compressed space —i.e., O(n(H + 1))
bits, where H is the entropy of the distribution of elements in the string — such
that we can answer queries in O((1/7)lglgn) time. Note that H < lgo, thus
O(n(H + 1)) bits is O(n) space. They also showed how to handle a variable 7
and still achieve optimal query time, at the cost of increasing the space bound
by a (lgn)-factor. That is, they gave a data structure that stores the string
in O(n(H 4+ 1)) words —of w = §2(Ign) bits each— such that later, given
the endpoints of a range and 7, we can return the 7-majorities of that range
in O(1/7) time. Chan et al. [10] gave another solution for variable 7, which
also has O(1/7) query time and uses O(nlgn) space. All these results are
summarized in Table 1 together with our new results. Related work includes
dynamic structures [27,16,21], approximate solutions [30,39], and encodings
that do not access the string at query time [34,22].

Our contributions The central result of this paper is the first linear-space and
optimal-time data structure for parameterized range majority, with variable
7. Our linear space is indeed O(nlgo) bits, stricter than other linear-space
solutions using O(nlgn) bits. This is summarized in the following theorem.

Theorem 1 Let S[1..n] be a string over alphabet [1..0]. We can store S in
O(nlgo) bits such that later, given the endpoints of a range and T, we can
return the T-magorities for that range in time O(1/7). The structure is built
within O(nlgn) deterministic time and O(nlgo) bits.

This theorem is proved along Sections 3 and 4. In the former, we consider
the case where the alphabet of the string is polynomial on the computer word
size, lgo = O(lgw). We then give a linear-space structure with worst-case
optimal O(1/7) query time, based on spotting a sufficient set of candidates and
then checking each one in constant time. In Section 4 we extend this solution
to the more challenging case of larger alphabets, lg o = w(lgw), where another
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Table 1 Results for the problem of parameterized range majority on a string of length n
over an alphabet [1..0] with o < n in which the distribution of the elements has entropy
H < lgo. Note that all the spaces given in bits are in O(n) words.

source space time T is
Karpinski and Nekrich [27] O(n(1/7)) words O((1/7)(1glgn)?) fixed
Durocher et al. [14] O(nlg(1/7)) words O(1/7) fixed
Gagie et al. [20] O(n(H + 1)) bits O((1/7)1glgo) fixed
Chan et al. [10] O(nlgn) words O(1/7) variable
Gagie et al. [20] O(n(H + 1)) words O(1/7) variable
Theorem 5 (Igo = O(lgw)) nH + o(n) bits O(1/7) variable
Theorem 6 nH 4+ o(n)(H + 1) bits  Any (1/7) -w(1)  variable
Theorem 7 (14 ¢)nH + o(n) bits O(1/1) variable

mechanism to check candidates in constant time is needed. Theorems 2 and
3, proved respectively in those sections, amount to Theorem 1.

The paper then enters in a more technical stage, where we show that the
linear space can be reduced to n times the entropy of the distribution of the
symbols in the string S (plus a sublinear redundancy); we call this “optimal
compressed space”. For small alphabets, Section 5 shows how to obtain optimal
compressed space with no slowdown on the optimal query time. For large
alphabets, instead, Section 6 obtains either optimal time on nearly-optimal
compressed space, or nearly-optimal time on optimally compressed space. More
precisely, we obtain the following results (see Table 1):

1. O(1/7) query time using nH + o(n) bits, where lgo = O(lgw);
2. O(1/7) query time using (1+¢)nH + o(n) bits, for any constant € > 0; and
3. any query time of the form (1/7) - w(1) using nH + o(n)(H + 1) bits.

In all cases, we preserve constant-time access to S within the compressed
space we use, and our queries require O(1/7) extra working space. As a byprod-
uct, we also show how to find the range mode in a time that depends on how
frequent it actually is.

We finally consider the complementary problem of parameterized range
minority, which was introduced by Chan et al. [10] (and then generalized to
trees by Durocher et al. [15]). For this problem we are asked to preprocess the
string such that later, given the endpoints of a range, we can return (if one
exists) an element that occurs in that range but is not one of its T-majorities.
Such an element is called a T-minority for the range. At first, finding a 7-
minority might seem harder than finding a 7-majority because, for example,
we are less likely to find a 7-minority by sampling. Nevertheless, Chan et
al. gave an O(n) space solution with O(1/7) query time even for variable 7.
In Section 7 we exploit the duality with 7-majorities in order to reuse the
results obtained for the latter, so that the tradeoffs (1)—(3) are obtained for
T-minorities as well. Actually, a single data structure with the spaces given in
points (1)—(3) solves at the same time T-minority and 7-majority queries.
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Our results dominate all the previous work [27,14,20,10]. An early partial
version of this article [4] already included the optimal-time and linear-space
result, but its compressed structures were not so efficient: their structure for
optimal-time 7-majorities required O(nlglgo) bits of space instead of our
near-nH bits space in (1-2); their structures using near-nH bits of space re-
quired O((1/7)1glgo) or O((1/7)1g(1/7)/1glgn) time, instead of our optimal
or near-optimal time in (3); and their structure for optimal-time 7-minorities
in optimal time required O(n) extra bits.

2 Preliminaries

We use the RAM model of computation with word size in bits w = 2(Ign), al-
lowing multiplications. The input is an array S[1..n] of symbols (or “elements”)
from [1..0], where for simplicity we assume o < n (otherwise we could remap
the alphabet so that every symbol actually appears in S, without changing
the output of any 7-majority or 7-minority query).

2.1 Access, select, rank, and partial rank

Let S[1..n] be a string over alphabet [1..0], for ¢ < n, and let H <lgo be the
entropy of the distribution of elements in S, also called the zero-order entropy
of S; that is, H = Zae[l“al e lg %, where each element a appears n, times
in S. An access query on S takes a position k and returns S[k]; a rank query
takes an alphabet element a and a position k and returns rank,(S, k), the
number of occurrences of a in S[1..k]; a select query takes an element a and a
rank r and returns select, (S, r), the position of the rth occurrence of a in S
(or n+1 if there are fewer than r occurrences of @ in S). A partial rank query,
rankgyg) (S, k), is a rank query with the restriction that the element a must
occur in the position k. These are among the most well-studied operations on
strings, so we state here only the results most relevant to this paper.

For ¢ = 2 and any constant ¢, Patragcu [37] showed how we can store S
in nH 4+ O(n/1g°n) bits, supporting all the queries in time O(c). If S has m
1s, this space is O(mlg 2 + n/lg°n) bits. For lgo = O(lglgn), Ferragina et
al. [17] showed how we can store S in nH +o(n) bits and support all the queries
in O(1) time. This result was later extended to the case lgo = O(lgw) [6, Thm.
7). Barbay et al. [1] showed how, for any positive constant e, we can store S in
(14 €)nH + o(n) bits and support access and select in O(1) time and rank in
O(lglg o) time. Alternatively, they can store S in nH + o(n)(H + 1) bits and
support either access or select in time O(1), and the other operation, as well
as rank, in time O(lglgo). Belazzougui and Navarro [6, Thm. 8] improved
the time of rank to O(lglg,, o), which they proved optimal, and the time
of the non-constant operation to any desired function in w(1). Belazzougui
and Navarro [5, Sec. 3] showed how to support O(1)-time partial rank using
o(n)(H + 1) further bits.
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If 0 > n, we can remap the distinct symbols that appear in S to [1..07],
where ¢’ < n. A bitvector B[l..0] with 1s the o’ positions of the symbols
that appear in S can be used to translate back from the mapped symbol o
to the original symbol a = select;(B,a’) in O(1) time and ¢’lg & + O(0’) <
nlg 2 + O(n) additional bits. We omit this technical detail for simplicity in
the article; we also use some simpler variants of the above results.

