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Resumo

Este trabalho apresenta um novo método de compressão por gramáticas chamado GCIS.
Este método é baseado na abordagem de ordenação de sufixos por indução, SAIS, apre-
sentada por Nong et al. em 2009. A solução proposta utiliza os fatores produzidos pela
ordenação SAIS para construir uma gramática livre de contexto que gera o texto. As
regras das gramáticas são formadas substituindo cada fator encontrado pela ordenação
SAIS por um símbolo não terminal. O método é aplicado recursivamente na sequên-
cia composta por não terminais que substitui o texto original até que todos os fatores
produzidos sejam distintos. A gramática gerada ainda pode ser comprimida ao explorar
redundâncias, tais como os prefixos comuns compartilhado pelo lado direito das regras
de produção, que por construção, estão ordenadas. O método GCIS se destaca pelo seu
tempo de compressão enquanto mantém a taxa de compressão competitiva. Através de
experimentos sobre textos regulares, repetitivos e imensos, GCIS demonstra ser uma es-
colha factível quando comparado com outros compressores como: Gzip, 7-zip, RePair, a
principal referência para compressores baseados em gramáticas, e as recentes alternati-
vas; SOLCA; LZRR; e LZD. Em contrapartida, GCIS não possui uma descompressão tão
rápida. Contudo, compressores baseados em gramáticas são mais convenientes do que
aqueles baseados nas técnicas de compressão Lempel-Ziv haja vista que possibilitam a
extração de subpalavras diretamente da informação comprimida, sem que seja necessário
gerar o texto original para tal. Neste cenário, de compressores por gramática, GCIS pos-
sui pontos fortes quando comparado aos demais. Também apresentamos que, devido a
sua proximidade com a abordagem SAIS, podemos usar GCIS para construir os vetores
de sufixos e longest common prefix do texto, estruturas fundamentais no processamento
de palavras, durante a descompressão da informação.

Palavras-chave: grammar-compression, compact data structures, extraction, suffix-array
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Abstract

A grammar compression algorithm, called GCIS, is introduced in this work. GCIS is
based on the induced suffix sorting algorithm SAIS, presented by Nong et al. in 2009.
The proposed solution builds on the factorization performed by SAIS during suffix sorting
to construct a context-free grammar that replaces each distinct factor with a nontermi-
nal. The algorithm is then recursively applied on the shorter sequence of nonterminals.
The resulting grammar is encoded by exploiting redundancies, such as common prefixes
between right-hands of rules, sorted according to SAIS. GCIS excels for its low space and
time required for compression while obtaining competitive compression ratios. Our ex-
periments on regular, repetitive, moderate, and very large texts show that GCIS is a very
convenient choice compared to well-known compressors such as Gzip, 7-Zip, RePair, the
gold standard in grammar compression, and recent compressors like SOLCA, LZRR, and
LZD. In exchange, GCIS is slow at decompressing. Nevertheless, grammar compressors
are more convenient than Lempel-Ziv compressors in that one can access text substrings
directly in compressed form without ever decompressing the text. We demonstrate that
GCIS is an excellent candidate for this scenario because it shows to be competitive among
its RePair based alternatives. We also show that the relation with SAIS makes GCIS a
good intermediate structure to build the suffix and longest common prefix arrays during
decompression of the text.

Keywords: grammar-compression, compact data structures, extraction, suffix-array
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Chapter 1

Introduction

According to Hennessy and Patterson [2019], the performance gap between a single pro-
cessor core and memory has grown over decades, despite being stable in the last years.
Figure 1.1 plots the number of processor memory requests per second made by the proces-
sor and the number of DRAM memory accesses per second. When considering multicore
architectures, the gap does not shift in favor of memories: the difference between the num-
ber of processors memory requests and memory bandwidth (number of bytes transferred
within a time unit) continues to grow as the number of cores increases.
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Figure 1.1: Performance gap between single core processor and memory. Adapted from
[Hennessy and Patterson, 2019].

In order to mitigate this problem, access to faster memories such as cache memories
that utilize SRAM technologies might be considered. However, this does not come out
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without a price. Faster memories are much more expensive than cheaper ones, which
makes the replacement of usual DRAM for SRAM memories unfeasible. The power factor
is also an issue for this kind of memory. They represent a considerable amount of power
consumption on mobile devices, and a considerable memory increase would impact battery
life severely. The same problem occurs when considering primary and secondary memories,
the first containing the RAM memory, whereas the latter dwelling Disk and Flash-based
technologies. The design of choice to maintain performance while having plenty resources
is to dispose the different types of memories in a hierarchical configuration, also known as
memory hierarchy. In this hierarchy, slower, cheaper, higher capacity memories such as
DRAM or Disk/Flash-based are demanded when the requested data is not available on the
faster, more expensive, lower-capacity memories, such as cache and registers. Figure 1.2,
shows the time required to access each type of memory with its usual capacity considering
a commodity desktop computer. The gap between memories located near the processor,
such as registers and cache, to main memory, is considerable.

Figure 1.2: Memory Hierarchy. Typical values for access time and capacity regarding
different type of memories for a commodity Desktop. Adapted from [Hennessy and Pat-
terson, 2019].

Since high-capacity memories are cheap, it is possible now to store all the data in the
main memory regarding several domains. Hence, the shift of several applications from
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secondary memory to first memory arises, as well with different concerns, e.g. in-memory
databases, as presented by [Zhang et al., 2015]. However, this is not always the case. The
short read alignment problem consists of determining the locus of small DNA sequences
(the short reads) in a collection of genomes [Li and Durbin, 2009]. A regular index, which
is capable of locating such short reads in efficient time, such as the suffix tree, would
require several times the collection of genomes size, thus, forbidding the application to
execute main memory.

The need for manipulating data in faster but lower-capacity memories is latent, hence
it is crucial to represent such data in a more space-efficient way to work on the top of the
memory hierarchy.

Succinct data structures, a term coined by Jacobson [1988], represent the informa-
tion close, asymptotically speaking, to the lower bound established by information theory
while retaining the ability to manipulate such data in feasible time [Kao, 2016]. The term
compact data structure also describes space-efficient data structures, but in a more loos-
ened way regarding asymptotic lower terms [Navarro, 2016]. Despite being more complex
and slower than the regular data structures, they might be used in cases where the data
does not fit in faster memory using the traditional approach for data structure design;
hence, they are a beautiful solution for reducing resources for computational problems
involving a large volume of data [Navarro, 2016]. Returning to the read alignment prob-
lem, by using compact data structures, the alignment can be performed within hundreds
of gigabytes [Kuhnle et al., 2020], a common resource for servers.

With statistical compressors, i.e., that assigns shorter codes to more frequent symbols
(or sequence of symbols), it is possible to compress and manipulate the data efficiently.
The area of research of such compressors has rapidly evolved in the last decades, bringing
a wide range of solutions with different time/space trade-offs [Pereira, 2016]. However,
this type of compressor cannot deal appropriately with very repetitive data once they do
not capture the source’s repetitiveness. Such repetitive data are present in many formats,
such as:

• Log files: such files describe systems runtime events in a text format for several
reasons, e.g., anomaly detection and system failure diagnosis, as stated by [Yao
et al., 2021]. However, some log structures might occur several times on a document
making general compressors an inappropriate choice for compressing the information
[Yao et al., 2020].

• Version control: modern version control systems track the changes within a software
repository. Consecutive changes tend to be small compared to the repository size,
making the history of changes redundant and susceptible to specialized approaches
for repetitive data. The authors in Boldi et al. [2020] describe a solution for this
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problem based on graph compression techniques that compress a collection of 5
million source codes into 100 GB, manageable for a modest server.

• Collection of genomes: several problems consider a collection of genomes, such as the
read alignment or the 100,000 Genomes Project, the latter being a project from the
UK government for sequencing 100,000 genomes focusing the study on rare diseases
[Genomics England, 2012]. As expected, data from different genomes from the same
organism induces a highly repetitive collection [Kuhnle et al., 2020].

The dictionary-based approach of grammar compression is considered a powerful
mechanism that addresses the compression of repetitive texts, for its basic idea relies on
identifying substrings that occur in the text multiple times and representing such sub-
strings compactly with a pointer to the first occurrence. One benefit of such mechanism is
that, if compared with other repetition-aware compression schemes, it may be augmented
to support more complex operations, such as extracting substrings or matching patterns.
We present in this document a novel approach for grammar compression, which relies on
a consolidated method of suffix sorting by induction of suffixes. Theoretically, the pro-
posed approach is interesting since it brings a novel strategy for grammar compression,
and, in practical terms, showed to be competitive with its main competitors regarding
the space/time trade-off [Nunes et al., 2018, 2022].

1.1 Contributions

We developed a novel compression approach, called GCIS, that relies on suffix sorting by
induction to create a context-free grammar that generates the original text. This grammar
can be encoded in a very compact way by exploring redundancies of the sorted suffixes.
Besides originating a different strategy for grammar compression and compressing and
decompressing the repetitive information with interesting practical results, GCIS is also
capable of:

• Computing the suffix array and the LCP array during the decompression. Hence, it
is not necessary to decompress all the text to compute the suffix and LCP arrays.
This approach demonstrated to be superior to computing the data structures from
scratch.

• Extracting substrings in competitive time/space regarding its major competitors
once the grammar is augmented with additional information.

When confronted with popular compressors and modern compressors and extractors,
regarding several criteria, GCIS turn out to be a practical option for compressing and
extracting from repetitive sources.
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1.2 Structure of the Document

• Chapter 2 describes the concepts needed to understand the underlying mechanisms
of the proposed approach.

• Chapter 3 focuses on methods capable of dealing with repetitive texts. These are
our objects of comparison.

• Chapter 4 presents the GCIS approach and how to augment it to support extraction
of substrings and construction the suffix and LCP arrays during the decompression.

• Chapter 5 show the experimental setup, including the copora descriptions, and the
experimental results and discussion regarding GCIS and the state-of-the-art com-
pressors.

• Chapter 6 reports our final considerations, the improvements related to the GCIS
approach of grammar compression, and possible future works.
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Chapter 2

Background

2.1 Basic Concepts

Definition 1 (Alphabet). An alphabet is a finite set Σ = {α1, . . . , ασ} with σ = |Σ|. This
set is totally ordered given the relation <, such that α1 < α2 < . . . < ασ, with < being
called lexicographical order.

Definition 2 (Σk and Σ∗). Σk defines set of all words of length k over the alphabet Σ.
The set of all finite words is given by Σ∗ = ⋃

n>0 Σn

Definition 3 (String). A string S = S[1] . . . S[n] ∈ Σ∗ is a finite sequence of symbols of
Σ. Specially, ε ∈ Σ∗ is called the empty string.

Definition 4 (String length). The length of a string S = S[1]S[2] . . . S[n] is given by
|S| = n. Specially, |ε| = 0.

Definition 5 (Substring). If 1 ≤ i ≤ j ≤ n, a substring S[i, j] corresponds to the symbols
S[i], . . . , S[j] of a string S. Otherwise, S[i, j] = ∅.

Definition 6 (Occurrence). A string R is said to occur in S[1, n] when there are indices
1 ≤ i ≤ j ≤ n, such that R = S[i, j].

Definition 7 (Concatenation). The concatenation of strings is defined by the dot operator
(·). Thus, R·S = R[1] . . . R[m]S[1] . . . S[n] defines the concatenation of the strings R[1, m]
and S[1, n].

Definition 8 (Restricted Alphabet). We call restricted alphabet of a string S[1, n] ∈ Σ∗,
also denoted by Σ(S), the set:

Σ(S) =
n⋃

i=1
{S[i]}

In other words, Σ(S) is the set of symbols that occur in S.
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Notation 1 (Text). T , the text, is a string of length |T | = n, over an ordered alphabet Σ
that has size |Σ| = σ. We assume that our alphabet Σ has an integer size, but limited to
n, that is, 1 ≤ σ ≤ n. For convenience, it is assumed that T always ends with a special
symbol T [n] = $, which is not present elsewhere in T and lexicographically precedes every
symbol in T [1, n− 1].

Notation 2 (Suffix). A suffix of a string S is a substring of the form S[i, n], also denoted
by Si.

Definition 9 (Range-minimimum-query). Let V [1, n] be a sequence. We define the
range-minimum-query over an interval [l, r] ⊆ [1, n] of this sequence as: RMQV (l, r) :=
min{V [k]|l ≤ k ≤ r}.

Notation 3 (lg x). From now on we denote log2 x as lg x.

2.2 Suffix Trees and Suffix Arrays

Suffix Trees are a key data-structure for solving several string processing problems in
feasible time [Gusfield, 1997]. According to Gusfield [1997], a suffix tree over the text
T [1, n] has n leaves; each internal node, excluding the root, has at least two children; and
each edge is labeled with a substring of T . There are no edges out of the same node with
the same starting symbol and the concatenation of the edges labels of the path from the
root to a leaf spells a unique suffix of T .

The main concern involving Suffix Trees are its space consumption. Despite requiring
Θ(n lg n) bits to encode the suffixes, the hidden constant is unpractical for bigger texts.
Even with a cautious implementation, the suffix tree representation would require ≈ 15
times the input text size for the human genome [Kurtz, 1999], making it prohibitive when
indexing a collection of genomes.

The suffix array (SA) [Gonnet et al., 1992; Manber and Myers, 1993] of a string T [1, n]
is an array of integers in the range [1, n] that gives the lexicographic order of all suffixes of
T , such that TSA[1] < TSA[2] < . . . < TSA[n]. It can be viewed as a space-efficient alternative
to a suffix tree and when enhanced with additional information, it can solve the same
problems within the same time complexity that a Suffix Tree can [Abouelhoda et al.,
2004; Ohlebusch, 2013].

The suffixes starting with the same symbol c ∈ Σ form a c-bucket in SA, hence, each
c-bucket defines a contiguous interval in SA containing the suffixes that start with the
same symbol. The head and the tail of a c-bucket refer to the first and the last position
of the c-bucket in SA.
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The suffix array for the text T = AGCCTAAGCCTAAGTAAAG$ is depicted in
Figure 2.1. In this example, the A-bucket is defined by the interval [2, 9].

