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Los avances en las tecnologías de secuenciación del ADN han generado que hoy en día
tengamos una gran cantidad de colecciones genómicas disponibles para analizar. El reto con
estas colecciones es almacenar y procesar los datos sin agotar los recursos computacionales.
Muchos autores han abordado este desafío utilizando estructuras de datos compactas y al-
goritmos que explotan las largas repeticiones de ADN en estos datasets. Estas técnicas han
demostrado ser eficaces para reducir los elevados costes computacionales. Sin embargo, se
han centrado principalmente en genomas ensamblados. Su uso en datos de secuenciación
sin procesar (también conocidos como lecturas) es un tema menos estudiado. El diseño
de nuevas estructuras de datos compactas y métodos de compresión para lecturas es una
necesidad imperante, dado que estas colecciones genómicas son las más masivas y las más
comunes.

Esta tesis presenta una infraestructura algorítmica diseñada principalmente para mani-
pular colecciones de lecturas en espacio sucinto o comprimido. Nuestro objetivo principal es
reducir los altos costos de extraer información biológica a partir de lecturas.

Comenzamos introduciendo un nuevo compresor de gramáticas llamado LMSg, el cual
está destinado a almacenar lecturas. Nuestro método demuestra ser rápido, altamente pa-
ralelizable y con tasas de compresión competitivas con las de compresores populares. Nuestra
siguiente contribución es un algoritmo llamado infBWT, el cual calcula la BWT extendida
de una colección de lecturas codificadas con la gramática LMSg. El algoritmo utiliza las
características particulares de la gramática LMSg y las corridas de símbolos iguales en la
BWT para acelerar los cálculos. La BWT extendida es un elemento esencial en muchos
autoíndices sucintos que podríamos utilizar para extraer información. Nuestros experimentos
muestran que infBWT se hace más eficiente a medida que las lecturas se vuelven más massivas
y repetitivas.

Nuestra tercera contribución es un índice sucinto para lecturas cuyo objetivo es extraer
información biológica. Esta representación, llamada rBOSS, codifica las lecturas en un grafo
compacto de de Bruijn (BOSS) y luego extiende el grafo con una nueva estructura de datos
propuesta en esta tesis: el árbol de sobrelape. Además, mostramos que es posible combinar la
idea del árbol de sobrelape con la BWT extendida para producir un autoíndice que codifica
más información que rBOSS. Demostramos el uso práctico de rBOSS implementando un
algoritmo para ensamblar las lecturas en un genoma.

Proponemos un índice sucinto alternativo para lecturas, también pensado para realizar
análisis. Este índice se basa en los grafos de de Bruijn coloreados. Esta representación
construye un grafo de de Bruijn a partir de las lecturas y asigna un color específico a cada
camino etiquetado con una lectura. Nuestra contribución es un algoritmo codicioso que reduce
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el uso de espacio coloreando parcialmente el grafo y dando los mismos colores a diferentes
lecturas cuando es posible. Este enfoque disminuye el número de colores que el índice debe
almacenar. Además, diseñamos dos algoritmos sobre el índice, uno extrae las lecturas del
grafo y el otro ensambla el genoma de las lecturas.

Nuestra última contribución es un algoritmo práctico para producir una gramática local-
mente consistente a partir de un texto. Las propiedades particulares de nuestra gramática nos
permiten obtener una variación del índice de gramáticas que mejora la complejidad de tiempo
para localizar patrones largos, manteniendo altas tasas de compresión. Una característica
importante de nuestro algoritmo es que, a diferencia de otras gramáticas con propiedades de
consistencia local, no requerimos almacenar estructuras de datos adicionales, como permuta-
ciones, para mantener la consistencia. Esta contribución está pensada para ser utilizada en
el futuro para indexar colecciones de genomas completos, más que de lecturas.
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Abstract

Rapid advances in DNA sequencing technologies have generated an unprecedented amount
of genomic collections available for analysis. The challenge with these collections is to store
and process the data without exhausting the computational resources. Many authors have
addressed the problem by using compact data structures and algorithms that exploit the long
DNA repetitions of the datasets. These techniques have proved to be efficient in reducing the
high computational costs. However, they have been focused mainly on assembled genomes.
Their use on raw sequencing datasets (a.k.a reads) is a less studied topic. Designing new
compact data structures and compression-aware methods for reads is a pressing need as they
are the most massive and common kind of genomic dataset one can find.

This thesis develops an algorithmic infrastructure designed primarily for manipulating
read collections in succinct or compressed space. Our goal is to lower the computational
costs of extracting biological information from reads.

We start by introducing a new grammar compressor called LMSg aimed at storing reads.
Our method proves to be fast, highly parallelizable, and with compression ratios competitive
with those of state-of-the-art compressors. Our next contribution is a compression-aware
algorithm called infBWT that computes the extended BWT (eBWT) of a read collection
encoded as an LMSg grammar. The algorithm uses the features of the LMSg grammar
and the equal-symbol runs in the eBWT to boost the computations. The eBWT is an
essential element in many succinct self-indexes that we could use to extract information.
Our experiments show that infBWT gets more efficient as the input dataset becomes more
massive and repetitive.

Our third contribution is a succinct index for reads tailored to extracting biological infor-
mation. This representation, called rBOSS, encodes the input reads in a compact de Bruijn
graph (BOSS) and augments the graph with a new data structure proposed in this thesis; the
overlap tree. Further, we show that it is possible to combine the idea of the overlap tree with
the eBWT to produce a more powerful self-index than rBOSS. We demonstrate the practical
use of rBOSS by implementing an algorithm to assemble the reads into a genome.

We propose an alternative succinct index for reads, also tailored for analyses. This index
relies on colored de Bruijn graphs. This representation builds a de Bruijn graph from the
reads and assigns a specific color to every path spelling a read. Our contribution is a greedy
algorithm that reduces space usage by partially coloring the graph and giving the same colors
to different reads when possible. This approach decreases the number of colors the index has
to store. Additionally, we design two algorithms on top of the index: one extracts the reads
from the graph, and the other assembles the reads’ genome.

Our last contribution is a practical algorithm for producing a locally consistent grammar
from a string collection. The particular properties of our grammar allow us to obtain a
variation of the grammar index that improves the time complexity for locating long patterns
while maintaining high compression ratios. An important feature of our algorithm is that,
unlike other grammars with local consistency properties, we do not require to store additional
data structures, like permutations, to maintain consistency. This contribution is intended to
be used in the future for indexing collections of complete genomes, rather than reads.
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Chapter 1

Introduction

This chapter describes the scope and structure of the thesis. Section 1.1 introduces the
concept of DNA strings and explains how this subject motivates our work. It also discusses
the current solutions and open problems to process this type of strings. Section 1.2 gives a
detailed description of our contributions to the field. Finally, Section 1.3 explains how this
thesis’ content is distributed across the different chapters.

1.1 Motivation

DNA datasets are string collections that encode the relative order of nucleotides in molecules
of Deoxyribonucleic Acid (DNA). The analysis in silico of their sequences allows uncovering
complex biological signals that are difficult to detect with other approaches. The rapid
development of sequencing1 technologies [79] has dramatically dropped the cost of producing
these datasets while increasing the performance of sequencers2 [88]. Thus, decoding several
hundred or even thousand individual genomes has become a feasible task [165, 41]. These
factors have made storing and processing genomic data a significant computational challenge.

A sequencing experiment yields a collection with millions of short strings called reads.
The length of these strings varies depending on the technology used to produce them. They
can range from a couple of hundred characters up to several thousand. Still, the reads do
not represent the source DNA’s full sequence; they are only small overlapping fragments. To
obtain the final product, we have to further process the reads on the computer.

There are two families of computational methods for processing reads, those that are
reference-free and those that are reference-based. In the former, we connect the reads via
suffix-prefix overlaps, and then we collapse the strings to form a group of consensus sequences.
This process is known as DNA assembly. In the latter approach, we align the reads against
a known reference built from a closely related genomic source. This reference can be, for
instance, the genome of another individual from the same species that was previously assem-
bled. In this case, instead of searching for consensus sequences, we look for mismatches in

1The process of spelling the nucleotides from a DNA molecule.
2The machine that carry outs the sequencing process.
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the alignments as these differences might represent genetic variations.

Assembling reads entails several difficulties; the most notable ones are (i) the quadratic
number of suffix-prefix overlap computations, (ii) how to represent the overlaps in the com-
puter, and (iii) how to detect sequencing errors3. These problems have been addressed over
the years by using algorithms and appropriate data structures for strings (e.g., [47, 97, 186,
77, 48, 192]), but genomic projects have become so massive that these solutions are no longer
practical.

To put the problem’s challenge in perspective, The 100K Genomes Project [60], for in-
stance, aims to sequence 100,000 individuals from Great Britain affected by rare diseases
or cancer. The raw sequencing data this project is expected to produce is at least one
petabyte4. They aim to gather enough genetic information to enable the so-called precision
medicine [67] in the country. Another equally ambitious sequencing initiative is The Darwin
Tree of Life [145], whose goal is to sequence 70,000 organisms from different species in Britain
and Ireland. We also have our own local initiative, the 1000 Chilean Genomes project [40],
which aims to sequence the genome of 1000 Chilean individuals and 1000 genomes of endemic
species. Other similar efforts are being actively developed all over the world (see for instance
[144, 87, 86, 42, 30]).

Bioinformatic tools resort to lossy5 representations such as the de Bruijn graph [191, 39,
116, 119, 5] to cope with the high computational costs of assembling large volumes of reads.
Still, these solutions yield fragmented and incomplete genomes as they lose information.
Further, they also require large amounts of computational resources when the input is huge.
For instance, in recent studies [58, 59] on a read collection of 323GB, the popular assemblers
SOAPdenovo2 [119] and SPAdes [5] required about 800GB of working memory (RAM) and
more than one day of CPU time.

These problems have motivated the development of compact data structures [135] and self-
indexes [137] for processing large volumes of genomic data [113, 24, 21, 184, 102]. Compact
data structures are lossless representations that maintain the data using the least possible
space, but at the same time, they allow us to access and query the data efficiently. On the
other hand, self-indexes are text (e.g., DNA sequences) representations that rely on compact
data structures and that do both encode the original text and support queries. The advantage
of self-indexes is that they do not require the original input to extract the text or perform
the queries. Additionally, their space usage is at most proportional to the size of the original
text (i.e., they are succinct). Recent self-indexes [35, 70] use even less space than the original
text and grow sublinearly with its size by exploiting its repetitions.

The FM-index [64, 62] is the most popular self-index in Genomics. Its main feature is that
the cost of finding matches between an input pattern and the indexed text depends on the
pattern size. Bioinformatic tools such as bowtie [107] or bwa [113] use this fact and encode
the reference genome with the FM-index so that the cost of aligning a read on it depends on

3When a symbol is misspelled during the sequencing.
4The human genome has about three billion characters (3.1 GB), and the sequencing process yields at

least three to four times that number of characters for a single individual.
5Representing the data in less space at the cost of losing information.
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the read’s length, not on the genome’s length. This scheme is beneficial for reference-based
genomic analyses that require processing millions of short reads.

The negative aspect of the methods that rely on alignments is that novel genetic variations
are usually masked due to biases in the reference. Researchers have proposed to solve this
problem by using pangenomes [56]. A pangenome is a string representation that encodes the
genomes of several individuals of the same species. Aligning reads to such a data structure
can yield more accurate results as this is a more realistic model for DNA [74]. To support the
alignment, some authors have adapted the FM-index to encode pangenomes [102, 131]. These
indexes use the fact that the genomes composing a pangenome are highly similar, and hence,
exploiting their repetitiveness to compress their sequences will yield a small representation.
As a consequence, the index’s space and the time complexity for aligning reads depend
more on the genetic differences among the individuals than the total number of characters
in the pangenome. The development of these indexes is also an important milestone as it
demonstrated that some bioinformatic tasks could also be carried out in compressed space.

Although pangenomes increase genomic analyses’ accuracy, reference-free methods are
still preferred as they are not biased. Besides, in situations where there is no previous
knowledge about the sequenced organism, it is the only option. Given the FM-index’s success
in reference-based approaches, it is natural to wonder what kind of compact data structures
and self-indexes are suitable to process reads in compressed space when there is no reference.
The problem is not trivial; read collections are more massive than full genomes, and exploiting
long DNA’s repetitions is no longer an option as the sequencing breaks and scatters them into
the reads. Although these aspects are challenging, compacting reads could help cope with
the computer bottlenecks generated when processing massive genomic data. Considering how
fast sequencing technologies are developing and how much they are diversifying to answer
different biological questions, there is a pressure to design a new algorithmic infrastructure
aimed to process read multisets in compressed space.

The overall aim of this thesis is to develop an algorithmic infrastructure, or toolbox, to
analyze string collections of DNA sequencing reads in compressed space. The software will
work with any type of read collection, but will be more efficient on those produced from
Illumina, the most popular sequencing platform.

1.2 Thesis statement

We propose a framework of data structures and algorithms to manipulate collections of
reads in compressed or succinct space. The proposed tools will exploit the natural repetitive
patterns in DNA to reduce the high computational costs of analyzing sequencing experiments.

We divide our contributions into three main parts: first, a flexible compressed represen-
tation for storing reads; second, two succinct self-indexes for reads with support for string
queries; and third, a dictionary-based self-index with potential applications to pangenomic
analyses and read alignment.

We envision a workflow in which the data is always manipulated in compact form. First,
the sequencing company compresses the reads using our compressor, and then delivers them

3
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Figure 1.1: General outline of the thesis. The titles in gray to the left of the vertical line
are the distinct computational topics covered in this thesis. The black titles to the right of
the vertical line are the contribution of the thesis. An arrow between two contributions A
and B is drawn if the output of A can be used as input for B. Gray arrows are relationships
that were not developed in the thesis, but are considered for future work. Gray titles to the
right of the vertical line are topics that are closely related with the contributions and are also
considered for future work. The dashed vertical arrows between genomic self-indexes and
genomic analyses are contributions that work in a reference-based setting, while solid arrows
are contributions that work in a reference-free setting.

in compressed form. The final user receives the compressed data, and without fully decom-
pressing it, transforms it in one of the succinct self-indexes we designed in this thesis. Finally,
the user uses one of the genomic algorithms implemented on top of our self-indexes to extract
biological information. Alternatively, the user can align the reads into a pangenomic data
structure built on top of our dictionary-based self-index.

1.2.1 Contributions

Compressed representation for reads

We propose a new grammar compressor [96] for collections of sequencing reads. This new
method is fast, achieves good compression ratios, and has a low memory footprint com-
pared to other similar algorithms. Also, the grammar resulting from our method enables
the computation of the BWT of the reads [44] in compressed space. The BWT is the main
component in Wheeler graphs [69], a versatile family of graphs that supports several effi-
cient string queries. In the context of genomics, Wheeler graphs could be helpful to extract
biological information from the reads in succinct space. However, the BWT is difficult to
compute when the input is massive as in the case of reads. Our algorithm for constructing
the BWT exploits the repetitions captured by the grammar to make the construction process
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more efficient.

Succinct data structures for genomic analyses

To obtain information for sequencing data efficiently, we need to index the reads with a
succinct data structure that supports the navigation of their layout. More specifically, given
the sequence of a read S, we can obtain the sequence of all the other reads that overlap S.
This functionality is general enough to implement most genomic analyses.

We propose two succinct self-indexes that supports the navigation of the reads’ layout;
both rely onWheeler graphs. The first one, which we called rBOSS, is an extension BOSS [24],
a BWT-based encoding for de Bruijn graphs (dBGs) [46]. The main feature of rBOSS is that
it allows us to compute suffix-prefix overlaps of less than k characters between dBG nodes,
where k is the order of the dBG. We demonstrate the usefulness of rBOSS by implementing
a simple genome assembler on top of it.

Our second self-index encodes a colored dBG [89] constructed from a read collection. It
also builds on BOSS, but it takes a different approach. We give a specific color c to every
read S, and then we assign c to the nodes in the dBG path labeled with S (there is only
one path that meets this condition). We reduce space usage by assigning the same colors to
different reads whose paths do not share nodes. The advantage of this setting is that if we
reach a branching node during a graph traversal, we decide which edge to follow according
the colors we have previously seen in the traversal. Most genomic analyses require traversing
the dBG to extract information, but they stop when they reach branching nodes as it is not
always possible to make safe assumptions about them. We also demonstrate the usefulness
of our colored dBG by implementing a simple genome assembler on top it.

A grammar self-index

We propose a new grammar self-index with support for pattern matching. Our data structure
uses less space than the classical FM-index as it exploits the DNA repetitions. On the other
hand, it is faster for pattern matching than the regular grammar self-index when the pattern
is long (hundreds of characters).

We build the index’s grammar using locally consistent parsing [162]. This technique
consists in partitioning a text such that the occurrences of the same pattern yield almost the
same partition into blocks. The only blocks that might differ are those at the ends of the
pattern’s occurrences, where the context changes. When we perform pattern matching over
this index, we preprocess the input string P using the same parsing algorithm we used for
building the index’s grammar. As the parsing is locally consistent, most of the P ’s blocks
should exist in the grammar if P exists in the text. This property makes the search in the
index more straightforward.

We believe that further development on grammar self-indexes with locally consistent prop-
erties can yield efficient pangenomic representations that support approximated alignments
for long reads. This idea will become relevant in the next years due to the rapid develop-
ment of recent DNA sequencing technologies such as Nanopore [180] and PacBio [17]. These
technologies are increasing the read lengths at the time they improve the sequence accuracy.
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1.3 Structure of the Thesis
We divide this work into ten chapters:

• Chapter 1 is the introductory part of the thesis.
• Chapter 2 describes the fundamental aspects of information theory and compact data

structures.
• In Chapter 3, we review the state of the art in text compression and indexing. We also

describe how these ideas extend to labeled graphs. These concepts, along with those of
Chapter 2, are the basis on which our contributions are built.

• Chapter 4 addresses the main concepts in Computational Genomics. We briefly explain
the different types of DNA strings and how they are obtained. We also give a general
description of the computational approaches used in Bioinformatics to transform read
collections into biological information. Finally, we introduce the concept of reference
genomes and pangenomes and review some common techniques to align reads against
them.

• In Chapter 5, we present our first contribution, the grammar algorithm to compress
reads. We also describe a succinct grammar representation that we use later to compute
the BWT of the reads.

• In Chapter 6, we develop an algorithmic framework for producing the extended BWT
(eBWT) of the reads from the grammar representation of Chapter 5.

• Chapter 7 introduces our first self-index for navigating the reads’ layout, the one we
called rBOSS. We also present the genome assembler we built on top of rBOSS.

• Chapter 8 explains our second self-index for navigating the read’s layout, the colored
dBG. Similarly to what we did in the previous chapter, we explain the basic ideas to
perform genome assembly on top of the colored dBG.

• Chapter 9 introduces a grammar self-index with local consistency properties. The
grammar algorithm used for this self-index is based on the grammar algorithm we
described on Chapter 5. In Chapter 9, we also briefly describe how locally consistent
grammars can be useful in the future for aligning long reads in pangenomic sequences.

• The final chapter discusses our results and future work directions.

1.4 Software
All the algorithms and data structures developed in this thesis were written in C++ and on
top of the SDSL-lite library [76]. This library implements many compact data structures
proposed in the literature. Still, we wrote our own versions of some of them as the SDSL-lite
not always had the implementations we required, or it had them not in the way we needed
them. We gather our implementations in a small library of compact data structures. The
list of github repositories are listed below:

• CDT, a small library of compact data structures:
https://bitbucket.org/DiegoDiazDominguez/compact-data-structures/src/master

• LPG, a grammar compressor for reads:
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2
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• infBWT, computing the eBWT from grammar-compressed reads:
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2

• rBOSS, a self-index for navigating the reads:
https://bitbucket.org/DiegoDiazDominguez/eboss-dt/src/master

• cdBG, a succinct colored dBG for reads:
https://bitbucket.org/DiegoDiazDominguez/colored_bos/src/master

• LPG grid, a locally consistent grammar self-index:
https://github.com/ddiazdom/LPG/tree/LPG_grid

1.5 Notation
Logarithms Many time and space complexities in this thesis involve logarithms of base 2.
We refer to them just as log. For instance, we write log2 n as log n. When the logarithm base
is different from 2, say x, we explicitly write it as logx.

Computation model We use the word RAM model of computation. In this model, we
asume the data is stored in random-access memory and manipulated in words of w = Θ(log n)
bits, where n is the input size. These words can store values within the range [0, 2

w − 1],
which we can manipulate in constant time. We also assume we can perform logical and
arithmetic operations over the words in constant time.
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Chapter 2

Basic Concepts

In this chapter, we explain the basic ideas to understand our contributions. We start in
Section 2.1 by briefly explaining some introductory concepts about data compression. In
Section 2.2, we describe the most important compact data structures on which most of our
contributions rely. Finally, in Section 2.3, we describe the concept of hashing and show
some of its applications. Hashing is an essential tool for constructing the data structures we
propose in the thesis. Besides, it is widely used in Bionformatics. In particular, the hashing
applications of Sections 2.3.2, 2.3.3 and 2.3.4 serve as a base to understand the ideas behind
the state-of-the-art tools to align reads to reference genomes, which we review in Section 4.

2.1 Data Compression
Data compression deals with representing the information in fewer bits. This concept is
central in this thesis as we are dealing with high volumes of data. We now present the basic
concepts of data compression on which most of the ideas developed in the following chapters
are based.

2.1.1 Entropy

The most basic tool for measuring compression is the worst case entropy, here denoted HWC .
Assume we have a set Σ of symbols and give equal-size unique codes of l bits to its elements.
HWC is a measure that tells us which is the minimum value for l so we can unambiguously
recognize the symbols of Σ when read from a bitstream. This value is

HWC(Σ) = log ∣Σ∣.

Thus, we can store a sequence of n symbols in n log ∣Σ∣ bits of space. In our case, DNA
strings have an alphabet of four letters, {a,c, g, t}, so we require codes of ⌈log 4⌉ = 2 bits.
These codes are 00, 01, 10 and 11. Notice that this is much more succinct than the 8-bit
cells used in modern computers to represent plain characters. Still, HWC is not the limit for
data compression, we can do better.

When not all the elements in Σ are equally likely to appear in a sequence, we can assign

8



variable-length codes to decrease the average code lengths. In information theory, the min-
imum possible value for that average is known as the Shannon entropy. Suppose that each
u ∈ Σ is produced from an infinite source with probably pu, then the Shannon entropy is
computed as

H({pu}) = ∑
u∈Σ

pu log
1
pu

.

This value is also known as the statistical entropy. In general, giving shorter identifiers to
the more probable symbols and longer ones to the less probable decreases the average length
of the codes. In fact, the formula above suggests that the optimal length for u is log 1

pu
. The

more skewed are the symbols’ probabilities, the smaller is the value of H({pu}). When all
the elements have equal probability 1

∣Σ∣ , the statistical entropy is log ∣Σ∣. In this scenario,
the set Σ is considered to be incompressible, and the best option is to use equal-sized codes.

One can generalize the concept of entropy and consider that the probability of emitting u
is not independent but conditioned by the last k elements generated by the source. In this
case, we have that the entropy is:

H({pu∣C}) = ∑
C∈Σk

PC ∑
u∈Σ

pu∣C log
1
pu∣C

,

where C are the distinct strings of length k formed with the elements of Σ, PC is the global
probability for the source to emit C, and pu∣C is the probability of u given that the last k
previous characters emitted by the source form the word C.

We can extend the concept of H to compute the entropy of a finite sequence S[1,n] ∈ Σ.
This measure is known as the zeroth order empirical entropy of S, and we compute it as

H0(S) = ∑
u∈Σ

nu
n log

n
nu

,

where nu is the frequency of u in S. The value nu

n
is an estimate of the probability pu for the

hypothetical source that produced S to emit u. As with H, the value of H0(S) decreases as
the symbol frequencies in S become skewed. In the memoryless model of statistical entropy,
nH0(S) is the lower bound to store S. However, in some circumstances, we can do better.

Similarly as with the generalization of the Shannon entropy, we can assume that the
probability of each character S[i], with i ∈ [k + 1,n], depends on the previous k elements.
This concept is known as the kth order empirical entropy of S:

Hk(S) = ∑
C∈Σk

nC
n H0(SC),

where SC is the string formed by concatenating the symbols that follows C in S and nC is
the length of SC . In this formula, a symbol u ∈ Σ can have multiple frequencies depending
on which distinct sequences C of length k precede it on S. We can give multiple codes to
u depending on those sequences C. Consequently, the lower bound for storing S becomes
nHk(S). Further, if the symbols of S are better predicted by knowing the previous k elements,
then Hk(S) is smaller than H0(S), thus reaching better compression.
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Figure 2.1: Example of a Huffman tree for the DNA string on the top. Numbers inside the
leaves are the symbol frequencies. The final codes for Σ are shown on the right side of the
figure.

2.1.2 Encoding Sequences

An encoding is an injective function C ∶ Σ → {0, 1}∗ that assigns a distinct sequence of bits
C(c) to every symbol c ∈ Σ. To encode a string S[1,n] over the alphabet Σ with C, we scan S
from right to left and append every C(S[i]) to a new bitmap B. In general, we are interested
in a function C that (i) reduces the length of B, but at the same time, (ii) allows decoding
the original symbols of S. In Section 2.1.1, we already showed that we could achieve (i) if
the codes in C are of variable length. For (ii), the codes must also be unambiguous. More
specifically, there is no ambiguity in decoding the symbols of S while reading B from left
to right. It is also helpful for codes in C to be instantaneous, meaning that we have enough
information to determine c as soon as we finish reading the bits in C(c). Instantaneous codes
are also prefix-free; no code is a prefix of another code. The advantage of prefix-free codes
(and instantaneous codes) is that they do not depend on their context to be decoded. In
what follows, we describe some basic encoding techniques.

Huffman

Huffman coding [84] is a popular technique to generate an optimal set of variable-length
codes for Σ. Its main features are that it produces a prefix-free set of codes and that the
average length of these codes almost reaches the statistical entropy. By giving Huffman codes
to the symbols of S, we can compress the sequence to less than n(H0(S) + 1) bits of space.
This coding scheme achieves zeroth-order compression by exploiting the unbalance in the
frequencies of S’s symbols. More precisely, it gives longer codes to less frequent symbols and
shorter codes to more frequent ones.