2.2 Successors in succinct space

The successor of z in a set X = {x1,...,2Zm}, with 2; < ;41, is the small-
est x; > xz. The succinct SB-tree [24, Lem 3.3] is a data structure for effi-
ciently computing successors®. If the numbers z; are integers in [1..n], this
data structure uses O(mlglgn) bits and finds the successor of any z in time
O(lgm/1glgn), requiring only one access to some x; (the succinct SB-tree does
not store the set X, so it needs a separate data structure providing constant-
time access to any x; € X). The succinct SB-tree also needs a table of size
O(n") for any constant 0 < v < 1, which is independent of X and thus can be
shared among all the structures on the same universe. The succinct SB-tree
can be built in O(m) time [32, Sec. 4].

In this article we will need to store succinct SB-trees on universes [1..n/]
for n’ < n, retaining the O(lgm/ lglgn) successor time but reducing the space
to O(mlglgn') bits. We show next that this is indeed possible.

Lemma 1 We can store a set X of m integers in [1..n'] in a succinct SB-tree
variant that requires O(mlglgn’) + O(nY) bits of space, for any n > n' and
constant 0 < v < 1, and computes successors on X in time O(lgm/lglgn)
plus access to one element of X. The O(n”) bits depend only on [/lgn| and

[lglgn'].

Proof The proof of Lemma 3.3 in Grossi et al. [24] can be used almost ver-
batim. We maintain the same succinct B-tree of arity b = [v/Ign] and build,
for each node, a Patricia tree on its b separator keys. The fact that the keys
are shorter (i.e., of lgn’ bits) shows up when storing the Patricia tree skips:
the whole Patricia tree (without storing the explicit keys) can be encoded in
b[lglgn'] bits, plus O(b) bits to describe the tree topology. This contributes
the bulk of the space, O(mlglgn’) bits.

A table with 29(b1s1s") — O(n"/lgn) entries simulates any Patricia tree
traversal in constant time; this requires O(n?) bits. Note that this table de-
pends only on b = [{/Ign] and on the number of bits used to encode the skips
in the Patricia tree, [lglgn’]. O

1 In that paper they find the predecessor of x, which is the largest x; < x, but the problem
is analogous.
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2.3 Characterizing range majorities and minorities

If we preprocess S to answer the operations described in Section 2.1, then we
can easily determine whether a is a 7-majority or a 7-minority on S[i..j] by
comparing rank, (.S, j) — rank,(S,7 — 1) with 7(j — i+ 1). However, those rank
operations cannot be supported in constant time on large alphabets. The next
simple lemma, which we will use throughout, gives a characterization in terms
of the other string operations, which can be supported in constant time.

Lemma 2 Suppose we know the position of the leftmost occurrence of an el-
ement in a range. Then we can check whether that element is a T-minority or
a T-majority using a partial rank query and a select query on S.

Proof Let k be the position of the first occurrence of a in S[i..j]. If S[k] is the
rth occurrence of a in S, then a is a 7-minority for S[i..j] if and only if the
(r+ |7(j — i+ 1)])th occurrence of a in S is strictly after j; otherwise a is
a 7-majority. That is, we can check whether a is a 7-minority for S[i..j] by
checking whether

select, (S, rank, (S, k) + [7(j —i+1)]) > J;

since S[k] = a, computing rank, (S, k) is only a partial rank query. O

2.4 Colored range listing

Muthukrishnan [33] showed how we can store S[l..n] such that, given the
endpoints of a range, we can quickly list the distinct elements in that range
and the positions of their leftmost occurrences therein. Let C[1..n] be the array
in which Ck] is the position of the rightmost occurrence of the element S[k]
in S[1..k —1] — i.e., the last occurrence before S[k] itself — or 0 if there is no
such occurrence. Notice S[k] is the first occurrence of that distinct element in
a range S[i..j] if and only if ¢ < k < j and C[k] < i. We store C, implicitly or
explicitly, and a data structure supporting O(1)-time range-minimum queries
on C': it returns the position of the leftmost occurrence of the minimum in
any given range. Sadakane [38] and Fischer and Heun [19] gave O(n)-bit data
structures supporting O(1)-time range-minimum queries.

To list the distinct elements in a range S[i..j], we find the position m of
the leftmost occurrence of the minimum in the range CJi..j]; check whether
Clm] < i; and, if so, output S[m| and m and recurse on C[i..m — 1] and
C[m + 1..j]. This procedure is online — i.e., we can stop it early if we want
only a certain number of distinct elements — and the time it takes per distinct
element is O(1) plus the time to access C.

Suppose we already have data structures supporting access, select and
partial rank queries on S, all in O(¢) time, for some ¢. Notice that C[k] =
select gz (S, rankgpy) (S, k) — 1), so we can also support access to C' in O(t)
time. Therefore, we can implement Muthukrishnan’s solution using O(n) extra
bits such that it takes O(t) time per distinct element listed.
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2.5 Sparsifying Muthukrishnan’s structure

To reduce the O(n) bits of extra space of Section 2.4 to o(n), we can sparsify
the range-minimum data structure. Such a result was sketched by Hon et
al. [25, Thm. 7], but it lacks sufficient detail to ensure correctness. We give
these details next.

Let g(n) = w(1). We cut the sequence into blocks of length g(n), choose
the n/g(n) minimum values of each block, and build the range-minimum data
structure on the new array C’[1..n/g(n)] (i.e., C'[i] stores the minimum of
C[(i = 1) - g(n) + 1..i - g(n)]). This requires O(n/g(n)) = o(n) bits. Mutukr-
ishnan’s algorithm is then run over C’ as follows. We map the range C[i..j]
to C’ and find the minimum position in the mapped range of C’. We then
recursively process its left interval, then process the minimum of C’ by con-
sidering the g(n) corresponding cells in C, and finally process the right part
of the interval. The recursion stops when the interval becomes empty or when
all the g(n) elements in the block of C' are already reported.

Lemma 3 The procedure described identifies the leftmost positions of all the
distinct elements in an interval S[i..j], working over at most g(n) cells per
new element discovered.

Proof Let us first consider the case of block-aligned intervals S[i..j]. We prove,
by induction on the size of the current subinterval [¢..r] (which is always block-
aligned), that if we have already reported all the distinct elements in S[é..0 —
1] before the recursive call on [{..r], then we have reported all the distinct
elements in S[i..r] after the call. This is clearly sufficient to establish the
result.

Let k' be the position of the minimum in C’'[(¢ — 1)/g(n) + 1..r/g(n)] and
let k be the position of the minimum in C[(k’ — 1) - g(n) + 1.k’ - g(n)]. Then
C'[k] is the minimum in C[£..r] and S[k] is the leftmost occurrence in S[¢..r] of
the element a = S[k|. If C[k] > i, then a already occurs in S[i..¢ — 1] and we
have already reported it. Since the minimum of C[¢..r] is within the block &’ of
(', it is sufficient that C[k] > i for all the positions k in that block to ensure
that all the values in S[¢..r] have already been reported, in which case we can
stop the procedure. The g(n) scanned cells can be charged to the function that
recursively invoked the interval [£..r].

Otherwise, we recursively process the interval to the left of block k', C[¢..(k'—
1) - g(n)], which by inductive hypothesis reports the unique elements in that
interval. Then we process the current block of size g(n), finding at least the
new occurrence of element S[k] (which cannot have been found to the left of
k’). Finally, we process the interval to the right of k', C[k’ - g(n) + 1..r], where
the inductive hypothesis again holds.

Note that the method is also correct if, instead of checking whether all the
elements in the block k' of C' are > i, we somehow check that all of them have
already been reported. We will use this variant later in the paper.

For general ranges S[i..j], we must include in the range of C’ the two
partially overlapped blocks on the extremes of the range. When it comes to
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process one of those blocks, we only consider the cells that are inside [i..j]; the
condition to report an element is still that C[k] < i. |

3 Parameterized Range Majority on Small Alphabets

In this section we consider the case lgo = O(lgw), where rank queries on S
can be supported in constant time. Our strategy is to find a set of O(1/7)
candidates that contain all the possible 7-majorities and then check them one
by one, counting their occurrences in S[i..j] via rank queries on S. The time
will be worst-case optimal, O(1/7), and our structures will use linear space,
O(nlgo) bits. In Section 5 we will obtain compressed space.