Table 2.1: Suffix Array for the text T = AGCCTAAGCCTAAGTAAAG$

i SA[i] LCP[i] BWT[i] TSA[i]
1 20 0 G $
2 16 0 T AAAG$
3 17 2 A AAG$
4 6 3 T AAGCCTAAGTAAAG$
5 12 3 T AAGTAAAG$
6 18 1 A AG$
7 1 2 $ AGCCTAAGCCTAAGTAAAG$
8 7 8 A AGCCTAAGTAAAG$
9 13 2 A AGTAAAG$
10 3 0 G CCTAAGCCTAAGTAAAG$
11 9 6 G CCTAAGTAAAG$
12 4 1 C CTAAGCCTAAGTAAAG$
13 10 5 C CTAAGTAAAG$
14 19 0 A G$
15 2 1 A GCCTAAGCCTAAGTAAAG$
16 8 7 A GCCTAAGTAAAG$
17 14 1 A GTAAAG$
18 15 0 G TAAAG$
19 5 3 C TAAGCCTAAGTAAAG$
20 11 4 C TAAGTAAAG$

Longest Common Prefix

The length of the longest common prefix (LCP) of two strings X and Y in Σ∗ is
denoted lcp(X, Y ). The LCP array of T [1, n] is an array of integers that stores the
lcp value between consecutive suffixes in SA, such that LCP[i] = lcp(TSA[i−1], TSA[i]), for
1 < i ≤ n, and we define LCP [1] = 0. The LCP array can be used to enhance the
suffix-array and simulate a suffix-tree traversal over the text [Abouelhoda et al., 2004].

Figure 2.1 displays the LCP values for the chosen text in the third column.

Burrows-Wheeler Transform

The Burrows-Wheeler transform, also known as BWT [Burrows and Wheeler, 1994],
can be seen as the last column of a virtual matrix containing all the cyclical suffixes of
a text in lexicographical order. A cyclical suffix starting at position i corresponds to
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T [i, n] · T [1, i − 1]. This transform has a close relation to the suffix array, which can be
stated as:

BWT[i] =

 T [SA[i]− 1], SA[i] > 1
$, otherwise

(2.1)

The BWT tends to permute the original text in several runs of equal characters, which
eases the compression process of such permutation. It is possible to compute BWT and
SA from each other in linear time and the BWT is reversible, i.e., it is possible to recover
the text from the BWT in linear time. The fourth column of Table 2.1 describes the BWT
for the corresponding text.

2.3 Suffix Array Construction by Induced Suffix Sort-
ing

The suffix array construction method by induced suffix sorting (SAIS) of Nong et al.
[2009] builds on the induced suffix sorting technique introduced by previous algorithms [Itoh
and Tanaka, 1999; Ko and Aluru, 2003]. Induced suffix sorting consists in deducing the
order of unsorted suffixes from a (smaller) set of already ordered suffixes.

The next definition classifies suffixes and symbols of strings.

Definition 10 (L-type and S-type). For any string T , Tn = $ has type S. A suffix Ti is
an S-suffix if Ti < Ti+1, otherwise Ti is an L-suffix. Each symbol T [i] has the type of Ti.

The suffixes can be classified in linear time by scanning T once from right to left, so
that the type of each suffix is stored in a bitmap of size n. type[1 , n].

Note that, within a c-bucket, the L-suffixes precede the S-suffixes.
Further, the classification of suffixes is refined as follows:

Definition 11 (LMS-type). Let T be a string. Then Ti is an LMS-suffix if Ti is an
S-suffix and Ti−1 is an L-suffix.

Nong et al. [2009] showed that the order of the LMS-suffixes is enough to induce the
order of all suffixes. This is the basis of the SAIS algorithm.

2.3.1 SAIS framework

1. Sort the LMS-suffixes. This step is explained later.

2. Insert the LMS-suffixes into the tail of their respective c-buckets in SA[1, n], without
changing their order. Now SA contains the LMS-suffixes positions, in sorted order,
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on the end of each c-bucket. The remaining values of SA are initialized with a
sentinel ⊥ value.

3. Induce L-suffixes by scanning SA[1, n] from left to right: for each suffix SA[i] ̸= ⊥,
if T [SA[i]− 1] is L-type, insert SA[i]− 1 into the head of its c-bucket and increment
the head pointer.

4. Induce S-suffixes by scanning SA[1, n] from right to left: for each suffix SA[i] ̸= ⊥,
if T [SA[i]− 1] is S-type, insert SA[i]− 1 into the tail of its c-bucket and decrement
the tail pointer.

Whenever a value is inserted in the head (or tail) of a c-bucket, the pointer to the
head (or tail) is increased (or decreased) by one.

In order to sort the LMS-suffixes in Step 1, T [1, n] is divided (factorized) into LMS-
substrings.

Definition 12. T [i, j] is an LMS-substring if both Ti and Tj are LMS-suffixes, but no
suffix between i and j has LMS-type. The last suffix Tn is an LMS-substring.

Let r1
1, r1

2, . . . , r1
n1 be the n1 LMS-substrings of T read from left to right. A modified

version of SAIS is applied to sort the LMS-substrings. Starting from Step 2, T [1, n] is
scanned (right-to-left) and each new LMS-suffix starting with c is inserted (bucket-sorted)
at the tail of its c-bucket. Steps 3 and 4 work exactly the same. At the end, the LMS-
substrings are sorted and the beginning positions of each LMS-substring are stored in
their corresponding c-buckets in SA.

2.3.2 Naming

A name v1
i is assigned to each LMS-substring r1

i according to its lexicographical rank in
[1, σ1], such that v1

i ≤ v1
j iff r1

i ≤ r1
j , where σ1 is the number of different LMS-substrings

in T .In order to compute the names, each consecutive LMS-substrings in SA, say r1
i and

r1
i+1, are compared to determine if either r1

i = r1
i+1 or r1

i < r1
i+1. In the former case v1

i+1 is
set to v1

i , whereas in the latter case v1
i+1 is set to v1

i + 1. This procedure may be sped up
by comparing the LMS-substrings first by symbol and then by type, with L-type symbols
being smaller than S-type symbols in case of ties [Nong et al., 2011].

2.3.3 Recursive call

A new (reduced) string T 1 = v1
1 · v1

2 · · · v1
n1 is created, whose length n1 is at most n/2, and

the alphabet size σ1 is integer. If every v1
i ̸= v1

j for 1 ≤ i < j ≤ n1, then all LMS-suffixes
are already sorted.
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Otherwise, SAIS is recursively applied to sort all the suffixes of T 1. Nong et al. [2009]
showed that the relative order of the LMS-suffixes in T and the order of the respective
suffixes in T 1 are the same. Therefore, the order of all LMS-suffixes can be determined
by the result of the recursive algorithm.

2.3.4 Running Example

Figures 2.1 to 2.9 show a running example for the suffix array construction of the text
T = AGCCTAAGCCTAAGTAAAG$. They describe the following steps:

1. The suffixes are classified according to their types (Figure 2.1).

2. Each LMS-Suffix is placed at the end of its c-bucket (Figure 2.2).

3. The L-type suffixes are induced from the LMS-type suffixes in a left-to-right fashion
(Figure 2.3).

4. The S-type suffixes are induced from the L-type suffixes in a right-to-left fashion
(Figure 2.4). Now the LMS-substrings are sorted.

5. We name every LMS substring and recurse by replacing the LMS-substrings of T

into its name (Figure 2.5).

6. By solving the subproblem, we have the correct order of the LMS-Substrings (Figure
2.6).

7. Each LMS-Suffix, is placed at the end of its c-bucket (Figure 2.7).

8. Steps 3 and 4 are repeated to finally compute SA (Figures 2.8 and 2.9).

Figure 2.1: Classification of the suffixes according to its types. The LMS suffixes are
marked with a ‘*’.
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Figure 2.2: The LMS suffixes are inserted at the end of its c-bucket.

Figure 2.3: The L-type suffixes are induced from the LMS-type and L-type suffixes at the
beginning of its c-bucket.

Figure 2.4: The S-type suffixes are induced from the L-type and S-type suffixes at the
end of its c-bucket.

2.3.5 Time and Space Complexities

There are no consecutive LMS-type suffixes in T , hence, the subproblem must have at
most size ⌊n

2 ⌋. Since the induction steps and the bucket-sort cost Θ(n), the recurrence
relation of SAIS can be modeled after:

T (n) =

 Θ(1), n = 1
T (⌊n

2 ⌋) + Θ(n), otherwise
(2.2)

Which evaluates to Θ(n) optimal time.

12



Figure 2.5: We name every LMS-substring and replace them in T for its name, generating
T 1. Since σ1 < |T 1|, we solve the problem recursively for T 1.

Figure 2.6: After solving the problem recursively for T 1, we obtain the suffix array SA1.

Figure 2.7: The LMS suffixes are inserted at the end of its c-bucket according to the SA1

order.

For the space, since it is possible to reuse the SA array during the recursion to save
space we have an working space (excluding T and SA) of 0.5n lg n + n + O(1) bits when
the alphabet is constant and n lg n+n+O(1) bits when the alphabet is integer (Corollary
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Figure 2.8: The L-type suffixes are induced from the LMS-type and L-type suffixes at the
beginning of its c-bucket.

Figure 2.9: The S-type suffixes are induced from the LMS-type and L-type suffixes at the
beginning of its c-bucket.

3.1 of [Nong et al., 2009]). Further improvements showed that is possible to guarantee
O(σ lg n) of working space [Nong, 2013].

2.4 LCP Array Induction

It is possible to compute the LCP array in linear time as a byproduct of the final induction
steps of the SAIS method [Fischer, 2011; Louza et al., 2021]. Whenever two suffixes, say
SA[i] and SA[j], with i < j, induce two L-type adjacent entries SA[k − 1] and SA[k],
we have LCP[k] = lcp(TSA[i], TSA[j]). Symmetrically, whenever two S-type suffixes, say
SA[i] and SA[j], with i > j, induce two adjacent entries SA[k] and SA[k + 1], we have
LCP[k] = lcp(TSA[i], TSA[j]). Thus, the key to induce the LCP values is to compute the
longest common prefix between two suffixes, which can translated by a range-minimum
query RMQLCP(i + 1, j) for the L-type adjacent suffixes or by RMQLCP(j + 1, i), for the
S-type adjacent entries.

However, there is a small issue with this description: it does not specify how to compute
the suffixes in a L/S-frontier, that is, the LCP between the last L-type and the first S-type
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suffixes of a c-bucket. These LCP values must be computed by explicit comparisons during
the induction steps. Overall, the comparisons take linear time (Lemma 1 [Fischer, 2011]).

Since we compute the LCP values of the L-type and S-type suffixes during the induction
steps, we must know beforehand the LCP between the LMS-suffixes. This can be done
by:

1. Computing the lcp between every LMS-substrings during the naming step.

2. Employing a variation of the Φ-algorithm, cf. [Kärkkäinen et al., 2009], to compute
the lcp between every LMS-suffixes in linear time resorting to the precomputed
lcp values in the previous step to speed up the process. Note that the lcp between
LMS-suffixes might be greater than the lcp between LMS-substrings.

2.4.1 Time and Space Complexities

The operation which dominates the time complexity is the RMQ over the LCP array. By
using an array M [1, σ] that keeps track of the minimum value, M [c], induced in each
c-bucket it is possible to answer these queries in constant time. However, every time a
M [c] entry is updated to a value LCP[i], all other entries of M that are greater than LCP[i]
must be updated to LCP[i]. This process takes Θ(σ) time and hence, the LCP array is
calculated in Θ(nσ) time, which is linear for constant alphabets. By using a more refined
data structure to answer the RMQ queries, such as Fischer and Heun [2007]’s, it is possible
to answer each query in Θ(1) time and thus obtaining a Θ(n) time algorithm.

If the M array is used an additional σ words of working space are needed.

2.4.2 Running Example

Figures 2.10 to 2.13 depict the LCP computation process. They describe the following
steps:

1. The LCP values of the LMS-substrings are computed during the naming step.

2. After the recursive call, all LMS-suffixes are sorted, and by employing the Φ-
algorithm, the LCP values of the LMS-suffixes are calculated in linear time. This
process is sped-up by relying on the precomputed values in the last step.

3. During the induction of the L-type suffixes with a left-to-right scan, the LCP values
of such suffixes are calculated. If any, the LCP values lying on a L/S-frontier must
also be computed.
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4. During the induction of the S-type suffixes with a right-to-left scan, the LCP values
of such suffixes are calculated. If any, the LCP values lying on a L/S-frontier must
also be computed.

Figure 2.10: The LCP values of the LMS-substrings are computed naively during the
naming procedure.

Figure 2.11: By employing the Φ-algorithm, the LCP values of the LMS-suffixes are
computed.

2.5 Entropy and Repetitiveness Measures

The following definitions and concepts are based on the work of [Navarro, 2021]
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Figure 2.12: The LCP values of the L-type suffixes are computed during the induction
step of those suffixes.

Figure 2.13: The LCP values of the S-type suffixes are computed during the induction
step of those suffixes. The value in red is computed explicitly, since it is located in a
L/S-frontier.

The empirical entropy over a finite and particular sequence S[1, n] can be defined as:

H(S) =
∑

a∈Σ(S)

na

n
lg n

na

(2.3)

Where na stands for the frequency of the symbol a in S. This is also known as zero-th
order empirical entropy, also denoted by H0(S), and it serves as a lower bound to any
statistical compressor that exploits skewed frequencies, i.e. which encodes each symbol
S[i] with − log ni

n
bits [Ferragina and Manzini, 2005].

If we also consider the context of the substring of length k preceding each symbol in
S, we can define the k-th order empirical entropy as:

Hk(S) =
∑

C∈Σk

nC

n
·H0(SC) (2.4)

Where SC stands for the sequence of symbols following occurrences C in S and nC =
|SC |. The k-th order entropy can be used as a lower bound to any statistical compressor
that encodes each symbol with a code that depends on the symbol itself and the context
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of size k immediately preceding this symbol [Ferragina and Manzini, 2005]. It always
follows that Hk(S) ≥ Hk+1(S) for any k ≥ 0.

In spite of its properties, the empirical entropy does not capture repetitiveness, since
Hk(S · S) ≥ Hk(S). Hence, statistical compressors cannot fully explore the repetitive-
ness of texts. Chapter 3 encompasses other several methods capable of exploiting the
redundancy over highly repetitive texts and the associated metrics.

2.6 Compact Sequence Representations

This section considers the notation established in [Belazzougui and Navarro, 2015]. As-
sume S[1, N ] a sequence over an alphabet Σ. The following operations over S are defined:

• access(S, i), or simply S[i]: retrieve the i-th symbol of S.

• ranka(S, i): counts the number of occurrences of a n S[1, i].

• selecta(S, j): computes the position where the j-th a appears in S.