The algorithm to produce Huffman codes generates a binary tree from Σ. In this tree,
there are ∣Σ∣ distinct leaves, one for each symbol. The path from the tree’s root to each of
the leaves represents the binary code for the leaf’s label. We obtain that code by traversing
the path from the root to the leaf. When visiting an internal node, if the path continues
through the left child, then we append a 0 to the code. In the other case, with the path
continuing through the right child, we append a 1.
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The algorithm starts by defining ∣Σ∣ trees, one per distinct symbol in the alphabet. At the
beginning, these trees have only one node, a leaf labeled with their corresponding symbol.
Each tree also has a weight, which is the sum of the frequencies of its leaf labels. The
algorithm’s main idea is to pick the two trees with the smallest weights x and y, and merge
them as the children of a new node with weight x + y. The process continues until only one
tree remains. Figure 2.1 shows an example of a tree resulting from the Huffman algorithm.

When storing S using Huffman codes, we require to maintain the tree to extract the
original symbols from the bitstream B. The decoding process is simple; we initialize a finger
at the root of the Huffman tree. If B[1] = 0, then we move the finger to the left child of the
root, otherwise we move the finger to the right child. If we reach an internal node, then we
move one bit forward in B and repeat the process. If, on the other hand, we reach a leaf,
then we spell its label, as we have finished decoding a symbol. Subsequently, we move to the
next position of B and move the finger back to the root to start the decoding of the next
symbol of S.

The main drawback of Huffman coding is that the space overhead of representing the tree
can be considerable when Σ is large. A solution for this problem is to produce a canonical
Huffman tree [169, 114]. In this tree, the leaf depths are nondecreasing when read from left to
right. This topology enables a more efficient decoding and a more compact representation for
the tree that requires ∣Σ∣ log Σ +O(log n) bits of space (see Section 2.6.3 in Navarro [135]).

Gamma and Delta

Delta (δ) and Gamma (γ) are techniques aimed to encode positive integers [135]. They work
well when S is mainly composed of small values (we assume Σ is an alphabet of integers).
Unlike Huffman, δ and γ codes do not depend on the sequence, so it is unnecessary to
maintain additional data structures to retrieve the original symbols. Both schemes store
c ∈ Σ attached with the length l = ∣c∣ of its binary representation. Still, they differ in how
they represent l. In γ-codes, the formula is

γ(c) = 0
l−1

1 ⋅ [c]l−1,

where [c]l−1 are the l− 1 least significant bits of c. We compute l by counting the number of
0s from left to right until finding a 1 bit. This representation uses 2∣c∣ − 1 = 2⌊log c⌋ + 1 =
O(log c) bits of space. As the code’s length is stored in unary, γ-codes are suitable when the
values in S are small. For δ-codes, the formal expression is:

δ(c) = γ(l) ⋅ [c]l−1.

Reading the symbol c from δ(c) requires to first extract l from the nested γ(l) code. This
representation uses log c +O(log log c) bits of space, so it is suitable when the symbols in S
are not so small. In general, storing S with δ-codes will be more efficient than using γ-codes
if the symbols in S are equal or greater than 32. Both γ and δ codes produce prefix-free
codes for Σ.
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2.1.3 Direct Access to Variable-Length Codes

The problem with the variable-length codes we described in the previous section is that they
do not allow direct access to the symbols. Accessing S[i] requires us to decode the whole
prefix S[1, i − 1] first.

A standard solution to support direct access is to sample positions in B at regular intervals
of S. We select a parameter k and logically partition S into ⌈n/k⌉ consecutive blocks. We
create an extra array P [1, ⌈n/k⌉] to store the sampled pointers. For every block j in the
partition, we store the bit position in B of its first element S[(j − 1)k + 1] in P [j]. Thus,
if we want to access S[i], we have to compute its corresponding block b = ⌈i/k⌉, and then
start to decode symbols in B from index P [b] until reaching the position that stores S[i].
This process decodes i − (b − 1)⋅k ≤ k symbols to retrieve S[i], so the time complexity for
the direct access of S[i] is O(k) time. We can achieve constant time by using a second level
of pointers. We define an extra array P ′[1,n] and store in P

′[i] the offset in B from the
starting position of S[(⌈i/k⌉−1)k+1] and the starting position of S[i]. In this way, we can
obtain the position in B for S[i] as P [⌈i/k⌉] + P ′[i].

Elias-Fano [61, 57] is a variable-length encoding that provides a more sophisticated solu-
tion for direct access by storing the code lengths apart from the codes. Suppose we represent
S in the bit vector B by using a variable-length representation of any kind. In addition to B,
we create another bit vector M[1, ∣B∣] in which we set M[j] = 1 iff B[j] is the leftmost bit
of a code. To access S[i], we look in M for the ith and (i+ 1)th bits set. These indexes will
give us the range in B for S[i]. An advantage of efficiently delimiting all the codes is that
they do not need to be prefix-free, so they can be shorter. In particular, for storing small
integers, we can encode c in B using ∣c∣ bits, which makes the scheme similar to γ-codes,
where instead of storing the length l as a prefix of c, we store l in M .

For the particular case of Elias-Fano encoding, we use partial sums to support direct
access. Given a list L of integers, a partial sums data structure answers the queries:

• sum(L, i): cumulative sums of symbols up to position L[i]
• search(L, j): minimum index i in L such that sum(L, i) ≥ j

We augment the bit array M in the Elias-Fano encoding with partial sums so that ob-
taining the range in B for S[i] reduces to compute search(M , i), seach(M , i + 1) − 1.

We implement the partial sums data structure by sampling the cumulative sums of the
bits in M . We choose a parameter k and create an array P [0, ⌊n/k⌋] of sampled sums. In
every P [j], with j ∈ [0, ⌊n/k⌋], we store the value obtained by adding the bits in the prefix
M[1, jk]. If we want to know answer sum(M , i), we have to perform the operation

P [⌊i/k⌋] +
i

∑
u=⌊i/k⌋k+1

M[u],

which takes O(k) time. Answering search(M , j) requires us to perform a binary search over
P to find the position a such that P [a] ≤ j < P [a+ 1]. Once we find it, we linearly scan M
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from index ak until finding a position i such that

P [a] +
i

∑
u=ak+1

L[u] ≥ j.

The whole process takes O(log ∣P ∣ + k) time.

Another option is to augment M with the select data structure (Section 2.2.1) so the cost
of obtaining the range in B for S[i] reduces to O(1).

2.2 Compact Data Structures
As its name suggests, compact data structures (CDS) are representations that maintain the
data in a compact way, although this is not their only feature; they can also access and query
the data efficiently. In many circumstances, their performance is competitive with classical
textbook data structures. These characteristics make them a good alternative when dealing
with massive collections.

2.2.1 Bit vectors

The bit vector is the basis for most of the CDSs. It consists of an array B[1,n] where the
only possible values are 1 or 0.

Compressed bit vectors

As with regular sequences, we can compress bit vectors when the number of 1s is much smaller
than the number of 0s, or vice-versa. A popular succinct representation that exploits this fact
is RRR [156]. This method partitions B into blocks of fixed size b and classify the blocks into
classes. If a block in B has c 1s, then its class is c. Further, it gives identifiers to the blocks
within the same class c. Every identifier in c denotes a specific way to arrange c 1s within b
bits. RRR encodes every ith block B[(i − 1)b + 1, ib] as a pair (ci, oi), where ci is its class
and oi is its identifier. This pair enables the retrieval of the original block B[(i− 1)b+ 1, ib].
RRR stores the classes of B in an array C[1, ⌈n/b⌉] such that C[i] = ci. It also creates
an array O[1, ⌈n/b⌉] storing the identifiers in the same way. Note the number of identifiers
for a class c is upper-bounded by lc = (b

c
), and when c is close to b, lc is small. This also

happens when c is very small compared to b. If the number of 1s and 0s is not even, then it is
more likely to have blocks whose identifiers require few bits. This fact makes O be composed
mainly of small numbers. RRR exploits this fact and encodes O using variable-length codes
to thus achieve compression. The space usage of this representation is nH0(B) + o(n) bits.

When the difference between the number of 1s and 0s is considerable in B, we can use more
suitable encodings. In particular, if there are much fewer 1s than 0s, we can replace B with an
integer array P storing the positions of B where the bits are set. As the resulting P is strictly
increasing, we can encode its values as positive consecutive differences. More specifically, we
replace every P [i] with P [i] − P [i − 1], except for P [1] that remains unchanged. We then
store the differences using δ-codes (Section 2.1.2). This representation also uses space close
to nH0(B) bits.
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In the next section, we briefly describe how to support the most important queries for
bit vectors, rank and select. The methods we will explain assume the input bit vector is
uncompressed.

Rank

The operation rank1(B, i) returns the number of 1s up to position i in B. The solution
for answering this query is rather similar to the idea of partial sums (Section 2.1.3); we
choose a parameter k and logically divide B into blocks of s = wk bits (w is width of the
machine word). Subsequently, we create an array R[0, ⌊n/s⌋] in which every R[j], with
j ∈ [1, ⌊n/s⌋], stores the sum of 1s in the prefix B[1, js]. We also set R[0] = 0. We can
now solve rank(B, i) by first retrieving the precomputed sum up to i′ = ⌊i/s⌋s from R[⌊i/s⌋],
then counting the 1s in B[i′ + 1, i], and finally adding both results.

To achieve constant time, we divide every block R[j] into k mini blocks of w bits each,
and store their accumulative sums in another array R

′[0, ⌊n/w⌋]. More specifically, every
R
′[u], with u ∈ [1, ⌊n/w⌋], contains the number of 1s in B[1,uw] minus R[⌊uw/s⌋]. As

before, we set R′[0] = 0. Note that the values in R
′ are never greater than s. The final

equation to solve rank is:

rank(B, i) = R[⌊i/s⌋] +R′[⌊i/w⌋] + popcount(B, ⌊i/w⌋w + 1, i),

where popcount returns the number of bits set in the range B[⌊i/w⌋w + 1, i]. Many pro-
gramming languages natively support this function, and it is considered constant-time in
practice as there are efficient implementations for it. Still, it receives as input an integer, not
a bit vector. Using the two-level scheme that includes R and R′, we have that the segment
B[⌊i/w⌋w + 1, i] spans at most w bits, which fits one computer word. We can extract that
segment and store it in a machine word to pass it to popcount, and thus the rank operation
takes O(1).

The cost of R and R
′ is (n/s)w + (n/w) log s = n/k + n log(wk)/w bits. By choosing

k = w, that space becomes O(n log(w)/w) = O(n log log n/ log n) = o(n) bits. If we also
consider the n bits of B, then the total space to support rank is n + o(n) bits.

Select

The operation select1(B, r) returns the position in B storing the rth 1 from left to right.
We can think of this function as the inverse of rank. The method we will explain to support
select takes O(log log n) time and uses o(n) bits on top of B. It is slower than the rank data
structure we described in the previous section, and uses more space in practice. Still, it has
a reasonable performance in most applications.

Let m be the number of bits set in B. We start by defining a parameter s and an array
S[0, ⌈m/s⌉]. We use s to sample one select answer every s 1s in B. Thus, S[p], with
p ∈ [0, ⌈m/s⌉ − 1], stores the position in B for the bit 1 with rank ps + 1. We initialize
S[⌈m/s⌉] = n + 1 as a border case.

We also create a bit vector V [1, ⌈m/s⌉] to mark the different blocks of B covered by the
positions stored in S. More specifically, we set V [p] = 1 if the range B[S[p],S[p + 1] − 1]
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spans more than s log
2
n bits (long block), and set V [p] = 0 otherwise (short block). After

building V , we give rank1 support to it. In addition, we create a vector I[1, rank1(V , ⌈m/s⌉)s]
to store the select answers for the long blocks. Thus, if V [p] = 1, we explicitly store the s
select positions of B[S[p],S[p+1]−1] in the range I[(p′−1)s+1, p

′
s], where p′ = rank1(V , p).

The last two elements of the select data structure are the arrays R and R′ of Section 2.2.1.
To obtain the desired complexities, we set the sampling rate of R to s = log

2
n log log n and

the sampling rate of R′ to log n log log n.

We implement the select(B, r) algorithm as follows; we first obtain the block p = ⌈r/s⌉.
If V [p] = 1, then r falls in a long block. Therefore, we obtain its position in B directly from
I[(p′ − 1)s + ((r − 1) mod s) + 1]. When V [p] = 0, we need to search in B the answer,
but we speed up the process using S, R, and R′. We first limit the search space in B to the
range b = S[⌈r/s⌉− 1], e = S[⌈r/s⌉]− 1. Subsequently, we perform a binary search over the
range R[⌊b/s⌋, ⌊e/s⌋] to find the maximum position j such that R[j] < r. After that, we
perform a second binary search over the range in R′ that matches the block R[j] to find the
maximum position j ′ such that R[j]+R′[j ′] < r. Finally, we perform a linear scan over the
segment of B that matches the cell R′[j ′] and we advance until we reach the select answer.

By using the threshold s log
2
n to classify the blocks of B, we ensure that the space usage

of I stays within o(n) bits. Every long block uses s⌈log n⌉ bits to store the select answers
and there are no more than n/(s log

2
n) long blocks. Therefore, the space usage of I is

s⌈log n⌉ n/(s log
2
n) = n/ log n = o(n) bits. Additionally, with the sampling rates of R, R′,

their space usage stays o(n) bits.

The expensive part of select is when r falls within a short block as we have to search it
in B. Still, with the sampling rates of S,R and R

′, we ensure O(log log n) time for that
operation. Note a short block in B spans no more than s log

2
n bits, and the sampling rate

of R is s. Therefore, the binary search over R inspects no more than log
2
n consecutive cells,

which takes O(log log n) time. The binary search over R′ also takes O(log log n) time because
a block of R spans log n cells of R′. The final linear scan over B should take log n log log n
time as this is the number of bits a cell in R′ spans. Still, we can speed up the process to
O(log log n) if we advance in B by popcounting on chunks of log n bits. Thus, the final time
complexity for select is O(log log n) time.

We can obtain O(1) time for select and maintain the space complexity in o(n) bits. The
general idea is to subdivide the short blocks of B into miniblocks, classify the miniblocks into
short and long, and then store the select answers for the long ones. In practice, however, this
approach uses a lot of extra space.

2.2.2 Wavelet Trees

In Section 2.1.2, we already described how to compress strings using variable-length codes.
However, these representations cannot answer queries other than extracting the original sym-
bols. This section describes a CDS called the wavelet tree [80], which also enables rank and
select functionality on the sequence, and more.

Let S[1,n] be a string over the alphabet Σ. The algorithm for building a wavelet tree
T for S is as follows; we divide Σ in two classes, Σ

l
= [1, ⌈σ/2⌉] and Σ

r
= [⌈σ/2⌉ + 1,σ].
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Figure 2.2: Wavelet tree T for the string attcggattaggcttagggct of Figure 2.1. Values in
gray on top of the internal nodes are the original sequence symbols, and they are not stored
explicitly in the wavelet tree. The binary strings to the right are the codes of the symbols, of
length log σ. The dashed boxes represent the path traversed for operation access(T , 7) = a.
The shaded boxes show the path for operation rankt(T , 16) = 6.

Subsequently, we create a binary vector B[1, ∣S∣] in which we set B[i] = 0 if S[i] belongs to
Σ
l or 1 otherwise. Then, we split S into two strings; Sl and Sr. The string Sl will store the

symbols in S that belong to Σ
l and the string Sr will store the symbols in Σ

r. We maintain
the relative order that the characters in Sl and Sr originally had in S. Finally, we create a
root for T associated with B and with two children. The left and right children of the root
are recursively created from the pairs (Sl, Σ

l) and (Sr, Σ
r), respectively. The base case of

the recursion is when the alphabet has only one symbol a ∈ Σ, in which case we create a
leaf labeled with a. After building T , we augment the bit vectors of its internal nodes with
rank and select data structures. These data structures include queries for both bits, 1 and 0.
Once the construction algorithm finishes, we can discard S. Figure 2.2 shows an example of
a wavelet tree.

The most basic queries we can answer with the wavelet tree are:

• access(T , i): retrieves the symbol at position S[i]
• ranka(T , i): number of symbols a up in the prefix S[1, i]
• selecta(T , r): position j where the rth symbol a lies in S

For answering access(T , i), we start a top-down traversal of T . Let B be the bit vector
stored in the root v of T . If B[i] = 0, then we update the index as i = rank0(B, i) and move
to the left children of the root. On the other hand, if B[i] = 1, then we update the index
to i = rank1(B, 1) and move to the right child instead. From either child, say v′, we apply
the same procedure as with v, using its bit vector and the recently updated index i. The
traversal of T stops when we reach a leaf u, in which case we return its label. The dashed
boxes of Figure 2.2 shows an example of access(T , i).

The procedure for answering ranka(T , i) is somewhat similar to that of access. The main
difference is that the nodes we visit in T depend on the binary code of a, not of S[i]. Suppose
during the traversal of T we reach an internal node v at depth h. If the hth most significant
bit of a is 0, we move to the left child of v and compute i = rank0(Bv, i), where Bv is the bit
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vector of v. In the other case, when the hth most significant bit of a is 1, we move to the
right child of v and compute i = rank1(Bv, i) instead. Once we reach a leaf, we return i as
the rank of a. The shaded boxes of Figure 2.2 depict the idea for ranka(T , i).

The operation selecta(B, r) requires a bottom-up traversal of T . We descend over T to
find the leaf v labeled with a. Once we find v, we move to its parent p. If v is the left child
of p, then we perform r = select0(Bp, r), where Bp is the bit vector of p. On the other hand,
if v is the right child of p, we perform r = select1(Bp, r). After updating r, we set v = p and
apply the same idea over the new node v. We finish when we reach the root of T . We return
the last value of r as the answer for selecta(T , r).

The time complexity of access, ranka and selecta is O(log σ). This complexity is dominated
by the number of steps it takes to reach a leaf of T from its root or vice-versa. That number
is ⌈log σ⌉, the height of the tree. On the other side, the rank and select queries we perform
when visiting nodes can take constant time if we use proper data structures, as we explained
in Section 2.2.1.

The representation of T is composed of three elements; the bit vectors, the rank and select
data structures and the tree topology. Note that the bit vector lengths in the same tree level
add up to exactly n bits as they represent a recursive partition of Σ. Thus, the complete
set of bit vectors in T add up to n⌈log σ⌉ bits. On the other hand, the rank and select data
structures we use for querying them require o(n log σ) bits, and the topology of T requires
another O(wσ) bits if we encode it using a pointer-based representation. As a consequence,
the total space of the wavelet tree is n log σ + o(n log σ) +O(wσ) bits.

Connection with Geometric Data Structures

We can also use the wavelet tree to encode a grid of points. We regard T [x] = y in the
wavelet tree T as a point in the coordinate (x, y). This scheme requires the grid to have one
point per column as we cannot store different y coordinates in the same x position in T . We
solve this problem by storing the points of the same column consecutively in T . In other
words, if there are points in the grid with coordinates (x, y1), (x, y2), . . . , (x, yk), then we
have a range T [i, i+ k] = y1, y2, . . . , yk. We augment T with a bit vector B that delimits the
boundaries between points that belong to different columns. If a column has c ≥ 0 points,
we append the pattern 10

c to B. We augment B with rank and select data structures so we
can map positions in T to columns.

We use the properties of the wavelet tree to answer the following queries on the grid:

• rangecount(T ,xs,xe, ys, ye) : number of pairs (xi, yi) ∈ T such that xs ≤ xi ≤ xe,
ys ≤ yi ≤ ye

• rangereport(T ,xs,xe, ys, ye) : list with the pairs (xi, yi) of rangecount

We can answer rangecount in O(log σ) time, and rangereport in O((1 + occ) log σ) time.
These functions are also useful in the context of sequences. For instance, we can use
rangecount(T , i, j, a, b) to obtain the number of symbols s ∈ Σ in T [i, j] with a ≤ s ≤ b.
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Compressed Wavelet Trees

We can further compress a wavelet tree by giving a Huffman shape [122] to its topology. This
technique is effective when the alphabet is small. In this version, we first run the Huffman
algorithm on the symbols of S and their frequencies (Section 2.1.2) to obtain variable-length
codes for the symbols. The idea is to use these codes to produce the shape of T . Suppose
that during the wavelet tree’s construction we have to build the bit vector Bv of a node v
with depth h from an input sequence Sv. If the hth bit from left to right in the Huffman code
of Sv[i] is 0, then we set Bv[i] = 0, and set Bv[i] = 1 otherwise. As before, we split Sv into
two sequences, Slv and S

r
v , but this time we use the value of the hth bit in the Huffman code

of Sv[i] to decide if that symbol belongs to Slv or Srv . After finishing v, we build its left and
right subtrees from sequences Slv and S

r
v , respectively. We stop expanding a subtree when

the alphabet of Sv has only one symbol a, in which case we create a leaf labeled with a.

Unlike the regular wavelet tree algorithm, the symbols in the alphabet of Sv are not equally
distributed in Slv and S

r
v as the Huffman codes are of variable length. This difference implies

that we can create a leaf at any depth of T . In fact, the tree depth of a leaf encoding a
symbol a ∈ Σ with a Huffman code of length ∣hc(a)∣ = h is h + 1.

Reaching the leaf of T labeled with a requires us visiting ∣hc(a)∣ internal nodes. The bit
vector of each of these internal nodes uses one bit per occurrence of a in S. Therefore, T
uses na∣hc(a)∣ bits for a, where na is the number of occurrences of a in S. If we consider
all the characters in Σ, then we have that the total number of bits spent by the bit vectors
of T is Σana∣hc(a)∣ < n(H0(S) + 1), exactly the length in bits of the Huffman-compressed
sequence. Recall from Section 2.1.2 that the Huffman algorithm reduces the average length
of the codes to the statistical entropy of S. If we also consider the space usage of the rank
and select data structures along with the topology of T , then the total space usage of this
wavelet tree representation is n(H0(S) + 1)(1 + o(1)) +O(σw) bits.

The algorithms for access, ranka and selecta remain the same. However, querying more
frequent symbols in a Huffman-shaped wavelet tree is faster than in the regular version. As
explained before, the time complexity of access, ranka and selecta is dominated by the length
of the path we traverse on T to reach the leaf labeled with a. In a regular wavelet tree, that
path is always of length log σ, regardless of the symbol. In a Huffman-shaped wavelet tree,
however, the paths of more frequent symbols are shorter than those that are less frequent.
Querying the less frequent symbols, instead, can be slower.

When using a Huffman-shaped tree is not an option, we can still compress T by storing
the bit vectors of the internal nodes with the RRR representation (Section 2.2.1). This
scheme reduces the overall space usage to nH0(S) + o(n log σ) + O(σw) bits. The use of
RRR does not change the tree’s shape, so the query complexities remain the same1 as in the
uncompressed version of the wavelet tree.

1Performing rank in a bit vector compressed with RRR takes O(1) time.
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Figure 2.3: Huffman-shaped wavelet tree T for the string attcggattaggcttagggct of Fig-
ure 2.1. The binary strings to the right of the tree are the Huffman codes of the string’s
symbols.

2.2.3 Succinct Trees

A tree is a hierarchical data abstraction. It consists of a set of n nodes and n − 1 edges.
Every node has exactly one predecessor (i.e., the parent) and one or more successors (the
children). The only node with no predecessor is the root. When a node has no children is
called a leaf, and when two or more nodes share the same parent they are siblings.

Trees are widespread in computer science as they adapt well to multiple situations. How-
ever, they can potentially use a lot of memory, especially when the information they encode
is massive. A simple pointer-based representation, for instance, requires at least n log n bits
of space only to store the topology. This problem has motivated the development of succinct
data structures for trees. The techniques developed for this topic are among the most suc-
cessful CDSs. Nowadays, we have static2 encodings that can store a tree in 2n+ o(n) bits of
space and answer many navigational queries in constant time.

In this section, we briefly describe three of such succinct encodings for ordinal trees;
LOUDS, Balanced Parentheses (BP) and DFUDS. In Table 2.1 we describe the main navi-
gational functions we use in later chapters.

LOUDS

The acronym LOUDS stands for Level-Order Unary Degree Sequence. In this encoding, we
regard T as bit vector B[1, 2n + 1]. The first two positions of B contain the pattern 10
to avoid border cases. We store the nodes of T in level-order so that if a node v has c
children, then we append the sequence 1

c
0 to B. This bit pattern is called the description

2They do not allow the insertion, deletion or modification of any node or edge in the tree.
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Function Description

root Root of the tree
fchild(v) First child of v, if it exists
lchild(v) Last child of v, if it exists
nsibling(v) Next sibling of v, if it exists
psibling(v) Previous sibling v, if it exists
parent(v) Parent of v, if it exists
isleaf(v) Whether v is a leaf
leafrank(v)∗ Number of leaves preceeding v, plus 1 if v is a leaf
leafselect(r)∗ rth leaf on the tree
internalrank(v)∗ Number of internal nodes preceeding v, plus 1 if v is an internal node
internalselect(r)∗ rth internal node in the tree
nodemap(v) An identifier i in [1,n] for v
nodeselect(i) The node v with identifier i
children(v) Number of children of v
child(v, r) The rth child of v from left to right, if it exists
label(v) The label of v

Table 2.1: Basic navigational operations supported in LOUDS, BP, and DFUDS. The defi-
nition of the functions with an ∗ vary depending on the tree encoding. For BP and DFUDS,
leafrank(v) and internalrank(v) return the number of leaves and internal nodes preceding
v in pre-oder (respectively), while in LOUDS they are numbered in level-oder. Similarly,
internalselect(r) and leafselect(r) return the rth node in pre-order when the tree is in BP or
DFUDS, and in level-order when it is in LOUDS.

of v. We identify v with the index where its description starts in B. The LOUDS encoding
produces one 0 per distinct node and one 1 per distinct edge. These bits plus the two bits
at the beginning of B add up to 2n + 1 total bits. Figure 2.4B depicts an example of this
representation.

If we augment B with the rank and select data structures of Section 2.2.1, then we can
answer several navigational queries in constant time.

In general, LOUDS is considered the most simple encoding. It is the one that uses the
least space, but also is the most limited in terms of navigational queries. Still, it supports
all the operations listed in Table 2.1.