First, note that if 7 < 1/0, we can simply assume that all the o symbols
are candidates for majority, and check them one by one; therefore we care only
about how to find O(1/7) candidates in the case 7 > 1/0.

3.1 Structure

We store an instance of the structure of Belazzougui and Navarro [6, Thm. 5]
supporting access, rank, and select on S in O(1) time, using nlgo + o(n) bits.
For every 0 <t < [lgo] and t < b < |lgn], we divide S into blocks of length
2b=1 and store a binary string G4[1..n] in which G%[k] = 1 if (1) the element
S[k] occurs at least 2°~* times in S[k—2°T1..k+2°+1] and (2) k is the leftmost
or rightmost position where S[k| occurs in its block. We use Gj[1..n] to answer
queries with 7 > 1/0 and b > ¢, where b = |lg(j — i+ 1)| and t = [lg(1/7)];
we will say later how we deal with queries with 7 < 1/0 or b < ¢.

Assuming 7 < 1/0 and b > t, the following lemma shows that it is sufficient
to consider the candidates S[k] for i < k < j where Gj[k] = 1.

Lemma 4 For every T-majority a of S[i..j] there exists some k € [i..j] such
that S[k] = a and Gi[k] = 1

Proof Since S[i..j] cannot be completely contained in a block of length 201
if S[i..j] overlaps a block then it includes one of that block’s endpoints. There-
fore, if S[i..j] contains an occurrence of an element a, then it includes the
leftmost or rightmost occurrence of a in some block. Suppose a is a T-majority
in Sfi..j], and b > t. For all ¢ < k < j, a occurs at least 72 > 26—t times in
S[k — 21 .k 4 2°*1] so since some occurrence of a in S[i..j] is the leftmost
or rightmost in its block, it is flagged by a 1 in Gj[i..j]. 0

The number of distinct elements that occur at least 2°~* times in a range
of size O(2°) is O(2), so in each block there are O(2*) positions flagged by
Is in G}, for a total of m = O(n Qt*b) 1s. It follows that we can store an
instance of the structure of Patragcu [37] (recall Section 2.1) supporting O(1)-
time access, rank and select on G} in O(n2!=%(b —t) + n/1g’ n) bits in total.
Summing over ¢ from 0 to [lgo] and over b from ¢ to [lgn |, calculation shows
we use a total of O(nlgo) bits for the binary strings.
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3.2 Queries

Given endpoints ¢ and j and a threshold 7, if 7 < 1/, we simply report every
element a € [l..0] such that rank,(S,j) — rank,(S,i — 1) > 7(j — ¢+ 1), in
total time O(o) = O(1/7).

Otherwise, we compute b and t as explained and, if b < ¢, we run a version
of Misra and Gries’ algorithm [31] that takes O(j —i) = O(1/7) worst-case
time on S[i..j]. To do this, we take advantage of the rank and select operations
on S. We create a doubly-linked list with the positions i to j, plus an array
T[1..j — i+ 1] that provides direct access to the list nodes, that is, T'[k] points
to the list node representing S[i + k — 1]. We take the element S[i] = a at
the head of the list and know that it is a 7-majority in S[i..j] if rank, (S, j) —
rank,(S,i — 1) > 7(j — ¢ + 1). If it is, we immediately report it. In either
case, we remove all the occurrences of a from the doubly-linked list, that is,
the list nodes T'[select, (S, rank, (S,¢) + )], » = 0,1,2, ... until exhausting T
We proceed with the new header of the doubly-linked list, which points to a
different element S[i'] = o', and so on. It is clear that we perform O(j — i)
constant-time rank and select operations on S, and that at the end we have
found all the T-majorities.

Finally, if 7 > 1/0 and b > ¢, we use rank and select on G} to find all the
1s in G}[i..j]. Since S[i..j] overlaps at most 5 blocks of length 2°~1, it contains
O(1/7) elements flagged by 1s in G}; therefore, we have O(1/7) candidates
to evaluate, and these include all the possible 7-majorities. Each candidate
a is tested in constant time for the condition rank, (S, j) — rank, (S, — 1) >
T(j—i+1).

3.3 Construction

The construction time is dominated by the creation of the bitvectors G. For
each value of b, we slide a window of length 2°%2+1 over S. This window covers
9 consecutive blocks of length 2°~1 in S. We store an array that, at any window
position S[k — 21k + 2071 will maintain for each symbol a € [1..0] (1) the
number of times a appears in the window, and (2) the first and last position
of a in each of the 9 blocks covered by the window. It is easy to maintain this
information in O(1) time as we slide the window to the next position in S.
Then, for any window S[k — 2041k +2+1] if k is the first or the last position
where a = S[k] occurs in its block (which is currently covered by the window),
then we set Gi[k] = 1 for all ¢ such that S[k] occurs occ > 2°~* times in the
window, that is, for all [b —lg(occ)] <t < min(b, [lgo]).

Sliding the window requires O(n) time for each value of b, and therefore it
amounts to O(nlgn) time in total. On the other hand, we work O(1) time for
each bit set in some G!, and we have shown that these amount to O(nlgo)
in total. Therefore, we create all the bitvectors G§ in time O(nlgn). As for
the space, sliding the window requires just O(o) space for the window and
block data. We can traverse S once per value of b, and then compress all the
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resulting bitvectors G} for all ¢, before considering the next value of b. Before
compressing, the bitvectors G}, for fixed b amount to O(nlgo) bits.

The construction time of the compressed bitvector representations for G}
[37] is linear in their bit-space?, thus it adds up to O(nlg o) over all b and t. Fi-
nally, the representation we use for S [6, Thm. 5] can be built within O(nlg,, o)
time and O(nlg o) bits. The total construction cost is then O(nlgn) time and
O(olgn+nlgo) = O(nlgo) bits of space.

Theorem 2 Let S[1..n] be a string over alphabet [1..0], with lgo = O(lgw).
We can store S in O(nlgo) bits such that later, given the endpoints of a
range and T, we can return the T-majorities for that range in time O(1/7).
The structure is built within O(nlgn) deterministic time and O(nlgo) bits.

4 Parameterized Range Majority on Large Alphabets

Rank queries cannot be performed in constant time on large alphabets [6]. To
obtain optimal query time in this case, where lgo = w(lgw), we resort to the
use of Lemma 2 instead of performing rank queries on S. For this purpose, we
must be able to find the leftmost occurrence of each 7-majority in a range.
This is done by adding further structures on top of the bitvectors G} used
in Theorem 2. Those include a Muthukrishnan structure (Section 2.4) on a
sampled set of positions plus succinct SB-trees (Section 2.2) to find successors
between samples. The leftmost occurrence of any a = S[k] with Gj[k] = 1 will
then be found as the successor of ¢ in the succinct SB-tree containing k (if
there are no samples between ¢ and k) or in the one containing the leftmost
sampled occurrence of a in S[i..j] (found with Muthukrishnan’s algorithm).

The bitvectors G} alone require O(nlg o) bits of space, whereas our further
structures add another O(nlg o) bits. Within these O(nlg o) bits, we can also
store a simple representation of S [1], which supports both access and select
queries in constant time. We also add the structures to support partial rank in
constant time, within o(nlg o) further bits. Therefore we can apply Lemma 2
in constant time and solve 7-majority queries in time O(1/7). We consider
compression in Section 6.

4.1 Structure

First, to cover the case 7 < 1/0, we build the structure of Muthukrishnan
on S, using O(n) extra bits as shown in Section 2.4, so that we can find the
O(o) = O(1/7) leftmost occurrences of each distinct element in S[i..j]. On
each leftmost occurrence we can then apply Lemma 2 in constant time. Now
we focus on the case 7 > 1/0.