When the alphabet is binary, i.e., Σ = {0, 1}, the sequence is also referred as a
bitmap and all the operations can be supported in constant time [David Clark, 1996;
González et al., 2005]. There are some methods that achieve a compressed representation
maintaining constant query times per operation when the frequency of symbols are skewed
[Raman et al., 2007].

For integer sequences, Wavelet Trees or Wavelet Matrices can be employed and further
compressed if they are given a shape of a Huffman Tree [Claude et al., 2015; Grossi et al.,
2003; Mäkinen and Navarro, 2005; Navarro, 2014]. A lower bound of rank in Ω(log logw σ)
time for any structure using O(nwO(1)) bits, being w the width in bits of a word in a RAM
machine was obtained in [Belazzougui and Navarro, 2015] while maintaining constant time
for select and ω(1) time for access or vice-versa [Navarro, 2016].

2.7 Compressed Indices

During the last two decades, several compressed indices were developed. More than in-
dices, they are self-indices, i.e., they can recover the text from a compressed representation
without having to store it.

Grossi and Vitter [2000, 2005] described a compressed suffix array data structure that
represented its information in O(n lg σ) bits by combining the compressing the increasing
sequence Ψ and employing SA sampling. With the compressed Ψ function it was possible
to navigate in the virtual suffix array and compute the entries of SA that were not sampled.
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Ferragina and Manzini [2000, 2005] developed what is called the FM family of indices,
which compresses the BWT and uses a sampling technique on SA to represent the suffix-
array in a compressed form. Similarly to the compressed suffix array, the FM-indices
rely on a function LF(i) that works comparably as Ψ(i) to recover entries from a virtual
suffix-array. in a matter of fact Ψ(LF(i)) = LF(Ψ(i)) = i. In a specimen of this family,
they obtained an index that represented the suffix array in 5nHk(T )+o(n) bits. [Mäkinen
and Navarro, 2005] approach works similarly as the FM-indices but compresses the BWT
runs to achieve k-th order entropy.

The LZ-index (cf. [Navarro, 2004]) builds succinct tries of the LZ78 phrases and its
reverses to achieve a representation bounded by 4nHk(T ) + o(n lg σ) for k = o(logσ n).

It is also feasible to build compressed suffix trees that, built on top of the compressed
SA and LCP information, can emulate any query on a plain suffix while retaining a compact
representation [Abeliuk et al., 2013; Nunes and Ayala-Rincón, 2013; Sadakane, 2007]. This
is made possible by representing the suffix tree topology succinctly explicitly or implicitly.

All the aforementioned indices are bounded by empirical entropy and hence cannot
explore all the compressibility of a very repetitive text. Other approaches based on
different compression schemes, such as grammar compression, were required to represent
the information in a more space-efficient way while retaining the ability to perform queries
over the compressed information.

2.8 Integer Encoding

We cover various techniques to encode sequences of integers when most of them are
expected to be small. Some techniques allow us to directly access any integer in the
sequence.

2.8.1 Simple8b

The Simple8b scheme, proposed by Anh and Moffat [2010], encodes a sequence of small
integers in a 64-bit word using the number of bits required by the largest integer. It
identifies a word with a 4-bit tag called selector, which specifies the number of integers
encoded in the rest of the word and the width of such integers. Simple8b also has specific
selectors for a run consisting of zeroes. If a run of 240 or 120 zeros is encountered, it can
be represented with a single 64-bit word.

Table 2.2 describes the number of integers packed (size) and the width of such in-
tegers according to each selector value. It also can be observed in this table that the
number of wasted bits due to internal fragmentation only occurs when selector values
are in {0, 1, 8, 9}. For instance, suppose that we have to encode the integer sequence
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(51, 17, 35, 53, 59, 20, 37, 38, 13, 9). Since each value uses at most 6 bits, we can encode all
the 10 integers, each one with fixed width of 6 bits, under the selector value 7.

Table 2.2: Simple8b scheme (Adapted from [Anh and Moffat, 2010]).

Selector Value Width Size Wasted Bits
0 0 240 60
1 0 120 60
2 1 60 0
3 2 30 0
4 3 20 0
5 4 15 0
6 5 12 0
7 6 10 0
8 7 8 4
9 8 7 4
10 10 6 0
11 12 5 0
12 15 4 0
13 20 3 0
14 30 2 0
15 60 1 0

2.8.2 Directly Addressable Codes

The Directly Addressable Codes (DAC), proposed by Brisaboa et al. [2013], allow efficient
retrieval of any given value A[i] from an array of integers A[1, n] while encoding such
integers compactly. Let b be an integer parameter and li be the width (number of bits)
of A[i]. This encoding splits each A[i] into k = ⌈li/b⌉ blocks V 1[i], V 2[i],. . . , V k[i] of b

bits each. A bit Bl[i] = 1 is associated with a block V l[i] if l < k, that is, V l[i] is not the
last block of A[i]. Otherwise, Bl[i] = 0. Then a layered data structure is constructed in
such a way that the l-th layer contains two bitmaps: the first bitmap is the concatenation
of blocks V l, whereas the second bitmap is the concatenation of the bits Bl, each one in
correspondence with a block of V l.

To retrieve any given value A[i], one must first recover B1[i] and check if its value is
zero. If so A[i] equals V 1[i], otherwise, it is necessary to proceed recursively to the j-th
entry of the next layer, where j = rank1(B1, i), and append the result of the recursive
call to V 1[i]. rank1 can be computed in constant time by using auxiliary data structures
on top B, as exposed in Section 2.6. Algorithm 1 schematizes the recovery of an entry
A[i] under DAC encoding when called with parameters DAC(V, B, i, 1).
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Algorithm 1: DAC(V, B, i, l).
Input: V ,B,i,l
Output: A[i]

1 if Bl[i] = 1 then
2 j ← rank1(Bl, i);
3 return binary-concat(V l[i], DAC(V, B, j, l + 1)

4 else
5 return V l[i]

2.8.3 Elias-Fano Encoding

This format permits the encoding of a monotonically increasing sequence of n integers
over the interval [0, m− 1] within 2n + n⌈lg m

n
⌉ bits and allows the retrieval of any integer

of such sequence in constant time [Vigna, 2013]. Each integer ai is divided into two parts:
ui, the ⌈lg n⌉ most significant bits of ai and li, the ⌈lg m

n
⌉ remaining bits of ai. The li

values are concatenated in a single array of n⌈lg m
n
⌉ bits and each value ai is classified in

one of the total of n possible buckets. Then, the number of elements of each bucket is
represented in a negated unary representation and such representations are concatenated
in a bitmap B of 2n bits, n bits for each possible bucket and further n bits for every
element ai.

To retrieve the i-th value of the sequence of integers, one just needs to search for the
position k = select1(B, i), and append li to the binary representation of k − i. The
position k can be retrieved in constant time using auxiliary data structures on top of B

(cf. Section 2.6).
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Chapter 3

Compressors for Repetitive Data

This chapter approaches several compression schemes, ranging from classical to modern,
which are used when compressing highly repetitive data. Such approaches (or variations)
are compared with the GCIS proposed approach (cf. Chapter 4) in Chapter 5.

3.1 LZ77

The authors in [Ziv and Lempel, 1977] presented a compression scheme known as LZ77
that employs a left-to-right scan to find the substring of minimum length from a position
i, also called a phrase or factor, that does not occur in T [1, i]. Algorithm 2 summarizes
this process.

Algorithm 2: lz77-parse(T )
Input: T [1, n]
Output: LZ77 parse of T

1 i← 1;
2 while i ≤ |T | do
3 Search for the minimum j > i which makes T [i, j] not occur in T [1, i− 1];
4 output-phrase(S[i, j]);
5 i← j + 1;

Definition 13 (Metric for LZ77 parsing). The number of LZ77 phrases of T is defined
as z(T ), or simply z when the context is clear.

Several compression schemes such as LZRR, LZD and ReLZ; and practical tools,
e.g., zip, 7zip and gzip; arise from this compression scheme.
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3.2 LZ78

The LZ78 scheme, differently from the LZ77, is a dictionary-based technique. It creates
a dictionary D while reading the text in a left-to-right fashion and maintaining a read
string S. While the read string S is found in the dictionary during this linear inspection,
a new symbol is appended to this S. Whenever S = S[1, k] /∈ D a new factor S[1, k] ·S[k]
is created and S resets to the empty string [Ziv and Lempel, 1978]. More formally, we
have the following definition.

Definition 14 (LZ78 factorization). The LZ78 factorization for a text T is a sequence
of factors f1 . . . fm such that f0 = ϵ and fi = fj · c where:

• fj is the longest prefix of T [k, n], with fj ∈ {fk|0 ≤ k < i}.

• c is the character T [k + |fj|].

• k = 1 +
i−1∑
j=0
|fi|

Algorithm 3 describes the LZ78 scheme.

Algorithm 3: LZ78 scheme
Input: T [1, n]
Output: LZ78 factorization f1 . . . fm

1 S ← ϵ;
2 f0 ← ϵ;
3 m← 0;
4 D ← {f0};
5 for i← 1; i ≤ n; i + + do
6 if S · T [i] ∈ D then
7 S ← S · T [i]
8 else
9 m + +;

10 fm ← S · T [i];
11 D ← D ∪ {fm};

The LZ78 factorization can be obtained in O(n) time by using a trie data structure
or hashing for storing each factor fi.

Running example

Figure shows a running example for the LZ78 factorization for T = abaababaabaababaaababa.
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Figure 3.1: LZ78 factorization for T = abaababaabaababaaababa

3.3 Grammar Compression

Grammars can compactly describe a set of strings, i.e., a formal language, by a set of
production rules [Hopcroft et al., 2007]. It is natural to suggest that one can use grammars
for compressing repetitive data.

Definition 15. Context-free Grammar
A context-free grammar can be defined as a tuple G = (Σ, Γ, P, XS), where:

• Σ is the terminal alphabet of G;

• Γ is the set of variable, or non-terminal symbols, Σ ∪ Γ = ∅;

• P ⊆ Γ× (Σ ∩ Γ)∗ is a finite set of production rules;

• and XS ∈ Γ is the start symbol.

Definition 16 (Derivations). A production rule (Xi, αi) ∈ P is also denoted Xi → αi.
In this case, it is said that αi is derived from Xi. For strings S, R ∈ (Σ ∪ Γ)∗, if R is
obtained from S by production rules in P , then R is derived from S. When R is obtained
by a (possibly empty) sequence of derivations from S, then R is generated from S. If S is
a non terminal, we say that G(S) = R.

Definition 17 (Grammar size). |G| is defined as the total length of the strings on the
right side of all rules, that is:

|G| =
∑

(Xi,αi)∈P

|αi|

Given a string T ∈ Σ∗, the grammar compression problem is to find a grammar G that
generates only T , such that G can be represented in less space than the original T . Given
that G grammar-compresses T , for (Xi, αi) ∈ P , G(Xi) = S is defined as the single string
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S ∈ Σ∗ that is generated from Xi. The language generated by G contains the unique
string G(XS) = T . This notion can be extended further for a string of terminals and
non-terminals S, such that:

G(S) = {W1 ·W2 · . . . ·W|S| | Wk ∈ G(S[k]), 1 ≤ k ≤ |S|}.

When each S[i], 1 ≤ i ≤ |S|, generates a single sequence, the previous definition can
be replaced by the concatenation of the strings generated by S[i], 1 ≤ i ≤ |S|:

G(S) = G(S[1]) · G(S[2]) · . . . · G(S[|S|])

3.3.1 Grammar Compression and LZ77

Definition 18 (Minimum Grammar Size (g(T ))). We call g(T ), or simply g when the
context is clear, the size of the minimum context-free grammar that generates only the
text T .

The problem of computing g is NP-Complete [Charikar et al., 2005], but there are
grammar algorithms that run in linear time and obtain good compression ratios. Espe-
cially the RePair method (cf. [Larsson and Moffat, 1999]) is considered the gold standard
of grammar compression and thus often used as a baseline for comparing grammar com-
pressors.

It holds that g = Ω(z lg(n
z
)) [Claude et al., 2021], so we can expect that LZ77-based

compressors to represent the information more compactly than grammar compressors.
Nevertheless, grammar compression remains interesting with respect to LZ77, being one
of them the capability of extracting arbitrary symbols of the compressed text, which
cannot be done in LZ77 efficiently. It is also possible to build self-indices based on gram-
mars to support fast pattern matching [Claude and Navarro, 2011, 2012; Claude et al.,
2021]. Besides, in practice, several grammar compression algorithms obtain reasonable
compression ratios when compared with LZ77 based compressors [Larsson and Moffat,
1999; Maruyama and Tabei, 2013; Nunes et al., 2018].

3.4 RePair

The RePair heuristic, proposed by Larsson and Moffat [1999], grammar-compresses a
given text by joining the most frequent pairs to create the production rules X → CD,
being X a newly introduced nonterminal and CD ∈ (Γ ∪ Σ)2, and recursing in the text
with CD replaced by X, thus generating a process of Recursive-Pairing. The Algorithm
4 describes such process.
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.

Algorithm 4: RePair heuristic.
1 T ′ ← T ;
2 Select symbols CD of T ′ such that CD is the most frequent pair;
3 if CD occurs only once then
4 XS ← T ′;
5 else
6 Introduce the rule X → CD with a fresh nonterminal X;
7 Replace every occurrence of CD for X in T ′ and go to Step 2;

This whole process is bounded by O(n) time and space by employing a hash table for
constant-time access to the pairs.

The RePair heuristic is often considered a gold standard for grammar compressors for
its practical value. It is often used as a baseline for grammar compressors and resides in
the core of several applications [Claude and Navarro, 2010; Furuya et al., 2019; Ganczorz
and Jez, 2017; Lohrey et al., 2013].

Running example

Figure 3.2 shows a running example for RePair given the input T = bananadadabanana.
Each pair of lines describes that the most frequent pair, highlighted in red in the first
member of such pair, is replaced by a fresh nonterminal until there is no pair with two or
more occurrences.

3.4.1 Extraction

It is possible to support extraction of symbols in the RePair grammar if we known
|G(Xi)| for each nonterminal Xi. The idea is to descend into the parse tree by computing
the expansion length of each child in order to decide if one should recursively descend
into the left or to the right child [Gagie et al., 2019]. Maruyama and Tabei [2013] makes
better use of space, at the cost of being slower, by succinctly encoding the grammar parse
tree using in post-order fashion.