Balanced Parentheses

We can also succinctly store T as a sequence of balanced parentheses (BP) encoded as a bit
vector B[1, 2n]. Every node v in T is represented by a pair of parentheses (..) that enclose
the encoding of the subtree rooted at v. We identify each node of T with the position in B
of its open parenthesis. We build the BP representation by traversing T in pre-order. When
we enter the subtree of a node v we append an opening parenthesis ( to B. Then, when we
exit the subtree, we append a closing parenthesis ). Figure 2.4C shows an example of BP.

The BP representation supports more navigational queries than LOUDS, but in practice
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Figure 2.4: Succinct tree encodings. (A) Ordinal tree. The numbers in gray to the right of
the nodes are their pre-orders, while the numbers in black to the left are their level-orders.
(B) LOUDS representation for the tree of (A). The numbers in gray on top indicate where
are located the nodes in the encoding (using their level-orders). (C) BP representation of
the tree of (A). The numbers in gray on top indicate where are located the nodes in this
encoding (using their preorder position). (D) DFUDS representation of the tree of (A).

it is a bit slower and uses more space. BP resorts to a set of primitives over a data structure
called range min-max tree [138]. A simple implementation of this range min-max tree adds
o(n) bits on top of B, and its primitives take O(log n) time. Consequently, the operations in
BP that rely on this data structure also take O(log n) time. Other more sophisticated solu-
tions [43] that build on range min-max trees reduce the time complexity of the navigational
queries in BP to O(log log n) and still require o(n) bits.

DFUDS

The words DFUDS means Depth-First Unary Degree. To build this encoding, we initialize
an empty bit vector B and append the sequence 110 to it to avoid border cases. Then, we
start a pre-order traversal over T , and for every node v, we append the pattern 1

c
0 to B,

where c is the number of children of v. Similarly to the other representations, the final space
usage for B is 2n + 2 bits.

In DFUDS, the children information of every node v is stored close to v in B, like in
LOUDS. This feature simplifies the computation of primary functions like children, child, and

21



childrank, which are slower to answer in BP in practice. On the other hand, the disposition
of the nodes in pre-order allows DFUDS to use the range min-max tree to support more
queries than LOUDS. We could consider DFUDS as a hybrid encoding that combines the
best aspects of both LOUDS and BP.

2.3 Hashing

2.3.1 Hash Tables

A hash table is an associative container that maps a set K of keys to values. There is a value
for every key k ∈ K in the table. Keys are unique, but the values of distinct keys can be
equal. The keys and the values can be of any type, like strings, integers, or floats. The basic
operations a hash table can support are:

• insert(k, v) : insert key k associated with value v
• delete(k) : delete key k and its value
• find(k) : returns true if key k exists as key in the hash table
• retrieve(k) : returns the value associated with key k

We can implement a hash table by first choosing a parameter m and then building an
array A[1,m] along with a hash function h ∶ U → [1,m]. The universe U contains all the
possible keys we can see in K, and h maps its elements to slots in A. The idea is to store the
value of k in A[h(k)]. Ideally, each pair of distinct keys k, k

′
∈ U should map to different

positions of A. However, this is not always the case. When h(k) = h(k′), we have a collision.

When the set K is unknown, and U ’s size is greater than m, ensuring no collisions is
impossible. Nevertheless, we can select a good hash function to reduce their probability.
Intuitively, a “good function” ensures that each key is equally likely to map to any of the
slots of A. A typical approach to achieve this property is by randomly selecting a hash
function that does not depend on the keys of K. This concept is called universal hashing.

Let H be a set of hash functions that map the keys in U to [1,m]. Such set is said to be
universal if by randomly picking a function h ∈ H, it holds Pr(h(x) = h(y)) ≤ m

−1 for any
x, y. A simple universal set Hab (or family) for integers is that of

hab(x) = ((ax + b) mod p) mod m,

where 0 < a < p, 0 ≤ b < p, and p is a prime number as large as the range of keys. The
family is conformed by all the possible values of a and b.

There are several techniques to resolve collisions. Here we briefly review the most popular
ones.

Chaining

Every slot A[j] points to a linked list that contains all the pairs (k, v) with h(k) = j. When
there is no key in the hash table mapped to A[j], its pointer is null. During the insertion of
(k, v) into the hash table, we create a new linked list L and store (k, v) in its head if A[h(k)]
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is null. In addition, we store in A[h(k)] a pointer to L’s head. On the other hand, if A[h(x)]
already stores a pointer to some linked list L, we create a new entry in L for (k, v), provided
k is not already in the list.

The performance of the hash table will depend on the length of the linked lists; if k maps
to a slot A[j] with collisions, then we have to compare k against the keys in list L to which
A[j] points. Let us denote with n the total number of elements in all the liked lists and
α = n/m the load factor of the hash table. Assuming we selected a hash function that
uniformly maps the keys to the slots, the average time for scanning the linked lists is α. If
the hash computation takes constant time, then the average case for operating the table is
O(1 + α). That value can be O(1) if n is proportional to m.

Open Addressing

In open addressing, we store the pairs (k, v) in the hash table, not in linked lists. When a
collision occurs, we repeatedly probe other positions in the table until finding an available
slot. The probing mechanism must be reproducible in the sense that we have to replicate
the same sequence of visited positions when searching for the key again. Therefore, the slots
we probe must depend on the key value. The advantage of open addressing compared to
chaining is that we do not require extra pointers. It is also potentially more cache-friendly if
the probing makes the colliding keys to be stored contiguously in the table.

The procedure for inserting a pair (k, v) is simple. Let h(k, i) be a hash function with
probing step i. We compute first j = h(k, 0). If A[j] is already occupied, then we compute
j
′
= h(k, 1) and check if position A[j ′] is available. We continue increasing i until finding

an empty slot. In other types of hashing schemes that use open addressing, if the slot for k
is already occupied, we do not find another one. Instead, we swap (k, v) with the pair in its
slot and find a new slot for the evicted pair. The condition for swapping pairs might vary
depending on the technique.

If we consider that each possible probed cell is equally probable, then the expected number
of probes when searching for a key is 1/(1−α), where α is the load factor (note that it must
hold α < 1 with open addressing). If we fix α to some threshold, then searching for a key
in the hash table takes O(1) time. For instance, if the load factor is 0.9, then the expected
number of probes is 1/(1 − 0.9) = 10. It is customary to maintain the load factor in about
0.5 so the expected number of visited slots is just 2. When the table exceeds this load factor,
we increase the table size and rehash all its elements.

There are different ways of defining the probing step. Here we briefly review the classical
methods.

Linear Probing We define an auxiliary hash function h′ ∶ U → [1,m], and perform

h(k, i) = (h′(k) + i) mod m.

Linear probing is simple to implement and makes the probing cache-friendly. Nevertheless,
it tends to create long runs of occupied slots, thus requiring smaller α values (i.e., bigger
tables) to maintain the same amount of probes. Let us see the effect of maintaining a high
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value for α; the expected number of probes in linear probing is

1

2
(1 + ( 1

1 − α
)

2

) .

If we set α to 0.5, we expect to perform 2.5 probes, which is not so far from the random
assumption (2 probes). However, if we set α to 0.9, the expected number of probes increases
to 50.5, which is much more than in the random assumption (10 probes).

Quadratic Probing In quadratic probing, the slots are computed as

h(k, i) = (h′(k) + x ⋅ i + y ⋅ i2) mod m,

where h′ is an auxiliary function and x and y are constant values. The performance of
quadratic probing is usually better than linear probing, but x, y and m must be constrained.
Besides, the keys also tend to group in runs in the table, although in a milder way.

Double Hashing Double hashing selects two auxiliary functions h1(k) and h2(k), and
obtains the hash value as

h(k, i) = (h1(k) + i ⋅ h2(k)) mod m.

The performance of double hashing is better than quadratic and linear probing. Its main
feature is that both the initial key’s slot and the subsequent probed positions depend only
on k. Thus, even if two keys collide on the same initial slot, there is a high chance that their
probing steps will be different. This property reduces the table’s clustering, and hence, the
search time.

Robin Hood Hashing In Robin Hood hashing [29] each cell in the hash table, in addition
to the key-value pair, stores an offset that indicates how far is the key from its original slot.
Let i be the probing step in the insertion of (k, v), and let A[j] be the slot of the probing
step. Further, let (k′, v′) be the pair stored in A[j] and o the offset for k′. If i > o, then k
is farther away from its original slot than k′. In such a case, we swap the elements; we store
(k, v) in A[j] with offset o = i and find a new position for (k′, v′) from probing step i = o+1.
As we find a new position for the pair, we continuously swap the key to be inserted when
we reach a slot with an offset smaller than i. Although it maintains the same average search
time, Robin Hood probing reduces the variance, as it tends to equalize the search costs of
the different keys.

Cuckoo Hashing In Cuckoo hashing [149] we select two independent hash functions h1

and h2, and two hash tables3, H1 and H2, with the same number of slots. We use h1 for
assigning slots in H1 and h2 for assigning slots in H2. When inserting a new pair (k, v)
into the data structure, we store it in whichever of its slots, H1[h1(k)] or H2[h2(k)], is
empty. If both are occupied, we swap (k, v) with the pair in one of its slots. Suppose we

3Some variants consider one table subdivided into two segments.
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arbitrarily chose to swap (k, v) with H1[h1(k)] = (k′, v′). Now we insert (k′, v′) in its other
slot H2[h2(k′)], and if that slot is also occupied, then we swap (k′, v′) with the pair there
and repeat the process for the evicted pair. We continue until we find an available slot. It is
customary to select a threshold for the number of times we can swap pairs in the hash tables.
When we exceed that threshold, we trigger a rehashing process for all the keys. One of the
advantages of cuckoo probing is that the lookup operation guarantees O(1) worst-case as
every key has at most two places where can be stored in the hash table. The disadvantage,
on the other hand, is that it is not cache-friendly. The inspection of the two slots of a key
produces two cache misses.

2.3.2 Rolling Hashing

Rolling hashing [91] is a linear-time technique to compute integer values (or fingerprints)
for the substrings of length p in a string S[1,n]. It was originally developed for pattern
matching, but it also generalizes to other related problems, as we will see in Section 3.5.1.

We first choose a parameter p ≤ n and define a polynomial hash function

h(⟨s1, s2, . . . , sp−1, sp⟩) = (
p

∑
i=1

sp−i+1x
i−1) mod q,

where q is a prime number and x is an arbitrary integer greater than one. This function maps
a string of length p to an integer value in the range [0, q− 1]. We produce the fingerprints in
O(n) time by evaluating h on the n−p+1 substring of length p in S, but without evaluating
the complete polynomial n−p+1 times. We begin the process by computing h(S[1, p]) using
Horner’s rule. Subsequently, we slide a window of length p over S to obtain fingerprints for
the rest of substrings of length p. We compute the value of a window S[i, j], with j−i+1 = p,
by updating the fingerprint of the previous window S[i− 1, j − 1]. For this purpose, we use
the formula

h(S[i, j]) = ((h(S[i − 1, j − 1]) − S[i − 1]xp−1)x + S[j]) mod q,

where h(S[i− 1, j − 1]) is the fingerprint of S[i− 1, j − 1]. Notice this formula is equivalent
to h(S[i, j]), but we are not evaluating the complete polynomial, as we anticipated. The
advantage of rolling hashing is that, after obtaining h(S[1, p]) in Θ(p) time, we perform
n − p + 1 constant-time updates to calculate the fingerprints of the other substrings of S.

Extending rolling hashing for pattern matching is simple. Let P [1, p] be the pattern we
have to search for in S. We choose a polynomial function for strings of length p and a prime
number q to build the hash function h. Subsequently, we compute the fingerprint for P as
fP = h(P [1, p]), and then we start to roll h over S using the mechanism described in the
previous paragraph. Every time we reach a substring S[i, j] such that h(S[i, j]) = fp, we
report i as a match if S[i, j] equals P .

Checking S[i, j] against P when they have the same fingerprint is necessary as h can
return the same value for different strings (i.e., a collision). This situation occurs when the
evaluation of S[i, j] and P in the polynomial of h yield two values (say a and b) that are
congruent modulo q (a ≡ b mod q). On the other hand, if S[i, j] and P have different
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fingerprints, we are sure they do not have the same sequence, so the check is unnecessary.
When h distributes randomly on [0, q − 1], the expected number of times we compare P
against a substring S[i, j] during the scan of S is upper bounded by v + n/q, where v is the
number of true matches of P and n/q is the expected number of unsuccessful matches. Thus,
the pattern matching algorithm runs in O(n + p(v + n/q)) time.

We can reduce the probability for two sequences to have the same fingerprint by choosing
a large enough random prime number q. Also, a good decision is to select x and q such that
the product xq fits in a computer word.

2.3.3 Bloom Filters

A bloom filter [18] is a lossy probabilistic data structure that encodes a setQ in succinct space.
The most basic operations it supports are inserting an element q into Q and checking if an
input q′ is already present. The fields where this data structure has applications are manifold,
from Genomics to networks and databases. In the particular case of Genomics, it has been
used to compute the q-grams (also known as kmers) of DNA sequences [179, 177, 151].

Bloom filters are fast and space-efficient, so they are a good choice when the set Q is
massive, and the memory requirements of traditional hash tables are too high. Nevertheless,
they have the disadvantage of being lossy. When the data structure tells us that a given
element q does not belong to Q, the result is always correct. However, when it tells us that
q does belong, there is a slight chance that this is not true. In other words, we have false
positives.

A bloom filter has two components; a bit vector B[1,m] and a set of x hash functions
H = {h1,h2, . . . ,hx−1,hx} that map an element q to x integer values within the range [1,m].
To insert q ∈ Q into the data structure, we first hash it with each function hi ∈ H, and then
set every B[hi(q)] to 1. Later, if we need to check if q is in the filter, we evaluate it with all
the H’s functions again, and return true if every cell B[hi(q)] is set to 1, or false otherwise.
The false-positive problem arises when the B’s cells associated with q were independently set
to 1 by other elements of Q, but q itself has not been inserted yet. Thus, if we test for q, the
data structure will report it as present when it is not. Notice also that deleting q from the
bloom filter is not safe as the positions in B for different elements of Q might overlap. As a
consequence, if we flip the bits of q in B to 0, we might accidentally delete another element
of the filter.

The only parameters for building the bloom filter are m, the size of B, and H. The
probability of false positives will depend on the values we chose for these parameters. If we
assume that the hash functions are independent and that they uniformly map the positions
in B, then the probability for B[i] to be 0 after inserting n elements into the filter is

(1 −
1
m)

nx

.

To account for the probability of false positives during the membership test, we need to
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consider the chance of x independent positions in B to be set to 1. This value is

(1 − (1 −
1
m)

nx

)
x

.

The formula above is approximately (1 − e
−nx/m)x. A typical method for reducing the

probability of false positive is to chose x = ln(n)⋅m/n different hash functions as this number
minimizes the formula.

2.3.4 Document Similarity

Andrei Broder [26] proposed an space-efficient method to compute the similarity between
two documents A and B. This technique, popularly known as MinHash, has been widely
used in the detection of highly similar web pages, images, and genomic analyses [148, 99].

Before explaining the method, we give some definitions. Let us denote K(X, k) the set of
all the distinct substrings of length k in a document X, where k is a parameter. The distance
between A and B is then computed as

J(A,B) = ∣K(A, k) ∩K(B, k)∣
∣K(A, k) ∪K(B, k)∣ .

This value is the Jaccard coefficient for two sets. Broder, however, showed that we can
obtain an unbiased estimate of J(A,B) if we use a random sample of K(A, k) and K(B, k).
This observation is particularly useful when we need to compute the distance between huge
documents under memory constraints.

He uses a concept called the sketch of a document X. Assume we give numeric identifiers
to the elements in K(X, k) from a totally ordered universe U of size ∣Σk∣. In addition, we
need a permutation π ∶ U → U chosen uniformly at random. The sketch of X, denoted
here as S(X, s, k), is then the set with the s smallest elements of π(K(X, k)), where s is a
parameter. Once we compute the sketch of A and B, we can estimate J(A,B) as

∣S(A, s, k) ∩ S(B, s, k)∣
∣S(A, s, k) ∪ S(B, s, k)∣ .

Intuitively, S(X, s, k) are the s smallest permuted identifiers of the k-substrings in X.
Still, when k is too large, the numeric identifiers for U might not fit the computer word. We
can solve this problem by using a hash function h that maps the k-substrings to a range
[1, 2

l − 1] where l is a suitable length smaller or equal than the machine word’s length. A
good choice in this case would be to use the rolling hashing idea of Section 2.3.2 to compute
the new identifiers. We need to carefully select the parameters for the hash function so that
the number of collisions does not affect the outcome of the Jaccard estimation.

Other Methods

Winnowing [166] and Minimizers [158] are other similar techniques for computing document
similarity. Winnowing was developed to identify plagiarism while Minimizers to compute
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suffix-prefix overlaps between DNA sequences. Although these algorithms serve different
purposes, they perform almost the same steps. In both cases, we receive an input document
(or sequence) X and parameters k and w. The idea is to scan the text from left to right
and select the k-substring with the smallest identifier in each window of w consecutive k-
substrings. The distinct sequences selected by the algorithm are called the minimizers of X.
As before, we use a random hash function to assign identifiers to the k-substrings of X. For
each minimizer, we store its sequence and a list with its occurrences in X.

Winnowing and Minimizers produce a text sampling with the following properties; first,
every pair of sampled substrings are at most w characters apart. Second, if two different
substrings of length at least k + w + 1 are equal, then they must have at least one sampled
k-sequence in common. In recent years, the Minimizers technique has gained popularity in
Bioinformatics as a fast preprocessing step for comparing long DNA strings [13, 154, 90, 112].
The rationale is that if two strings are somehow similar, they must share at least some
minimizers. In Section 4.4, we review some of these methods.
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Chapter 3

Indexing and Compressing Text

This chapter reviews the state-of-the-art techniques to index and compress texts. We consider
a text to be a string S[1,n] over alphabet Σ = [1,σ] that carries information. Indexing
consists of augmenting S with extra data structures so we can extract that information
efficiently. In situations where S is large, and the space overhead of the index is considerable,
we can use a succinct self-index. This data structure maintains S in compressed form and
answers the queries by operating over the text without decompressing it. We can further
extend self-indexes to store labeled graphs, another way of encoding text. Labeled graphs
are helpful for genomic applications as they are a more accurate DNA representation.

We begin this chapter by describing the classical text indexes (Section 3.1). In Section 3.2,
we review the most popular techniques for compressing text. In Section 3.3, we explain how to
combine text compression and indexing to develop self-indexes. Section 3.4 extends the ideas
of self-indexing to represent labeled graphs. Finally, in Section 3.5, we review algorithms
for indexing text that exploit repetitions. These concepts are fundamental for the ideas we
develop in the following chapters.

For convenience, we usually consider the last symbol S[n] = $ to be lexicographically
smaller than any other character in S.

3.1 Classical Indexes

Text indexing consists of building a data structure IS (a.k.a., the index ) from S to perform
queries. This technique is useful when the input document is large and performing linear
searches is too slow for practical purposes. Unfortunately, most text indexes are static; if we
modify the document, the index becomes invalid, and we have to build it from scratch.

The most basic operations IS can answer are:

• count(IS,P ): number of occurrences of the pattern P in S

• locate(IS,P ): report every j ∈ [1, ∣S∣ − ∣P ∣ + 1] such that S[j, j + ∣P ∣ − 1] is an
occurrence of P
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Figure 3.1: Classical text indexes for a string S. The suffix tree (ST ) and the suffix array
(SA). The dashed lines map a branch in the ST with its corresponding position in the SA.

In this section, we describe two basic techniques for text indexing; the suffix array and
the suffix tree. Most of the other indexing approaches we describe in later sections try to
resemble their functionality while reducing the space usage.

3.1.1 Suffix Array

The suffix array [78, 125] is an array SA[1,n] that stores the positions of the suffixes of S
according their lexicographical order. Thus, it holds that S[SA[1],n] is lexicographically
smaller than S[SA[2],n], S[SA[2],n] is smaller than S[SA[3],n], and so on. An example
of this structure is shown in Figure 3.1.

A key property of the suffix array is that if a pattern P occurs several times in S, then
the suffixes prefixed by P form a contiguous range in SA. We find this range by performing
two binary searches over SA. In the first one, we obtain the position SA[x] such that suffix
S[SA[x]..] is prefixed by P , and the suffix S[SA[x−1]..] is not. In the second binary search,
we obtain the position y ≥ x such that S[SA[y]..] is prefixed by P , and S[SA[y+1]..] is not.
The resulting segment SA[x, y] will contain all the suffixes of S prefixed by P . Note that every
time we visit a new position SA[i] during the binary search, we need to compare P against the
prefix of length ∣P ∣ in S[SA[i]..]. Therefore, each binary search takes O(∣P ∣ log n) time.
Once we obtain SA[x, y], answering count reduces to returning y − x + 1, and answering
locate reduces to reporting the indexes in SA[x, y]. The time complexity of count is thus
O(∣P ∣ log n), and the time complexity of locate is O(∣P ∣ log n+occ), where occ is the number
of occurrences of P in S.
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3.1.2 Suffix Tree

Consider a trie T built with the suffixes of S. For every S[i,n], there is a path U =

v1, v2, . . . , vk of length k = n − i + 2 in T , where v1 is the root and vk is a leaf (there is one
leaf for every suffix of S). Further, each edge (vj, vj+1) in U is labeled with a symbol in Σ,
and concatenating the edge labels from v1 to vk produces S[i,n]. We build T such that if
two or more suffixes of S have the same j-prefix, then their paths in the trie share the first
j+1 nodes. This feature produces a cardinal tree T ; edges originating from the same internal
node cannot have the same labels.

We can compact T as follows. For every path U = vi, . . . , vj where vi and vj are the only
nodes with more than one children, we remove the subpath U ′

= vi+1, . . . , vj−1 and connect
vi with vj by an edge (vi, vj) labeled with the concatenation of the labels in U ′. The result
of this procedure is a compact trie T ′ of n leaves and less than n internal nodes called the
suffix tree of S [188].

Let l(v) be the string spelled by the path in T ′ starting in the root and ending in v. One
of the main features of the suffix tree is that the sequence in X = l(v) spelled by every
internal node v is right maximal ; the frequency of X in S is greater than the frequency of
any of its right extensions Xa, with a ∈ Σ. Further, the children of the internal nodes are
sorted according the lexicographical order of the edge labels. Therefore, the distinct suffixes
of S are also encoded in lexicographical order. Finally, every leaf vi in the suffix tree stores
the index i of its corresponding suffix l(vi) = S[i,n]. An example of a suffix tree is shown
in Figure 3.1A.

We can extend the suffix tree to index a string collection S = {S1,S2, . . . ,Sm} instead of
just S. This variation is known as the generalized suffix tree [14]. The main difference is that
every leaf vi now stores a list of positions, not just one value. Each element in the list of vi is
a pair (j,x) that indicates that l(vi) is the suffix Sj[x..] in Sj ∈ S. For the construction of
the index, we use the string S = S1$S2$ . . . Sm$ that represents the concatenation of S. The
$ characters mark the boundaries between the strings, and are lexicographically smaller than
any other symbol in Σ. We can use any standard algorithm for building T ′ from S [182]. The
only caveat is that if the label of an edge (u, v) in T ′ contains a $ symbol, v becomes a leaf.

It is easy to see that we can answer count and locate for a pattern P in O(∣P ∣ log σ+ occ)
time using T ′. We have to find the node v with the lowest tree depth such that l(v) is prefixed
by P , and then visit the leaves under the subtree of v to access the occurrences of P in S.
To find v, we start a descent over T ′ from the root. Every time we reach a new internal node
v
′, we perform a binary search over the labels of the edges that connect v′ with its children.

The aim is to find the child u such the edge (v′,u) is prefixed by symbol P [∣label(v′)∣ + 1].
We continue the tree descent through u if l(u) is a prefix of P or if P is a prefix of l(u).
In the latter case, we stop the descent as u is indeed v. We visit no more than ∣P ∣ internal
nodes, and the binary search in each of them takes O(log σ) time (every node has at most
σ children). Further, there are occ leaves under v, and we have to visit no more than occ
internal nodes to reach them as T ′ is compacted.

We can augment the suffix tree with extra edges to support string queries other than count
and locate. A suffix link (u, v) from node u to node v occurs if l(u) = aA and l(v) = A,
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where A is a string and a ∈ Σ. Conversely, a Weiner link (u, v, a) from u to v, and labeled
with a ∈ Σ, exists if l(u) = A and l(v) = aA. Additionally, a Weiner link is said to be
implicit if aA exists in S but it is not right maximal. That is, there is no node v′ in T ′ such
that l(v′) = aA.

An important drawback with the suffix tree is its high space consumption. It requires
Θ(n log n) bits on top of S, and in practice uses about 10 times the size of S [103]. In the
following sections, we review representations to encode fully-functional suffix trees in succinct
space.

3.2 Text Compression

In Section 2.1, we explained how to compress strings when their symbol frequencies are
uneven. Still, that is not the only way. We can also reduce space usage when the input text
is repetitive. That is, it is composed of highly similar strings. The general idea is that if
we have k repetitive documents, we store one of them explicitly as a reference and store the
others as edits of the reference.

Repetitiveness is another prominent feature of DNA collections. The concatenation of
thousands of individual genomes might require several TBs, but their differences are usually
less than 1%. We can then reduce space usage significantly if we exploit the repetitions.
Genomic projects do not store individual genomes explicitly. Instead, they produce one
reference genome and store the others as edits, using the same idea we explained in the
previous paragraph.

One might think that if a text is repetitive, it is also statistically compressible. Never-
theless, this is not the case. Consider, for instance, an incompressible text S[1,n] where all
the symbols have the same frequency. The statistical entropy H0(S) equals the worst-case
entropy, so S requires n log σ bits of space. Now consider the strings S ′ = St that represents
the concatenation of t copies of S. The relative symbol frequencies are the same in both S
and S

′, so it holds H0(S) = H0(S ′) = log σ. As a consequence, S ′ requires tn log σ bits of
space. On the other hand, we can store S ′ as a tuple (t,S) to indicate that the string is the
concatenation of t copies of S. This arrangement uses slightly more space than n log σ bits,
but it uses much less than tn log σ when t and n are large.