In addition to each bitvector G of the previous section, we store a second
bitvector J{ with a 1 marking S[i] = a if S[i] is the (¢lg” n)-th occurrence a

2 M. Patrascu, personal communication, 2009.
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in S, for some integer ¢, and some nearby occurrence S[k] of a is marked by
G![k] = 1, where “nearby” means k — 2071 < i < k + 2°+1. More precisely, let
G![k] = 1 mark a = S[k], thus a occurs at least 2°~% times in S[k — 2°T1..k +
20F1]; let ¢,44,...,i% be the positions of a in S, where n, = rank,(S,n) >

1g4 n. Then we mark in J{ the positions
(i1, : 1<q<ma/lg'nand k—2""" <i? 0 <k+2°T')

For the subsequence S} of elements of S marked in J}, we build an instance
of Muthukrishnan’s structure. That is, we build the structure on the array Cj
corresponding to the string Sf, where Sj[k] = Slselect;(Jf, k)]. This string
need not be stored explicitly whereas, in contrast, we do store Cf explicitly.

Furthermore, for each a and ¢, if it holds J} [iglg4 ,] = 1 for some b and

t, we create a succinct SB-tree successor structure (Section 2.2) on the chunk
of lg4 n consecutive positions of a: i‘f+(q_1) lghn 7i31g4 .- This structure is
stored associated with the 1 at J} [iglg4 ,,) (all the 1s at the same position b g n
for different b and ¢ values, point to the same succinct SB-tree, as it does not
depend on b or t). The SB-tree operates in time (’)(lg(lg4 n)/lglgn) = O(1)
and uses O(1g4nlg lg n) bits. It needs constant-time access to the positions
i (—1)1gin> 35 it does not store them. We provide those positions using if =
selecty (S, k).

Added over all the symbols a, occurring n, times in S, each bitvector J}
contains 3, [n./1g* n| = O(n/ Ig* n) 1s. Thus, added over every b and ¢, the
bitvectors J}, arrays Cf, and pointers to succinct SB-trees (using O(lgn) bits
per pointer), require O(n/lgn) = o(n) bits. Each succinct SB-tree requires
O(lg4 nlglg n) bits, and they may be built for O(n/ 1g* n) chunks, adding up
to O(nlglgn) bits. This is O(nlgo) since we are assuming lgo = 2(lglgn).

4.2 Queries

Given i and j, we compute b = |lg(j — i+ 1)| and ¢ = [lg(1/7)], and find
the O(1) blocks of length 2°~! overlapping S[i..j]. As in the previous section,
every Gilk] = 1 in Gjli..j] is a candidate to verify, but this time we need to
find its leftmost occurrence in STi..j].

To find the leftmost position of a = S[k], we see if the positions k and i are
in the same chunk. That is, we compute the chunk index ¢ = [rank, (S, k)/1g* n]
of k (via a partial rank on S) and its limits 4, = select,(S, (¢ — 1)1g* n) and
iy = selecta(S,qlg4 n). Then we see if i; < ¢ < 4,. In this case, we use the
succinct SB-tree associated with Jf[i,] = 1 to find the successor of i in time
O(1). Then we use Lemma 2 from that position to determine in O(1) time if
a is a T-majority in S[i..j].

If £ is not in the same chunk of 7, we disregard it because, in this case, there
is an occurrence S[i;] = a in Sli..j] that is marked in Jf. We will instead find
separately the leftmost occurrence in S[i..j] of any candidate a that is marked
in J{[i..j], as follows. We apply Muthukrishnan’s algorithm on the 1s of J{[i..j],
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to find the distinct elements of Sf[rank;(J{,i — 1) + l..rank;(J},7)]. Thus
we obtain the leftmost sampled occurrences in S[i..j] of all the T-majorities,
among other candidates. For each leftmost occurrence Sj[k'], it must be that
k = select; (JE, k') is in the same chunk of ¢, and therefore we can find the
successor of i using the corresponding succinct SB-tree in constant time, and
then verify the candidate using Lemma 2.

It follows from the construction of J} that the distinct elements sampled
in any S[i..j] must appear at least 2°~ times in an interval of size O(2°)
containing S[i..j], and so there can only be O(1/7) distinct sampled elements.
Therefore, Muthukrishnan’s algorithm on Jf[i..j] gives us O(1/7) candidates
to verify, in time O(1/7).

When b < t, we use our sequential algorithm of Section 3.2 with the only
difference that, since we always find the leftmost occurrence of each candidate
in S[i..j], we can use Lemma 2 to verify the 7-majorities. Thus the algorithm

uses only select and partial rank queries on .S, and therefore it runs in time
O(1/7) as well.

4.3 Construction

We enhance the construction of the bitvectors G}, of Section 3.3, which required
O(nlgn) time and O(nlgo) bits of space. For each a € [1..0], we now also
record (3) the number of times a has been seen so far, and (4) the doubly
linked list of all the occurrence positions i of a that are within the current
window and such that rank,(S,4) is a multiple of lg* n. This data is easily
maintained in O(1) time each time we slide the window for a fixed value of b,
and its extra space amounts to O(o +n/lg* n) words. Then, every time we
mark some Gi[k] = 1, we fetch the list of (sampled) positions associated with
a = S[k] and set all those positions in J{.

The total number of 1s in all the bitvectors J{ is O(n/ Ig* n), so this is
the extra time we spend setting those bits. By building the bitvectors for each
value of b separately (and for all the values of t together), the extra space
stays within O(nlgo) bits, since we only maintain lg o bitvectors G} and J}
in plain form at the same time. Once those bitvectors G} and Jf, for a fixed
b, are completed, we compress them [37], which requires O(nlgo) time and
space in total, as seen in Section 3.3.

Once all the bitvectors J} are built and compressed, we traverse the 1s in
each J} and collect the corresponding symbols of S in Sf. From S} we build
C} in time O(|Sf|) and O(c + |S}|) space. Finally, the range minimum query
data structure on top of C} is built in O(|C}]) time [19]. Adding up over all the
b and t values, this amounts to O(n/ Ig* n) time and O(Jn +n/ Ig? n) space.

Finally, we create a bitvector J[1..n] that is the union of all the bits set
in every J{. For each J[i] = 1, which corresponds to some a = S[i], we create
a succinct SB-tree with the occurrences (r — lg* n 4 1)th to rth of a in S,
for r = rank,(S,4). This set is collected using select queries on .S, in total
time O(lg lgo +1g* n), and then the succinct SB-tree is built in linear time,
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(’)(lg4 n) (Section 2.2). Therefore, the total time to build the succinct SB-trees
is O(n) and the extra space is negligible.

The remaining elements are the structure for S, Muthukrishnan’s structure
for the whole string S, and the partial rank data structures. The string repre-
sentation [1] is easily built in O(n) time and O(nlg o) bits of space. Muthukr-
ishnan’s structure [33] is also easily built in O(n) time, but the intermediate
representation of array C' requires nlgn bits. Instead, we simulate access to
C with constant-time select and partial rank queries on .S, and therefore the
space stays within O(nlgo) bits. Finally, the partial rank data structures we
refer to [5, Sec. 3] require linear randomized time. However, if we can use any
space in O(nlgo) bits for the final structure, then a simpler construction can
be used [3, Lem. 3.5, that can be built in linear deterministic time. Overall,
we retain the O(nlgn) construction time within O(nlgo) bits of space.

Theorem 3 Let S[1..n] be a string over alphabet [1..0], withlgo = 2(1glgn).
We can store S in O(nlgo) bits such that later, given the endpoints of a range
and T, we can return the T-majorities for that range in time O(1/7). The
structure is built within O(nlgn) deterministic time and O(nlgo) bits.

5 Compressing Space on Small Alphabets

In this section we show how to retain our optimal query time, O(1/7), while
reducing the space to nH+o(n) bits, whenever the alphabet size is small, lgo =
O(1g w). We build on the basic idea of Section 3. We first obtain succinct space,
nlgo+o(n) bits, by using bit-parallelism on a hierarchical representation of S.
Then we change the plain representation of the small blocks in the hierarchy
by an entropy-compressed representation.