3.4.2 BigRePair

The main problem with RePair implementations is the memory consumption needed to
build the grammar. By using the Rabin-Karp sliding hashing method to preprocess the
text, it is possible to obtain a factorization in a way that long repeated substrings are
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Figure 3.2: RePair compression for T = bananadadabanana.

likely to be parsed in the same way [Gagie et al., 2019]. By building the grammar upon
the generated factorization, it is possible to greatly reduce the needed working space.

3.5 LZD

LZD stands for LZ Double-factor factorization and was proposed by Goto et al. [2015].
It is a compression scheme that is heavily inspired by the LZ78 parsing. Informally,
when reading T in a left-to-right fashion, a new factor is created by composing two max-
imal previous factors (or single alphabet symbols). More formally, we have the following
definition.

Definition 19 (LZD factorization [Goto et al., 2015]). The LZD factorization for a text
T is a sequence of factors f1 . . . fm such that f0 = ϵ and fi = fi1fi2 for 1 ≤ i ≤ m, where:

• fi1 is the longest prefix of T [k, n], with fi1 ∈ {fj|1 ≤ j < i} ∪ Σ;

• fi2 is the longest prefix of T [k + |fi1|, N ], with fi2 ∈ {fj|0 ≤ j < i} ∪ Σ.

• k = 1 +
i−1∑
j=1
|fi|.

This factorization can be obtained with an incremental trie construction in O(m)
workspace and O(n2/ logσ n) time or, by applying a modified Ukkonen’s Suffix Tree algo-
rithm, in O(n) time and space.
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Running example

Figure 3.3 shows a running example for the LZD factorization for the text T =
abaababaabaababaaababa. Every factor fi is built maximally upon two previous factors
(or symbols from Σ ∪ ϵ).

Figure 3.3: LZD factorization for T = abaababaabaababaaababa.

3.6 ReLZ

The ReLZ method relies on preprocessing the text by using the Relative Lempel Ziv
(RLZ) approach, which parses the text by using a reference sequence from where the
LZ77 factors from the text are generated. Such factors are interpreted as new symbols
inducing a new sequence, which can be later LZ77 factored to identify repetitions that are
separated by considerable distances. Since the preprocessed sequence tends to be much
smaller than the original text, this approach does not suffer from memory consumption
problems and obtains a very close approximation to the original LZ77 parse in O(n) time
[Kosolobov et al., 2020].

3.7 LZRR

Nishimoto and Tabei [2019] propose a practical bidirectional parser based on LZ77 called
LZRR, i.e., a given parsed substring can be referenced by a previous or by a sequent
occurrence. This work shows that the number of phrases generated by such parser is
always less than the number of LZ77 phrases. Even though determining the smallest
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bidirectional parser is an NP-complete problem, it is empirically demonstrated that LZRR
has practical value since it requires five percent fewer phrases than an LZ77 parse.

3.8 Repetitiveness Measures: a Case Study

Taking the real texts from Pizza-Chili Repetitive Corpus as a case study, it is possible
to compare the impact of compressors that are capable of dealing with repetitive data
with statistical compressors that are bounded by empirical entropy (cf. Section 2.5). In
this case study, the compression ratio, proportion of compressed text over original text
sizes, is the subject of comparison. Table 3.1 shows the theoretical compression ratio for
empirical entropy Hk for each corpus’ text with k ∈ {0, . . . , 8}, whereas Table 3.2 depicts
compression ratio for LZ77 and Grammar-based compressors choosing 7-zip and RePair
compressors for these measures, respectively. It is easy to see that empirical entropy
cannot capture repetitiveness, being, in some cases, e.g. cere file, roughly 20 times worse
than the chosen measures for LZ77 and grammar-based compressors.

Table 3.1: Hk for real texts from Pizza-Chili Repetitive Corpus [Ferragina and Navarro,
2005b].

Compression Ratio (%)
Text H0 H1 H2 H3 H4 H5 H6 H7 H8
cere 27.38 22.63 22.63 22.50 22.50 22.50 22.50 22.38 22.25
coreutils 68.38 51.25 35.88 23.88 17.00 12.88 10.13 8.00 6.50
einstein.de.txt 63.00 44.88 32.63 20.88 13.25 9.00 6.13 4.38 3.13
einstein.en.txt 62.00 46.38 33.38 21.13 13.25 9.00 6.50 4.75 3.50
Escherichia_Coli 25.00 24.75 24.50 24.38 24.25 24.25 24.13 24.13 23.88
influenza 24.63 24.13 24.13 24.00 23.88 23.50 22.00 18.63 13.25
kernel 67.25 50.50 36.63 25.75 19.25 15.13 12.13 9.63 7.75
para 26.50 23.50 23.38 23.38 23.38 23.38 23.25 23.25 23.13
world_leaders 43.38 24.38 17.25 11.63 7.63 5.13 4.00 3.50 3.13
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Table 3.2: Compression ratio for LZ77 and Grammar based compressors for real texts
from Pizza-Chili Repetitive Corpus.

Compression Ratio (%)
Text 7-zip RePair
cere 1.05 1.86
coreutils 1.99 2.54
einstein.de.txt 0.11 0.16
einstein.en.txt 0.07 0.1
Escherichia_Coli 4.43 9.6
influenza 1.55 3.26
kernel 0.82 1.1
para 1.24 2.74
world_leaders 1.39 1.79
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Chapter 4

A New Grammar Compression
Approach by Induced Suffix Sorting

This chapter describes a novel grammar compression method that relies on the SAIS
framework to create the grammar rules during the naming steps. This method is called
GCIS. Theoretically, the described method brings a new approach for grammar compres-
sors, and empirically, since it is built upon a fast and optimal suffix sorting strategy, it
shows competitive results in compression and decompression speeds. By employing inte-
ger encoding techniques, it is possible to further improve the compressed representation
and obtain competitive results regarding compression ratio. If augmented with additional
data structures, this method is capable of performing extraction of substrings and exhibits
a good space/time trade-off. Another feature of grammars generated by this method is
that is also possible to compute the Suffix and LCP arrays during decompression without
the need to store the original plain-text. The discussion presented in this Chapter and
the experimental results presented at Chapter 5 are also available at [Nunes et al., 2018]
and [Nunes et al., 2022].

4.1 Compression

For computing the context-free grammar G = (Σ, Γ, P, XS) that generates only T [1, n],
we must modify the SAIS framework (cf. Section 2.3.1) as the following.

Consider the j-th recursion level. In Step 1, after the input string T j[1, nj] is divided
into the LMS-substrings rj

1, rj
2, . . . , rj

nj+1 and named vj
1, vj

2, . . . , vj
nj+1 , a new rule vj

i →
rj

i is created for each different LMS-substring rj
i . Moreover, an additional rule vj

0 →
vj−1

0 T j[1, j1 − 1] if j > 0 or vj
0 → T [1, j1 − 1] if j = 0, with j1 standing for the index of

the leftmost LMS-type suffix of T j, is created for the prefix of T j that is not included in
any LMS-substring. In this context, when j = 0, n0 = n and T 0 = T .
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The algorithm is then called recursively with the reduced string T j+1 = vj
1 · v

j
2 · · · vj

nj+1

as input as long as σj+1 < nj+1, that is, the LMS-substrings are not pairwise distinct. At
the end, when σℓ = nℓ, the last recursion level j = ℓ is reached, and the start symbol of
XS of G is created so that the initial production XS → vℓ

0 · vℓ
1 · vℓ

2 · · · vℓ
nℓ generates the

original string T [1, n].
The algorithm stops after computing XS, since we are not interested in constructing

the suffix array; Steps 2, 3 and 4 of SAIS are not executed. The recursive calls return to
the top level and a grammar G that generates only T [1, n] has been computed.

Since for each LMS-substring there is a unique vj
i , there are no cycles in any generation.

Further, there is only one path of derivations that from a string S generates a string S ′.
The consequence of this deterministic choice, for every derivation, is that G(Xi), for
Xi ∈ Γ, is a fixed string of terminals. Figure 4.1 shows the grammar construction on
GCIS.

Figure 4.1: Grammar construction during GCIS. All LMS-substrings (those starting with
a ‘∗’ symbol), are sorted according to SAIS framework, and then rules v0

0 → AG, v0
1 →

$, . . . , v0
7 → CTTTTC are created. Next, T 1 is obtained by replacing every LMS-substring

by the left-hand side of its rule. The procedure is applied recursively to T 1. When T 2

is created, the alphabet size is equal to |T 2| = n2, and thus the starting rule XS that
generates T 0 is obtained.

Consecutive entries in the set of productions P are likely to share a common prefix,
since the LMS-substrings are given lexicographically ordered by SAIS. Therefore, each
rule Xi → αi ∈ P is encoded using two values (li, s(αi)), such that li encodes lcp (αi−1, αi),
and the remaining symbols of αi are given by s(αi) = αi[li + 1, |αi|]. For each starting
rule vj

0, we define li = 0. This technique is known as Front-coding [Witten et al., 1999].
The computation of (li, s(αi)) is performed with no additional cost with a slight mod-

ification in the naming procedure of SAIS. Each consecutive LMS-substring in SA, say
rj

i−1 and rj
i , are compared first by symbol until a mismatch is found, and then compared

by type, to check if either rj
i−1 = rj

i or rj
i−1 < ri. The symbol-wise comparison reveals
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lcp(rj
i−1, rj

i ) as well, so the resulting complexity is the same with a small slowdown in the
running time.

Time complexity
As SAIS, GCIS runs in Θ(n) time, since each step of the modified SAIS runs in linear
time and the length of the reduced string T j is at most |T j−1|/2.

Grammar size
The number of rules for a given string T k−1 is dependent of the number of distinct LMS-
Substrings (σk) plus one: the additional rule for the prefix that does not belong to any
LMS-substring of T k−1. Let ℓ be the number of grammar levels, rℓ

s be the right-hand
side of the starting symbol XS and rk

0 the prefix of T k−1 that does not belong to any
LMS-Substring, hence the grammar size can be computed as:

|rℓ
S|+

ℓ∑
i=1

σi∑
j=0
|ri

j|

Implementation details

Each non-terminal Xi is represented by a pair αi = (li, s(αi)), as explained. The li

values tend to be small and, considering the j-th recursion value, the sum of such values
cannot be greater than nj, since no two LMS-substrings overlap by more than one symbol.
This property favors integer encodings to obtain a compact representation of the sequence
of li values.

One can encode all li values by using the Simple8b encoding in an integer array W . All
strings s(αi) are encoded in a single fixed-width integer array Y , of cell width ⌊lg(σj)⌋+1
bits. The length of each s(αi) is also encoded using Simple8b into a word array Z. The
same observation of the lcp sum can be done here: the sum of all |s(αi)| on the j-th
recursion level is no larger than nj.

4.2 Decompression

The decoding process is done level-wise, starting from the last recursion level j = ℓ, by
decoding the right side of each rule. At the end, T is decoded from T 1.

In the j-th recursion level, the values (w, y, z) from W , Y and Z, the data structures
mentioned in the implementation details of Section 4.1, are decoded sequentially. To
obtain the right-hand side of the production rules αk+1 from αk, the first w symbols of
αk are copied to αk+1 and the z symbols from Y , which correspond to the string y, are
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appended to αk+1. After this process, the plain representation of each rule is stored, in a
single array of cells with fixed width ⌊lg(σj)⌋+ 1 bits. An additional array of pointers D

is also created to find the starting position of each rule in this fixed-width array.
With the fixed-width array and the array of pointers D, T j−1 now can be decoded

from T j. First, the right side of vj
0 is copied into T j−1. Then, T j is scanned in a left-to-

right fashion and for each T j[i] the algorithm appends to T j−1 the right-hand side of the
non-terminal T j[i], which can be easily found with the support of array D in constant
time.

Time Complexity

The decompression process takes Θ(n) time.

4.3 Extraction

In order to support extraction of substrings from the compressed text, it is necessary to
augment the dictionary with two additional data structures: PS, a partial-sum on the
lengths of the symbols in the reduced string T ℓ of the last recursion level, and L, a data
structure that for each non-terminal Xi stores |G(Xi)|. Formally, those data structures
are defined as:

PS(i) =
i−1∑
j=1
|G(XSi

)|, XS → XS1 , . . . XSk
and 1 ≤ i ≤ k + 1

L(X) = |G(X)|, X ∈ Σ ∪ Γ

The data structure L can also be defined recursively as:

L(X) =


1, X ∈ Σ
|S|∑
i=1

L(S[i]), X → S

To obtain a substring T [l, r], we then proceed as follows:

1. With a binary search, locate indices a and b from PS such that:

a = max{1 ≤ k ≤ |T ℓ| | PS(k) ≤ l}

b = min{1 ≤ k ≤ |T ℓ|+ 1 | PS(k) > r} − 1
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2. Let ℓ be the number of levels in GCIS grammar and S the string derived from XS.
Then define Eℓ = S[a, b] and follow the next steps for i = ℓ to i = 1.

3. Apply a derivation step to each non-terminal X ∈ Ei to obtain a new string Ei−1.
Note that G(Ei−1) = T [l′, r′] is a superstring of T [l, r].

4. Trim Ei−1 from the left and right as much as possible as long as it generates a
superstring of T [l, r]. This can be done efficiently because we know the length of
G(X), for every X ∈ Σ ∪ Γ.

(a) If i = 1, then E0 contains only terminal symbols and generates a superstring
T [l′, r′] = E0 of T [l, r]. Thus, one simply extracts the symbols E0[l− l′ + 1, r−
l′ + 1] to obtain T [l, r].

(b) If i > 1, then Ei−1 contains only non-terminal symbols and generates a super-
string T [l′, r′] = G(Ei−1) of T [l, r]. We then trim Ei−1 by using L and finding,
with a linear search, two indices a and b of Ei−1 such that:

a = max

1 ≤ k ≤ |Ei|

∣∣∣∣∣∣ l′ +
k−1∑
j=1

L(Ei[j]) ≤ l


b = max

1 ≤ k ≤ |Ei|

∣∣∣∣∣∣ r′ −
|Ei|∑

j=k+1
L(Ei[j]) ≥ r



Ei−1 is then trimmed to Ei−1[a, b] before proceeding.

Figure 4.2 shows an example for extracting a text using the aforementioned procedure.

Implementation details

Since the length of the string T ℓ is much shorter than the original text in practice, the
verbatim representation of PS as an array of integers is affordable.

The array L is represented using DACs. This representation allows efficient access
while representing the data in a compact way.