Another relevant topic closely related to repetitive text is that of kernels [71]. A kernel is
an abstract set of atomic elements that we can use to represent the text. A simple analogy
for this concept is that if we regard the text as a LEGO construction, then its kernel is the
set of LEGO pieces. When the text is repetitive, we can produce it with a few concatenations
of strings from a small kernel. We can exploit this fact and use the kernel not just to reduce
space usage but also to boost string analyses. For instance, it has been shown in the past
that this idea can speed up pattern matching in large genomic databases [167, 187, 45].

We will describe now two compression schemes that capture the repetitive patterns in the
text. We use them in later chapters of the thesis to process DNA sequences.

As in the previous section, we consider the string S[1,n] over the alphabet Σ = [1,σ] to
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C[t] + rankt(L, 1) = 16

C[c] + rankc(L, 16) = 7

C[$] = 0

C[a] = 1

C[c] = 5

C[g] = 8

C[t] = 15

Figure 3.2: Matrix M with the cyclic shifts of the string attcggattaggcttagggct of Fig-
ure 2.1. The F and L columns are shown in black. The column to the left of F depicts its
representation as the C array. The dashed lines to the right of L show two LF steps.

be the input text. The symbol $ = Σ[1] is used as a terminator symbol, and it is mapped to
the smallest character in Σ.

3.2.1 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) [27] is a reversible string transformation. The tra-
ditional way of explaining it is as follows: we generate the n cyclic shifts of S and put them
in lexicographical order in a matrix M (every row is a specific shift). The BWT of S is then
the array L resulting from extracting the last column of M . Another way to understand the
BWT is in terms of the suffix array. Each L[i] = S[SA[i] − 1] is the symbol that precedes
the suffix S[SA[i],n]. For technical reasons, S is considered to be circular, which means
that L[1] = S[n].

To reverse the BWT, we use the so-called LF function. Given an input position L[j] that
maps some symbol S[i], LF(j) = j ′ returns the index j ′ such that L[j ′] = S[i− 1] maps the
preceding symbol of S[i]. This procedure allows us to spell the sequence of S in reverse text
order (from right to left) directly from L; we iteratively apply LF from L[1], the symbol to
the left of S[n] = $, and stop when we reach L[j] = $.

To implement LF, we require the first column of M , popularly denoted as F . We logically
divide F into σ runs of symbols, or buckets, where all the rows in M starting with b ∈ Σ
belong to bucket b. We represent F as an array C[1,σ], where C[b] stores the number of
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rows in M that are lexicographically smaller than any row of bucket b. Now we can compute
LF(j) = j

′ as C[a] + ranka(L, j) = j
′, where a is the symbol at L[j]. The formula works

because the occurrences of a in the BWT are sorted according the lexicographical rank of
their right contexts. Hence, if L[j] = a has rank r, then S[i,n] is the rth suffix prefixed with
a in S. To obtain the rank j ′ of S[i,n] among the other suffixes of S, we add r and C[a].
Due to the definition of the BWT, we know that L[j ′] is the symbol that precedes S[i,n] in
the text.

If necessary, we can also implement the inverse function LF
−1. In other words, given the

position L[j] = S[i], LF
−1(j) = j

′ returns the index j ′ such that L[j ′] maps S[i + 1]. We
implement LF

−1 as selecta(L, j − C[a]), where a is the bucket of F where L[j] lies [109].

If we use the wavelet tree of Section 2.2.2, then we can encode L using n(H0(L)+ 1)(1+
o(1))+O(σw) bits of space, and support the operations ranka and selecta in O(log σ) time.

High-Order Compression

The lexicographical sorting of the cyclic shifts causes the symbols in S with similar right
contexts to be grouped in L. All the characters that precede the occurrences of a pattern P
of length k (for any k) will be stored in one single block L[i, j]. If the same character always
precedes P in S, then L[i, j] will be an equal-symbol run. If not, L[i, j] probably contains
few distinct symbols anyway.

We can use run-length encoding to compress L as it has few equal-symbol runs compared
to S. Still, this is not the only way of reducing space usage. Note that , because L[i, j] has
few distinct symbols, its H0 value is small. We can exploit this fact and partition L so that
every distinct block L[i, j] stores the preceding symbols of a specific pattern P ∈ Σ

k. Thus,
by independently applying zeroth-order compression to each L[i, j], we can store S into its
kth-order entropy.

Note the definition of L[i, j] is similar to that of the string SC in the formula of Hk(S)
in Section 2.1.1 (P and C have the same meaning in this context). The only difference is
that L[i, j] has the left contexts of P while SC has the right contexts. We can modify the
Hk formula to make it symmetric1; it does not matter if we consider the symbols to the
left or right of P ; we obtain an equivalent entropy value. This result demonstrates that by
compressing each L[i, j] to its zeroth-order entropy, we achieve high-order compression for
S. Recall from Section 2.1.1 that we can obtain space close to nHk(S) if we give different
codes to the symbols depending on the distinct sequences of length k that precede them on
S.

We can still support rank in O(log σ) time if we include a table with the precomputed
ranks of the symbols before every block. It is also necessary to include a bitmap that
marks the starting positions of the blocks in L. By choosing a k small enough such that
k + 1 < α logσ n, for any constant 0 < α < 1, the space usage of this scheme can be as little
as nHk(S) + o((Hk(S) + 1)n) bits [127].

1See Section 11.3.2 in the book Compact Data Structures: A Practical Approach [135] to see how to obtain
a symmetric formula for Hk.
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The BWT of a String Collection

Ferragina and Venturini [66] were one of the first to consider the BWT of a string collection.
Given a multiset S = {S1,S2, . . . ,Sm} of lexicographically sorted string, they build L from
S = S1$1S2$2 . . . Sm$m#, the concatenation of S. The symbols $ and # are special characters
lexicographically smaller (respectively, greater) than any symbol in Σ.

The lexicographical ordering of S allows us to simulate in L circular scans of the strings.
More specifically, given that we know the position L[j] storing the preceding symbol of
$i−1Si, we can jump in O(1) time to the position L[j ′] storing the preceding symbol of
$iSi+1. The indexes j and j

′ are within the range [1,m] as both precede $ characters. Recall
that $ is the smallest value in Σ and there are m copies of it in S. The key observation of
Ferragina and Venturini was that the lexicographical sorting of S produces $i−1Si and $iSi+1

to be contiguous in the suffix array of S. Therefore, it holds j ′ = j + 1.

Mantaci et al. [126] proposed a BWT variation regarding S as a multiset of primitive
strings. That is, no Si ∈ S can be obtained by concatenating two or more copies of another
Sj ∈ S. Their scheme yields a transform of circular strings; if L[j] maps to Si[1], then
L[LF(j)] maps to the end of Si. This feature makes Si to be independent of the other
elements in S, meaning that we cannot reach a character of Si by continuously applying LF
from a BWT position that maps a character of Si+1.

To build L, they consider a special string ordering called <ω. Before explaining this
concept, we need to give some basic definitions. Let Xk be a string X concatenated k times
(i.e., Xk is a power of X), and let Xω be the infinite concatenation of X. Additionally,
root(X) = W denotes a unique primitive word that we can use to rewrite X = W

k. The
operator exp(X) = k is the exponent of W . We also lift the operator <lex to refer to the
lexicographical order of the strings.

Given two string A and B over the alphabet Σ
∗, the <ω order is described as

A ⪯ω B ⟺ {exp(A) ≤ exp(B) if root(A) = root(B)
A
w
<lex B

w otherwise.

Mantaci et al. build a list C with all the cyclic shifts of S and sort the list in <ω order.
Subsequently, they produce L by concatenating the last symbols in the sorted cyclic shifts
without changing their relative orders. To recognize the string boundaries in L, they also
include a sparse bit vector that marks every L[j] mapping to the first symbol of a string.
They called the resulting L the extended BWT (eBWT). Recently, Bannai et al. [6] proposed
a linear-time algorithm for building the bijective BWT that can be used to compute the
eBWT in linear time.

The algorithm of Bauer et al. [7] produces a relaxed BWT, usually denoted as the BCR
BWT. In their variation, the order in L for symbols preceded by equal suffixes of S depends
on the disposition of these suffixes in the collection. For instance, suppose there are three
suffixes aA$x, bA$y and cA$z in S, with a, b, c ∈ Σ and x < y < z. The three of them end
with the same sequence A$. In the BCR BWT, we will have a range in L[i, j] = (a, b, c).
This property does not necessarily holds in the other variations. In the BWT of Ferragina
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and Venturini, the order of a, b and c will depend on the string Sx+1, Sy+1, and Sz+1, and in
the eBWT, the order will depend on Sωx , S

ω
y , and S

ω
z . This relaxation in the model allowed

Bauer et al. to develop semi-external algorithms to construct the BCR BWT efficiently.
These algorithms build L incrementally. They start by defining a partial version of L for
the characters that precede the suffixes of length 1 in S. Then, in every iteration i, they
insert into L the symbols that precede the suffixes of size i. Other analogous ideas were also
developed [111, 117, 118, 20].

Bauer et al. [7] also postulated that we could reduce the number of equal-symbol runs in
the BCR BWT if we sort S in colexicographical order2 first. Similarly, Bentley et al. [12]
proposed a linear-time algorithm for sorting S that reduces the number of BWT runs by
an Ω(logσm) factor. A more recent work [68] explored the idea of guiding the ordering of
S using a known reference string. Their experimental results showed that we could achieve
15% of extra compression with this approach in genomic data.

3.2.2 Grammars

A context-free grammar (CFG), or just grammar, is a tuple G = {V , Σ,R, S} that describes
rewriting rules producing a set of strings in Σ

∗. In this tuple, V is the alphabet of nonter-
minal symbols, Σ is the alphabet of terminal symbols, R is a list of productions that maps
nonterminals to strings over Σ ∪ V , and S ∈ V is the start symbol of G. The nonterminals
rewrite as strings, while terminal symbols cannot be replaced. The rules in R are represented
as A → B, where A ∈ V is the nonterminal and B is a string over the alphabet Σ ∪ V that
replaces A. The set of string in Σ

∗ we can obtain by recursively rewriting nonterminals is
the language generated by G, L(G). The parse tree of a string S ∈ L(G) is a labeled ordinal
tree that represents the recursive nonterminal replacements leading to S. The root is labeled
with S, the leaves are labeled with terminals spelling out S left to right, and the internal
nodes are labeled with nonterminals: the children of A are, left to right, the symbols of B
for some rule A → B ∈ R.

The aim in grammar compression is to encode an input string S[1,n] by finding a small
grammar G whose language is L(G) = {S}. In this grammar, there is exactly one rule A → B
per A ∈ V ; we call exp(A) ∈ Σ

∗ the only string of terminals derived from A, and then
S = exp(S). The size G = ∣G∣ of the grammar is the sum of the lengths of the right-hand
sides of the rules. Then we significantly compress S if we manage to build a grammar of size
G≪ ∣S∣ that generates only S.

In general, it is convenient to enforce some properties in G to avoid redundancies:

• Each nonterminal is the left-hand side in only one rule
• Right-hand sides in R cannot be empty strings
• Every nonterminal must appear at some point in the derivation of S
• Distinct nonterminals produce different strings in Σ

∗

• Every nonterminal appears at least twice in the right-hand sides of R
• There is no pair XY ∈ Σ ∪ V occurring more than once in the right-hand sides of R

2Sort the strings in lexicographical order from right to left.
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Figure 3.3: The CFG resulting from running RePair on the string S = attcggattaggattagg.
(A) The parse tree of the grammar. Gray nodes and edges are the pruned elements of the
grammar tree built in a pre-order traversal of the parse tree. (B) The set of rules R and the
start symbol S.

Kieffer et al. [96] called the grammars that satisfy these properties irreducible. They also
showed that irreducible grammars reach the kth order entropy of a source. Similarly, Ochoa
and Navarro [143] demonstrated that the same holds for the kth order empirical entropy of
individual strings. Grammars not just achieve compression under the statistical model, they
also capture the repetitiveness of the text; the size of G is much smaller than n when S is
repetitive [136].

There are important trade-offs between grammars and other compression methods. For
instance, it is a well-known fact that obtaining the smallest grammar G∗ that produces S is
NP-complete [178, 32], while computing the BWT or Lempel-Ziv parse (see Section 3.2.3)
of S takes linear time [141, 159, 178]. Besides, the size G∗ of G∗ is never smaller than the
number of Lempel-Ziv phrases in S. On the other hand, there is no clear dominance between
grammars and the BWT; G∗ can be smaller or larger than r, the number of BWT runs [136].

Despite the drawbacks, grammars are still interesting because they support direct access to
S with a logarithmic penalty [15] and within O(G log n) bits. In contrast, with the Lempel-
Ziv scheme, we can support direct access inO(z) time [101], where z is the number of phrases.
In the case of the BWT, we can obtain efficient direct access, but it is still unknown if we
can do it using space proportional to r.

Another important advantage of grammars is that there are good heuristics that perform
well in practice for build them, RePair [108] being the most popular one. The RePair al-
gorithm consists of recursively replacing the most frequent pair of symbols in S. Let ab be
the most frequent pair at some point during the algorithm’s execution. We create a new
rule B → ab and replace the occurrences of ab in S with B. Then, we extract the new most
frequent symbol pair in S and repeat the same procedure. The algorithm stops when all the
pairs in S have frequency one. RePair achieves linear time by maintaining the pairs in a max
priority queue, so the most repeated pair is always at the top after each update of S.
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RePair produces grammars of size comparable to the Lempel-Ziv77 parse (LZ77) [193]
in most of the cases. Nevertheless, RePair has a high cost in practice, which limits its use
in big datasets. Although it runs in linear time and space, its working memory footprint
is too high. Competitor tools like p7zip [150], which is based on LZ77, achieve slightly
better compression ratios and require a negligible amount of working memory. To solve the
problem, Gagie et al. [72] proposed a variation of RePair that preprocesses S first to catch
long repetitive blocks. Their experimental results showed that they use between 7% and
11% of the working memory of RePair, while maintaining competitive compression ratios.
Other more recent grammar algorithms [142] are faster and require less working memory
than RePair, but produce bigger grammars. Still, they are faster at decompressing the text.

A run-length context-free grammar (RLCFG) [139] is an extension of CFGs that allows
rules of the type X → B

c, where Bc represents in constant space the concatenation of c > 2
copies of symbol B ∈ V ∪ Σ. A RLCFG usually compresses better than a regular CFG. For
instance, in the string S = Ac, the smallest CFG has size G∗

= Θ(log n), whereas a RLCFG
can reach size G∗

RLCFG = O(1). Of course, the general case is G∗
RLCFG ≤ G

∗.

Locally Consistent Grammars

A type of grammar relevant for this thesis is that generated from a locally consistent parsing
[162, 128]. This procedure consists of partitioning a text S[1,n] in a way such that the
identical substrings are largely parsed in the same form. More specifically, a parsing is locally
consistent if there are two integers a, b (which may depend on n) such that, for every pair of
equal substrings S[j, j+u] = S[j ′, j ′+u], only their first a and their last b phrase boundaries
can differ. In general, a locally consistent parsing algorithm puts a phrase boundary in S
wherever some specific symbol combination arises. In our case, the first and last phrases
of S[j, j + u] might be formed in a different way than those in S[j ′, j ′ + u] because they
might be preceded or followed by different symbols. Note that this approach differs from
other parsing algorithms such as Lempel-Ziv or RePair, which use global information on S
to define its partition.

We build a locally consistent grammar by applying successive rounds of locally consistent
parsing over S[1,n]. In every round i, we capture the distinct phrases in the input text Si

(S1
= S) and create new nonterminals rewriting to them. We then build a new text Si+1 by

replacing the phrases in Si with their corresponding nonterminal symbols. This new text Si+1

is the input for the next round. The algorithm stops when Si can no longer be partitioned.
If the phrases in every Si are of length at least 2, then the string Si+1 is at most half the
length of Si, and thus the number of parsing rounds is O(log n) and the total running time
is of the same order as for parsing S.

The algorithm described above produces a balanced grammar G, which is probably bigger
than the one we obtain with RePair. In exchange, if a pattern P appears more than once
in T , then the parse subtrees containing its occurrences will be almost identical, differing
only in a few nodes at the ends of every tree level. The internal part of the subtrees remains
unchanged regardless P ’s context. This can be exploited to speed up pattern matching.

Recently, Christiansen et al. [34] proposed a locally consistent RLCFG of size G =

O(γ log(n/γ)), where γ is the size of the smallest attractor of S [95]. In their algorithm,
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the parsing rounds have two steps. In the first one, they create new nonterminal rules with
the equal-symbol runs of Si. These rules are of the form A → a

l. Then, they produce a new
string Ŝi by replacing the runs with their generating nonterminals. In the second round step,
they define a random permutation π ∶ Σ̂

i
→ [1, ∣Σ̂i∣] for the symbols in the alphabet Σ̂

i of
Ŝ
i, and use this permutation to partition Ŝi: each phrase ends in a local minimum, which is

a position Ŝi[j] such that π(Ŝi[j − 1]) > π(Ŝi[j]) < π(Ŝi[j + 1]).

The Grammar Tree

Another relevant concept is the grammar tree of G [36] (also referred to as the partial parse-
tree by Rytter [161]). This representation is a pruned version of the parse tree. We build it
as follows; we start a walk over the parse tree in some specific order. Every time we reach a
internal node v whose label X ∈ V has not been seen before in the traversal, we create a new
internal node in the grammar tree labeled with X. On the other hand, if X has been seen
before, we create a leaf labeled with X instead, and skip the subtree of v from the traversal.
When we reach a leaf v in the parse tree, we also create a leaf in the grammar tree. The
resulting grammar tree contains exactly G + 1 nodes and ∣R∣ internal nodes. The example
of Figure 3.3A depicts the idea.

Random Access

When storing S as a grammar, we are also interested in supporting random access to any
S[i] in compressed space. Recall that this feature is one of the main advantages of grammars
over other dictionary-based approaches. A simple way to achieve random access is by storing
the accumulative sums of nonterminals. Let ∣A∣ be the length of exp(A). Then, for each rule
X → A1 . . .Ak ∈ R, we store the sequence l0 = 0, l1 = l0 + ∣A1∣, . . . , lk = lk−1 + ∣Ak∣. Also,
we define a predecessor data structure that, given the sequence l0, l1, . . . , lk of a rule and a
position i, returns the element j such that lj−1 < i ≤ lj. We extract S[i] from the grammar
by first obtaining the position j for i in S→ C. Then, we update i = i− lj−1 and recursively
apply the same idea using the rule of C[j] and i as inputs. We continue the recursion until
reaching a terminal symbol, which is the answer for S[i].

When the grammar is balanced (i.e., its height is O(log n)), we require O(log n) pre-
decessor operations. Besides, with the data structure of Belazzougui and Navarro [11], we
can answer these predecessor queries in O(log logw n). In this way, accessing S[i] takes us
O(log n log logw n) time. If the right-hands of R are of constant length, then we can reduce
the predecessor queries to O(1), reaching thus O(log n) time to access S[i]. Bille et al. [15]
recently demonstrated that we can obtain O(log n) time to extract S[i] from any type of
grammar, not necessarily balanced. They also showed how to extract any substring S[i, j]
in O(j − i + log n) time. Ganardi et al. [73] recently showed that we can transform any
grammar of size G into a balanced grammar of size O(G), where the right-hand sides of R
are of length two.

3.2.3 Other Compression Methods

There are other methods apart from Grammars and the BWT to compress repetitive text.
Among them, Lempel-Ziv (LZ) is maybe the most popular. This algorithm greedily partitions
S into a sequence of phrases. More precisely, LZ parses S from left to right, and given the
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unprocessed suffix S[i,n], it finds the longest prefix S[i, j] whose sequence also appears at
some position S[i′, j ′] before S[i] (i.e., i′ < i). Subsequently, it defines a new parse phrase
S[i, j + 1], and continues the processing from suffix S[j + 2,n]. The substring S[i′, j ′] is
referred to as the source of S[i, j + 1]. The resulting parse is stored as a list of triplets
(i′, j + 1− i,S[j + 1]). If this list has z elements, then the space usage of the representation
is O(z log n) bits. When the text is repetitive, the phrases cover long segments of S, so z is
much smaller than n. LZ has several variants, but LZ77 [193] and LZ78 [194] are the best
known ones. In LZ77, the source S[i′, j ′] has to start within the l symbols previous to S[i],
where l is a parameter . In LZ78, the source must also be a phrase. In the other variants, the
source can cross one or more previously created phrases. LZ78 is the variant that compresses
the least, but allows us to extract any substring S[i, j] in optimal time O(j − i + 1).

Another method for text compression is the Compact Directed Acyclic Word Graph
(CDAWG) [19]. This data structure is an automaton obtained by merging all the identi-
cal subtrees in the suffix tree of S. As the text becomes more repetitive, the number of these
identical subtrees increases, so the CDAWG becomes smaller. The size of the CDAWG is
usually denoted as e, and represents the sum of its arcs and its edges. Still, CDAWGs are
not as powerful as the other compression methods. In some string families, it holds that e is
Θ(n) times larger than z or r [9] and Θ(n/ log n) larger than G [8].

3.3 Self-Indexes

A self-index is a versatile data structure that (i) stores a text S[1,n] in compressed form, (ii)
supports pattern matching on S in time sublinear 3 in n, and (iii) allows random access to S’s
substrings. These representations, in addition to answering count and locate (Section 3.1),
also support the query:

• display(IS, i, j) : extract the sequence S[i, j] from the self-index IS

Self-indexes are an excellent alternative when the space overhead of the suffix array or
suffix tree is too high for practical purposes. This situation occurs, for example, when we
need to index massive string collections. In particular, self-indexes have thrived in genomic
applications that require locating small DNA sequences within large genome databases.

Popular self-indexes exploit the unbalance in symbol frequencies or regularities in the
text’s suffix array to reduce space usage. In the first case, their compression performance is
usually assessed in terms of the empirical Hk entropy. Recall from Section 2.1.1 that this
value is a lower bound for the average number of bits we require to represent the symbols in
S if we use kth order statistical compression. This framework, although useful for many text
collections, is not suitable when S is repetitive (see Section 3.2). Other self-indexes, explicitly
designed for repetitive collections, achieve better compression. They factorize the text using
dictionary-based methods such as Lempel-Ziv or CFGs, or exploit the equal-symbol runs in
the text’s BWT. Nevertheless, their pattern matching functionalities are usually slower than
those of entropy-based self-indexes.

3O((mc + occ) logε n), where c and ε are constants > 0, m is the pattern length and occ is the number of
occurrences of the pattern.

40



In this section, we review the most successful self-index that relies on statistical entropy.
Besides, we review other self-indexes tailored to repetitive strings with potential applications
in modern genomic analyses.

3.3.1 FM-Index

The FM-Index [65] is a self-index that represents S in terms of the arrays L and C of
Section 2.2. The first one is S’s BWT while the second stores in C[i], with i ∈ [1,σ], the
number of symbols in S smaller than i. We saw in Section 2.2 that we can encode L and S in
n(H0(L) + 1)(1 + o(1)) +O(σw) bits of space so that reconstructing S takes us O(n log σ)
time.

This representation also allows us to count the number of occurrences of a pattern P [1,m]
in S in O(m log σ) time (the operation count(IS,P ) of Section 3.1). The procedure is called
backwardsearch(IS,P ). Recall from Section 3.1 that the suffixes in S prefixed by P form
a consecutive range SA[s, e], and its corresponding segment L[s, e] stores the preceding
symbols of P in S. Let us denote SA[sj, ej] the range that contains the suffixes of S prefixed
by P [j,m], with j ∈ [1,m]. The backward search builds on the observation that if we
already know SA[sj, ej], then we can compute the range SA[sj−1, ej−1] directly from L[sj, ej].
The procedure starts by obtaining the range SA[sm, em], with sm = C[P [m]] + 1 and
em = C[P [m] + 1]. Then, for every suffix P [j,m], with j ≠ m, we obtain the range
SA[sj−1, ej−1] from L[sj, ej] with the formula:

sj−1 = C[P [j − 1]] + rankP [j−1](L, sj − 1) + 1

ej−1 = C[P [j − 1]] + rankP [j−1](L, ej).

We refer to this operation as a backwardsearch step. After applying m − 1 steps, the
resulting range (s1, e1) is indeed SA[s, e]. Finally, we report e − s + 1 as the number of
occurrences of P in S. Obtaining (sm, em) takes constant time, and computing each pair
(sj, ej) takes O(log σ) time if we encode L as a wavelet tree (Section 2.2.2). Thus, the
total time for backwardsearch(IS,P ) is O(m log σ) time. Notice that this function does not
explicitly require the suffix array of S.

If we also require to support locate(IS,P ), then we can augment L and C with the suffix
array of S. In this way, this operation reduces to perform backwardsearch(IS,P ) and then
report the positions in SA[s, e]. The whole operation is thus implemented in O(m log σ+occ)
time. However, the n log n extra bits of the suffix array can be too expensive. A common
technique to reduce the space overhead is to sample SA at regular text intervals.

We define a sampling rate l and collect all the suffix array values that satisfy SA[i] mod l =
0. We store such samples in another vector A[1, ⌈n/l⌉] without changing their relative orders.
In addition, we define a bit vector B[1,n] that marks the sampled positions of the SA. That
is, B[j] = 1 if SA[j] mod l = 0. The representation for S now becomes C, L, A and B.

Now displaying the text positions in SA[s, e] is a bit different. Let j be a value in the
range (s, e). If B[j] = 1, then we report SA[j] = A[rank1(B, j)]. If, on the other hand,
B[j] = 0, then SA[j] was not sampled, so we have to infer it. Starting from L[j], we perform
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LF iteratively until finding a position j ′ such that B[j ′] = 1. Assume we found j ′ after k LF
operations, then we report SA[j] = A[rank1(B, j

′)] + k. As we sampled a suffix array value
every l text positions, and LF enumerates the symbols in reverse text order, finding SA[j]
takes us O(l log σ) time. One can set l = log

1+ε
n/ log σ for any given constant ε > 0 so that

the sampled values require (n/l) log n = o(n log σ) bits and computing a non-sampled value
takes O(log

1+ε
n) time.