5.1 Succinct space

To reduce the space we will open the structure we are using to represent S
[6, Thm. 5]. This is a multiary wavelet tree: it cuts the alphabet range [1..0]
into w? contiguous subranges of about the same size, for some conveniently
small constant 0 < 8 < 1/4 such that w® is a power of 2. The root node v
of the wavelet tree stores the sequence S,[1..n] indicating the range to which
each symbol of S belongs, S,[i] = [S[i]/[o/w?]] — 1. This node has w? chil-
dren, where the (p + 1)th child represents the subsequence of the symbols
Si] such that S,[i] = p. The alphabet of each child has been reduced to a
range of size [o/w?]. This range is split again into w” subranges, creating
w? children for each child, and so on. The process is repeated recursively
until the alphabet range is of size at most w?. The wavelet tree has height

O(lg,s o) = (’)( lgo ) = O(1), and at each level the strings S, stored add

Blgw
up to nlg(w?) = fnlgw bits, for a total of nlgo bits of space. The other
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o(n) bits are needed to provide constant-time rank and select support on the
strings S,.

We use this hierarchical structure to find the 7-majorities as follows. As-
sume we have the structures to find 7-majorities in any of the strings S,
associated with wavelet tree nodes v, in time O(1/7) (we show later how to
provide those structures). Then, if a is a 7-majority in S[¢..j], the symbol
p = [a/(o/wP)] — 1 is also a T-majority in S,[i..j], where v is the wavelet
tree root. Therefore, we find in time O(1/7) the T-majorities p in S,[i..j]. We
verify if each symbol mapped to such a p is a 7-majority, by recursively looking
for majorities in the (p 4+ 1)th child of v. In this child u, the range S, [i..j] is
projected to Sy[iy..ju] = Su[rank,(S,,i — 1) + 1..rank,(S,, )], and the corre-
sponding threshold is 7, = 7(j —i+1)/(ju —%u+1) < 1. This process continues
recursively until we find the majorities in the leaf nodes, which correspond to
actual symbols that can be reported as 7-majorities in S[i..j].

The time to find the 7,-majorities in each child u of the root v is O(1/7,) =
O((ju —tu +1)/((j =i+ 1)7)). Added over all the children u, this gives a
space per levelof >~ O(1/7,) =3, O((ju —tu +1)/((j —i+1)7)) = O(1/7).
Adding this over all the levels, we obtain (9( g0 (1/7’)) =0(1/7).

Blgw

Finding 7’'-majorities on tiny alphabets The remaining problem is how to find
7/-majorities on an alphabet [0..c'—1], where o/ = w?, on each of the strings S,
of length n,. Here is where we enhance the wavelet tree, by adding structures
able to find those 7’-majorities on the strings S,. We do almost as we did for
Theorem 2, except that the range for b is slightly narrower: [lg(2¢ - w?/4)] <
b < |lgn,]. Then calculation shows that the total space for the bitvectors G}

is O(M + lgni;;) = 0(ny), so added over the whole wavelet tree is o(n).

wP

The price of using this higher lower bound for b is that it requires us to se-
quentially find 7/-majorities in time O(1/7’) on ranges of length O((1/7")w”?).
However, we can take advantage of the small alphabet. First, if 1/7/ > o/, we
just perform o’ pairs of constant-time rank queries on S,. For 1/7/ < ¢/, we
will compute an array of ¢’ counters with the frequency of the symbols in the
range, and then report those exceeding the threshold. The details are given in
the Appendix.

5.2 Construction

The only difference with respect to Section 3.3 is that we build the T-majority
data structures for each level of the wavelet tree, thus the overall time is
O(nlgnlg, o). However, since lgo = O(lgw), the number of levels is constant
and thus the construction time stays the same.

Theorem 4 Let S[1..n] be a string over alphabet [1..0], with lgo = O(lgw).
We can store S in nlgo + o(n) bits such that later, given the endpoints of a
range and T, we can return the T-majorities for that range in time O(1/7).
The structure is built within O(nlgn) deterministic time and O(nlgo) bits.
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5.3 Optimally compressed space

One choice to compress the space is to use a compressed representation of the
strings S, [17]. This takes chunks of ¢ = (Ign)/2 bits and assigns them a code
formed by a header of Igc bits and a variable-length remainder of at most ¢
bits. To decode a chunk in constant time, they use a directory of O(n,lgc/c)
bits, plus a constant table of size 2¢ = O(y/n) that receives any encoded string
and returns the original chunk. The compressed size of any string S, with
zero-order entropy H(v) then becomes n, H(v) + O(n, lgo’lglgn/lgn) bits,

which added over the whole wavelet tree is nH + O(%) bits. This

can be used in replacement of the direct representation of sequences S, in
Theorem 4, since we only change the way a chunk of ©(lgn) bits is read from
any S,. Note that we read chunks of w” symbols from S, which could be
w(lgn) if n is very small. To avoid this problem, we apply this method only
when lgo = O(lglgn), as in this case we can use computer words of w =1lgn
bits. The extra cost of creating the compressed representation is O(n).

Corollary 1 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0], with 1lgo = O(lglgn). We can store S in nH + o(n)
bits such that later, given the endpoints of a range and T, we can return the 7-
magorities for that range in time O(1/7). The structure is built within O(nlgn)
deterministic time and O(nlgo) bits.

For the case where lg o = w(lglgn) but still lgo = O(lgw), we use another
technique. We represent S using the optimally compressed structure of Barbay
et al. [1]. This structure separates the alphabet symbols into lg? n classes
according to their frequencies. A sequence K[1..n], where K[i] is the class to
which S[i] is assigned, is represented using the structure of Corollary 1, which
supports constant-time access, rank, and select (since the alphabet of K is of
polylogarithmic size), and also 7-majority queries in time O(1/7). For each
class ¢, a sequence S¢[l..n.] contains the subsequence of S of the symbols
S[i] where K[i] = ¢; the distinct symbols in S. are mapped to a contiguous
range [1..0.]. We will represent the subsequences S, using Theorem 4. Then
the structure for K takes nH(K) + o(n) bits, where H(K) is the entropy of
the distribution of the symbols in K, and the structures for the strings S,
take n.lgo. + o(n.) bits. Barbay et al. show that these space bounds add
up to nH + o(n) bits and that one can support access, rank and select on S
via access, rank and select on K and some S.. The extra time to build this
representation is O(n) and the space is O(nlgo) bits.

Our strategy to solve a 7-majority query on S[i..j] resembles the one used to
prove Theorem 4. We first run a 7-majority query on string K. This will yield
the at most 1/7 classes of symbols that, together, occur more than 7(j —i+1)
times in S[i..j]. The classes excluded from this result cannot contain symbols
that are T-majorities. Now, for each included class ¢, we map the interval STi..j]
to S¢lic..jc] in the subsequence of its class, where i, = rank.(K,i—1) + 1 and
je = rank.(K,j), and then run a 7.-majority query on S.[i...j.|, for 7. =
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7(j —i+4+1)/(jo —ic + 1). The results obtained for each considered class ¢ are
reported as 7-majorities in S[i..j]. The query time, added over all the possible
7. values, is > O(1/71.) = O(1/7) as before.

Theorem 5 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0], with lgoc = O(lgw). We can store S in nH + o(n)
bits such that later, given the endpoints of a range and T, we can return the 7-
magorities for that range in time O(1/7). The structure is built within O(nlgn)
deterministic time and O(nlgo) bits.

6 Compressing Space on Large Alphabets

In this section we compress the space of our solution of Section 4. This time,
apparent limits on the operation times on strings [6] prevent us from reaching
optimal query time and at the same time optimally compressed space, but we
get close. We find several technical obstacles to obtain compressed space, in
particular related to the succinct SB-trees used in Section 4. At the end, we
give a simple application of our result to solve a variant of the range mode
problem.