To support fast extraction, we need to efficiently decompress a single rule. Simple8b
encoding works very well when the objective is compressing or decompressing since all the
rules are first expanded sequentially in the decompressing stage. However, when the aim
is to extract symbols, we need to expand individual rules. Thus, instead of encoding all
the lcp values with the simple8b scheme, Elias-Fano encoding is employed, allowing us to
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Figure 4.2: Extraction of the substring T [10, 34] of the text of Figure 4.1. Initially, a binary
search is performed on PS to identify the substring of E2 that shall be decompressed:
E2[2, 4], which generates T [9, 43], is decompressed to obtain E1. A linear scan is performed
in both ends considering the length of the terminals generated by each rule of E1 to find
the indexes a = 2 and b = 8. E1[2, 8] is then decompressed and E0 = T [9, 36] is obtained,
which makes possible to extract T [10, 34] by simply ignoring both ends.

retrieve a random lcp value of a rule efficiently and hence the decoding of a random rule.
The length of each s(αi) is also encoded using Elias-Fano and the s(αi) values are encoded
in a fixed-width integer array. Since the lcp values are front-encoded, we force that every
k-th lcp value is set to 0, with k ∈ O(1). This setting does not have a significant impact
on compression and ensures that we have to backtrack a constant number of rules to
extract an individual rule prefix.

4.4 Suffix Array Construction under Decompression

The suffix array (SA) construction boils down to sorting all suffixes of T . Although
GCIS compression does not sort suffixes, it executes Step 1 of SAIS and the production
rules created correspond to the LMS-substrings already sorted, which is used by SAIS
for sorting all suffixes. We show next how to modify our decompression algorithm for
building SA as a byproduct with, asymptotically, no additional overhead.

First, when j = ℓ, the suffix array SAj is built directly from T ℓ as SAj[T j[i]] = i. Nong
et al. [2009] observed that SAj also gives the order of all LMS-suffixes of string T j−1.
Then, T j−1 is decompressed (Section 4.2), and Steps 2, 3 and 4 of SAIS (Section 2.3.1)
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are executed to obtain SAj−1, and so on. The algorithm proceeds for j = ℓ − 1, . . . , 1,
obtaining the reduced string T j−1 together with SAj−1 at each iteration. At the end, the
original string T is decompressed from T 1 and SA is induced from SA1.

Running Example

Assuming the Text T = AGCCTAAGCCTAAGTAAAG$, GCIS would yield the
grammar depicted by Figure 4.3.

Figure 4.3: GCIS grammar for T = AGCCTAAGCCTAAGTAAAG$.

When decompressing, we start from XS → v2
0v2

2v2
1 and compute the suffix array SA2

from T 2 = v2
2v2

1, process illustrated by Figure 4.4.

Figure 4.4: SA2 for T 2.

After T 2 is decompressed into T 1, we use SA2 to obtain the order of all LMS sufixes of
T 1 which is v1

1 < v1
3. Thus we have sorted the LMS suffixes in the end of each c-bucket,

as shown in Figure 4.5.
Then, the L-type suffixes are induced from the LMS-type suffixes (Figure 4.6), and the

S suffixes are induced from the L-type suffixes (Figure 4.7), thus definitively computing
SA2.

Now T 1 is decompressed into T 0 = T and the remaining process is already described
by Figures 2.7 to 2.9.

Time Complexity

SA is built in O(n) time, since each step of SAIS is linear and the length of all reduced
strings is O(n).
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Figure 4.5: LMS suffixes in T 1 are now sorted in the end of its c-bucket.

Figure 4.6: L-type suffixes in T 1 are induced from LMS-type suffixes.

Figure 4.7: S-type suffixes in T 1 are induced from L-type suffixes.

4.5 LCP Array Construction under Decompression

When |Σ| ∈ O(1), the longest common prefix (LCP) array can also be computed in linear
time within the induced suffix sorting framework [Fischer, 2011; Louza et al., 2017]. We
show below how to modify our decompression algorithm to compute SA and LCP together
with, asymptotically, no additional cost.

When j = 1, the original string T is decoded from T 1, and SA1 stores the order of
all LMS-suffixes of T . Then, in linear time, we compute the LCP array of the LMS-
suffixes using a sparse variant of Φ-algorithm by [Kärkkäinen et al., 2009], which avoids
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storing auxiliary arrays by reusing the space of SA[n/2, n] and LCP[n/2, n]. The LCP
values between the LMS-suffixes are used to induce the LCP values between the L-suffixes
during Step 3 (Section 2.4), and these are used to induce the S-suffixes during Step 4
(see [Louza et al., 2017] for details). Given an additional stack of O(σ log n) bits [Gog
and Ohlebusch, 2011] or the array M described in Section 2.3.1, each LCP value induction
is done in O(σ) time, which we assume to be constant at the top recursion level.

Time complexity

LCP is built in O(n) time, since each step of SAIS is linear and the LCP-values
induction can be done in constant time for each value provided |Σ| ∈ O(1).
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Chapter 5

Experiments

To confirm the practical value of GCIS, we conducted experiments considering several
corpora that includes differents kind of texts. We measured compression and decompres-
sion speed, compression ratio, and memory usage during compression and decompression
of GCIS against classical and grammar-based compressors, evaluated the extraction of
symbols and showed the efficiency of suffix array construction of GCIS during the decom-
pression. Complementary experiments, showing empirical attributes of GCIS grammar,
are also presented in this chapter.

5.1 Experimental Setup

5.1.1 Corpora

The experiments contained in this document consider a large variety of texts including:
regular texts, repetitive texts and very large texts. Regular texts were taken from the
corpora large-corpus [Trigell, 1998], enwiki [Mahoney, 2006], manzini [Manzini, 2003],
pizza-chili [Ferragina and Navarro, 2005a] and silesia [Deorowicz, 2003]. Repetitive
texts were chosen from pizza-chili-repetitive corpus [Ferragina and Navarro, 2005b].
Very large inputs were built by repeating and mutating strings such as chr19 [Consortium,
2009], sars-cov [NCBI, 2020] and salmonella [NCBI, 2007] with a mutation rate of
0.1%, thus these texts are highly repetitive as well; each filename has an integer suffix
that represents the number of repetitions. In addition, a 20GB prefix from November
2019 Wikipedia dump was taken [Wikipedia, 2019]. Tables 5.1, 5.2 and 5.3 summarize
the chosen texts and their size, grouping in boxes texts from the same corpus.
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Table 5.1: Regular texts.

Regular text Size (MB)
archive 27.07
emacs 47.46
linux 47.60
samba 41.58
spamfile 84.22
enwiki8 100.00
enwiki9 1000.00
chr22 34.55
etext99 105.28
gcc-3.0.tar 86.83
howto 39.42
jdk13c 69.73
linux-2.4.5.tar 116.25
rctail96 114.71
rfc 116.42
sprot34.dat 109.62
w3c2 104.20
dblp.xml 296.14
dna 403.93
english 2210.40
pitches 55.83
sources 210.87
dickens 10.19
mozilla 51.22
mr 9.97
nci 33.55
oofice 6.15
osdb 10.09
reymont 6.63
samba 21.61
sao 7.25
webster 41.46
xray 8.457
xml 5.35

5.1.2 Compressors and Extractors Tools

To evaluate GCIS in compression speed, decompression speed and compression ratio, we
chose the well-known compressors: Gzip [Gailly and Adler]; Bzip2 [Seward, 1996]; 7-zip
[Pavlov]; the statistical compressor Ppmdj [Shkarin, 2006]; the grammar compressor Re-
Pair [Wan, 2014]; the grammar compressor SOLCA [Takabatake et al., 2017]; the LZD
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Table 5.2: Repetitive texts.

Repetitive text Size (MB)
cere 461.29
coreutils 205.28
dblp.xml.00001.1 104.86
dblp.xml.00001.2 104.86
dblp.xml.0001.1 104.86
dblp.xml.0001.2 104.86
dna.001.1 104.86
einstein.de.txt 92.76
einstein.en.txt 467.63
english.001.2 104.86
Escherichia_Coli 112.69
influenza 154.81
kernel 257.96
para 429.27
proteins.001.1 104.86
sources.001.2 104.86
world_leaders 46.97

Table 5.3: Very large texts.

Very large text Size (MB)
c050 2956.45
c100 5912.90
c150 8869.35
c200 11 825.80
c250 14 782.25
c300 17 738.69
c350 20 695.14
sars-cov100000 2990.30
sars-cov200000 5980.60
sars-cov300000 8970.90
sars-cov400000 11 961.20
sars-cov500000 14 951.50
sars-cov600000 17 941.80
sars-cov700000 20 932.10
enwiki-20191120-20G 20 000.00
salmonella1000 4928.40
salmonella2000 9856.80
salmonella3000 14 785.20
salmonella4000 19 713.60

compressor that relies on a clever LZ78 modification [Goto et al., 2015]; the bidirectional
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parsing scheme LZRR [Nishimoto and Tabei, 2019]; the Lempel-Ziv approximation for
very large texts ReLZ [Kosolobov et al., 2020]; the RePair approximation for very large
texts BigRePair [Gagie et al., 2019].

Along with GCIS, we considered a set of compressors for each corpus type (cf. Sec.
5.1.1). For regular texts, we considered the compressors: Gzip, Bzip2, Ppmdj, 7-zip,
RePair, LZD and SOLCA. For repetitive texts, the following compressors were adopted:
7-zip, RePair, ReLZ, LZD, SOLCA and LZRR. Finally, for very large texts, the
compressor set was defined by: 7-zip, ReLZ, BigRePair, LZD and SOLCA. These
choices were made regarding the effectiveness of the compressors for each corpus type
and the relevance in comparison with GCIS. For example: LZRR and RePair cannot
deal with large volumes of data due to its high memory consumption, hence it were not
considered for very large-texts; Gzip, Bzip2 and Ppmdj does not capture repetitiveness
very well, thus they were disconsidered for repetitive and very large texts.

Regarding extraction of symbols, we compared GCIS with different encodings of Re-
Pair grammars that allow fast extraction. These encodings can be represented in a more
straight-forward way, storing G(X), for X ∈ Σ∪ Γ, or in a more elaborated way, creating
succinct tree data structures that replace the original grammar encoding while allowing
one obtain the right-hand side of any rule, as described by Maruyama and Tabei [2013].
The implementation of such data structures was based on the work of Gagie et al. [2020]
and can be found in [I, 2020]. We used the following encodings:

• PlainSlp_32Fblc: uses 32-bit integers for the array representations.

• PlainSlp_FblcFblc: employs the minimum bit length required to represent the
maximum value of a given integer array.

• PlainSlp_IblcFblc: uses roughly ⌈lg i⌉ bits to represent the i-th rule exploiting
that the i-th rule is less than i. For representing G(X), for X ∈ Σ ∪ Γ, it uses the
same strategy of PlainSlp_FblcFblc.

• PoSlp_Iblc: employs the approach POSLP of Maruyama and Tabei [2013] to rep-
resent the parse tree and encodes the leaves using roughly ⌈lg i⌉ bits for the i-th
rule.

• PoSlp_Sd: applies the POSLP approach of Maruyama and Tabei [2013] to represent
the parse tree and encodes the leaves with Elias-Fano.

In order to assess the computation of suffix and LCP arrays directly from decompres-
sion, GCIS was compared with efficient suffix and LCP construction algorithms imple-
mented by sais-lite [Kurpicz, 2015; Mori, 2010] and divsufsort [Kurpicz, 2016; Mori,
2008].
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GCIS source code and a detailed description of the processed data are available at
https://github.com/danielsaad/gcis.

5.1.3 Environmental Setup

Due to memory capacity and availability, we conducted the experiments in two machines,
one for the regular and repetitive corpora and another for the very large datasets. Their
specifications follow:

Machine #1, used for regular and repetitive texts:

• CPU: 2x Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz CPUs;

• RAM Memory: 64GB;

• Operating System: Centos7, kernel version 3.10.

Machine #2, used for very large datasets:

• CPU: 2x Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz;

• RAM Memory: 386GB;

• Operating System: Debian GNU/Linux 8, kernel version 3.16.

We compiled GCIS, RePair (and its extractors), BigRePair, Ppmdj and ReLZ
under gcc with -O3 -NDEBUG flags. The default command line parameters of Gzip,
Bzip2, Ppmdj, ReLZ were used on the experiments. A dictionary size of 1 GB was used
in 7-zip. BigRePair RAM usage was limited to 10 GB.

GCIS was implemented in C++11 using the Succinct Data Structure Library (SDSL)
version 2.0 [Gog et al., 2014].

5.2 Compression and decompression

We evaluated all compressors in terms of compression ratio, compression and decom-
pression speed. We also considered their peak memory usage during compression and
decompression. BigRePair could not compress some texts, so its corresponding data in
the graphs are missing. Decompression in ReLZ is not implemented, nonetheless, ReLZ
serves as a compression benchmark since it approximates the Lempel-Ziv parse.

It is important to remark that BigRePair does not produce a compact representation
of rules, since it represents the right-hand side of its rules with 2 integers (all the rules are
of length two). However, we optimized it by representing each rule with at most ⌈log2 r⌉
bits, r being the number of rules, and integrating the non-terminals that occur only
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once in their corresponding right-hand side. This saves ⌈log2 r⌉ bits for each eliminated
non-terminal.

5.2.1 Compression ratio

It stands for the ratio between the compressed and the original text size, and it is given
as percentage.

Figure 5.1 shows that, for regular texts, LZD and RePair outperforms GCIS, and
it is competitive with a basic Lempel-Ziv compressor such as Gzip. However, it is clearly
outperformed by Bzip2, Ppmdj and 7-zip. The latter displays the best compression
ratio overall, being Ppmdj a close competitor in some cases. GCIS presented better
compression ratio than SOLCA.

Figure 5.2 shows the compression ratios for the repetitive texts. In particular, 7-
zip obtains the best compression ratio in all cases, closely followed by RePair. The
compression ratio of GCIS is about twice that of RePair in most cases, but it is still
very good in absolute terms and outperforms LZD, SOLCA, LZRR and ReLZ.

The results for the very large texts are depicted in Figure 5.3. 7-zip is better for the
text enwiki-20191120-20G. The situation stays as in the smaller repetitive files, with
LZD pursuing 7-zip closely. BigRePair and LZD compresses more than GCIS, and
GCIS compresses better than SOLCA and ReLZ, except for the the chromosome 19
based texts.

5.2.2 Compression speed

Figures 5.4,5.5 and 5.6 show the compression speed, in MB/s, of the compressors for each
text type.