The last operation we need to support is display(IS, i, j). We implement it by first retriev-
ing the position SA[j ′] = j+1 for S[j+1,n], then applying LF

j−i+1(j ′), and finally reporting
the reversed sequence of symbols we accessed in L during the LF calls. The problem with
this idea is that we do not know j

′. To solve it, we augment the FM-index with the inverse
suffix array. This data structure is a vector SA−1[1,n] that tells us for every suffix S[u,n]
its lexicographical rank u′. In other words, SA−1[u] = u′ implies that SA[u′] = u. We reduce
the space requirements by maintaining a sampled version of SA−1. We chose a sampling
rate l and create an array A−1[1, ⌈n/l⌉] to store the SA−1 values of the text positions that
are multiples of l. As a special case, we can store A−1[⌈n/l⌉] for S[n], although it is not
necessary as this suffix is always mapped to SA[1]. To get j ′, we first obtain the suffix array
position x = A

−1[⌈(j + 1)/l⌉] for the smallest suffix to the right of S[j + 1,n] that was
sampled. If j + 1 is multiple of l (or n), then j ′ is x. If not, then we apply no more than l LF
steps from L[x] to get j ′. Thus, answering display(S, i, j) takes us O((j − i+ l) log σ) time.

The complete FM-index is composed by the data structures L, C, B, A and A−1. If we
use the same sampling rate for A and A−1, then its total space usage is n(H0(L) + 1)(1 +
o(1)) +O(σw) +O((n/l) log n) bits.

3.3.2 Bidirectional FM-Index

A limitation of the FM-Index is that it is asymmetric. Given the range SA[s, e] of suffixes
prefixed with P , we can easily obtain, in one backward search step, the suffix array range
for aP , with a ∈ Σ. On the other hand, if we require the suffix array range for pattern Pa,
computing it from SA[s, e] is not that simple.

A common solution for this limitation is to have a bidirectional FM-index [104]. This
variation considers two BWTs. The first one, L, is for S, and other, L̄, is for the reversed
version of S, denoted as S̄. To simplify the explanations, we will refer to the string aP as a
left extension of P , and the string Pa as a right extension.

When performing a backward search step in the bidirectional FM-index, we maintain both
BWTs synchronized. If L[s, e] has the symbols that precede P in S, L̄[p, q] has the symbols
that precede P̄ in S̄. Put another way, L̄[p, q] has the symbols that follow P in S. These
two ranges have the same sizes as the number of occurrences of P in S is the same as the
number occurrences of P̄ in S̄.

Assume we perform a backward step over (L[s, e], L̄[p, q]) using c ∈ Σ. The new pair of
ranges (L[s′, e′], L̄[p′, q′]) store the symbols that precede cP in S and P̄ c in S̄, respectively.
Note that (p′, q′) is fully contained within (p, q) as the frequency of P̄ c in S̄ is equal or
smaller than the frequency of P̄ , and both patterns share the same prefix. Further, we know
that the right extensions of P̄ in S̄ are equivalent to the left extensions of P in S. Hence,
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to maintain the BWTs synchronized, we perform a backward search step over L[s, e] to get
L[s′, e′], and then use the operation rangecount(L, s, e, 1, c− 1) of Section 2.2.2 to count the
k symbols in L[s, e] that are lexicographically smaller than c. Using this information, we
compute the range p′ = p + k and q′ = p′ + e′ − s′ for L̄.

The operation above describes a synchronized left extension cP . If we want a right ex-
tension Pc, we have to perform the opposite procedure; compute (p′, q′) with a backward
search step on L̄[p, q], and then compute k = rangecount(L̄, p, q, c) to set s′ = s + k and
e
′
= s

′ + q′ − p′.

There is an interesting connection between the bidirectional FM-index and the suffix tree
of S; spelling a prefix S̄[1, j] using LF over L̄ is equivalent to spelling the path X in the suffix
tree of S labeled with S[n − j + 1,n]. Using this observation, we can simulate a traversal
over S’s suffix tree directly from L̄. In doing so, we map specific ranges in L̄ to specific
suffix tree nodes. Let P be a prefix in the label of X and let L̄[p, q] be the range storing the
symbols that precede P̄ in S̄. If L̄[p, q] contains more than one distinct symbol, then there
is an internal node v in the suffix tree of S labeled with P , whose subtree contains p− q + 1
leaves. In contrast, if L̄[p, q] is an equal-symbol run, then there is no internal node labeled
with P as it is not right maximal.

Using arrays L and L̄ we can simulate some navigational operations over the suffix tree.
For instance, we can obtain the Weiner links of v using backward search steps over L[i, j].
Suppose we perform a backward search step in L[i, j] using one of its distinct symbols, say
c ∈ Σ. If the resulting range L[i′, j ′] is an equal-symbol run, it represents an implicit Weiner
link (see Section 3.1.2). On the other hand, if [i′, j ′] has more than one distinct symbol,
then it maps a node v′ such as that an explicit Weiner link (v, v

′) labeled with c exists in the
suffix tree of S.

We can access the kth child of v from L̄[p, q]. Assume c is the kth smallest symbol
appearing in L̄[p, q]. We apply a backward search step over L̄[p, q] using c and continue
performing backward search steps until finding a range L̄[p′, q′] with more than one distinct
symbol. If we maintain synchronized L and L′ in every step, then the resulting L[i′, j ′] maps
the kth child of v.

Computing the suffix link (v, v
′) of v is also possible, but we must augment L with

additional data structures. Using the operations LF
−1(i) = i

′ and LF
−1(j) = j

′, we obtain
a subrange [i′, j ′] within the range of v′ in L, which we use to answer the suffix link query.
The problem, however, is that we need the topology of the suffix tree to expand [i′, j ′] to the
range of v′. There is a similar problem when computing the parent of v.

3.3.3 The r-index

The r-index [70] is a variation of the FM-index that requires space proportional to the
number of equal-symbol runs in the BWT of S. This number is usually denoted as r, and
serves as an ad-hoc measure to assess the repetitiveness of a text. If S is indeed repetitive,
then its value for r is small compared to n. Although the FM-index represents S within its
statistical entropy (Section 3.3.1), this scheme is insensitive to the redundancy on the text
(see Section 3.2). Hence, it grows linearly with n regardless the kind of new data we append
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to S. In contrast, an r-index grows with the amount of new information on S. This means
that if we add new sequences to S that are identical or highly similar to those already in the
text, then the index’s space usage will grow slowly.

The r-index is composed of two data structures; a run-length compressed version of the
BWT with rank support [122] and a sampled suffix array that stores one value per BWT
run. We first describe the run-length compressed BWT, and then explain how to perform
backwardsearch on it. We refer to this data structure as the RLBWT of S. We then explain
the sampling technique for the suffix array and how to report the text positions within the
SA range reported by backwardsearch.

The first element of the RLBWT is a vector L′[1, r] storing the first symbol of every equal-
symbol run of L, without changing the relative order of the runs. Another array C

′[1,σ]
stores in C

′[i] the number of symbols in L
′ that are lexicographically smaller than i. We

also create an array R[1, r] to store information about the run lengths. Every range R[a, b],
with a = C

′[s] + 1 and b = C
′[s + 1], is associated with the runs of symbol s ∈ Σ. More

specifically, position R[u], with a ≤ u ≤ b, has the cumulative lengths of the first u − a + 1
runs of s in L. The last component of the RLBWT is a predecessor data structure. The
operation pred(j) = (j ′, p) receives as input a position j ∈ [1,n] and returns a pair where
j
′
≤ j is the position of the leftmost symbol in the run of L[j] and p the rank of that run in

L.

We now can simulate the operation ranks(L, j) over the RLBWT as follows; we first call
the operation pred(j) = (j ′, p). The output tells us that L[j] lies within the pth BWT run,
and that the leftmost symbol in that run is L[j ′]. Subsequently, we obtain the number of
runs for s in L

′[1, p − 1] as x = ranks(L′, p − 1). Using x, we obtain the real rank of s in
L[1, j] as l = R[C ′[s]+x]. Additionally, when s = L′[p], we add (j− j ′+ 1) to l to consider
the (j − j ′ + 1) occurrences of s between L[j ′] and L[j]. Finally, we return l as the answer
for ranks(L, j).

The time complexity for the function described above is dominated by the pred(j) and
ranks(L′, s) operations. Gagie et al. [70] use the predecessor data structure of Belazzougui
and Navarro [11] to support pred(j) in O(log logw(n/r)) time and O(r log n) space, where
w is the machine word’s length in bits. Besides, they use an alternative representation for L′

that supports rank in O(log logw σ) time. Thus, the time complexity for ranks(L, j) becomes
O(log logw(σ + n/r)).

Now that we can simulate the operation ranks(L, j) in the RLBWT, we can implement
backwardsearch(IS,P ) in O(m log logw(σ + n/r)) time, where IS is the r-index and P is an
input pattern of length m. This result implies that we can also implement count(IS,P ) in
the same time and within O(r log n) bits of space.

Supporting locate(S,P ) in O(r log n) space is a bit more complicated but not impossible.
We start by creating an array A[1, r] to complement R. A[j] stores the suffix array value
for the last entry of the run referenced by R[j]. Now, for answering locate(S,P ), we modify
the backwardsearch algorithm so that when we obtain the range SA[s, e] for P , we also know
SA[e]. Assume we already have the boundaries (sj, ej) for P [j,m] and its corresponding
value SA[ej]. We now have to perform a backward search step to obtain the information of
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P [j−1,m]. To compute SA[ej−1], we use L[sj, ej] and the new array A. If L[ej] is equal to
P [j−1], then SA[ej−1] = SA[ej]−1. If, on the other hand, L[ej] differs from P [j−1], then
we need to find in L[sj, ej] the position y with the last occurrence of P [j−1]. We know L[y]
is the last element in a BWT run so its SA value is in A. We infer y using the same mechanism
for supporting ranks(L, j) in the RLBWT; y = C ′[P [j − 1]]+ rankP [j−1](L′, pred(ej).j ′ − 1).
Finally, the value for SA[ej] is A[y] − 1.

The last aspect to address for locate is how to obtain the other suffix array values within
the range SA[s, e−1]. Gagie et al. [70] made the following observation; let L[j] and L[j−1]
be two consecutive symbols that belong to the same run. The equality SA[j − 1]− SA[j] =
SA[LF(j − 1)]− SA[LF(j)] holds as long as the LF operations for j and j − 1 redirect us to
positions in the BWT that also belong to the same run. Put differently, let j and i = j − 1
be two consecutive positions in L. Suppose we iteratively apply j = LF(j)k and i = LF(i)k,
where k is the number of steps needed for L[j] and L[i] to belong to different BWT runs. In
each of these steps, the values of j and i changed, but they remained contiguous (j − i = 1).
Therefore, the difference d = SA[i] − SA[j] stayed the same in all of them. However, after
the kth LF step, L[j] and L[i] are positioned in different runs, so applying LF(j) and LF(i)
will yield two values j and i that are no longer contiguous in the BWT. This difference means
that d = SA[i] − SA[j] now is a different subtraction. Note that, from all the k distinct
values assigned to j during the LF steps, only LF

k(j) (the last one) represents a run head in
L.

We exploit the ideas described in the previous paragraph as follows; we create another
predecessor data structure that returns for every SA[j] the previous text position SA[j ′] =
SA[j]− k such that S[SA[j ′]− 1] is a run head in the BWT. In addition, for every SA[j ′]
encoded in the predecessor data structure, we store the difference with its previous suffix
array value as d(SA[j ′]) = SA[j ′ − 1]− SA[j ′]. Now suppose we already know SA[j], with
j ∈ [s, e]. For computing SA[j − 1], we search for SA[j ′] in the predecessor data structure
and then report SA[j−1] = SA[j]+d(SA[j ′]). During the computation of an SA value, the
time complexity is dominated by the predecessor operation, which takes O(log logw(n/r))
time if we use the data structure of Belazzougui and Navarro [11]. Thus, reporting the values
in SA[s, e] takes O((e − s + 1) log logw n/r) time.

As a conclusion, locate in the r-index takes O(m log logm(σ+n/r)+(e−s+1) log logw n/r)
time, and O(r log n) space.

3.3.4 The Grammar Index

A regular grammar index [36, 37] consists of a CFG generating only S (Section 3.2.2) and a
geometric data structure [31] used to perform efficient matching on S. This data structure
is an interesting alternative to the r-index. Although both are sensitive to text repetitions,
the r-index usually requires more space. Experimental results [37] showed that, on repetitive
collections, the grammar index uses about 64% of the r-index’s space. In less repetitive col-
lections, this percentage reduces to 53%. Another recent work [38] showed that, on microbial
genomes with a small number of BWT runs (n/r = 51.2), the grammar index requires 73%
of the r-index’s space. However, in microbial organisms where r is higher (7.5 ≤ n/r ≤ 40),
this percentage decreases to 37% − 49%. These results show that the r-index’s space usage
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grows faster than the grammar index’s space usage as the text repetitiveness drops. How-
ever, performing pattern matching in the grammar index is slower than in the FM-index
(experimental results of Cobas et al. [38] showed that it is about four times slower than the
r-index).

Before explaining this data structure, it is convenient to recall some notation from Sec-
tion 3.2.2. Let G = (V , Σ,R, S) be a CFG that only produces S. The symbol G is the size
of G and the symbol g = ∣R∣ is the total number of nonterminals. In addition, the grammar
tree of G is denoted as T ′. The internal node of T ′ encoding the first preorder occurrence of
a nonterminal X in the parse tree is called the locus of X.

The grammar index is composed of two elements; a succinct representation of T ′ and a
succinct representation of the geometric data structure. We use T ′ to generate a partition
over S, and then we index the resulting phrases in the geometric data structure to support
pattern matching. The leaves in T

′ induce the partition as follows; let v be a leaf in T
′

generated from a node v′ in the parse tree of G. The substring S[i, j] whose symbols match
the leaves under the subtree of v′ is the phrase induced by v.

The Grammar Representation

In order to use T ′ in the grammar index, its associated grammar G must have the following
properties:

1. For every terminal a ∈ Σ, there is a nonterminal rule Xa → a

2. Each nonterminal appears at least in two distinct left-hand sides in R. The only
exceptions are S and the nonterminals of property 1

3. There is no rule in R whose left-hand side is empty or a single nonterminal symbol
4. If X < Y, then the reverse sequence of exp(X) is lexicographically smaller than the

reverse sequence of exp(Y)

When building T ′, we encode all the nonterminals of property 1 as leaves, including those
that are the first preorder occurrence in the parse tree. Once we produce T ′, we encode its
topology using DFUDS (Section 2.2.3). We store its node labels in an array X[1,G], where
each X[j], with j ∈ [1,G], is the label of the node with preorder j + 1 (we skip the root).
We represent X using the data structure of Belazzougui and Navarro [11] that supports
selecta(X, k) in O(log log g) time, where a ∈ [1, g] is a symbol in X and k is its rank. In
addition, we create a bitmap C

′[1, g] in which we mark the nonterminals of property 1.
Finally, we create a bit map L′[1,n] and set L′[j] = 1 if a partition phrase starts at position
S[j].

Using this representation, we can simulate a traversal over the parse tree of G. We start
from any internal node of T ′ we want to expand and traverse its subtree top-down as long as we
visit internal nodes. When we reach a leaf v, we first obtain its label Y = X[preorder(v)−1].
If C ′[l] = 1, then Y encodes the terminal symbol rank1(C ′

, l), so we report it. If, on the other
hand, C ′[l] = 0, then we obtain the locus v′ of Y, and recursively complete the traversal
from v

′ before continuing the main traversal. We compute the locus’ preorder first as p =
selectY(X, 1) in O(log log g) time, and then use nodeselect(p) to get v′.
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The procedure described above enables the expansion F = exp(X) of any nonterminal X
in O(∣F ∣) traversal steps. However, we still have a log log g penalty when computing a locus
from a grammar tree leaf. Claude et al. [37] showed that we can augment the representation of
T
′ withO(G) extra bits so that we can move from a leaf to a locus in constant time. They also

showed that we can augment the representation of T ′ with another (g−σ) log σ+ε log σ+O(g)
bits to decompress the first or last l symbols of F in O(l/ε) time.

The bit vector L′ allows us to map in constant time any node v in T ′ to the position in S
of the first (from left to right) induced phrase under its subtree. This operation, denoted as
p(v), is computed as select1(L′, leafrank(v) + 1).

Geometric Data Structure

We first define two string sets; the first one, Y , will have g strings, and the second, X , will
have G− g + σ strings. The sets are built as follows; let A → B1 . . .Bt ∈ R be a nonterminal
rule and let v be the locus for A in T ′. For every i ∈ [1, t], we insert the reverse sequence of
exp(Bi) into Y . Additionally, for every proper suffix Bi . . .Bt, with i ∈ [2, t], we insert the
string exp(Bi . . .Bt) into X . We build a matrix M of g × (G− g + σ) cells and use Y and X
to label its rows and columns, respectively. Every row j is labeled with the string in Y with
lexicographical rank j. Equivalently, every column j

′ is labeled with the string in X with
lexicographical rank j ′. The cell of M in the intersection of the row labeled with the reverse
of exp(Bi) and the column labeled with exp(Bi+1) . . . exp(Bt) stores the identifier of the child
number i + 1 of v from left to right.

In order to support pattern matching, we require to implement the following operations:

1. For any given m, extract the first m symbols of a row label l ∈ Y

2. For any given m, extract the first m symbols of a column label l′ ∈ X

3. Given a segment (x1, y1,x2, y2) in M , report the k pairs (x, y), with x1 ≤ x ≤ x2 and
y1 ≤ y ≤ y2 such that the cell (x, y) is not empty

The nonterminal symbols of G are the lexicographical ranks of their reversed string ex-
pansions. A convenient consequence of this property is that each row j in M is labeled with
the nonterminal j. Hence, it is not necessarily to store Y explicitly. We can map the non-
terminal j to its locus in T ′, and from that locus, obtain its string expansion in linear time
(operation 1 above). Another important observation is that every column in M has only one
used cell. If a column is labeled with the string F = exp(Bi+1) . . . exp(Bt), then its used cell
contains the locus in T ′ for the occurrence of Bi+1 that belongs to the sequence Bi+1 . . .Bt.
From that locus, we can easily decompress F in linear time (operation 2 above). Thus, it is
not necessary to store the labels of X either.

If we use the representation of Chan et al. [31] to encode M , we can extract the cell value
for a column in O(1) time and perform operation 3 in O((k + 1)(1 + log g/ log logG) time.
This data structure has a space complexity of (G − g + σ)(log g + logG) + o(G log g) bits.
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Pattern Matching

To search for a pattern P [1,m] in the grammar index, we classify its occurrences in two
types. Primary occurrences span two or more phrases in the partition of S while secondary
occurrences are fully contained within a phrase. The strategy to locate P in S consists
of using M to find the loci in T

′ of the lowest nonterminals whose subtrees have primary
occurrences of P . Once we find them, we locate the secondary occurrences of P by visiting
the leaves of T ′ labeled with them or with their ancestors.

Let S[i, j] be a primary occurrence of P intersecting k different phrases in the partition
of S. These phrases were induced from a group of leaves that appear consecutively in T ′. We
need to find their least common ancestor v because the string expansion of the label of v is
a substring in S that contains P . Note that in every primary occurrence of P , the sequence
of intersected phrases is always different, and so is the least common ancestor. We need to
find all such ancestor nodes to report all the primary occurrences of P .

Finding Primary Occurrences in the Grid

For every possible partition point 1 ≤ u < m, we cut the pattern into two halves P [1,u] and
P [u + 1,m]. The idea is to find the range of rows (y1, y2) in M whose labels are suffixed
by P [1,u] and the range (x1,x2) of columns prefixed by P [u + 1,m]. The non-empty cells
within the grid segment (x1, y1,x2, y2) indicate the nodes in T ′ with primary occurrences of
P . We perform two binary searches to locate this segment; one for the reverse of P [1,u] in
the prefixes of Y , and another for P [u+ 1,m] in the prefixes of X . When comparing P [1,u]
against the row labels, we extract the last u characters of a string in Y in O(u/ε) time using
operation 1 of the geometric data structure. Similarly, when comparing P [u+ 1,m] against
the column labels, we extract the first m − u + 2 symbols of a string of X in O((m − u)/ε)
time using operation 2. Thus, we obtain (x1, y1,x2, y2) in O((m/ε) logG) time. We need to
repeat this procedure with the m− 1 distinct cuts of P . Therefore, the final time complexity
to get the grid segments with primary occurrences raises to O((m2/ε) logG). We can reduce
this time to O((m2/ε) log log n) by augmenting the index with O(G) extra bits implementing
sampled Patricia trees [129]. Still, the binary search remains quadratic on m. Once we get
the grid segments, we retrieve the values in their non-empty cells using operation 3 of the
geometric data structure. Thus, the time complexity to find the loci in T ′ of the occ primary
occurrences of P is O((m2/ε) log log n + (m + occ)(1 + log g/ log logG)).

Reporting Primary and Secondary Occurrences

Let v be one of grid values for the cut Pl⋅Pr. So far, we know that the string expansion
F = exp(label(v)) is prefixed by Pr. We can easily obtain the position in S of F using
the operation p(v). Thus, the location of the primary occurrence of P associated to v is
p(v)−∣Pl∣+1. The next step is to report the secondary occurrences of v. Note that the string
expansions of the nonterminals labeling the ancestors of parent(v) also have P as a substring.
Therefore, the set X of leaves in T ′ labeled with these nonterminals expand to phrases that
contain secondary occurrences of P . This idea recursively applies for the ancestors of the
leaves in X. Let u be one of the ancestors of v; we compute its associated nonterminal Y.
Then, for every leaf u′ in T ′ labeled with Y, we report the position p(v)− ∣Pl∣+ p(u′)− p(u)
in S as a secondary occurrence of P . Besides, every time we reach a new leaf u′, we also
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Figure 3.4: A grammar index built from a CFG G that only generates the string S =

attcggattaggattagg. The grammar tree T ′ for G is depicted on the right side of the figure.
T
′ is the same as shown in Figure 3.3. The matrix M with the indexed rules of G is shown

on the left side of the figure. The strings in the rows belong to the set Y , and the vertical
strings belong to the set X . A cell M[i, j] is labeled with the nonterminal symbol of the rule
from which the string Y[i]⋅X [j] was expanded. The figure also illustrates the procedure to
locate the occurrences of a pattern P = att in S. The vertical line in P is a cut we try
on M . The gray cells in the M are the rows and columns reported by the binary searches
associated with the halves of the cut. The gray arrow from M to T ′ represents the mapping
of a primary occurrence of P to its locus in T ′. The dashed arrows in T ′ are the leaves we
visit to report the secondary occurrences of P .

have to inspect the nonterminals of its ancestors, and find the leaves labeled with them. The
complete algorithm processes all the grid point of each cut of P . Given the representation of
Claude et al. [37], we can report the occ secondary occurrences of P in O(occ(1/ε+ log log g))
time. This is because the grammar was preprocessed so that every nonterminal has another
occurrence as a leaf in T

′, and thus the work done on the ancestors of each occurrence
amortizes to some other occurrence of P .

The Resulting Index

The grammar index described by Claude et al. [37] uses at most G log n+2G log g+ εg log g+
o(G log g)+O(G) bits of space for any constant 0 < ε ≤ 1, and can find the occ occurrences of
a pattern P [1,m] in S in time O(m2

log log n+(m+occ) log g/ log log g). We can adjust ε so
that the upper bounds become G log n+(2+ ε)G log g bits for space and O((m2+occ) logG)
time for pattern matching. Figure 3.4 shows an example of the grammar index.

Improving the Pattern Matching

Christiansen et al. [34] showed that, if we build the grammar index of Claude et al. [37] using
their locally consistent grammar (Section 3.2.2), then we require to test only O(logm) cuts
of P to find its primary occurrences in G. Their idea consists in preprocessing P at query
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time with the same algorithm they used to build G. In every round i, they build the parse
P
i+1 by querying a hash table that maps the phrases in P i to nonterminals in the grammar.

The prefix P i[1, a] and the suffix P i[b, ∣P i∣] that do not represent complete phrases do not
have symbols in P i+1; analogously with P̂ i[1, â]. The preprocessing yields a list Q with the
positions in P that limit incomplete parsing phrases. More specifically, every position q ∈ Q
is either the rightmost symbol under P i[a] or P̂ i[â] in P ’s parse tree, or the leftmost symbol
under P i[b]. The elements in Q denote the cuts we try in the geometric data structure. As
there are O(1) incomplete phrases per parsing level i, there are O(logm) cuts in total.

The time obtained [34] is O(m+ (occ+ 1) log
ε
n) for any constant ε > 0, but the index is

complicated and likely much larger than the regular one.

3.4 BWT Indexes for Labeled Directed Graphs
Using the BWT framework we can produce succinct indexes for labeled directed graphs. A
relevant advantage of this approach is that it does not require us to store the graph topology
explicitly, only the labels plus some auxiliary bit vectors of length proportional to the number
of edges. In BWT-based indexes for graphs, the time of the navigational operations have a
log σ slowdown factor as they build on the LF operation. In addition, we can search for the
occurrences of a pattern P [1,m] in the graph paths in O(m log σ) time using backwardsearch.
These features have made BWT-based indexes popular in Genomics. Recall that the DNA
alphabet is very small, so the log σ factor is negligible in practice for genomic data. Before
explaining the ideas, we give some relevant definitions.

Let G = (V ,E, Σ) be a directed labeled graph. V is the set nodes, E is the set of
edges, and Σ = [1,σ] is the alphabet of edge labels. The direction of every edge (u, v) ∈ E
is from node u to node v. The operator l(u, v) ∈ Σ denotes the label of (u, v) and the
operator ≺ represents the ordering between the symbols in Σ. A path in G is a sequence
of nodes vi, vi+1, . . . , vi+k such that the edges (vi, vi+1), (vi+1, vi+2), . . . , (vi+k−1, vi+k) exist in
E. Indexing G using the BWT framework described in previous sections requires G to be a
Wheeler graph [69]:

Definition 1 G is a Wheeler graph if there is an ordering of the nodes such that nodes with
in-degree 0 precede those with positive in-degree and, for any pair of edges (u, v) and (u′, v′),
labeled with a and a′ respectively, the following monotonicity properties hold:

a ≺ a
′
⇒ v < v

′

(a = a′) ∧ (u < u′)⇒ v ≤ v
′
.