6.1 Compressed space

To reduce the space, we use the same strategy used to prove Theorem 5: we
represent S using the optimally compressed structure of Barbay et al. [1]. This
time, however, closer to the original article, we use different representations
for the strings S, with alphabets of size 0. < w and of size o, > w. For the
former, we use the representation of Theorem 4, which uses n.lgo. + o(n.)
bits and answers 7.-majority queries in time O(1/7.). For the larger alphabets,
we use a slight variant of Theorem 3: we use the same structures G}, Jf, Cf,
and pointers to succinct SB-trees, except that the lower bound for b will be
1g(2t - g(n,0))], for any function g(n,o) = w(1). The total space for the

o %gf)("’g)) = o(n.lgo.), whereas

the other structures already used o(n.) bits (with a couple of exceptions we
consider soon).

Then, representing S, with the structure of Belazzougui and Navarro [6,
Thm. 6], so that it supports select in time O(g(n, o)) and access in time O(1),
the total space for S. is n.lgo. + o(n.lgo.), and the whole structure uses
nH + o(n)(H + 1) bits. The structure is built in O(|S,|) time and O(|S.|1g o)
bits of space. On the other hand, as noted before, the partial rank structures
on S, that use o(|S.|lgo) bits can be built in O(]S.|) randomized time only.

The cases where b > [lg(2' - g(n,0))| are solved with O(1/7.) applica-
tions of select on S, and therefore take time O((1/7.)g(n,o)). Instead, the
shorter ranges, of length O((1/7.) g(n, o)), must be processed sequentially, as
in Section 3.2. The space of the sequential algorithm can be maintained in

bitvectors G} of string S, is thus
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O(1/7.) = O(1/7) words as follows. We cut the interval S.[i...j.] into chunks
of m = [1/7.] consecutive elements, and process each chunk in turn as in Sec-
tion 3.2. The difference is that we maintain an array with the 7.-majorities a
we have reported and the last position p, we have deleted in the lists. From the
second chunk onwards, we remove all the positions of the known 7.-majorities
a before processing it, select, (Se, rank (Se, pa) +7), for r = 1,2, .. .; note that
rank, (S¢, p,) is a partial rank query. Since select on S, costs O(g(n, o)) and
we perform O((1/7.) g(n, o)) operations, the total time is O((1/7.) g(n,0)?).
Then we can retain the optimally compressed space and have any time of the
form O((1/7) f(n, o)) by choosing g(n,o) = /f(n, o).

There are, as anticipated, two final obstacles related to the space. The first
are the O(n.) bits of Muthukrishnan’s structure associated with S, to handle
the case 7. < 1/0.. To reduce this space to o(n.), we sparsify the structure as
in Section 2.5. The case of small 7, is then handled in time O(o. g(n,0)?) =
O((1/7.) f(n, o)) and the space for the sparsified structure is O(n./g(n, o)) =
o(n.).

The second obstacle is the O(n.1glgn.) bits used by the succinct SB-trees.
We reduce their universe size as follows. We logically cut the string S. into
ne/o? pieces of length 2. For each symbol a we store a bitvector B,[1..n./d?]
where B,[i] = 1 if and only if a appears in the ith piece. These bitvectors
require O (o, - n./0?) = o(n,) bits in total, including support for rank and
select. The succinct SB-trees are now local to the pieces: a succinct SB-tree
that spans several pieces is split into several succinct SB-trees, one covering
the positions in each piece. The 1s corresponding to these pieces in bitvectors
B, point to the newly created succinct SB-trees. To find the successor of
position ¢ given that it is in the same chunk of 4, > i, with J/[i,] = 1, we
first compute the piece p = [i/0?] of i and the piece p, = [i,/0?] of i,, and
see if ¢ and 7, are in the same piece, that is, if p = p,. If so, the answer is to
be found in the succinct SB-tree associated with the 1 at J}[i,]. Otherwise,
that original structure has been split into several structures, and the part that
covers the piece of i is associated with the 1 at B,[p]. It is possible, however,
that there are no elements in the piece p, that is, B,[p] = 0, or that there are
elements but no one is after ¢, that is, the succinct SB-tree associated with
piece p finds no successor of . In this case, we find the next piece that follows
p where a has occurrences, p’ = select; (B, rank; (B,,p)+1), and if p’ < p, we
query the succinct SB-tree associated with B,[p/] = 1 for its first element (or
the successor of the minimum of its universe). If, instead, p’ > p,, we query
instead the succinct SB-tree associated with J{[i,] = 1, as its positions are to
the left of those associated with Bg[p'] = 1. Since the m = lg*n, elements
of a chunk can fall in the same piece, and Lemma 1 lets us retain the time
complexity of the full universe [1..n], this is O(lgm/lglgn) = O(1). The total
number of elements stored in succinct SB-trees is still at most n., because no
duplicate elements are stored, but now, again due to Lemma 1, each requires
only O(Iglg o) bits, for a total space of O(n.lglgo.) = o(n.lgo.) bits. There
may be up to o, - (n./c?) pointers to succinct SB-trees from bitvectors B,,
each requiring O(Ign,) bits, for a total of O(oc(n.lgn.)/o?) = O(n,) bits,
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since o, > w. Finally, the extra tables of O(n?) bits of Lemma 1 add up to
O(n71glg o) = o(n), because they depend only on [v/Ign] and on [lglg(a?)],
and thus we need at most lglg o different tables.

Theorem 6 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0]. For any f(n,o0) = w(1l), we can store S in nH +
o(n)(H + 1) bits such that later, given the endpoints of a range and T, we can
return the T-majorities for that range in time O((1/7) f(n,0)). The structure
is built within O(nlgn) randomized time and O(nlgo) bits.

Note that accessing a position in S still requires constant time with this rep-
resentation. Further, we can obtain a version using nearly compressed space,
(14€)nH+o(n) bits for any constant € > 0, with optimal query time, by setting
g(n,o) to a constant value. First, use for S. the structure of Barbay et al. [1]
that needs (14-€/3)nH +o(n) bits and solves access and select in constant time.

Second, let x be the constant associated with the O ( %i%(m) bits used

by bitvectors G} and the sparsified Muthukrishnan’s structures. Then, choos-
ing g(n,o) = 6?’“ lg 67" ensures that the space becomes (¢/3)n.lg o, bits, which
add up to (¢/3)nH. All the other terms of the form o(nH) are smaller than
another (e¢/3)nH + o(n). Therefore the total space adds up to (1+e€)nH +o(n)
bits. The time to sequentially solve a range of length O((1/7.)g(n,o)) is

O((1/7) g(n,0)*) = O(1/7).

Theorem 7 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0]. For any constant € > 0, we can store S in (1+¢e)nH +
o(n) bits such that later, given the endpoints of a range and T, we can return
the T-magjorities for that range in time O(1/7). The structure is built within
O(nlgn) randomized time and O(nlgo) bits.

6.2 Finding range modes

While finding range modes is a much harder problem in general, we note that
we can use our data structure from Theorem 6 to find a range mode quickly
when it is actually reasonably frequent. Suppose we want to find the mode of
S[i..j], where it occurs occ times (we do not know occ). We perform multiple
range 7T-majority queries on S[i..j], starting with 7 = 1/2 and repeatedly
reducing it by a factor of 2 until we find at least one 7-majority. This takes
time

O((2+4+...+2f1g%1>f(n’g)> _O((ji+1)f(n,o)>

occ
and returns a list of O(%) elements that includes all those that occur
at least occ times in S[i..j]. We use rank queries to determine which of these
elements is the mode. For the fastest possible time on those rank queries, we use
for S the representation of Belazzougui and Navarro [6, Thm. 8], and also set
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f(n,o) =1glg,, o, the same time of rank. The cost is then O(W#

The theorem holds for Ig o = O(lgw) too, as in this case we can use Theorem 5
with constant-time rank queries.

Theorem 8 Let S[1..n] be a string whose distribution of symbols has entropy
H. We can store S in nH 4 o(n)(H + 1) bits such that later, given endpoints

in O ( (G—i+1)lglg, o

and j, we can return the mode of S[i..j] e

) time, where occ

is the number of times the mode occurs in S[i..j|. The structure is built within
O(nlgn) randomized time and O(nlgo) bits.