Gzip is the fastest compressor in most regular texts. GCIS is the second-fastest
compressor, followed by Bzip2, Ppmdj and LZD. In particular, GCIS is typically an
order of magnitude faster than the other grammar compressors, RePair and SOLCA,
which are its direct competitors.

Considering repetitive texts, GCIS is faster than ReLZ, SOLCA and 7-zip; it is a
order of magnitude faster than RePair and LZRR, but is outperformed by LZD, the
fastest compressor.

For very large texts, GCIS is much faster than 7-zip, which becomes the slowest
of the considered compressors, and slightly faster than SOLCA. However, ReLZ and
BigRePair become much faster than GCIS, as expected from being designed for this
scenario. LZD is clearly the fastest compressor. A problem for GCIS on these very large
files is that, once the text exceeds 2 GiB, it needs to use 64-bit integers, which doubles
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Figure 5.1: Compression ratio on regular texts.

the memory requirements. BigRePair and ReLZ do not suffer from this problem and
require a small amount of main memory during compression.
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Figure 5.2: Compression ratio on repetitive texts.
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Figure 5.3: Compression ratio on very large texts.

5.2.3 Decompression speed

Figure 5.7 depicts the results for regular texts. Gzip and RePair are the fastest at
decompressing, followed by 7-zip LZD and GCIS. Ppmdj and SOLCA are the slowest
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Figure 5.4: Compression speed on regular texts.

decompressors.
Figure 5.8 shows that the situation is similar on repetitive texts, except that 7-zip

becomes way faster than the others in almost all cases. Despite the relative differences, in
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Figure 5.5: Compression speed on repetitive texts.
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Figure 5.6: Compression speed on very large texts.

absolute terms GCIS is still fast, decompressing the files in around 50 MB/s. SOLCA
was outperformed by LZRR and it is the slowest decompressor.

For very large texts, as shown in Figure 5.9, 7-zip is the fastest, followed by LZD,
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Figure 5.7: Decompression speed on regular texts.

GCIS and then by BigRePair. SOLCA is almost an order of magnitude slower than
GCIS.
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Figure 5.8: Decompression speed on repetitive texts.
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Figure 5.9: Decompression speed on very large texts.
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5.2.4 Peak memory

We evaluated the peak memory consumption (resident size) of all compressors during
compression and decompression for each type of text; the results are shown in Figures
5.10 to 5.15.

For regular texts, Gzip, Bzip2 and Ppmdj require negligible space to compress or
decompress.GCIS is outperformed by SOLCA and followed by LZD, 7-zip, RePair,
the last being behind by a large margin. The situation has some changes during decom-
pression: SOLCA is followed by RePair, LZD and 7-zip, and GCIS.

On repetitive texts, regarding compression, GCIS is outperformed by SOLCA and
LZD and followed by ReLZ, 7-zip and RePair. On decompression, GCIS stays behind
every compressor.

On very large texts, during compression, SOLCA is the most space-efficient, followed
by ReLZ, BigRePair, 7-zip LZD and lastly by GCIS. Considering decompression
the order changes: LZD is the most efficient compressor, followed by BigRePair and
SOLCA. GCIS consumed much more memory than the alternatives in this scenario
because for the internal arrays needed for the suffix sorting procedure, which requires
64-bits per entry.

As expected, SOLCA excels for its memory consumption during compression or de-
compression when compared to other compressors designed for repetitive data.

5.2.5 Overview

Figures 5.16 to 5.18 present conceptual radar charts that summarize, for each text type,
the performance of all compressors in each rated aspect. The closer the values are to the
pentagon borders, the better the compressor performed on the corresponding aspect.

5.3 Extraction operation

Results depicted by Figures 5.19 and 5.20 show that GCIS is faster than the extractors on
succinct encodings of RePair but slower than those running on the more straightforward
representation using integer arrays. In turn, regarding space on regular and repetitive
texts, GCIS is more space-efficient than the straightforward encodings but less space-
efficient than the POSLP alternatives, as shown in Figures 5.21 and 5.22. GCIS is then
a competitive alternative regarding the space-time trade-off.
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Figure 5.10: Peak memory (in MB) used by the compressors during compression for
regular texts.
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Figure 5.11: Peak memory (in MB) used by the compressors during compression for
repetitive texts.
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Figure 5.12: Peak memory (in MB) used by the compressors during compression for very
large texts.
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Figure 5.13: Peak memory (in MB) used by the compressors during decompression for
regular texts.

5.4 Suffix Array and LCP Construction

Considering the computation of SA and LCP arrays during decompression, we measured
the total time to decompress the files with GCIS without generating a plain-text file,
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Figure 5.14: Peak memory (in MB) used by the compressors during decompression for
repetitive texts.
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Figure 5.15: Peak memory (in MB) used by the compressors during decompression for
very large texts.
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Figure 5.17: Compressor comparison on repetitive texts.
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Figure 5.18: Compressor comparison on very large texts.
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Figure 5.19: Substring length vs. extraction time (microseconds) on regular texts.

but instead inducing the SA and the LCP arrays. We compared these results with SAIS
[Kurpicz, 2015] and divsufsort [Fischer and Kurpicz, 2017; Kurpicz, 2016] implementa-
tions based on those of Yuta Mori, which are known as the fastest suffix array construction
algorithms in practice.
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Figure 5.23 (Tables A.16 and A.17) shows the SA and LCP construction on the 8
most repetitive real texts when only the GCIS compressed texts are available. Very large
texts were not considered because the implementations of Kurpicz [2015] and Kurpicz
[2016] only deal with 32-bit integers. GCIS builds the SA and LCP arrays faster than
decompressing and then using the suffix array construction algorithms over the plain text.

The hatched part corresponds to the LCP computation and the black bar corresponds
to the time spent in decompressing the text with GCIS to calculate SA and LCP values
using the SAIS and divsufsort implementations.

5.5 Complementary Experiments

Additional experiments were applied to check grammar empirical attributes. For the
repetitive text corpus, where our grammar performed the best, we measured for each
grammar level i that generate rules vi

j in GCIS:

• The text size to be compressed.

• Alphabet size.

• Number of rules.

• Average right-hand side length.

• Average lcp length for adjacent rules.

• The space consumed for grammar level.

Figure 5.24 shows the mentioned results for the file coreutils. The figures for every
other text is found on appendix A.7.

It can be inferred that in the first grammar level, since the alphabet is small and
the text is very repetitive, there are few distinct LMS-substrings and thus few rules.
Moreover, as we progress through the compression, the alphabet size sharply increases
and then decreases in the following levels. Due to the alphabet size in the deeper levels,
we have more distinct LMS-substrings , and the compression is less effective. We can also
observe that the lcp value between adjacent rules’ right-hand side tends to decrease as
the compression progress, since the similarity between adjacent LMS-substrings decreases,
and thus, the reduced text becomes harder to compress. The factor between string sizes
in the deeper levels is approximately 1/3, which recalls to Theorem 3.2 of Nong et al.
[2009]: “given the probabilities for each character to be S or L-type are i.i.d as 1/2, the
mean size of a non-sentinel LMS substrings is 4, i.e., the reduction ratio is at most 1/3”.
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5.5.1 LCP Compression Contribution

In order to evaluate the effect of lcp compression, we implemented a variant that did not
compress such information and applied it to the pizza-chili-repetitive corpus. This can
be verified in Figure 5.25 (Table A.18). It is possible to observe that the variant that
performs the lcp compression requires roughly 70% of the compression ratio required by
the one that does not. The exceptions are the cere and para texts, where GCIS requires
35% and 53% of the compression ratio over the variant that does not compress the lcp.
This can be explained by observing Figures A.1 and A.13. These texts share a much
larger lcp length between right-hand sides of production rules, and thus, do benefit more
from lcp compression than the other present in the corpus.

These empirical results show that the lcp compression scheme has an important role
on GCIS approach, effectively enhancing the compression of GCIS grammars, by taking
advantage of the fact that the right-hand sides of the production rules are sorted as a
by-product of the suffix sorting procedure of Nong et al. [2009].
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Figure 5.20: Substring length vs. extraction time (microseconds) on repetitive texts.
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Figure 5.21: Compression ratio of the extractors on regular texts.
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Figure 5.22: Compression ratio of the extractors on repetitive texts.
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Figure 5.24: Empirical attributes for coreutils file.
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Chapter 6

Final Considerations

We have introduced GCIS, a new grammar-based compression approach based on the
induced suffix sorting framework of SAIS [Nong et al., 2009]. GCIS uses the meta-symbols
introduced by SAIS to generate non-terminals of a balanced grammar that reproduces the
original text. Our experiments on repetitive texts show that GCIS compresses 3–7 times
faster than RePair and 7-zip. Compared to RePair, the grammar compressor that
compresses the most, GCIS compresses using 3–5 times less memory, yet it obtains a
compressed file twice as large (yet the absolute compression is still attractive, below 5%
in most cases). GCIS decompresses 2–8 times slower than RePair and 7-zip, though.

Grammar-based compression is attractive because, unlike Lempel-Ziv, it can be en-
riched to support fast extraction of arbitrary text substrings. From this perspective and
regarding the space-time relation, our experiments show that GCIS is a competitive op-
tion when compared to RePair-based extractors, being faster and less space-efficient
than the succinct encoding of RePair extractors and slower, but more space-efficient,
than the more straightforwardly encoded RePair extractors.

Finally, as a by-product of GCIS, the suffix array of the text can be obtained during
the decompression algorithm, faster than decompressing and running on the original text.

All previously discussed features make GCIS especially attractive in scenarios where
it is required to support random access on the compressed text. Grammar compression
of very large files is challenging with RePair because of its large main memory footprint,
for which GCIS offers an interesting alternative. Given its slowness at decompression, the
GCIS grammar is best suited as a compressed data structure to be repeatedly accessed
without decompressing it completely.

Future work will consider the enhancement of GCIS grammars, turning them into
specialized grammars or even self-indices. Such work should consider evolutions to GCIS
that presents interesting results in practice developed by other authors as the following
mentioned.
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Díaz-Domínguez and Navarro [2021] employ a procedure similar to GCIS to build a
grammar capable of inferring the Burrows-Wheeler transform of the encoded text. This
grammar specializes in treating a collection of genomic reads and showed fast random
access while requiring a small footprint of memory during its construction and maintaining
a competitive compression ratio.

Díaz-Domínguez et al. [2021] showed that GCIS based grammars have the property
of being locally consistent, i.e., equal substrings tend to be parsed in the same way. The
authors proceeded to explain that when such grammars are used in conjunction with
additional data structures described in [Claude and Navarro, 2012], they allow queries
like extraction of substrings and pattern matching. These data structures consist of a
succinct tree to encode the topology of the grammar tree and a grid, which tracks the so-
called primary occurrences of each pattern that are used to find the secondary occurrences
and demonstrated do be of extreme practical value [Claude et al., 2021]. Moreover, in
conjunction with these data structures, the locally consistent property may be utilized
to speed-up pattern matching significantly. This speed-up occurs because the number of
different pattern partitions to be queried by such data structures is only O(lg m), being
m is the pattern length. The result is an index faster than other common alternatives,
concerning pattern matching, at the cost of being slightly larger.

Akagi et al. [2021] strategy uses a different approach: a generalized suffix tree over
the expansion of all nonterminals of GCIS grammar is used to support pattern matching.
As a result, this index is also very fast for locating patterns compared to its competitors
regarding the space/time trade-off.

Despite the different strategies to allow self-indexing on GCIS grammars (regard-
ing the approaches in Akagi et al. [2021]; Díaz-Domínguez and Navarro [2021]; Díaz-
Domínguez et al. [2021]), the outcome is similar: the resulting product demonstrated to
be a practical alternative for aiding string processing.
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Appendix A

Experimental Data

The following experimental data relates to the Graphs and Figures of Chapter 5.

A.1 Compression Ratio
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Table A.1: Percentage compression-ratio on regular texts.

Compression Ratio (%)
Text gzip bzip2 ppmdj 7zip RePair GCIS LZD SOLCA
archive 27.56 20.14 18.25 14.88 25.94 34.76 26.99 41.75
emacs 27.5 21.66 21.03 17.55 31.67 44.99 33.18 52.8
linux 23.78 19.13 19.41 15.87 30 41.74 31.87 49.84
samba 28.74 20.93 20.27 6.99 16.73 23.54 22.01 27.19
spamfile 11.97 7.03 9.29 3.13 4.52 7.95 5.59 10
enwik8 36.52 29.01 26.28 25.01 41.04 51.79 38.21 59.9
enwik9 32.37 25.4 23.65 20.62 30.2 43.74 30.69 49.04
chr22.dna 26.94 24.43 23.19 21.92 44.37 45.21 34.7 42.07
etext99 37.69 27.58 25.02 24.45 38.92 49.02 37.43 54.51
gcc-3.0.tar 20.86 15.84 16.31 13 23.76 34.22 25.34 41.3
howto 32.21 25.86 23.83 21.73 38.57 49.02 38.24 56.42
jdk13c 10.9 7.03 9.11 5.9 8.27 13.03 8.89 16.88
linux-2.4.5.tar 23.02 18.5 18.85 14.86 27.93 40.42 30.7 47.88
rctail96 20.93 14.91 14.47 11.27 16.75 22.02 17.15 27.65
rfc 24.34 18.7 18.21 14.59 24.45 34.83 25.72 41.11
sprot34.dat 24.57 20.75 22.53 16.52 31.33 37.72 29.28 40.31
w3c2 14.55 9.85 11.28 6.36 9.98 16.39 13.19 20.58
dblp.xml 17.42 11.4 11.31 11.82 16.39 22.88 15.94 29.33
dna 28.12 25.76 24.02 22.56 39.61 45.22 35.14 41.59
english 37.94 28.35 25.57 18.3 24.34 37 31.36 39.59
pitches 30.29 35.73 34.69 24.91 58.23 72.76 60.13 68.42
sources 22.56 18.66 19.57 15.06 27.75 41.36 30.74 48.82
dickens 37.96 27.47 24.5 27.77 48.67 52.76 40.38 60.98
mozilla 37.19 34.98 33.08 26.28 63.63 74.61 56.36 75.81
mr 37.01 24.48 23.35 27.61 57.79 50.87 44.45 50.61
nci 9.54 5.4 8.34 5.85 8.47 10.59 8.19 12.65
ooffice 50.34 46.53 42.46 39.48 91.04 93.55 76.42 98.88
osdb 37.08 27.79 24.61 28.46 54.14 51.37 41.56 63.48
reymont 28.05 18.8 19.04 20.24 35.7 41.89 29.03 47.87
samba 25.27 21.06 21.1 17.85 38.83 44.91 36.52 53.02
sao 73.54 68.13 65.38 60.86 140.94 129.94 102.91 124.06
webster 29.43 20.85 18.5 21.04 34.26 44.36 29.69 48.29
x-ray 71.25 47.81 47.49 52.96 115.02 107.6 91.55 111.61
xml 12.95 8.25 11.32 9.07 16.46 20.74 15.7 25.98
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Table A.2: Percentage compression-ratio on repetitive texts.