Definition 2 G is path coherent if there is a total order of nodes such that for any consecutive
range [i, j] of nodes and a string S, the nodes reachable from those in [i, j] in ∣S∣ steps by
following edges whose labels form S when concatenated, themselves form another range
[i′, j ′].

If G is a Wheeler graph, then it is path coherent (Lemma 3 [69]). This feature is relevant
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Function Description Time
Complexity

outdegree(v) number of outgoing edges of v O(1)
indegree(v) number of incoming edges of v O(1)
outneighbor(v, k) kth outgoing neighbor of v in the graph ordering log σ
inneighbor(v, k) kth incoming neighbor of v in the graph ordering log σ
find(P [1,m]) report all paths in G prefixed by P O(m log σ)

Table 3.1: Queries supported by BWT graph indexes

to support queries over G using the LF and backwardsearch operations. The problem is that
determining if G belongs to the Wheeler class is NP-complete for any edge label alphabet
of size σ > 2 [75]. Although the formal characterization of a Wheeler graph is relatively
new [69], the idea is not. Several BWT-based indexes in the literature [172, 63, 24] are
representations for graphs that belong to the Wheeler class. We briefly describe two such
indexes: for labeled tries [63] and directed acyclic graphs [175]. They are the basis for the
genomic representations we develop in later chapters. Table 3.1 summarizes the common
queries they support and their time complexities.

3.4.1 Labeled Tries

Let T = (V ,E, Σ) be a cardinal labeled trie, where every node v ∈ V is labeled with a
symbol l(v) ∈ Σ. The special character # is the smallest one in Σ, and only labels the root
of T , denoted as r′. Each edge (u, v) ∈ E is directed from the child node u to its parent v.
We use the operator l̄(v) to refer to the string resulting from the concatenation of the labels
in the path vi, vi+1, . . . , vi+k, where vi = v and vi+k = r

′. We call l̄(v) the extended label of
v. Note that, unlike Wheeler graphs, the labels of T are in its nodes, not in its edges. In
the particular case of T , this difference does not have a relevant effect on the model. We
can assume that a node’s label is associated with the edge that connects the node with its
parent.

To build a BWT index for T , we proceed as follows; we define an empty list Q and start
a preorder traversal over T . For every edge (u, v) ∈ E we visit, we append the triplet
(l(u), l̄(v), int) into Q. The field int is a bit flag set to 0 if u is a leaf or set to 1 otherwise.
Once we scan T , we stably sort Q according the lexicographical order of the second compo-
nents. After the sorting, the information of every internal node v now lies in a specific range
Q[i, j] of c = j − i+ 1 consecutive triplets, where c is the number of children of v. We create
a bit vector B[1, ∣Q∣] in which we set B[j] = 1 for every different range Q[i, j]. We also
create a bit vector I[1, ∣Q∣] to concatenate the int flags and a list L[1, ∣Q∣] to concatenate
the labels in the first components of Q. In both lists I and L, we insert the elements in the
same order as they appear in Q. Similarly as with the matrix M in the BWT, we do not
need to explicitly store the second components of Q (the extended node labels). Instead, we
create a vector C[1,σ], where each C[c] stores the number of distinct extended labels that
are lexicographically smaller than symbol c. The BWT index of T (denoted XBW-transform
in [63]) is thus conformed by B, I,L and C.
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We identify every internal node v ∈ V of T in the XBW-transform using the pair [i, j]
that represents the location of v in the index. Recall that L[i, j] has the labels of its incoming
edges, and I[i, j] marks which of its children are leaves. We assume that we always know
the range [i, j] for v when performing queries in the XBW-transform. Notice the leaves do
not have an associated pair [i, j] as they do not have incoming edges. This difference is
not a problem in practice. The most relevant queries for a leaf u are accessing its label and
moving to one of its siblings or to its parent. If we know the range [i, j] of u’s parent, we
obtain its label by inspecting L[i, j]. Similarly, if we know that L[i′] is the label of u, then
we obtain the range [i, j] of its parent using B. We need to find the greatest i′ < i such that
B[i′ − 1] = 1 and the smallest j ≥ i′ such that B[j] = 1.

Implementing the function outdegree(v) is not necessary as all the nodes have only one
outgoing edge, the parent. On the other hand, the function indegree(v) is just j − i + 1.

As anticipated, moving top-down in T is implemented using a variation of the LF function.
Suppose we know the range L[i, j] of the internal node v, and we want to know the range
[i′, j ′] of the kth child of v, for k ≤ j − i + 1. This child, say u, is encoded at position
q = i+k− 1, and its label is l(u) = L[q] = c. If I[q] = 0, we return an invalid range [0, 0] to
indicate u is a leaf. If not, then we compute its corresponding range [i′, j ′] with the formula:

b = C[c] + rankc(L, q)
i
′
= select1(B, b − 1) + 1

j
′
= select1(B, b).

The value b is the lexicographical rank of l̄(u) = c⋅l̄(v) among the other extended labels of
T . It indicates that the information of u is stored in the bth range of L. Thus, we compute
the boundaries of u in L using the select1 operations over b. This top-down navigation is
equivalent to the function inneighbor(v, k) of Table 3.1.

Now let us perform the inverse procedure; moving from the index position [i′, j ′] of u to the
index position [i, j] of its parent v. The idea is as follows; we first obtain the lexicographical
rank of the extended path of u as r = rank1(B, j

′). We perform a binary search over C
to find the position c = l(u) such that C[c] < r ≤ C[c + 1]. We then compute the value
b
′
= rank1(B, j

′)− C[c], which is the lexicographical rank of l̄(u) among the other extended
paths of T prefixed by c. Subsequently, we get the BWT position q = i+k−1 = selectc(L, b

′).
The value of k means that u is the kth child of its parent. From q, we obtain the greatest
i ≤ q such that B[i− 1] = 1 and the smallest j ≥ q such that B[j] = 1. The summary of the
steps is as follows;

b
′
= rank1(B, j

′) − C[c]
q = select1(L, b

′)
b = rank1(B, q)
i = select1(B, b − 1) + 1

j = select1(B, b).

We adapt the backwardsearch procedure to implement the function find(P [1,m]) of Ta-
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ble 3.1. Let L[s, e] be the range in the backward search step for suffix P [x,m]. We start
with the range L[1, ∣V ∣] for x = m + 1 and then, for x = m, . . . , 1, compute the new range
L[s′, e′] for P [x − 1,m], with p = P [x − 1], as:

s
′
= C[p] + rankp(L, s − 1) + 1

e
′
= C[p] + rankp(L, e)

s
′
= select1(B, s

′
− 1) + 1

e
′
= select1(B, e

′).

As in previous BWT indexes, we store L as a wavelet tree (Section 2.3) to support rankc
and selectc inO(log σ) time. In addition, we augment B with rank1 and select1 data structures
to traverse T . Thus, the total space usage of the BWT-based index for T is 2n + n(H0 +
1)(1 + o(1)) + O(wσ) bits of space, where n = ∣V ∣. This space is small compared to the
O(n log n + n log σ) bits of a pointer-based representation.

3.4.2 Directed Acyclic Graphs

In a labeled trie, navigational queries are simple as all the nodes have only one parent (i.e.,
they have out-degree one). In contrast, in a labeled directed acyclic graph (DAG), the
nodes can have more than one outgoing edge, which invalidates the LF formula. We solve
this problem by adding a bitmap that encodes the out-degree of the nodes. We follow the
nomenclature of Mäkinen et al. [120] to explain the idea.

Let G = (V ,E, Σ) be a labeled DAG, where each edge (u, v) ∈ E is directed from u
to v, and it is labeled with a symbol in Σ = [1,σ]. We assume G has a source node s
and a sink node t. Let l(v1, v2, . . . , vk) be the concatenation of the edge labels in the path
v1, v2, . . . , vk of G. The operator l̄(v) denotes all the path labels {l(v1, v2, . . . , vk) ∣ v1 =

v, vk = t, (vi, vi+1) ∈ E, i ∈ [1, k − 1]}. For G to be indexed using the Wheeler framework,
it must meet the following properties:

• The outgoing edges of s are labeled with $ = σ, the greatest symbol in Σ. We also
assume t has an artificial outgoing edge labeled with # = 1, the smallest symbol in Σ.

• The nodes are reverse deterministic; the incoming edges of every v ∈ V have distinct
labels.

• The nodes are strongly distinguishable; all the strings in l̄(v) are prefixed by some
(maximal) string Pv ∈ [1,σ]+ and there is no other node x ∈ V such that Pv is also a
prefix in l̄(x). We refer to Pv as the distinguishable prefix of v.

A DAG G
′ may not meet these conditions, but we can modify it so that it does. We make

G
′ reverse deterministic using the classical powerset construction algorithm for determinizing

finite automata (see Section 9.6.3 in Mäkinen et al. [120]). Additionally, we can adapt the
prefix-doubling technique for suffix array construction to make G′ strongly distinguishable
(see Section 6 of Sirén et al. [175]). We now describe the procedure to build the BWT-index
for G.

We create a list Q with all the possible pairs (l(u, v),Pv) of G, where u is one of the
incoming nodes of v. We stably sort Q according the lexicographical rank of the strings
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in the second component of the pairs. As in the previous section, the sort step places the
information of v in a contiguous range Q[i, j]. We create a bit vector B[1, ∣Q∣] to mark the
last element B[j] = 1 of every distinct v ∈ V . In addition, we create another bit vector O
that will encode the nodes’ out-degrees. For each distinguishable prefix Pv we see in Q (from
left to right), we append the sequence of bits 10

o−1 to O, where o is the out-degree of v in G.
Finally, we create the array L[1, ∣Q∣] with the first components of Q and the array C[1,σ].
In this case, C[c] stores the number of edges labeled with symbols lexicographically smaller
than symbol c. The final BWT-index for G is composed of B,O,L and C.

The navigational queries for the BWT index of G are rather similar to those of Sec-
tion 3.4.1. We implement indegree(v) in constant time as j − i + 1. We can also implement
outdegree(v) in constant time using the formula select1(O, bv + 1) − select1(O, bv), where
bv = rank1(B, j) is the lexicographical rank of Pv among the distinguishable prefixes of G.
To implement inneighbor(v, k) = u, we slightly modify the LF operation. Let u be the kth
incoming node of v encoded at position q = i + k − 1, and with label l(u, v) = L[q] = c. We
obtain the range [i′, j ′] for u with the following formula:

bu = rank1(O,C[c] + rankc(L, q))
i
′
= select1(B, bu − 1) + 1

j
′
= select1(B, bu).

Note that C[c] + rankc(L, q) does not necessarily gives us the lexicographical rank of
Pu = cPv. If u has out-degree o, then there is some range in L, where there are o consecutive
occurrences of c, and all of them lead us to u. To find the correct lexicographical rank bu
of Pu, we use the operation rank1(O,C[c] + rankc(L, q)). The rest of the formula above is
equivalent to moving top-down in the XBW-transform.

The operation outneighbor(u, k) = v is a bit more elaborate. Suppose we know for u
the lexicographical rank bu of Pu and its range L[i′, j ′]. We first perform a binary search
over C to find the symbol c such that C[c] < i

′
≤ C[c + 1] (i.e., the prefix of Pu = cPv).

Subsequently, we perform the successive steps:

x = select1(O, b
′) + k − 1 − C[c]

bv = rank1(B, selectc(L,x))
i = select1(B, bv − 1) + 1

j = select1(B, bv).

The operation selectc(L,x) gives us the position q in L storing the label of edge (u, v). After
computing q, we obtain the lexicographical rank bv of Pv, and then [i, j].

The implementation of find(P [1,m]) in the DAG index is almost equal to that of the
labeled trie. The only difference is that now we have to consider the array O. Suppose the
previous backward search step yielded the range L[s′, e′], and now we have to compute the
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next step using symbol c. The successive steps are:

s
′
= C[c] + rankc(L, s

′
− 1) + 1

e
′
= C[c] + rankc(L, e

′)
s
′
= select1(B, rank1(O, s

′) − 1) + 1

e
′
= select1(B, rank1(O, e

′)).

3.5 Algorithms for building the SA and the BWT
The design of algorithms for building the suffix array and the BWT is a relevant topic
in stringology as these structures are the main components in several succinct self-indexes.
There are several methods proposed in the literature that are efficient in terms of time or space
(see, for instance, [98, 147, 10, 132]). However, the hidden constants in their complexities
are too high for practical applications on massive collections.

A recent trend in the computation of the BWT is to exploit the text redundancies [22,
93, 94]. The general idea consists of factorizing S to create a dictionary D of phrases.
Subsequently, we sort D in some specific order and then extrapolate the results to the whole
text. If the text is repetitive enough, then D should be small, and computing the BWT
should be efficient.

In Section 3.5.1, we describe an algorithm for building the BWT that uses this approach.
Section 3.5.2 describes a general-purpose linear-time algorithm for computing the BWT and
the suffix array that can also be adapted to use this idea. This latter method is relevant for
the thesis as it has applications in the compression of sequencing reads and the production
of locally consistent grammars (Section 3.2.2).

3.5.1 Prefix-Free Parsing

Prefix-free parsing (PFP) [22] is a linear-time procedure that transforms an input text S[1,n]
into a sequence P of overlapping prefix-free phrases. The set D with the distinct phrases is
referred to as the dictionary while P is referred to as the parse of S. Consecutive phrases
in P overlap by x characters, where x is an input parameter. The strings in the dictionary
are sorted in lexicographical order, and the phrases in P are replaced by their ranks in the
dictionary. We now describe how to build D and P , and then we explain how to use them
to boost the computation of the BWT.

To perform PFP, we first create a new input string S ′ = #S$x, where # and $ are symbols
lexicographically smaller than any character in S. These values are appended to S to avoid
border cases. Subsequently, we choose a hash function for strings of length x and a prime
number p. We roll the hash over S ′ (Section 2.3.2), and every time we find a substring S ′[i, j]
of length x whose fingerprint modulo p equals 0, we consider it as a trigger of a new phrase.
If S ′[i′, j ′], with i′, j ′ < i, was the previous trigger in S ′, then the new phrase in P is S ′[i′, j].
As we move on through S ′, we also hash the phrases to build D. Once we finish the scan, we
sort D in lexicographical order and replace the phrases in S ′ with their ranks in D.

Let Z ∈ D be a phrase and let A = Z[u..] be a string of length > x that only occurs as
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a proper suffix in Z. If Z has z occurrences in S, then the suffixes of S prefixed by A form
a range SA[i, j] of length z in the suffix array. Further, as A only appears in Z, the BWT
range L[i, j] is an equal-symbol run of length j−i+1 for Z[u−1]. Using this observation, we
can infer several segments of the BWT of S directly from D. Still, there are some situations
we cannot handle. For instance, if A were a non-proper suffix of Z (i.e., Z = A), we could
not access its preceding symbol from Z, and hence, we could not know the symbol for L[i, j].

Another situation we cannot handle just with D is when a string that appears as a suffix
in two or more dictionary phrases has different left contexts. Suppose A is a suffix in two
phrases U and Y and the symbols that precede A in U and Y (au and ay, respectively) are
different. If U occurs ou times in S and Y occurs oy times, then the suffixes of S prefixed by
A form a range SA[i, j] of length ou + oy. Although we know that the corresponding L[i, j]
contains ou copies of au and oy copies of ay, we cannot infer their relative orders.

We handle those situations using P ’s BWT. Recall that every distinct symbol b in P
represents a specific dictionary phrase B ∈ D. Hence, the disposition of the occurrences of
b in P ’s BWT also represents the relative order of the occurrences of B in S

′ when sorted
according the lexicographical ranks of the suffixes that follow them. Now let us return to the
example in the previous paragraph. In one scan of P ’s BWT, we obtain the relative order
of the occurrences of U and Y to get the relative order of symbols au and ay in L[i, j]. We
know briefly discuss how to implement these ideas in an algorithm for computing the BWT
L.

We first obtain the PFP of S ′. Subsequently, we sort the distinct suffixes in D of length
> x in lexicographical order. For every suffix A in D of length > x, we create a pair (f , a).
The value f is the cumulative frequency of the phrases where A occurs, and a is the preceding
symbol of A in those phrases. When A is not a proper suffix or has more than one distinct
left context in D, we replace a with a placeholder # that we will fill later. We store the pairs
in a list L′, sorted according to the lexicographical ranks of the suffixes from which they were
generated. More specifically, if A has rank r among the distinct suffixes of length > x, then
(f , a) is the rth pair in L′.

Let us denote LP the BWT of P to differentiate it from L. We can induce a partition
over LP so that the bth block stores the preceding symbols of the suffixes in P prefixed by
b ∈ [1, ∣D∣]. This partition allows us to fill the placeholders in L. Let LP [i, j] be the BWT
range storing the symbols preceding b in P . We create an empty list Lb and start a scan over
LP [i, j] from left to right. For every symbol LP [k], with k ∈ [i, j], we retrieve its associated
phrase F ∈ D and append F ’s last symbol to Lb. After scanning LP [i, j], we map b to its
phrase B ∈ D and retrieve the rank r of B among the distinct suffixes in D of length > x.
Finally, we replace the rth pair in L

′ with L
b. Notice that the pair that Lb replaced in L

′

had a placeholder. We can run-length compress Lb so it matches the format of the pairs in
L
′.

We fill the remaining placeholder positions in L′ with another linear scan of LP –although
we could use the same scan of the previous paragraph. We first create a list LA for every
distinct proper suffix A of D with two or more different left contexts. We also need a mech-
anism to keep track of the occurrences of A in the distinct dictionary phrases. Subsequently,
we scan LP from the left; if the phrase F ∈ D that maps the current character LP [i] has an
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occurrence of A = F [j..], then we append the symbol F [j− 1] to LA. The important aspect
of this scan is to maintain the BWT order of the symbols we insert into LA. After we finish
the scan, we replace A’s pair (f , #) in L

′ with L
A. As before, we can run-length compress

L
A to match the format. The resulting list L′ is a partially run-length compressed version of

S’s BWT.

The space and time complexity of this BWT algorithm is proportional to the size of D
and P . If S is repetitive enough, then one would expect these values to be small. Of course,
the parse size does not depend only on the text. It also depends on the values we choose for
x and p.

3.5.2 Induced Suffix Sorting

Induced suffix sorting (ISS) [98] is a technique that computes the lexicographical ranks of a
subset of suffixes in S and then uses the result to induce the order of the rest. This method
is the underlying procedure in several algorithms that build the suffix array [141, 140, 117]
and the BWT [147, 22] in linear time. The ISS idea introduced by the suffix array algorithm
SA-IS [141] is of interest to this thesis. The authors give the following definitions:

Definition 3 A character S[i] is called L-type if S[i] > S[i + 1] or if S[i] = S[i + 1] and
S[i + 1] also L-type. On the other hand, S[i] is said to be S-type if S[i] < S[i + 1] or if
S[i] = S[i + 1] and S[i + 1] is also S-type. By default, symbol S[n], the one with $, is
S-type.

Definition 4 A character S[i], with i ∈ [1,n], is called leftmost S-type, or LMS-type, if
S[i] is S-type and S[i − 1] is L-type.

Definition 5 A LMS substring is (i) a substring S[i, j] with both S[i] and S[j] being LMS
characters, and there is no other LMS character in the substring, for i ≠ j; or (ii) the sentinel
itself.

SA-IS is a recursive approach. In every recursion level i, we first scan the input text Si,
with S1

= S, from right to left to classify its suffixes as L-type, S-type or LMS-type. As we
move through the text, we record the positions of the LMS substrings. Then, we sort the
LMS substrings using ISS as follows; we create an array Ai[1,n] and logically divide it into
σ
i buckets, one for the suffixes starting with each symbol in Σ

i
= [1,σ

i] (the alphabet of
S
i). Each bucket is, in turn, divided in two sub-buckets, the first one, the L-bucket, is for

the suffixes prefixed by L-type characters and the second one, the S-bucket, is for the suffixes
prefixed by S-type characters. Then, we perform the following operations:

1. We insert the positions of the LMS substrings at the end of the S-buckets in A
i. In

every one of these buckets, we maintain the order of the LMS strings as they appear in
S
i. The S-bucket of an LMS string Si[j, j ′] is that of the bucket of symbol Si[j].

2. We scan A
i from left to right and for every j such that Si[Ai[j] − 1] is L-type, we

insert the index Ai[j] − 1 in the leftmost available position of the L-bucket of symbol
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S
i[Ai[j] − 1]. After the scan, the elements in all the S-buckets are discarded.

3. We scan Ai from right to left and for every j such that Si[Ai[j]−1] is S-type, we insert
the index Ai[j]− 1 in the rightmost available position of the S-bucket of Si[Ai[j]− 1].

This procedure sorts the LMS substrings in a way that is slightly different from lexi-
cographic ordering. In particular, if an LMS substring S[a, b] is a prefix of another LMS
substring S[a′, b′], then S[a, b] gets higher order. However, the higher rank of S[a, b] implies
that the suffix S[a..] is lexicographically greater than the suffix S[a′..]. The cause of this
property is explained in Section 2 of Ko and Aluru [98].

After finishing the procedure, we still have to calculate the relative order of the suffixes
that start with the same LMS substring. For that purpose, we create a new string Si+1 in
which we replace the LMS substrings with their lexicographical ranks and use this new string
as input for another recursive call i + 1 of SA-IS. The base case for the recursion is when
all the suffixes in Ai are prefixed by different symbols, in which case we return Ai without
further processing.

When the (i + 1)th recursive call ends, the suffixes of Si prefixed by the same LMS
substrings are completely sorted in Ai+1. Therefore, we are ready to induce the order of the
rest of the suffixes. For doing so, we reset Ai and repeat the same ISS procedure. The only
difference is that in step 1 we put the LMS-substrings at end of the S-buckets of Ai arranged
as they appear in Ai+1. Step 2 and 3 are executed without changes. Once we complete all
the recursive calls, the suffix array of S is in A1.

Steps 1, 2 and 3 take time proportional to the size of Si. In addition, every time we enter
a new recursion step i+1, the length of its input text Si+1 is at most half the size of Si. This
feature implies that, if we consider all the Si from all the recursive steps, their lengths do not
sum more than 2n characters. As a consequence, the running time of SA-IS is O(n). On the
other hand, the array Ai dominates the space complexity. As every cell requires log n bits,
and all the Ai arrays do not sum more than 2n cells, the working space of SA-IS is O(n log n)
bits.
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Chapter 4

Computational Genomics

Computational Genomics is an interdisciplinary field that uses computational and statistical
methods to study how genome sequences control biological processes. In recent years, it has
become an essential means for biological discovery due to the abundance of collections of
DNA strings. Still, a remaining problem is how to efficiently manipulate those collections in
the computer. In most cases, they are too massive to use conventional algorithms and data
structures. In this chapter, we review the main techniques used in Computational Genomics
to process DNA strings.

4.1 DNA Sequences

A DNA sequence S is a string over the alphabet Σ = {a, c, t, g, n} (which we map to [2,σ]).
The symbols in Σ represent the distinct nucleotides that conform DNA. The only exception
is n, which usually denotes an unknown nucleotide. DNA is double stranded, meaning that
there are two possible sequences for the same molecule, one for each strand. However, these
sequences are complementary; every time we see an a at some position in one strand, we see
a t at the same position in the other, and vice-versa. The same applies for c and g. The
DNA strands have different orientations, and so have their sequences. One sequence is read
from left to right (the forward strand), and the other is read from right to left (the reverse
strand). For simplicity, we store the sequence of one strand in the computer, as we can easily
infer the other from the information we already have. An example of a DNA sequence is
shown in Figure 4.1A.

Formally, the DNA complement is a permutation π[2,σ] that reorders the symbols in
Σ exchanging a with t and c with g. The reverse complement of S, denoted S

rc, is a
string transformation that reverses S and then replaces every symbol S[i] by its complement
π(S[i]). For technical convenience we add to Σ the so-called dummy symbol $, which is
always mapped to 1.
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gt aa t gc cg aca cca cat tca
||| || ||| || || || || | || | |
tag ga gat gc gt ct ga t gt c t

gc ggg a ga tg a c
ct agc gggt gtt

ta a at ct ct ga t gt c t
tag ga gat gc gt ct ga t gt c t

Figure 4.1: DNA strings and sequencing. (A) Schematic representation of a double-stranded
DNA molecule. Forward strand (upper sequence) is read from left to right, while the reverse
strand (lower sequence) is read from right to left, and corresponds to the reverse comple-
ment of the forward. (B) Sequencing experiment of the DNA molecule of Figure (A). Gray
sequences are the reads. The layout is inferred via suffix-prefix overlaps between the reads.

4.2 DNA Sequencing

Sequencing consists of determining the order of the nucleotides in a DNA sample. Although
several methods have been proposed over the years for this task [157], the most successful
ones have been next generation sequencing (NGS) techniques [168]. They are cheap, fast,
and produce high-quality data. There are several NGS platforms, but the most popular one
is Illumina [85]. This method breaks the source DNA into smaller fragments and introduces
them into a machine (a.k.a., the sequencer) that reads their nucleotides in parallel. The
collection of fragments is usually known as the library. There are two types of libraries,
single-end, and paired-end. In the former, the sequencer produces one string per fragment.
In the latter, it creates two; one for the left end and the other for the reverse complement of
the right end. The strings obtained from the fragments are referred to as the reads.

A major problem with NGS sequencers is that they cannot process long molecules. The
number of nucleotides they can scan from a single fragment ranges from a few dozens up
to a few hundred. Still, complex genomes, such as those of mammals, are several billion
nucleotides long. NGS technologies solve this problem by producing overlapping read collec-
tions. More precisely, they use multiple copies of the source DNA for the library construction,
break those copies at random, and sequence the resulting fragments. Then it is necessary to
assemble the reads to infer the sequence of the source DNA. The idea of producing overlap-
ping reads is also helpful to deal with sequencing errors, i.e., when the sequencer emits an
incorrect nucleotide. If a read has an error, we can fix it using the overlapping reads that
contain the correct information.