We note that, if we store an instance of Bose et al.’s [7] linear-space struc-
ture for 4-approximating the range mode with constant query time, or Greve
et al.’s [23] linear-space structure for (1 + €)-approximating the range mode
with constant query time for positive constant €, then we need not perform
Mg =517 rounds of T-majority queries. We can instead find an approximate
range mode using their structure; find its frequency with two rank queries;
perform only O(1) rounds of 7-majority queries to obtain a list of elements
that includes the true range mode; and use two rank queries per element to
determine all their frequencies, which tells us the true range mode. This still

O (—itl)lglg, o
occ

takes ) time, however, and uses linear instead of compressed

space. So far, we have not found a way to compare Theorem 8 to known results
for approximating range modes, nor to combine them fruitfully.

7 Parameterized Range Minority

Chan et al. [10] gave a linear-space solution with O(1/7) query time for pa-
rameterized range minority, even for the case of variable 7 (i.e., chosen at
query time). They first build a list of [1/7] distinct elements that occur in the
given range (or as many as there are, if fewer) and then check those elements’
frequencies to see which are T-minorities. There cannot be as many as [1/7]
T-majorities so, if there exists a 7-minority for that range, then at least one
must be in the list. In the early version of this article [4] we used a simple
approach to implement this idea using compressed space; here we obtain more
refined results based on our new structures for 7-majorities.

The main idea is still that, if we test any [1/7] distinct elements, we must
find a 7-minority because not all of those can occur more than 7(j — ¢ + 1)
times in S[i..j]. Therefore, we can use mechanisms similar to those we designed
to find O(1/7) distinct candidates to T-majorities.

Let us first consider the bitvectors G} defined in Section 3. We now define
bitvectors If, where we flag the positions of the first 2¢ and the last 2 distinct
values in each block (we may flag fewer positions if the block contains less
than 2" distinct values). Since we set O(2) bits per block, the bitvectors I}
use asymptotically the same space of the bitvectors G.

Note that I} can be built by scanning S block by block, and computing
an array of the first 2¢ elements seen in each, by using a bitvector of size o
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where the already seen elements are marked. The last 2! elements are obtained
similarly, by scanning the block in reverse. These arrays require up to O(nlgo)
bits. In O(n) time we can scan S for each value of b and the largest value
t* = b— 1, flagging in I} the first 2¢ of the 2¢" elements collected, for each t.
Thus we need O(nlgo) space to maintain all the bitvectors If, for a fixed b,
in plain form, and later they can all be compressed just like the bitvectors Gj.
Doing this for all the values of b, these bitvectors are also built in O(nlgn)
deterministic time and O(nlgo) bits of space.

Given a T-minority query, we compute b and t as in Section 3 and use rank
and select to find all the 1s in the range I[[i..j]. Those positions contain a
T-minority in S[i..j] if there is one, as shown next.

Lemma 5 The positions flagged in It[i..j] contain a T-minority in S[i..j], if
there is one.

Proof 1f I}[i..j] contains a part of a block with 2 = [1/7] distinct elements
flagged, then one is for sure a T-minority in S[i..j]. Otherwise, all the distinct
block elements that fall inside [i..j] are flagged. This is obvious if [i..j] contains
the whole block, and it also holds if [i..j] intersects a prefix or a suffix of
the block, since the block marks its 2¢ first and last occurrences of distinct
elements. Then, if I}[i..j] does not flag 2 elements in any of the blocks it
overlaps, it must flag all the distinct elements in S[i..j], and thus it flags a
T-minority. a

Just as for 7-majorities, we use I} only if 1/7 < o and ¢ < b, since otherwise
we can test, one by one, all the alphabet elements or all the elements in S[i..j],
respectively. The test proceeds using rank on S if ¢ is small, or using Lemma 2
if o is large. We describe precisely how we proceed.

7.1 Small alphabets

If lgo = O(lgw), we use a multiary wavelet tree as in Section 3. This time,
we do not run 7-majority queries on each wavelet tree node v to determine
which of its children to explore, but rather we explore every child having some
symbol in the range S,[iy..j,]. To efficiently find the distinct symbols that
appear in the range, we store a sparsified Muthukrishnan’s structure similar
to the one described in Section 2.5; here we will have no slowdown thanks to
the small alphabet of S,,.

Let C, be the array corresponding to string .S,,. We cut S, into blocks of
w? elements, and record in an array C)[1..n,/w”] the minimum value in the
corresponding block of C,. Then, the leftmost occurrence S[k] = p of each
distinct symbol p in S,[iy..j,] has a value C,[k] < i,, and thus also for its
corresponding block in C, ¥/, it holds that C,[k'] < 4,. We initialize a word
E <+ 0 containing flags for the ¢/ = w” symbols, separated as in the final
state of the word A of Section 5.1. Each time the algorithm of Muthukrishnan
on CJ gives us a new block, we apply the algorithm of Section 5.1 to count
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in a word A the occurrences of the distinct symbols in that block, we isolate
the counters reaching the threshold y = 1, and compare F with E or A. If
they are equal, then we stop the recursive algorithm, since all the symbols in
the range had already appeared before (see the final comments on the proof
of Lemma 3). Otherwise, we process the subrange to the left of the block,
update E < E OR A, and process the subrange to the right. When we finish,
E contains all the symbols that appear in S,[i,..J,]. In the recursive process,
we also stop when we have considered [1/7,] blocks, since each block includes
at least one new element and it is sufficient to explore [1/7,] children to find
a T,-minority (because each child contains at least one candidate). Finally, we
extract the bits of E one by one as done in Section 5.1 with the use of D. For
each extracted bit, we enter the corresponding child in the wavelet tree. The
total time is thus O(1/7,) and the bitvectors C, add up to O(n/w?) = o(n)
bits in total.

The 7, values to use in the children u of v are computed as in Section 5.1, so
the analysis leading to O(1/7) total time applies. When we arrive at the leaves
u of the wavelet tree, we obtain the distinct elements and compute using rank
the number of times they occur in Sy[iy..Ju], S0 we can immediately report
the first 7-minority we find.

We still have to describe how we handle the intervals that are smaller
than the lower limit for b, [2¢ - w?/4]. We do the counting exactly as in
Section 5.1. We must then obtain the counters that are between 1 and y — 1.
On one hand, we use the bound 3 = 1 and repeat their computation to
obtain in A>; < A the counters that are at least 1. On the other, we compute
A A+(220 —y)-(0F+E-110(k=18)9" a5 before, and isolate the non-overflowed
bits with A, < (NOT A) AND (0~ D¢-110(*+1¢)o" Then we extract the first
of the bits marked in A <— A>; AND A, and report it.

To obtain compressed space, we use the alphabet partitioning technique
of Section 5.3. Once again, we must identify at most [1/7] nonempty ranges
[ic..jc] from K[i..j]. Those are obtained in the same way as on the multiary
wavelet tree, since K is represented in that way (albeit the strings S, are
compressed). We then look for 7.-minorities in the strings S.[i...j.] one by
one, until we find one or we exhaust them. The total time is O(1/7).

Theorem 9 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0], with lgoc = O(lgw). We can store S in nH + o(n)
bits such that later, given the endpoints of a range and T, we can return o
T-minority for that range (if one exists) in time O(1/7). The structure is built
within O(nlgn) deterministic time and O(nlgo) bits.

Note that we can use a single representation using nH + o(n) bits solv-
ing both the 7-majority queries of Theorem 5 and the 7-minority queries of
Theorem 9.
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7.2 Large alphabets

For large alphabets we must use Lemma 2 to check for 7-minorities, and thus
we must find the leftmost positions in S[i..j] of the 7-minority candidates. We
use the same bitvectors J} of Section 4, so that they store sampled positions
corresponding to the 1s in I}, and proceed exactly as in that section, both if
T<l/oorifr>1/0.