Compression Ratio (%)
Text 7zip RePair GCIS ReLZ LZD SOLCA LZRR
cere 1.05 1.86 3.4 5.9 4.39 4.08 5.54
coreutils 1.99 2.54 4.71 11.27 6.49 6.64 10.6
dblp.xml.00001.1 0.16 0.19 0.34 0.91 0.47 0.44 0.84
dblp.xml.00001.2 0.16 0.18 0.34 0.91 0.51 0.45 0.86
dblp.xml.0001.1 0.2 0.46 0.66 1.19 0.73 0.99 1.13
dblp.xml.0001.2 0.19 0.39 0.66 1.19 1.05 1.07 1.34
dna.001.1 0.52 2.43 3.17 4.71 2.97 4.44 4.54
einstein.de.txt 0.11 0.16 0.25 0.6 0.38 0.41 0.55
einstein.en.txt 0.07 0.1 0.17 0.31 0.17 0.22 0.29
english.001.2 0.55 2.41 3.66 5.12 5.53 6.02 5.77
Escherichia_Coli 4.43 9.6 13.16 29.51 15.46 15.19 27.86
influenza 1.55 3.26 4.31 7.95 4.52 6.14 7.44
kernel 0.82 1.1 2.12 4.92 2.94 2.72 4.6
para 1.24 2.74 4.52 8.69 6.17 5.6 8.22
proteins.001.1 0.6 2.64 3.67 5.42 3.35 4.93 5.2
sources.001.2 0.45 2.34 3.59 4.5 5.32 5.86 5.76
world_leaders 1.39 1.79 2.85 5.99 3.44 4.56 5.64

Table A.3: Percentage compression-ratio on very large texts.

Compression Ratio (%)
Text 7zip GCIS ReLZ BigRePair LZD SOLCA
c050 0.72 5.34 5.11 3.74 4.35 5.47
c100 0.52 4.77 4.08 3.14 1.53 4.82
c150 0.46 4.56 3.73 2.94 0.51 4.52
c200 0.42 4.4 3.56 2.75 1.15 4.33
c250 0.4 4.35 3.46 2.62 0.67 4.21
c300 0.39 4.31 3.39 2.52 0.32 4.1
c350 0.38 4.25 3.34 2.51 0.69 4.02
covid100000 0.57 0.66 1.67 0.68 0.74 0.96
covid200000 0.58 0.63 1.64 0.63 0.22 0.88
covid300000 0.58 0.64 1.63 0.59 0.04 0.85
covid400000 0.58 0.63 1.62 0.57 0.21 0.83
covid500000 0.58 0.64 1.62 0.56 0.11 0.81
covid600000 0.58 0.64 1.62 0.55 0.04 0.8
covid700000 0.58 0.64 1.62 0.54 0.13 0.79
enwiki-20191120-20G 19.2 39.28 88.9 – – –
salmonela1000 0.31 2.87 3.21 1.98 0.35 3.29
salmonela2000 0.3 2.62 3.14 1.74 0.29 2.92
salmonela3000 0.3 2.44 3.11 1.59 0.26 2.69
salmonela4000 0.3 2.25 3.1 1.48 0.25 2.52
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A.2 Compression Speed

Table A.4: Compression Speed on regular texts.

Compression Speed (MB/s)
Text gzip bzip2 ppmdj 7zip RePair GCIS LZD SOLCA
archive 26.8 9.67 8.43 3.82 1.56 12.59 10.49 1.77
emacs 21.28 11.69 8.37 2.68 1.09 12.17 6.74 1.47
linux 27.67 10.92 9.46 3.01 1.16 13.19 8 1.56
samba 23.9 12.38 6.19 4.8 1.39 14.19 10.66 2.21
spamfile 53.3 9.23 17.05 8.68 1.99 12.74 45.04 5.19
enwik8 19.84 12.36 8.26 1.55 0.76 10.08 5.03 1.15
enwik9 23.49 12.24 9.02 1.25 0.15 8.96 4.91 1.15
chr22.dna 5.89 12.04 16.53 1.17 1.62 12.52 6.08 1.81
etext99 15.6 11.95 11.39 1.44 0.72 10.01 5.1 1.29
gcc-3.0.tar 33.45 11.22 11.24 3.14 1.1 13.07 9.25 1.87
howto 18.42 11.77 8.41 2.21 1.12 11.84 5.95 1.34
jdk13c 50.53 9.24 17.48 6.4 1.87 13.18 28.35 3.63
linux-2.4.5.tar 30.27 11.52 9.95 2.82 0.73 12.35 7.57 1.6
rctail96 34.76 7.76 13.59 3.12 1.25 11.55 11.45 2.45
rfc 25.36 13.11 11.19 2.29 0.94 12.24 7.15 1.77
sprot34.dat 35.59 11.04 7.64 2.91 0.94 11.2 7.86 1.76
w3c2 46.52 9.77 13.24 6.28 1.37 12.66 19.3 3.24
dblp.xml 46.49 9.61 13.9 3.29 1.04 11.31 11.56 2.23
dna 5.77 11.78 18.07 0.86 0.46 10.08 4.46 1.55
english 15.85 11.96 11.29 0.92 0.03 4.79 4.04 1.17
pitches 31.37 10.06 4.34 3.09 0.5 12.19 4.59 1.13
sources 30.08 11.45 10.05 2.48 0.49 11.01 7.41 1.58
dickens 11.58 9.52 9.1 1.92 1.75 14.15 6.93 1.36
mozilla 20.57 12.14 2.5 2.82 0.87 12.8 3.25 1.07
mr 12.62 12.31 4.91 2.92 2.26 18.81 5.25 1.28
nci 45.96 6.63 17.47 6.02 2.69 22.98 26.84 5.2
ooffice 12.55 8.79 1.92 2.89 1.59 14.3 3.04 0.8
osdb 19.78 9.61 3.06 3.02 1.87 14.01 4.39 1.19
reymont 10.36 9.34 9.08 2.22 2.11 18.94 8.29 1.76
samba 26.35 11.49 5.38 4.09 1.59 15.55 6.59 1.51
sao 10.07 7.4 1.1 3.19 1.5 8.63 1.51 0.7
webster 22.29 10.5 11.98 2.16 1.46 11.58 7.4 1.63
x-ray 15.4 12.1 1.47 3.42 1.47 13.23 2.47 0.73
xml 26.75 6.52 9.73 5.82 2.35 25.48 26.75 2.97
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Table A.5: Compression speed on repetitive texts.

Compression Speed (MB/s)
Text 7zip RePair GCIS ReLZ LZD SOLCA LZRR
cere 1.54 1.28 12.21 7.62 40.29 4.58 2.38
coreutils 4.98 1.43 12.34 8.64 35.83 4.29 2.68
dblp.xml.00001.1 7.5 1.97 13.27 8.7 262.15 12.99 2.51
dblp.xml.00001.2 7.41 1.96 12.82 9.08 238.32 13.16 2.59
dblp.xml.0001.1 7.45 1.94 12.87 8.62 187.25 10.84 2.52
dblp.xml.0001.2 6.98 1.91 12.65 9.12 145.64 11.31 2.58
dna.001.1 2.92 1.92 13.21 8.05 62.05 8.64 2.47
einstein.de.txt 9.64 2.08 12.64 9.37 403.3 13.03 3.15
einstein.en.txt 9.38 2.01 10.91 8.11 392.97 12.24 2.87
english.001.2 4.83 1.63 11.34 8.19 38.27 5.48 2.48
Escherichia_Coli 1.55 1.16 11.84 7.38 13.68 2.93 2.51
influenza 5.6 1.92 12.59 7.99 44.87 6.52 2.9
kernel 4.18 1.43 11.81 8.66 74.13 4.34 2.66
para 1.45 1.17 11.97 7.39 29.24 3.86 1.6
proteins.001.1 9.33 1.78 11.13 7.51 62.79 7.48 2.51
sources.001.2 5.99 1.72 12.47 9.43 34.49 6.01 2.51
world_leaders 8.57 2.64 20.25 15.81 66.15 8.33 2.35

Table A.6: Compression speed on very large texts.

Compression Speed (MB/s)
Text 7zip GCIS ReLZ BigRePair LZD SOLCA
c050 0.88 4.4 10.03 5.05 16.85 1.84
c100 0.96 4.28 12.27 2.5 43.49 1.8
c150 1.02 4.11 13.16 4.8 112.94 1.87
c200 0.88 4.13 13.66 2.69 30.9 1.73
c250 1 4.03 14.04 1.28 77.94 1.83
c300 0.89 3.97 13.59 0.37 169.07 1.73
c350 0.98 3.79 14.33 0.14 73.36 1.66
covid100000 4.79 5.94 7.59 10.84 18.18 6.56
covid200000 4.84 5.81 9.32 11.23 77.3 5.29
covid300000 4.84 5.78 10.14 11.15 262.77 5.38
covid400000 4.87 4.9 10.58 11.28 49.73 4.91
covid500000 4.85 4.6 10.8 11.06 113.65 5.7
covid600000 4.93 4.77 11.02 11.21 240.47 5.52
covid700000 4.85 4.84 11.12 11.07 75.38 5.26
enwiki-20191120-20G 0.89 2.17 0.71 – – –
salmonela1000 1.26 4.91 9.8 6.39 170.13 2.22
salmonela2000 1.37 4.22 10.94 6.58 137.96 1.93
salmonela3000 1.38 3.7 11.2 4.86 162.18 2.03
salmonela4000 1.39 3.95 11.56 2.56 168.92 2.07
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A.3 Decompression Speed

Table A.7: Decompression speed on regular texts.

Compression Ratio (MB/s)
Text gzip bzip2 ppmdj 7zip RePair GCIS LZD SOLCA
archive 96.68 23.54 7.73 75.19 84.59 45.88 61.52 6.82
emacs 135.6 26.97 8.2 98.88 103.17 49.44 79.1 7.36
linux 80.68 36.62 8.45 72.12 80.68 38.7 67.04 7.26
samba 68.16 31.98 5.49 166.32 90.39 55.44 96.7 7.55
spamfile 131.59 42.54 14.11 210.55 161.96 56.15 107.97 7.52
enwik8 101.01 25.51 7.56 70.42 83.33 32.47 58.48 6.73
enwik9 118.06 26.78 8.22 86.36 58.24 31.74 50.13 7.05
chr22.dna 95.97 27.2 14.4 63.98 76.78 35.26 86.37 7.32
etext99 101.23 26.25 10.19 60.86 81.61 31.06 64.59 6.82
gcc-3.0.tar 123.76 35.8 10.13 117.07 120.32 43.31 76.66 7.53
howto 59.73 26.82 7.93 78.84 83.87 39.82 75.81 6.93
jdk13c 154.96 43.31 14.74 151.59 162.16 50.17 124.52 7.66
linux-2.4.5.tar 166.07 38.62 9 79.62 67.98 39.81 75.49 7.33
rctail96 88.24 32.31 12.28 100.62 110.3 42.8 90.32 7.35
rfc 125.18 37.19 9.8 79.74 87.53 40.99 72.76 7.09
sprot34.dat 154.39 26.29 6.87 68.51 105.4 36.06 78.86 7.15
w3c2 151.01 39.17 11.73 182.81 160.31 47.8 80.78 7.24
dblp.xml 167.31 33.35 12.43 129.32 148.81 44.27 67.61 7.55
dna 134.64 24.25 15.42 82.77 95.95 33.72 56.97 7.91
english 115.91 25.2 10.1 96.9 54.79 31.15 64.73 7.01
pitches 136.17 30.34 4.01 62.73 65.68 27.91 73.46 6.79
sources 150.62 34.63 9.11 109.26 111.57 41.19 55.79 7.2
dickens 67.93 19.98 8.49 46.32 84.92 35.14 46.32 5.89
mozilla 98.5 27.39 2.2 62.46 96.64 43.78 58.87 7.08
mr 71.21 29.32 4.91 62.31 124.62 55.39 90.64 7.98
nci 152.5 34.59 17.47 223.67 279.58 95.86 145.87 8.56
ooffice 55.91 15.38 1.79 26.74 61.5 23.65 61.5 6.91
osdb 72.07 19.78 2.9 38.81 100.9 32.55 67.27 7.26
reymont 73.67 22.1 9.21 94.71 132.6 51 82.88 7.05
samba 102.9 29.6 4.85 90.04 127.12 52.71 86.44 7.53
sao 80.56 15.43 0.97 18.59 55.77 24.17 36.25 5.49
webster 101.12 27.83 11.58 65.81 109.11 48.78 81.29 6.2
x-ray 52.94 16.94 1.27 21.18 60.5 30.25 38.5 5.29
xml 133.75 35.67 9.73 66.88 133.75 53.5 59.44 6.37
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Table A.8: Decompression speed on repetitive texts.

Decompression Speed (MB/s)
Text 7zip RePair GCIS LZD SOLCA LZRR
cere 475.56 67.15 50.19 68.85 8.7 27.72
coreutils 366.57 99.17 50.44 68.2 7.46 22.61
dblp.xml.00001.1 551.89 187.25 63.94 111.55 7.68 24.73
dblp.xml.00001.2 388.37 145.64 63.94 113.98 7.8 24.67
dblp.xml.0001.1 582.56 183.96 65.54 115.23 7.8 25.51
dblp.xml.0001.2 551.89 161.32 64.73 107 7.78 23.25
dna.001.1 524.3 109.23 59.24 95.33 8.31 25.45
einstein.de.txt 545.65 265.03 59.85 99.74 7.69 31.34
einstein.en.txt 607.31 251.41 51.28 71.61 8.04 30.54
english.001.2 361.59 63.17 46.4 69.44 7.41 13.94
Escherichia_Coli 201.23 62.26 55.51 86.02 7.98 18.78
influenza 396.95 241.89 56.09 78.19 7.91 27.69
kernel 515.92 86.86 47.33 66.83 7.82 29.05
para 451.86 65.24 50.03 63.6 8.48 22.22
proteins.001.1 455.91 91.18 49.46 88.86 7.66 21.36
sources.001.2 499.33 82.57 54.9 72.82 7.45 16.31
world_leaders 276.29 126.95 97.85 97.85 7.85 22.05

Table A.9: Decompression speed on very large texts.