In recent years, a new generation of sequencing technologies has emerged as an alternative
to NGS, the so-called third-generation platforms [185]. They produce much longer reads
than NGS, although their throughput is smaller and their accuracy is still lower. However,
these limitations should be solved soon. Recently, the company PacBio [17] presented its
Hi-Fi protocol [190], which produces long reads comparable in accuracy to Illumina’s. On
the other hand, the company Nanopore [180] offers small and affordable sequencers that can
yield volumes of data even more significant than those of Illumina and with much longer
reads. Although the accuracy of Nanopore is still not as good as that of Illumina or PacBio
Hi-Fi. Table 4.1 describes the most popular sequencing technologies nowadays.
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Platform Instrument Accuracy
Median

read length
Maximum
read length

Throughput
per run

Run
time

Illumina MiSeq 99.9% 2 × 300B 2 × 300B 15 GB Up to 55 h
NextSeq 99.9% 2 × 150B 2 × 150B 120 GB Up to 30 h
NovaSeq 99.9% 2 × 250B 2 × 250B 6 TB Up to 44 h

PacBio Sequel II 88% - 99.9% 45KB - 190KB 300 KB 20–50 GB Up to 96 h

Nanopore
MinION 97.5% - 98.3% Variable Variable Up to 42 GB Up to 72 h
GridION 97.5% - 98.3% Variable Variable Up to 210 GB Up to 72 h

PromethION 97.5% - 98.3% Variable Variable Up to 11.7 TB Up to 72 h

Table 4.1: Comparative table with the different sequencing technologies. The accuracy is
reported as the percentage of nucleotides in the source DNA with a high probability of being
correctly sequenced (Phred score). PacBio reads with 99.9% of accuracy are those produced
with the Hi-Fi protocol. Throughput and read lengths are reported in bytes (B), megabytes
(MB), gigabytes (GB) or terabytes (TB). The data in this table was extracted from the
official webpages of Illumina, PacBio and Nanopore.

DNA sequencing is not a linear problem. In most of the cases, the source DNA is a set of
molecules that have highly similar sequences. The origins of these molecules are varied, for
example, the many cells from which the DNA was extracted1, the different copies of the same
chromosome2, or individual genomes of the same species that were sequenced all together.
In such cases, the desired result is not a string, but an labeled directed acyclic graph (DAG)
representing the highly similar sequences as paths in a graph. Figure 4.2A depicts the idea.

It is hard to tell if a variation is real or if it is a sequencing error just by looking at
the reads, but some heuristics can be applied to make an educated guess. However, other
difficulties cannot be addressed only by using string queries. An example of these difficulties
are the gaps in the coverage, i.e., places in the source DNA that are not covered by any read.
From a biological point of view, the repetitiveness is also a problem; if a given substring in
the source DNA is a long repeat bigger than any read, then it is not always possible to decide
which is the correct ordering of sequences surrounding it.

4.2.1 Sequencing File Format

Reads are typically stored as FASTQ files. This format uses four lines per read. The first line
is the identifier of the read. The second line is the DNA sequence in ASCII code. The third
line is a separator, denoted by +, and the fourth line is a string encoding the sequencing
qualities (Phred score) of the nucleotides spanned by the read. This string is also encoded
in ASCII. When the library is paired-end, the reads of the same pair are consecutive in the
file. Figure 4.3 shows a typical entry of a FASTQ file.

1DNA mutates at random and independently in every cell.
2Polyploid genomes contain two or more copies of the same chromosome.
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Figure 4.2: A paired-end library. (A) A segment of the source DNA of the reads represented
as a labeled DAG. Dotted circles denote variable positions. (B) Read collection generated
from an NGS experiment. Every arrow represents a read. Dashed lines connect reads that
belong to the same pair. Gray pairs were obtained from the the forward strand of the source
DNA, so we have to transform the right read into its reverse complement. Conversely, black
pairs were generated from the the reverse strand, so we transform the left read and invert
the pair order; the left read becomes the right read and vice-versa. The gray rectangle in the
layout shows how the DAG of (A) looks like in the reads.

4.3 The de novo Assembly Problem
The typical analogy for the de novo assembly problem is that of a puzzle in which the reads
are the pieces, and the source DNA is the picture we have to reconstruct. The process consists
of estimating the disposition of reads across the genome (a.k.a., the layout), and then obtain
the sequence of the source DNA by collapsing the reads (Figure 4.1B depicts the idea). The
classical way of calculating the layout is by computing suffix-prefix overlaps. To be precise,
for every read Si, we find other reads in the collection with prefixes that match the suffixes
of Si. We do not have any prior information about the possible genomic location of Si, so we
have to compare its sequence against the sequence of all3 the other reads. This task requires
a quadratic number of suffix-prefix alignments, making the layout’s calculation expensive in
practice. We also have to consider the reverse complements of the reads when computing
the overlaps. Recall that we do not know their original strands. This problem doubles the
number of alignments we have to perform, making the process even more challenging.

The de novo assembly problem is usually centered in the reconstruction of genomes. Al-
though this definition is not strict; we can also assemble the set of transcripts being expressed
in a cell (transcriptome) or the collection of microbial genomes that live in the same envi-
ronment (metagenome). In practice, however, the algorithmic techniques do not vary much.
For simplicity, we further explain the de novo assembly problem in terms of diploid genomes4

3When the read collection is paired-end, we can discard the overlaps between Si and its pair.
4Each chromosome in the genome has two copies.
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Figure 4.3: Read entry in FASTQ format.

as this is the case of humans.

Given the limitations of sequencing technologies (see Section 4.2), it is impossible to
reproduce the reads’ exact layout. This problem prevents the complete reconstruction of the
source DNA. Most of the programs for assembling reads (a.k.a., assemblers) produce strings
representing only segments of the chromosomes, the so-called contigs. Several aspects limit
the size of the contigs. The most important ones are lack of sequencing coverage, sequencing
errors, and the repetitive regions of the genome. Reads with sequencing errors are more
prone to be misplaced in the layout, while reads produced from repetitive genomic regions
have several equally probable positions where to be placed. When the assemblers detect
these problems, they just cut the contigs to avoid producing sequences that do not exist in
the genome.

Contigs can be further extended to scaffolds using the paired-end information of the reads.
The rationale is simple: suppose several reads that belong to contig A are paired with several
other reads that belong to contig B. In this situation, we can place contigs A and B in one
scaffold as it is highly probable that their sequences lie close to each other in the genome.
Scaffolds are the best result most NGS assemblers can achieve. One can further join scaffolds
into chromosomes using extra molecular information, but assemblers usually do not carry out
this procedure. The final genome is a collection R with one string per distinct chromosome.
R can also have other smaller sequences representing contigs or scaffolds that could not be
assigned to any place.

Some genomic analyses require to produce different strings for the copies of the same
chromosome as their nucleotide differences represent important biological information. Still,
obtaining such scaffolds is impossible using NGS data alone, the reads are too short. More re-
cent assemblers [189] use third-generation sequencing data to produce near-complete genomes
and identify scaffolds that belong to different copies of a same chromosome.

We introduce some notation before continuing with the explanations. Let Si and Sj
be two any strings. The operator Si ⊕

o
Sj denotes an overlap between the o-suffix of Si

and the o-prefix of Sj. The consensus string of Si ⊕
o
Sj is the sequence Si⋅Sj[p + 1..].

Similarly, Q = S1⊕
o1 S2 . . .⊕

or−1 Sr is a sequence of r consecutive overlaps, and the operator
c(Q) = S1⋅S2[o1 + 1..] . . . Sr[or−1 + 1..] refers to its consensus string.

A genome graph G = (V ,E) is a directed graph in which every node is labeled with a
string that appears in the reads. The operator l(v) refers to the label of node v ∈ V . A
directed edge (u, v) ∈ E from node u to node v exists if there is an overlap l(u)⊕o

l(v) such
that o is equal or greater to some parameter m. Let P = v1, v2, . . . , vp be a path in G from
node v1 to node vp. The label l(P ) of P is the consensus string obtained from the overlap
sequence l(v1)⊕o1 l(v2) . . . l(vp−1)⊕op−1 l(vp).
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We spell contigs from G by finding paths whose labels are probable to exist in the chro-
mosomes. Recently, Tomescu et al. [181] formalized the concept of “probable”. They define
a genome reconstruction as a string l(P ) whose path P completely covers G5. In their edge-
centric description of G, P visits all the edges. In the node-centric version, it visits all the
nodes. Note that, in both cases, we can produce several genome reconstructions from G, but
not all of them are real genome segments. Now, let P ′ be a path in G. Its label l(P ′) is said
to be safe (or probable to occur in the chromosomes), if it appears as a substring in all the
genome reconstructions of G. The most basic type of safe string is the label of a unary path;
all the nodes in the path, except the first one and last one, have one in-neighbor and one
out-neighbor. However, there are other graph structures that also produce safe strings.

Tomescu et al. proposed the concept of omnitigs as a way to characterize all the paths of
G whose labels are safe. In the edge-centric model, P ′

= v1, v2, . . . , vp is an omnitig if for any
1 < i ≤ j < p, there is no proper path from vj to vi with first edge different from (vj, vj+1)
and last edge different from (vi−1, vi) (Definition 5 of [181]). This definition can be easily
extended to the node-centric model. Thus, if P ′ is an omnitig, then l(P ′) is safe.

There are two types of genome graphs in literature; de Bruijn graph (dBG) [46] and overlap
graph (OG) [133]. Assemblers relying on dBGs ([191, 28, 171, 5]) consume less computational
resources than those using overlap graphs. However, they produce more fragmented genomes.
Assemblers that use OGs ([134, 192]), on the other hand, although they consume more
resources, produce longer and more accurate contigs. In the following, we discuss these two
frameworks.

4.3.1 The de Bruijn Framework

A dBG of order k of a string collection S = {S1,S2, . . . ,Sq} is a labeled directed graph
G = (V ,E) where every node v ∈ V is labeled by a distinct substring of S of length k− 1. A
directed edge (v,u) ∈ E exists if the string l(v)⊕k−2

l(u) appears as a substring in at least
one element of S. The label of (v,u) is the last symbol of l(u). Figure 4.4 shows an example
of a dBG.

To build G, we scan S and store into a set H the distinct substrings of lenght k (a.k.a.,
kmers). Then, we create a node in G for every distinct substring of length k − 1 in H.
Finally, for each kmer K ∈ H, we create an edge (v,u) in G between the node v labeled with
K[1, k − 1] and the node u labeled with K[2, k].

There is an interesting link between the dBG and the reads’ layout. Suppose a group
of reads S1,S2, . . . ,Sr in S form an overlap sequence Q = S1 ⊕

o1 S2 . . . ⊕
or−1 Sr with every

oi ≥ k − 1. In that case, G will have a path P = v1, v2, . . . , vr′ such that l(P ) = c(Q).
Further, if the (k − 1)mers in c(Q) do not appear in the other reads of S, then P is a unary
path. This last feature allows us to unequivocally spell A from G without having to compute
suffix-prefix overlaps between the reads of Q.

The dBG is simple to construct, and allows us to spell contigs without computing suffix-

5Their definition considers a circular genome composed of one chromosome. These types of genomes are
naturally found in microorganisms.
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Figure 4.4: The dBG framework. (A) A set of reads disposed according the layout. (B)
Example of a dBG with order k = 3 produced from the reads of (A).

prefix overlaps between the reads of S. Still, it has some important disadvantages. If some
of the (k − 1)mers appearing in c(Q) also appear in other reads of S, then P gets entangled
with other paths of G, and it is no longer possible to unequivocally obtain c(Q). Besides, if
there are other reads in S overlapping strings in Q by less than k − 1 characters, the paths
in G spelling those reads will not be connected to P . Changing the dBG order mitigates the
problem, but there is no one single value for k that captures all the valid overlaps of S. If we
use a small order, then the graph becomes too tangled, but if we use a high order, the graph
becomes too disconnected.

Despite the limitations, dBGs are still a popular solution in Bioinformatics. Their use has
been extended from de novo assembly to other genomic tasks such as correction of sequencing
errors [164], detection of genetic variations [89] or measurement of gene expression [25].

The BOSS Representation

BOSS [24] is a succinct encoding for dBGs that builds on the idea of Wheeler graphs (Sec-
tion 3.4). In BOSS, the nodes are represented as rows in a matrix of k − 1 columns, and are
sorted in colexicographical order. All the edge labels (one-symbol) of the graph are stored in
a unique sequence L sorted by the BOSS order of the source nodes. This ordering produces
the labels of the outgoing edges of each node to fall within a contiguous range in L. A
bit vector B of size e = ∣L∣ marks the last outgoing symbol in L of every node. We also
include a bit vector I[1, e] that encodes in unary the in-degree of the nodes6. This in-degree
information is stored in I according the BOSS order of the nodes. Finally, an array C[1,σ]
stores in C[i] the number of edge labels lexicographically smaller than i. The complete
index is composed of the vectors L, C, B, and I. Their combined spaces add up to a total
of 2e + e(H0(E) + 1)(1 + o(1)) +O(σw) bits.

Prefixes in S of size d < k are artificially represented in BOSS as strings of length k padded
at the left with k−d symbols $. Equivalently, suffixes of size d < k are represented as strings
of length k padded at the right with k − d symbols $. Strings formed only by symbols $ are
also called dummy. The introduction of these extra strings yields a dBG G

′
= (V ′

,E
′) with

the same order as G, but with more edges and labels.

6The original data structure of Bowe et al [24] does not include I. Instead, they mark the edges in L
leading us to the same node.
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Figure 4.5: Succinct de Bruijn graph. (A) A dBG G
′ with order k = 4 for the string collection

{attc, ttcg, atta}. G′ includes the dummy strings. (B) BOSS representation for G′. (C)
Implementation of the function outneighbor(15, 2) in BOSS using the algorithm for inneighbor
in the BWT-index for DAGs (Section 3.4.2). The same operation is depicted in (B) with a
dashed arrow, and in (A) with dashed circles.

We identify every node v ∈ V ′ in BOSS using the colexicographical order of its label. We
use the identifier of v to obtain the range L[i, j] storing the labels of its outgoing edges. If the
identifier of v in BOSS is r, then its range in L is i = select1(B, r − 1) + 1, j = select1(B, r).
We can navigate G′ with a log σ slowdown factor if we use the functions of Table 3.1. Their
implementation is similar to that described in Section 3.4.2 for DAGs, but we have to invert
their algorithms as the node ordering in BOSS is from right to left (colexicographical), while
in the index for DAGs is from left to right (lexicographical). More precisely, the function
outneighbor in BOSS is implemented as inneighbor in the BWT-index for DAGs. Equivalently,
inneighbor in BOSS is outneighbor in DAGs. The same occurs with functions outdegree and
indegree. Note the bit vector I in BOSS serves the same purpose as the bit vector O in the
BWT-index for DAGs.

For convenience, we also consider the following functions:

• label2node(P [1, k − 1]): node v labeled with P , if exists

• nodelabel(v): label of node v

• edgesymbol(v, k): symbol of the kth outgoing edge of v

The function label2node is an adaptation of find in DAGs (see Table 3.1). We implement
nodelabel by performing a backward traversal of G′ starting from v. The aim is to find any
node v′ reachable from v in k − 1 applications of the function inneighbor. We append the
labels of the edges we visit in the traversal into a list A, and once we reach v′, we invert A’s
sequence to return it as the label of v. Finally, to answer edgesymbol, we obtain the range
L[i, j] of v and return the symbol L[i + k − 1].
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Variable-Order dBG

Lin et al. [115] generalized the concept of the dBG as a way to deal with the limitations
imposed by k when assembling genomes. In their representation, called the manifold dBG,
the node labels have arbitrary lengths, and two nodes v and u are connected by an edge
(v,u) if the sequence l(v) ⊕o

l(u) exists in S. In this case, o can be of any length, not just
k − 2 like in the regular dBG. The value for o can be even 0, which means that the string
l(v)⋅l(u) appears in some string of S.

Computing the node labels for the manifold dBG requires us to have the suffix tree of S,
which makes the representation less practical as the suffix tree contains enough information
to perform genome assembly.

Boucher et al. [21] proposed an alternative generalization for the dBG that does not require
the suffix tree. They noticed that the BOSS data structure implicitly stores all the dBGs
of order k′ < k. More precisely, if we only consider the last k′ − 1 columns of the BOSS
matrix, then we will induce a partition where every range [i, j] of rows with the same k′ − 1
label encodes a node v in the dBG of order k′ < k. The outgoing edges of v are the distinct
symbols in the segment L[select1(B, i − 1) + 1, select1(B, j)].

To allow changing the order of the dBG, Boucher et al. augmented BOSS with the longest
common suffix (LCS) array. The LCS array stores, for every node of order k, the size of the
longest suffix shared with its predecessor node in the BOSS matrix. They called this new
index the variable-order BOSS (VO-BOSS).

• shorter(v, k
′′): node whose label is the k′′-suffix of v’s label

• longer(v, k
′′): list U with all the nodes whose labels have length k′′ < k and are suffixed

by v’s label

• maxlen(v, a): a node at order k whose label is suffixed by v’s label, and that has an
outgoing edge labeled a

By using a wavelet tree (Section 2.2.2), the LCS can be stored in n log k + o(n log k)
bits, the function shorter([i, j], k′) can be answered in O(log k) time and the function
longer([i, j], k′) in O(∣U∣ log k) time. The function maxlen([i, j], a) is implemented using
the arrays B and L, and hence it is answered in O(log σ) time.

Colored dBG

The colored dBG enriches the edges of the graph with colors. This idea was introduced by
Iqbal et al. [89]. Their version builds a union dBG G from several string collections and
assigns the color j to the edges that encode kmers appearing in the j th collection. The
compacted version of the colored dBG [130], called VARI, represents the topology of G using
the BOSS index and the colors using a binary matrix C, where the cell C[i, j] is set to 1 if
the kmer represented by the ith edge in the ordering of BOSS is assigned color j. The rows
of C are then stored using the compressed representation for bit vectors of [156] or using
Elias-Fano encoding [61, 57, 146] if the rows are very sparse. Other compacted versions of
the colored dBG have also been proposed by Almodaresi et al. [3, 4, 2] and Holley et al. [81].

67



We can also build a dBG from a string collection and assign each edge (u, v) c distinct
colors, where c is the number of strings containing the kmer encoded by (u, v). This setting
is handy for genome assembly. Suppose we have a colored dBG for a collection of reads.
We can consider the edge colors to build contigs so that if we traverse a path colored with
a and reach a branching node, we continue through the outgoing edge colored with a (if
exists). The problem, however, is that the number of columns in C grows with the size of
the collection. For reads, this feature implies that a colored dBG could require millions of
colors, which increases the space usage too much for practical purposes.

Alipanahi et al. [1] noticed that we could reduce the columns in C by using the same
colors in those strings that have no common kmers. This new problem was named the
CDBG-recoloring, and formally stated as follows; given a collection S of strings and its dBG
G, find the minimum number of colors such that i) every string Si ∈ S is assigned one
color and ii) strings having two or more kmers in common in G cannot have the same color.
Alipanahi et al. also showed that the decision version of CDBG-Recoloring is NP-complete.
They proposed a simple greedy heuristic that, in practice, significantly reduces the number
of colors.

4.3.2 The Overlap Graph Framework

An overlap graph G = (V ,E) of a string set S = {S1,S2, . . . ,Sq} is a directed graph where
every node v ∈ V stores the label of some string l(v) = Sj ∈ S. A directed edge (u, v) ∈ E
from u to v exists if there is an overlap l(u) ⊕o

l(v), where o is above some threshold m.
Additionally, the edge (u, v

′) is considered transitive if there is another node v such that
the sequence of valid overlaps l(u) ⊕ou l(v) ⊕ov l(v′) exists, otherwise (u, v

′) is considered
irreducible. Overlap graphs where all transitive connections are removed are called string
graphs [133], or irreducible overlap graphs [120].

Succinct Construction of the Overlap Graph

We now explain how to efficiently construct the overlap graphG of S using the FM-index (Sec-
tion 3.3.1). As the original DNA strand of the reads is unknown in a NGS experiment7, we
also have to consider the collection Src with the reverse complements of the strings in S. This
definition implies that Src also has m strings. Thus, for building G, we use the collection
S∗ = S ∪ Src as input.

The first step is to create a string S = S1$1S2$2 . . . S2q$2q representing the concatenation
of the strings in S∗. We assume for the sake of explanation that the strings in S are sorted in
lexicographical order, although this condition is not necessary. We compute the BWT of S
and store it as a vector L with rank and select support. We can use, for instance, the wavelet
tree of Section 2.2.2 to encode L. We also need the array C[1,σ] with the frequencies of S’s
symbols. We refer to L and C as a partial FM-index as we do not include the suffix array
nor the inverse suffix array.

Before computing the edges of G, we define a minimum threshold o such that any suffix-
prefix overlap less than o characters long is not considered for building G.

7There are some specific protocols where we can know the strand, but they are not intended for assembly.
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attc ttcg cgga

atta ttag aggc

ctta tagg gggc ggct

Figure 4.6: The overlap graph framework. Example of an overlap graph produced from the
reads of Figure 4.4A. Dashed edges represent transitive connections. This example has no
minimum threshold for the overlaps.

We proceed as follows for each Si ∈ S∗; we first call the function backwardsearch with Si
as input. Let P = Si[j..] be the suffix in the current backward search step and L[sj, ej] its
associated BWT range. If L[sj, ej] contains $ symbols and ∣P ∣ ≥ o, we perform an extra
backward search step in L[sj, ej] with symbol $. Note that $ symbols in L[sj, ej] denote
the strings in S∗ with P as a prefix and overlapping the ∣P ∣-suffix of Si. Also note that if a
suffix S[j ′..] starts with $i, then the value u ∈ [1, 2m] of SA[u] = j

′ is the lexicographical
rank of Si+1. Hence, the range L[s′, e′], with 1 ≤ s

′
≤ e

′
≤ 2m, we obtain with the extra

backward search step stores the lexicographical ranks of the reads overlapping the ∣P ∣-suffix
of Si. Recall that the rank of a read is also its identifier as they are sorted lexicographically
in S. Once we compute L[s′, e′], we report every read whose identifier is u ∈ [s′, e′] as
overlapping Si. After reporting the overlaps, we continue with the regular backward search
steps from L[sj, ej]. Using this approach, we obtain all the strings of S∗ that have an exact
overlap with Si. Mäkinen et al. [120] modified this procedure to compute the irreducible
overlap graph instead of the overlap graph.

The main problem with this algorithm for building G is that computing the BWT of S∗
can be computationally prohibitive given the high volumes of data in sequencing experiments.
Besides, computing exact overlaps is not realistic as reads usually have sequencing errors.

4.4 Reference Genomes

A reference genome is a string collection produced from the assembly of a particular indi-
vidual’s genome. The purpose of a reference is to have a template to compare other closely-
related genomes (usually from the same species). When a new individual is sequenced, we
align (or map) its reads against the reference to assign them a genomic location. Subse-
quently, we search for differences (mismatches, insertions, or deletions) in the alignments as
they can be potential genetic variations. We must, however, be careful not to confuse real
genetic variations with misalignments or sequencing errors. In this regard, the main tools to
avoid false positives are the sequencing coverage and the sequencing qualities.

Popular tools to align reads (a.k.a., aligners) such as bowtie [105] or bwa [113] build
an FM-index (Section 3.3.1) of the reference genome and its reverse complement sequences,
and assign genomic locations to the reads using a modified version of backwardsearch. This
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version supports inexact matches; the read and its genomic location are allowed to differ
(mismatches or gaps) in up to k different positions, where k is a parameter. The idea worked
well beacuse NGS experiments produced short reads (<70 characters) with few sequencing
errors. However, this approach rapidly became obsolete as NGS technologies improved their
read lengths. To enable the alignment of longer reads (between 100 and 1,000,000 characters),
posterior aligners [106, 113] adopted a seed-and-extend approach. Given an input read S, this
method uses backwardsearch to find exact matches between substrings of S and substrings of
the reference genome (the seeding phase), and then extend those matches using the Smith-
Waterman [176] dynamic programming algorithm (the extension phase). This idea also
proved to be more sensitive to perform alignments that require to split the reads into different
genomic locations.

With the emergence of third-generation sequencing technologies (Section 4.2), seed-and-
extend aligners were adapted for datasets with a high number of ultra-long reads (> 100,000
characters), and with higher sequencing error rates. For instance, minimap2 [112] replaces the
FM-index with a hash table storing the positions of the minimizers in the reference genome
(Section 2.3.4). Later, minimap2 computes exact matches between the input read S and
the reference genome by obtaining the minimizers of S and looking for them in the hash
table. The algorithm then extends the exact matches using colinear chaining, or dynamic
programming if necessary. The advantage of this scheme is that the seeding phase is much
easier to compute as we only need to perform lookups in the hash table. In contrast, the
backwardsearch approach used by the previous aligners can be expensive if the substrings of S
for which we search for exact matches are long. This scenario is highly probable, considering
third-generation reads are ultra-long.

The mashmap aligner of Jain et al. [90] combines the ideas of sketching and minimizers
(Section 2.3.4) to quickly find approximate alignments between a collection S of long reads
and the reference genome G. Given an input Sj ∈ S, their algorithm finds all the substrings
Gi of length Sj in the reference genomes such that the Jaccard distance J(Sj,Gi) is above
some predefined threshold. When S is huge, computing all the J(Sj,Gi) distances is expen-
sive. Jain et al. solve the problem by using the winnowed-minhash estimate J (Sj,Gi) for
J(Sj,Gi), which it is cheaper to obtain. This estimate is similar to that of Minhash (Sec-
tion 2.3.4), but instead of using the sketches of Sj and Gi, it uses the sketches of W (Sj) and
W (Gi), which are the set of minimizers for Sj and Gi, respectively. Similarly to minimap2,
mashmap also indexes the minimizers of G. This index allows them to quickly filter the Gi

substrings that are unlikely to have a match with Sj. Experimental results showed that
mashmap is space and time efficient and that it maintains sensitivity even when the reads
have high error rates (<20%). It is also much faster than methods that rely on the FM-index
and dynamic programming approaches. However, it does not support gapped alignments.