To obtain compression, we also use alphabet partitioning. We use the mul-
tiary wavelet tree of K as described in Section 7.1, and then complete the
queries with 7.-minority queries on the strings S. over small or large alpha-
bets, as required, until we find one result or exhaust all the strings. The only
novelty is that we must now find 7.-minorities sequentially for the ranges that
are shorter than |lg(2' - g(n,0))] = O((1/7.) g(n,o)). For this, we adapt the
O((1/7) g(n, 0)?)-time sequential algorithm described in Section 6.1. The only
difference is that we stop as soon as we test a candidate a that turns out not
to be a T.-majority, then reporting the 7-minority a.

Depending on whether we use Theorem 6 or 7 to represent S and how we
choose f(n, o), we obtain space or time optimality.

Theorem 10 Let S[1..n] be a string whose distribution of symbols has entropy
H. For any function f(n) = w(1), we can store S in nH+o(n)(H+1) bits such
that later, given the endpoints of a range and T, we can return a T-minority for
that range (if one exists) in time O((1/7) f(n)). The structure is built within
O(nlgn) randomized time and O(nlgo) bits.

Theorem 11 Let S[1..n] be a string whose distribution of symbols has entropy
H, over alphabet [1..0]. For any constant € > 0, we can store S in (1+¢e)nH +
o(n) bits such that later, given the endpoints of a range and T, we can return
a T-minority for that range (if one exists) in time O(1/7). The structure is
built within O(nlgn) randomized time and O(nlgo) bits.

In both cases, we can share the same structures to find majorities and
minorities.

8 Conclusions

We have given the first linear-space data structure for parameterized range
majority with query time O(1/7), even in the more difficult case of T specified
at query time. This is worst-case optimal in terms of n and 7, since the output
size may be up to 1/7. Therefore, we have closed this problem in terms of
asymptotic space and query time.

We have also aimed at using not only linear space, but optimal compressed
space with respect to the entropy H of the distribution of the symbols in the
sequence. We obtained optimal or near-optimal query time within optimal
or near-optimal space, for both parameterized range majority and minority.
In terms of compressed to this entropy space, the problem is also essentially
closed.
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Subsequent work Our original publication [4] triggered further research on
other variants of the problem. For example, Navarro and Thankachan [34] con-
sidered the encoding version of the problem, where S cannot be stored. They
proved that such an encoding requires 2(nlg(1/7)) bits, and therefore the en-
coding problem is relevant only for 1/7 < o (fixed at indexing time); otherwise
the allowed space is sufficient to store our current indexes. By using techniques
similar to our blocks, among others, they obtained query times in O((1/7)1gn)
within this space. This was improved by Gawrychowski and Nicholson [22], who
reached the optimal query time, O(1/7), within O(nlg(1/7)) bits of space.

Given that their result [22] is an encoding, they can couple their structure
with any compressed representation of S that yields constant-time access, like
the one of Ferragina and Venturini [18], to obtain a representation using nHy +
o(nlgo) + O(nlg(l/7)) bits, for any k = o(lg, n), and finding 7-majorities in
optimal time. Here Hy < Hy = H is the kth order empirical entropy of S [28].
Note that this works only for fixed 7.

Gagie et al. [21] noticed that another tradeoff could be directly obtained
from our results just by modifying our base compressed sequence representa-
tion: nHy + o(nlgo) bits (plus 2n bits for minorities) and O((1/7)1glg,, o)
query time, for variable 7. It is unknown if we can reduce the space usage to
just nHy, + o(nlgo) while retaining O(1/7) time complexity.

Another interesting result of Gawrychowski and Nicholson [22] (see Ap-
pendix A in their extended paper) is that it is unlikely that we can improve
the O(1/7) worst-case time to O(occ + 1) when returning occ = o(1/7) results
in T-majority queries.

Another variant is the dynamic version of the problem, where S can un-
dergo insertions and deletions. Elmasry et al. [16] obtained O((1/7)lgn/lglgn)
query time and linear space, with updates supported in O((1/7)lgn) amor-
tized time. Gagie et al. [21] retained those complexities while reducing the
space to nHy + o(nlgo) bits, for any k = o(lg, n).
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A Finding 7'-majorities on tiny alphabets

We show how to find 7/-majorities in time O(1/7’) on ranges of length O((1/7")w?), over
alphabet [0..07 — 1], with ¢/ = w?, in the case 1/7/ < ¢’. We will compute an array of o’
counters with the frequency of the symbols in the range, and then report those exceeding the
threshold. The maximum size of the range is (4/7)wf/4 < o’wP = w38, and thus 281lgw
bits suffice to represent each counter. The o’ counters then require 23w? Ig w bits and can be
maintained in a computer word (although we will store them somewhat spaced for technical
reasons). We can read the elements in S, by chunks of w?® symbols, and compute in constant
time the corresponding counters for those symbols. Then we sum the current counters and
the counters for the chunk, all in constant time because they are fields in a single computer
word. The range is then processed in time O(1/7").

To compute the counters corresponding to w? symbols, we extend the popcounting
algorithm of Belazzougui and Navarro [6, Sec. 4.1]; assume we extract the w? symbols from
Sy and have them packed in the lowest k£ bits of a computer word X, where k = w? is the
number of symbols and £ = lgo’ is the number of bits used per symbol. We first create o’
copies of the sequence at distance 2k¢ of each other: X «+ X - (02]“[*11)"/. In each copy
we will count the occurrences of a different symbol. To have the (i + 1)th copy count the
occurrences of symbol i, for 0 < i < ¢/, we perform

X « X xor 0F((c! —1)p)*...0%4(2,)F 0% (1) 0% (0,)",

where iy is number ¢ written in ¢ bits. Thus in the (i + 1)th copy the symbols equal to 7
become zero and the others nonzero. We then set a 1 at the highest bit of the symbols equal
to i in the (¢ + 1)th copy, with

X < (Y — (X AND NOT Y)) AND Y AND NOT X,

where Y = (Oke(l(]e_l)k)"/ 3 Now we add all the 1s in each copy with X « X.0%¢(20'—1) (0=11)k,
This spreads several sums across the 2k/ bits of each copy, and in particular the kth sum adds

3 This could have been simply X < (Y — X) AND Y if there was an unused highest bit set
to zero in the (lgo’)-length fields of X. Instead, we have to use this more complex formula
that first zeroes the highest bit of the fields and later considers them separately.
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up all the 1s of the copy. Each sum requires 1g k bits, which is precisely the £ bits we have al-
located per field. Finally, we isolate the desired counters using X < X AND (Okeleo(kfl)l)",.
The o’ counters are not contiguous in the computer word, but we still can afford to store
them spaced: we use 2kfo’ = 28w?2P Igw bits, which since 8 < 1/4, is always less than w.

Since the range is of length at most w??, the cumulative counters need lg(w?8) = 2¢ bits.
We will store them in a computer word A separated by 2k£ bits so that we can directly add
the resulting word X after processing a chunk of w? symbols of the range in Sy,: A < A+ X.
If the last chunk is of length [ < w?, we complete it with zeros and then subtract those
spurious w? — I occurrences from the first counter, A < A — (wf — 1) . 2(k=1¢

The last challenge is to output the counters that are at least y = |[7/(j —i+1)| +1 after
processing the range. We use

A A+ (222 —y)- (Oke+£—110(k—1)z)a’

so that the counters reaching y will overflow to the next bit. We isolate those overflow bits
with A < A axD (0k—Dé=119(k+1)€)o” 55 that we have to report the symbol i if and only
if A aND 0(k(20"=2i=1)=1)¢=171(k(2i+1)+1)¢ £ 0. We then repeatedly isolate the lowest bit
of A with

D <+ (A XOR (A —1)) anD (0k=DE=11g(k+1)eyo"

and then remove it with A +— A AND (A — 1), until A = 0. Once we have a position isolated
in D, we find the position in constant time by using a monotone minimum perfect hash
function over the set {2(F(2+D+1 0 < 4§ < o'}, which uses O(o’ lgw) = o(w) bits [2].
Only one such data structure is needed for all the sequences, and it takes less space than a
single systemwide pointer.