Decompression Speed (MB/s)
Text 7zip GCIS BigRePair LZD SOLCA
c050 350.71 36.03 28.14 50.96 5.98
c100 393.41 34.38 25.18 221.87 6.06
c150 386.8 33.35 25.09 1732.29 5.81
c200 385.71 32.8 25.26 226.81 6
c250 322.55 32.79 27.64 480.41 6.02
c300 343.17 32.27 25.02 1887.09 5.95
c350 326.42 32.47 27.6 312 6.03
covid100000 280.78 55.81 37.32 85.8 6.73
covid200000 332.26 54.99 36.04 320.16 6.93
covid300000 347.31 53.92 37.33 2354.57 6.94
covid400000 324.94 54.05 37.81 335.42 6.42
covid500000 315.83 54.01 38.28 599.74 6.95
covid600000 294.47 53.87 38.29 2481.58 7.16
covid700000 272.41 52.42 36.81 561.03 7.13
enwiki-20191120-20G 60.12 19.11 – – –
salmonela1000 410.73 35.27 32.49 532.19 6.96
salmonela2000 385.01 31.74 32.16 579.13 6.73
salmonela3000 324.86 31.72 33.09 639.05 6.96
salmonela4000 312.27 31.78 33.11 620.55 7.04
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A.4 Peak Memory

A.4.1 Compression
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Table A.10: Peak memory in MB during compression on regular texts.

Peak Memory (MB)
Text gzip bzip2 ppmdj 7zip RePair GCIS LZD SOLCA
archive 8 15 19 316 723 159 195 99
emacs 8 14 19 495 1279 291 391 167
linux 8 15 19 497 1281 285 380 169
samba 8 14 19 267 584 133 195 99
spamfile 8 14 18 880 2044 446 200 74
enwik8 8 15 19 1024 2598 612 884 378
enwik9 8 15 19 9851 25186 5657 6685 2385
chr22.dna 8 15 8 381 926 205 343 124
etext99 8 14 19 1067 2776 634 935 375
gcc-3.0.tar 8 15 19 905 2274 497 555 232
howto 8 15 19 425 1080 234 373 163
jdk13c 8 14 19 758 1724 376 224 96
linux-2.4.5.tar 8 15 19 1166 3080 682 849 301
rctail96 8 14 19 1151 2898 631 540 203
rfc 8 14 19 1168 3126 663 752 280
sprot34.dat 8 14 19 1107 2897 636 761 258
w3c2 8 15 19 1057 2624 565 402 150
dblp.xml 8 14 19 3138 7368 1611 1269 457
dna 8 15 9 4087 10560 2356 3551 842
english 8 15 19 10789 59687 21409 14741 3857
pitches 8 15 19 568 1646 361 718 281
sources 8 15 19 2130 5534 1229 1501 493
dickens 8 14 13 134 277 70 114 71
mozilla 8 15 19 526 1449 336 596 254
mr 8 14 19 132 292 66 111 60
nci 8 14 13 369 946 185 109 54
ooffice 8 15 19 79 194 46 111 70
osdb 8 14 19 132 276 65 105 66
reymont 8 14 13 86 185 48 59 51
samba 8 14 19 267 584 133 195 99
sao 8 14 19 91 207 58 160 81
webster 8 14 19 442 1081 243 327 141
x-ray 8 14 19 120 256 74 166 97
xml 8 14 13 75 148 37 26 40
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Table A.11: Peak memory in MB during compression on repetitive texts.

Peak Memory (MB)
Text 7zip RePair GCIS ReLZ LZD SOLCA LZRR
cere 4591 11680 2362 4074 911 154 18933
coreutils 2077 5130 1060 1822 492 108 8450
dblp.xml.00001.1 1064 2524 540 933 123 35 4316
dblp.xml.00001.2 1062 2524 540 933 124 35 4313
dblp.xml.0001.1 1062 2525 540 933 128 38 4311
dblp.xml.0001.2 1062 2527 540 933 137 38 4311
dna.001.1 1065 2623 542 934 191 59 4310
einstein.de.txt 952 2225 479 827 107 35 3816
einstein.en.txt 4640 11137 2376 4122 485 37 19201
english.001.2 1061 2582 545 934 244 74 4310
Escherichia_Coli 1133 3006 605 1010 521 154 4638
influenza 1633 3926 800 1375 338 94 6359
kernel 2542 6266 1323 2282 427 82 10604
para 4309 10961 2208 3792 1013 177 17618
proteins.001.1 1062 2514 544 934 191 64 4310
sources.001.2 1063 2596 544 934 236 65 4310
world_leaders 485 1307 247 425 95 45 1947

Table A.12: Peak memory in MB during compression on very large texts.

Peak Memory (MB)
Text 7zip GCIS ReLZ BigRePair LZD SOLCA
c050 10791 26803 7396 10182 5506 836
c100 10791 53472 7397 10354 7647 1386
c150 10791 80147 7397 10505 9635 1668
c200 10791 106914 7397 11619 14314 2243
c250 10791 133602 7396 14569 16471 2243
c300 10791 160375 7396 17315 18519 2725
c350 10791 186983 7396 20083 23120 3422
covid100000 10791 26842 7393 2327 3435 161
covid200000 10791 53690 7393 4201 6164 269
covid300000 10791 80525 7394 6038 8867 351
covid400000 10791 107357 7394 7853 12248 488
covid500000 10791 134185 7393 9659 14983 631
covid600000 10791 161038 7394 9612 17697 703
covid700000 10791 187855 7394 10258 21061 704
enwiki-20191120-20G 10791 203980 21425 – – –
salmonela1000 10791 43805 7396 10187 5143 705
salmonela2000 10791 87566 7397 10459 10124 1015
salmonela3000 10791 131320 7397 10595 15083 1463
salmonela4000 10791 175007 7396 10665 20023 1762
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A.4.2 Decompression

Table A.13: Peak memory in MB during decompression on regular texts.

Peak Memory (MB)
Text gzip bzip2 ppmdj 7zip RePair GCIS LZD SOLCA
archive 8 11 19 31 33 60 29 25
emacs 8 11 19 58 55 111 51 45
linux 8 11 19 51 53 106 49 41
samba 8 11 19 26 29 58 30 25
spamfile 8 11 18 66 26 148 22 22
enwik8 8 11 19 102 68 241 105 80
enwik9 8 12 19 988 399 2246 706 536
chr22.dna 8 11 10 46 25 74 41 30
etext99 8 11 19 112 85 294 108 84
gcc-3.0.tar 8 11 19 86 69 192 66 66
howto 8 11 19 44 47 95 49 41
jdk13c 8 11 19 77 30 135 26 26
linux-2.4.5.tar 8 11 19 126 107 266 99 80
rctail96 8 11 19 115 67 234 60 52
rfc 8 11 19 122 86 275 86 77
sprot34.dat 8 11 19 117 81 239 91 72
w3c2 8 11 19 110 64 216 45 41
dblp.xml 8 11 19 296 94 625 127 129
dna 8 12 9 401 156 828 344 214
english 8 12 19 1060 2568 4775 1523 913
pitches 8 11 19 61 114 163 94 71
sources 8 11 19 210 169 471 168 149
dickens 8 11 13 18 16 30 20 16
mozilla 8 11 19 62 53 162 83 66
mr 8 11 19 19 16 31 21 16
nci 8 11 11 28 18 56 17 15
ooffice 8 11 19 16 17 21 22 17
osdb 8 11 19 18 15 33 21 16
reymont 8 11 11 13 13 19 14 12
samba 8 11 19 26 29 58 30 25
sao 8 11 19 18 16 39 29 23
webster 8 11 18 46 30 109 42 39
x-ray 8 11 19 17 21 33 30 22
xml 8 11 13 12 13 11 11 10
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Table A.14: Peak memory in MB during decompression on repetitive texts.

Peak Memory (MB)
Text 7zip RePair GCIS LZD SOLCA LZRR
cere 402 110 713 62 38 8142
coreutils 186 81 360 45 27 3638
dblp.xml.00001.1 54 12 162 10 9 1853
dblp.xml.00001.2 54 13 163 10 9 1853
dblp.xml.0001.1 54 13 167 11 10 1853
dblp.xml.0001.2 62 15 153 12 10 1853
dna.001.1 107 20 159 18 15 1857
einstein.de.txt 56 11 138 10 9 1640
einstein.en.txt 456 13 720 11 10 8230
english.001.2 110 39 178 25 18 1858
Escherichia_Coli 114 88 193 55 37 2020
influenza 128 35 234 28 22 2741
kernel 246 51 428 30 18 4555
para 383 130 672 77 43 7589
proteins.001.1 102 22 187 19 18 1857
sources.001.2 109 37 181 25 17 1858
world_leaders 48 17 63 14 11 837

Table A.15: Peak memory in MB during decompression on very large texts.

Peak Memory (MB)
Text 7zip GCIS BigRePair LZD SOLCA
c050 1063 4898 168 320 206
c100 1063 9867 250 233 332
c150 1063 14748 323 127 532
c200 1063 19623 389 337 570
c250 1063 24951 452 252 667
c300 1063 29901 511 154 767
c350 1063 34846 568 354 1024
covid100000 1063 4231 35 72 47
covid200000 1063 8454 41 51 90
covid300000 1063 12992 47 25 122
covid400000 1063 17315 52 78 144
covid500000 1063 21617 56 57 155
covid600000 1063 25941 61 33 187
covid700000 1063 30235 65 84 209
enwiki-20191120-20G 1063 48045 0 0 0
salmonela1000 1063 7257 125 59 211
salmonela2000 1063 14852 187 87 330
salmonela3000 1063 22200 235 112 437
salmonela4000 1063 29595 274 135 532
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A.5 Suffix and LCP Arrays Construction under De-
compression

Table A.16: Suffix array construction under decompression on repetitive texts.

Text GCIS (s) sais-lite (s) divsufsort (s)
cere 42.56 54.5 66.66
coreutils 19.26 24.57 28.86
dblp.xml.00001.1 9.12 11.1 13.59
dblp.xml.00001.2 9.08 11.1 13.45
dblp.xml.0001.1 9.09 11.17 13.2
dblp.xml.0001.2 9.14 11.29 13.28
dna.001.1 9.56 12.12 14.08
einstein.de.txt 8.4 10.57 12.23
einstein.en.txt 44.65 56.01 66.31
english.001.2 10.9 13.61 15.49
Escherichia_Coli 11.79 14.85 17.09
influenza 14.19 17.1 22.39
kernel 23.77 30.59 35.61
para 41.14 52.63 63.78
proteins.001.1 10.95 13.7 16.31
sources.001.2 9.68 12.33 13.58
world_leaders 2.76 3.35 3.19
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Table A.17: Suffix + LCP arrays construction under decompression on repetitive texts.

Text GCIS (s) sais-lite (s) divsufsort (s)
cere 62.44 74.59 80.58
coreutils 27.15 33.02 34.09
dblp.xml.00001.1 13.26 15.38 16.16
dblp.xml.00001.2 13.23 15.52 16.65
dblp.xml.0001.1 13.28 15.62 16.49
dblp.xml.0001.2 13.32 15.94 16.82
dna.001.1 13.78 16.27 17.04
einstein.de.txt 11.98 14.49 14.6
einstein.en.txt 64.49 77.38 79.49
english.001.2 15.07 18.34 18.87
Escherichia_Coli 17.03 20.26 20.92
influenza 20.88 24.9 25.79
kernel 33.53 41.37 42.98
para 59.83 72.06 77.64
proteins.001.1 15.33 18.34 19.32
sources.001.2 13.83 17.07 16.79
world_leaders 4.19 5.12 4.25
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A.6 Extraction

Since we have many points regarding extraction the data can be found at https://
github.com/danielsaad/GCIS-EXTRACT-DATA.

A.7 Empirical Atribuites

Figures A.1 to A.16 depict the empirical attributes of GCIS grammar for the different
texts in pizza-chili-repetitive corpus.

A.7.1 LCP Compression Contribution

Table A.18 shows the compression ratios over pizza-chili-repetitive corpus for the
GCIS variants with and without lcp compression with the quotient between such com-
pression ratios.

Table A.18: Differences between GCIS with and without lcp compression regarding
compression ratio.

Compression Ratio (%)
Text GCIS GCIS NO LCP Quotient
cere 3.4 9.77 0.35
coreutils 4.71 6.7 0.71
dblp.xml.00001.1 0.34 0.49 0.7
dblp.xml.00001.2 0.34 0.49 0.7
dblp.xml.0001.1 0.66 0.94 0.71
dblp.xml.0001.2 0.66 0.94 0.71
dna.001.1 3.17 4.48 0.71
einstein.de.txt 0.25 0.35 0.72
einstein.en.txt 0.17 0.22 0.78
english.001.2 3.66 5.09 0.72
Escherichia_Coli 13.16 18.4 0.72
influenza 4.31 6.12 0.71
kernel 2.12 2.99 0.71
para 4.52 8.55 0.53
proteins.001.1 3.67 5.11 0.72
sources.001.2 3.59 5.03 0.72
world_leaders 2.85 3.77 0.76
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Figure A.1: Empirical attributes for cere file.
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Figure A.2: Empirical attributes for coreutils file.
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Figure A.3: Empirical attributes for dblp.xml.00001.1 file.
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Figure A.4: Empirical attributes for dblp.xml.00001.2 file.
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Figure A.5: Empirical attributes for dblp.xml.0001.1 file.
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Figure A.6: Empirical attributes for dblp.xml.0001.2 file.
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Figure A.7: Empirical attributes for dna.001.1 file.
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Figure A.8: Empirical attributes for einstein.de.txt file.
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Figure A.9: Empirical attributes for einstein.en.txt file.

101



Figure A.10: Empirical attributes for escherichiacoli file.
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Figure A.11: Empirical attributes for influenza file.
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Figure A.12: Empirical attributes for kernel file.
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Figure A.13: Empirical attributes for para file.
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Figure A.14: Empirical attributes for proteins.001.1 file.
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Figure A.15: Empirical attributes for sources.001.2 file.
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Figure A.16: Empirical attributes for world_leaders file.
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