4.5 Pangenomes
An important problem with reference genomes is that they bias the genomic analyses. When
the resequenced individuals have insertions or deletions in their genomes that are not in the
reference, the aligner gets confused and mistakenly considers these variations to be sequenc-
ing errors. A possible solution to deal with the bias is to build a pangenome, a generalization
in which the reference is not one genome but a set of individual genomes of the same species.
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Figure 4.7: A pangenome obtained from the string collection {acatattggtg, acaacgtggtg,
acaacgtgatg, acaacgtggtg}. The textures depict the paths in the DAG spelling the different
strings.

We can regard a pangenome as a regular string collection. However, a more accurate model
is a labeled directed acyclic graph (DAG) representing the collapse of all the strings in the
collection. We have one subgraph per chromosome in the species, and the chromosomal dif-
ferences (insertions, deletions, mismatches) between the individuals are encoded as “bubbles”
in the subgraphs. An example is shown in Figure 4.7.

The idea of a pangenomic index with support for pattern matching was first considered
by Schneeberger et al. [167] and Mäkinen et al. [123], and then by Sirén et al. [174], Huang
et al. [83], and Danek et al. [45]. Still, the first succinct index that regarded the pangenome
as a DAG was introduced by Sirén et al. [175]. They proposed a method to transform the
DAG into a Wheeler graph to encode it with the BWT framework (Section 3.4). In addition
to being succinct, the BWT framework also enables the computation of all the paths in the
DAG labeled with a pattern P [1,m] in O(m log σ) time (Section 3.4).

One of the main features of the DAG approach is that pattern matching can report
occurrences of P even if it does not exist in the collection (i.e., a false positive). This
situation happens because paths encoding different strings of the pangenome are entangled
in the DAG, and traversing these entangled paths might spell chimeric strings8. This feature
is an advantage or a disadvantage depending on the context. In biology, a recombination
event occurs when homologous chromosomes from different individuals get combined to form
a new one. Therefore, P may not be a false positive but a new recombination event that
has not been seen in the pangenome. Still, it is not easy to differentiate false positives from
recombination events just with the graph topology. Sirén et al. 2020 [173] tried to address
this difficulty by augmenting the pangenomic index [175] with the positional BWT [54], a
data structure that enables the detection of path shifts. Similarly, Mäkinen et al. [121]
proposed the founder graph, a pangenomic representation that facilitates the detection of
recombination events. The founder graph can also be represented using the BWT framework.

Other representations consider the pangenome to be the concatenation of several indi-
vidual genomes, not a DAG. They exploit the fact that individuals of the same species are
highly similar, so their genomes are repetitive. This text redundancy enables the develop-
ment of indexes that use little space. For instance, the implementation of the hybrid index

8The concatenation of subsequences from different strings of the pangenome.
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by Valenzuela et al. [183] parses the text with the Lempel-Ziv algorithm (Section 3.2.3) to
create a kernel sequence (Section 3.2), which is later stored using the BWT framework. This
data structure achieves high compression ratios in practice but limits the maximum length
of the reads that can be aligned. On the other hand, Kuhnle et al. [102] uses the r-index
(Section 3.3.3) to encode the pangenome. They use the PFP procedure (Section 3.5.1) to
reduce the computational resources when building the pangenome’s BWT for the r-index.
Their experimental results showed that they require less than 10% of the working memory
of bowtie’s when indexing. Further, although the hybrid index uses less space, the r-index
offers the best space/time trade-offs for pangenomes [38].

A limitation of the r-index, and BWT-based data structures in general, is that the align-
ment of reads is practical only when they are short and have few or no sequencing errors.
How to efficiently support the inexact alignment of long strings is still an open question. In
this regard, some authors [23, 160] have considered the problem of efficiently finding maxi-
mal exact matches (MEM) between a pattern and a string collection encoded as an r-index.
These ideas could enable the implementation of a pattern-matching procedure on top of the
r-index that uses the seed-and-extend approach of bowtie or bwa.
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Chapter 5

Grammar-Compressed Reads

In this chapter, we describe a new grammar compressor for storing DNA sequencing reads.
The novelty of this representation is that it can be used to compute the eBWT (Section 3.2.1)
of the reads directly from the grammar. Our motivation is to perform in succinct space
genomic analyses that require complex string queries not yet supported by dictionary-based
self-indexes. Our approach is to maintain the collection of reads as a grammar as long as
they are not used. However, when an analysis is required, we quickly compute their eBWT
without fully decompressing the text.

5.1 Motivation

As explained in Section 3.2.2, the benefits of using grammars for encoding text are that we
can achieve high compression ratios when the input is repetitive, and that we can directly
access any substring with only an additive logarithmic time penalty [16]. We consider these
features the starting point to develop an algorithmic framework to process high volumes of
DNA sequencing data in little space.

Still, the functionality offered by grammar-based self-indexes is still limited compared to
the complex sequence analyses required in computational biology scenarios [120]. In this
regard, the suffix tree is one of the few data structures that supports sufficiently elaborated
queries as to process genomic experiments. However, its space usage is several times the
size of the input, making it impractical for big collections. We can reduce the costs by
using the FM-index. In that way, we can compress the reads to their zeroth order empirical
entropy without losing the suffix tree functionality. The problem, however, is that sequencing
experiments are so massive that even the FM-index’s space usage can be prohibitive. The
ideal solution would be then to have a data structure that compresses the data by exploiting
the DNA repetitions, but at the same time, supports string queries similar to those of the
suffix tree.

The so-called run-length BWT (RLBWT) [124, 70] is a possible alternative. This compres-
sion scheme exploits the fact that, on highly repetitive text collections, the BWT consists of
a small number of long runs of the same letter (see Section 3.2.1). It can then enable complex
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sequence analyses in little space. Still, on read collections, the RLBWT does not compress
significantly [53]. Grammars and Lempel-Ziv are still preferred for permanent storage as
they obtain better space reductions in practice.

There are several genomic tools in the literature that rely on the BWT of the reads [170,
155, 53]. If we put aside the cost of computing the BWT, the idea is compelling as it
enables an efficient reference-free processing of the data. This feature is desirable because
reference genomes bias the results (see Section 4.4). In reality, however, we still have the
problem of constructing the BWT [92]. Although there are algorithms that run in linear
time [147, 82], in practice they still require significant storage and processing resources. As
an alternative, we can use efficient external algorithms [44, 55, 20] for building BWT variants
for string collections, but they are mostly intended for short reads. More recent in-memory
approaches [22] reduce the costs by factorizing the repetitions of the text, but they are aimed
at collections of assembled genomes, and do not work well on reads. All these limitations
make reference-free methods still difficult to implement.

All the limitations mentioned above leave us with the following tradeoff. On one side,
we have the RLBWT, which is expensive to compute and whose compression ratio is not
that good on reads. However, it still allows us to process genomic data in succinct space
and perform reference-free analyses. On the other, we have dictionary-based methods like
Grammars or Lempel-Ziv; they achieve much better compression ratios than the RLBWT,
but their self-indexes are not versatile enough as to process genomic data. Considering this
scenario, we propose an intermediate solution; a grammar encoding tailored for reads from
which we can compute the eBWT. Our algorithm for producing the eBWT uses the repetitive
patterns captured by the grammar to boost the computations. As far as we know, this idea
has been implemented only from Lempel-Ziv compression and is considerably slow [153]. As
discussed, the Lempel-Ziv format does not enable, on the other hand, direct access to the
reads for other purposes. With our approach, we maintain a low memory footprint when the
reads are not used, but if an analysis is required, we obtain the RLBWT in a efficient way.

We call our grammar compressor algorithm LMSg. Similar to the work of Nunes et al. [142],
our method builds on the SA-IS algorithm (Section 3.5.2). However, our approach considers
some extra modifications to compress the text even further and facilitate the computation
of the eBWT. We encode the final grammar using a variation of the grammar tree (Sec-
tion 3.2.2). We implemented the ideas described in this chapter in a C++ tool called LPG.

Our experiments in real data showed that the space reduction we achieve with LPG is
competitive with Lempel-Ziv-based methods and better than BWT-based approaches (FM-
index and RLFM-index). Compared to other popular grammars, such as BigRePair, we
achieve 12% extra compression in DNA and require less working space and time. Besides,
the working memory LPG requires for building the grammar is 50%–60% the space of the
input, which is far less than most grammar construction algorithms. A preliminary version
of this work [52] was presented at the 21st Data Compression Conference (DCC’21).
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5.2 Definitions
Let the string collection S = {S1,S2, . . . ,Sm} be a multiset of m reads over the alpha-
bet Σ = {a, c, g, n, t}, where the longest string has length k. We consider the string
S = S1$1S2$2 . . . Sm$m to be the concatenation of the reads separated by a dummy sym-
bol $ smaller than any character in Σ. The size of S is n. Let G = {V , Σ, S,R} be a
context-free grammar that only produces S. V is the set of nonterminals, Σ is the alphabet
of terminals, S is the start symbol and R is the set of rules. Additionally, we denote the
number of rules as g = ∣R∣. The grammar size G is defined as the sum of the lengths of the
right-hand sides of R. We refer to the string C on the right-hand side of the rule of S as
the compressed string of G, and its size is denoted as c = ∣C∣. We use the string ordering
that the SA-IS algorithm induces over the LMS substrings (Section 3.5.2). It is similar to
lexicographical ordering. The only difference is that when a string A is a prefix of another
string B, A gets higher order. We lift the operator ≺LMS to refer to this special ordering.
We also use the function exp(X) to refer to the string in Σ

∗ resulting from the recursive
expansion of nonterminal X ∈ V .

5.3 The LMSg Algorithm
LMSg is an iterative algorithm that produces G in several rounds of parsing. In every round i,
we classify the symbols of Si (S1

= S) as L-type, S-type or LMS-type to generate a partition
over Si (see definitions in Section 3.5.2). Each block (or phrase) in the partition starts in a
position S[j] such that S[j − 1] is LMS-type and ends in the smallest position j ′ > j such
that S[j ′] is also LMS-type. We refer to these blocks as LMS phrases. We create a dictionary
Di with all the distinct phrases of Si. Then, we create a new rule X → F for every F ∈ Di,
where X is the greatest symbol on Σ ∪ V before round i plus the ≺LMS order of F among
the other phrases in the dictionary. After generating the new rules from Di, we create the
parse Si+1 by replacing the LMS phrases in Si with their ≺LMS orders, and perform another
parsing round i + 1 using Si+1 as input. LMSg ends in the parsing round i

′ where all the
phrases of Di have frequency one in Si, in which case we create the rule S→ S

i for the start
symbol of G.

Note that for every new rule X → F we create from Di, the sequence of its right-hand
side does not contain grammar values, but symbols in Si. We solve this problem by keeping
track of the nonterminals assigned to the symbols in the alphabet of Si. More specifically, if
S[j] = r is the ≺LMS order of the phrase R ∈ Di−1, then the nonterminal for r is the one that
was assigned to R in the previous parsing round i − 1. We use this information to replace
every F [u] with its nonterminal when we create the rule X → F . We do the same when we
create the rule for S. This modification maintains the grammar consistency.

Our procedure is similar to that of Nunes et al. [142]. Still, we go further and try to reduce
the grammar size without losing information for computing the eBWT of S.

5.3.1 LMSg is for String Collections

LMSg is oblivious to the number of documents encoded in the input text. It might produce, for
instance, a nonterminal E ∈ V expanding to a substring Sx[u..]$x . . . $y−1Sy that represents
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an incomplete string Sx[u..] of S concatenated with one or more other strings. This type of
nonterminals makes the construction of the eBWT more difficult. An important aspect of
our BWT algorithm is to assign ranks to the symbols in V based on their string expansions.
However, in the case of E, its expansion is not a valid substring in the circular1 rotations of
S, so the rank for E has no meaning in our model. We avoid nonterminals like E by enforcing
the following property on G:

Definition 6 G is string independent iff every nonterminal E ∈ V expands to a substring
E = exp(E) of S that meets either of the following conditions:

1. E = Sx[a, b] is an internal substring of some Sx ∈ S (i.e., E is not a suffix in Sx)
2. E = Sx[a..]$x is a suffix of Sx concatenated with a $ symbol

We ensure the conditions of Definition 6 by performing an extra step in every parsing
round i. Suppose that during the scan of Si, we reach an LMS phrase F whose recursive
expansion yields a string in the form ABC. A is a suffix of some Sx$x, B is either an empty
string or the concatenation Sx+1$x+1 . . . Sx+p$x+p, and C is a prefix of Sx+p+1$x+p+1. We create
a new phrase with the prefix of F expanding to A. If B is not empty, then we produce a new
phrase with every segment F [a′, b′] that expands to some substring Sx′$x′ of B. Finally, we
create the last phrase with the suffix of F expanding to C. We record these new elements
into Di afterward. The new phrases whose recursive expansions end with a $ symbol are
called border phrases.

Every parsing round i of LMSg now also considers an input bit vector Bi that tells us
which symbols in the alphabet of Si recursively expand to suffixes of S. This bit vector
facilitates the detection of LMS phrases spanning two or more strings of S. Once we produce
S
i+1, we create its associated bit vector Bi+1 to pass it as input for the next round.

5.3.2 Simplifying the Grammar

While parsing Si, we discard the phrases that are not useful for either compressing or pro-
ducing the eBWT of S. We insert the symbols in these phrases directly into Di to transfer
them to subsequent parsing rounds, hoping they will be encapsulated within more useful
contexts. We discard a substring in two cases; (i) all its symbols appear only once in Si or
(ii) its length is less than two.

After finishing a parsing round, we sort the phrases of Di in ≺LMS order and scan Di

from left to right to create the new nonterminal rules. If a phrase F has length > 1 (a
non-transferred symbol), we proceed in the same way as in Section 5.3. However, when a
phrase F has length one (transferred symbol), we update the nonterminal F ∈ R previously
assigned to it. The new value is p + b, where p is the size of R before iteration i and b is
the ≺LMS order of F in Di. This update requires us to change the left-hand side of F’s rule
and the occurrences of F in the right-hand sides of R. The use of transferred symbols also
changes the stop condition for LMSg; the algorithm ends the parsing rounds when all the
phrases of length > 1 in Di have frequency one.

1Recall that the eBWT considers the string in S to be circular.
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Figure 5.1: (A) Running example of LMSg. The symbols in gray below S
1 are character

types (L-type=L, S-type=S, LMS-type=S* ). Dashed vertical lines mark the limits between
the strings in S. Every horizontal line on top of S1 spans one of the phrases generated in the
parsing round 1 of LMSg. The rest of the parsing rounds are depicted on top of S1. Light
gray symbols have frequency one in Si. Dashed edges indicate symbols that were transferred
to the next parsing round. The gray character at the top of every Si[j] denotes its suffix
type and the gray number to the left is its assigned nonterminal in G. (B) The grammar G
resulting from the parsing rounds of (A). The size G of the grammar is 38, the number g of
nonterminal is 13, and the length c of the compressed string is 5. For clarity, the nonterminal
values were not collapsed.

The nonterminals produced by LMSg could be non-consecutive due to the transfer of sym-
bols. We need to collapse their values to produce a more compact grammar representation.
For that purpose, we scan R and change every left-hand symbol with the smallest unused
symbol in V . As we do the replacements, we keep track of the changes to update the refer-
ences of the characters on the right-hand sides of R. Figure 5.1 shows a complete running
example of LMSg.

5.3.3 Analysis of LMSg

We now present the upper bound for constructing G using LMSg and S as input. We describe
our result with the following theorem.

Theorem 1 The LMSg algorithm runs in O(n log k) time, where k is the longest string on
S.

Proof. SA-IS, the method on which LMSg relies upon, runs in O(n) time because the length
of every Si+1 is at most half the size of the previous Si. In this way, the algorithm processes
less than 2n symbols in total. However, in our case, we cannot ensure that property because
we transfer symbols from one parsing round to the next one, meaning that the length of Si+1
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can be more than Si/2. This drawback implies that the parsing of every Si takes O(n) time.

We know that LMSg incurs in at most log k parsing rounds as every new phrase we
produce from S

i spans at least two symbols, and the length of the recursive expansion of a
new phrase is never longer than k, the longest string in S. We enforce the latter property
with the string independence of Definition 6. On the other hand, the transferred symbols of
S
i that belonged to the same discarded phrase maintain their lexicographical relationships.

Hence, if encapsulated in later parsing rounds, they will belong to the same phrase. Also,
if a substring Si[a, b] whose recursive expansion matches a substring Sj$j, with Sj ∈ S, is
composed only of unique symbols, it will not be further compressed. Instead, its symbols
will continue to be transferred until LMSg stops (see, for instance, substring S3[2, 4] = 215
of Figure 5.1). As a consequence, LMSg runs in O(n log k) time.

5.3.4 Efficient Dictionary Construction

In every parsing round i of LMSg, we use a hash table to record the distinct LMS phrases of
the dictionary Di. Each phrase F is the key and its associated value is a boolean flag that
indicates if F is repeated in Si. When the text is repetitive, the first parsing round (i = 1)
produces a small dictionary so the hash table will not require much space. Still, as we move
on to the next rounds, the number of distinct phrases quickly increases in Si, so the working
memory for building Di becomes considerable.

We can reduce the computing time by building Di in parallel during the parsing round.
We cut Si into p different chunks, where p is the number of working threads, and obtain the
LMS phrases in parallel in every chunk. We collapse the phrases recorded by the threads
afterward to get Di. Still, having one hash table per thread would be expensive for the
parsing rounds i > 1, so it is not an option. In contrast, having only one hash table that is
concurrently accessed by the threads decreases the efficiency due to synchronization issues.

We deal with the efficiency problems by creating a semi-external bit-compressed hash table
to construct Di in parallel and using an amount of working memory defined by the user. We
start by defining a buffer B of b bits, where b is a parameter. Subsequently, we divide B into
p blocks of u = ⌊b/p⌋ bits. Additionally, we subdivide every block Bj, with j ∈ [1, p], into
two halves. The left half Bl

j stores the hash table Tj of the j th working thread and the right
half Br

j is a buffer that stores the hashed pairs of Tj. We implement Tj using Robin Hood
probing (Section 2.3.1) to work at high load factors (we use 0.8). Every cell Tj[u] uses 8
bytes; the first 2 bytes in the cell encode the distance to the real hashing position of the key
associated with Tj[u]. The last 6 bytes store the bit index q in Br

j , where the key-value pair
of Tj[u] is stored. In Br

j [q], we encode the information as follows; the first 4 bytes contain
the length l of the key. The next x = l ⋅ log σ

i bits store the key sequence, where σi is the
alphabet of Si, and the last bit is the value associated with the key, i.e., the boolean flag
that indicates if the LMS phrase is repeated or not.

When inserting a new key-value pair (F , b) into Tj, we store it in the rightmost available
position of Bb

j . If inserting (F , b) produces Br
j to exceed its capacity of u/2 bits, then we

dump Br
j into the disk and reset the complete block Bj. Similarly, when the load factor of

Tj exceeds the threshold of 0.8, we also dump Br
j to disk and reset Bj. Alternatively, we can
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check if Br
j still contains free space to shift the boundary between B

l
j and B

r
j to the right

and give more bits to Ba
j . In that way, we can increase the size of Tj. This mechanism will

avoid the disk dump, but it will trigger a rehashing.

Once we finish the parallel partition of Si, we collapse the dumped data of the p working
threads in one single hash table, which later will become Di. Note that in the parsing round
i = 1, the hash tables will contain almost the same phrases. In the worst case, each Tj will
be a full copy of Di, but as the dictionary is small at this level, the number of disk dumps
will be close to zero. In later parsing rounds i > 1, Di can be large, but it is less probable
for the distinct Tj to share keys as the phrase frequencies in Si are likely to be small. This
feature will reduce the data dumps triggered due to redundancy in the hash tables. Working
at high load factors in the hash tables and maintaining the data in bit-compressed form in
B
b
j also help us to reduce the number of data dumps.

5.4 Recompressing the Grammar

After running LMSg, we recursively create new rules from the maximal suffixes of size two or
more that appear repeated in the right-hand sides of R. We refer to these new nonterminals
as RS (repeated suffix). Figure 5.2 depicts the idea. The concept of maximal suffixes is
similar as in the suffix tree. We consider a string F to be maximal if it appears c > 1 times
as a suffix in the right-hand sides of R, and for any b ∈ Σ∪ V , its left extension bF appears
c
′
< c times as a suffix. The RS nonterminals are helpful to reduce the size G of the grammar,

but they are also convenient for computing the eBWT of S as we will see in Chapter 6.

To create the RS nonterminals, we record in a hash table the distinct suffixes of length two
in the right-hand sides of R, and create new rules with those that have frequency more than
one. We replace the occurrences of the repeated suffixes with their new nonterminal symbols
and continue hashing suffixes of length two until no new rule can be created. Subsequently,
we remove the RS rules whose left-hand symbol occurs only once in the right-hand sides of
R. The only problem with this idea is that the strings in R are not so repetitive, so we might
end recording a lot of sporadic pairs that are later discarded because they are unique. We
can reduce the number of unnecessary pairs in the hash table by including a simple condition;
both symbols of the suffix must be repeated in R. We can mark every repeated nonterminal
with a bit map prior the creation of the RS rules.

It might happen that the complete sequence F of an LMSg rule X → F appears as a
proper suffix in one or more right-hand sides. In such situation, we do not create a new rule
but reuse the value of X to replace those proper suffixes. When this happens, we consider X
to have a dual context as it occurs as an LMSg nonterminal but also as an RS nonterminal.
Figure 5.2 shows an example of this situation.

5.5 Encoding the Grammar

We use the grammar tree data structure proposed by Claude et al. [36] (denoted here as P)
to store G. We make, however, some modifications to later compute the eBWT of S in a
more efficient way.
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Figure 5.2: Example of RS nonterminals. (A) The parse tree of two distinct nonterminals
30 and 40 produced by the LMSg algorithm. Gray symbols denote the suffixes that are
repeated in the right-hand sides of R. (B) The parse tree of (A) now with the RS rules
included. Symbols X and Y are new RS nonterminals while 40 is an LMSg nonterminal with
dual context as it also appears as a suffix under the subtree of 30.

We create P in one level-order traversal of the parse tree of G. The procedure is as follows;
every time we visit a new node v in the parse tree, we check first if its label X ∈ V has dual
context. If it does, and v is an RS occurrence, then we create a new leaf v′ in P . Subsequently,
we check if there is already an internal node in P for X. If there is one, we assign its label to
v
′; we leave it unlabeled otherwise. When X has dual context, but v is an LMSg occurrence,

we create v′ as an internal node. In this case, the label for v′ is x+ σ, where x is the number
of internal nodes in level-order in P up to v′. We also label all the previous leaves of P that
represent occurrences of this nonterminal. When X does not have dual context, but v is the
first node we visit in the traversal that is labeled with it, we create v′ as an internal node
and label it with x+ σ. When v is not the first node for X we see, we create v′ as a leaf and
label it with the value we used for the internal node in P that encodes the first occurrence
of X. Finally, when v represents a terminal symbol b, we create v′ as a leaf labeled with b.
The parent of v′ in P is the internal node that maps to the parent of v in the parse tree.
Additionally, when we create v′ as a leaf, we discard the subtree rooted at v from the rest of
the parse tree traversal.

We encode the topology of P in a bit vector K using LOUDS (Section 2.2.3). Addition-
ally, we store the leaf labels in a vector Z using the data structure for canonical Huffman
codes of Schwartz and Kallick [169]. We augment Z with sampled pointers for direct access
(Section 2.1.3). Figure 5.3 depicts the resulting grammar tree for the running example of
Figure 5.1.

The grammar tree construction algorithm ensures that if X has several occurrences on the
right-hand sides of R, only one of them is stored as an internal node in P . The others are
stored as leaves. We refer to this internal node as the locus of X in P , and the locus’s label
as the identifier of X. Our algorithm also ensures that if X has dual context, then its locus
in P will always be an LMSg occurrence. We use this property during the construction of
the eBWT in Chapter 6.

Theorem 2 The grammar tree representation for P requires 2G+ o(G)+ (G− g)(H0(Z)+
1) + (g + σ) log(g + σ) + σw bits of space, where Z is the vector containing the Huffman
codes of the grammar tree labels.
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Figure 5.3: (A) The grammar tree of Figure 5.1B. Numbers on top of the internal nodes are
the original nonterminals of the grammar. Symbol 15 is an RS nonterminal. Dashed arrows
simulate a traversal over the parse tree of G to decompress the word ta from S

1[14, 15]
(Figure 5.1). (B) LOUDS encoding for (A). The bit stream stores the shape of the tree.
Gray numbers on top are the bit indexes. Gray numbers below the stream are the internal
ranks of the nodes. The integer vector below the stream contains the leaf labels. Dashed
arrows mark the same decompression path as in (A), but using the LOUDS functions.

Proof. P hasG+1 nodes and g internal nodes. As the bit arrayK is a LOUDS representation
of the topology of P , it uses 2G + o(G) bits. On the other hand, the vector Z contains the
labels of the G−g leaves of P , whose values are over the alphabet [1, g+σ]. The bit array with
the Huffman codes of Z uses (G−g)(H0(Z)+1) bits, and the other auxiliary data structures in
the representation of Schwartz and Kallic require (g+σ) log(g+σ)+O(log

2(G−g)) extra bits.
The sampled pointers for Z use ⌈(G−g)/k⌉w bits, where k is a parameter. Assuming the word
machine w is large enough so that any value for G fits on it, we can choose k = w2 to obtain
a space complexity for the sampled pointers of (G− g)/w < (G− g)/ log(G− g) = o(G− g)
bits. Finally, the σw bits stand for the integer array that maps the alphabet of terminals in
G to the original symbols in S.

Theorem 3 Accessing the label of a grammar tree node v in the representation of Theorem 2
takes O(k2

log(G − g)) time, where k2 is the sampling rate of Z.

Proof. When v is an internal node, computing its label takes O(1) time as we obtain it
using the LOUDS operation internalrank(v) + σ. When v is a leaf, we extract its label from
Z[leafrank(v)]. Decoding a symbol in Z takes us O(log(G− g)) time as the longest length a
Huffman code can have in Z is O(log(G− g)) bits. The reason is that Z has G− g symbols,
and thus the Huffman codes we obtain from this vector cannot have frequency less than
1/(G − g). As we chose a sampling rate of k2 for the sampled pointers, accessing a position
in Z requires us to decode at most k2 symbols, which gives us the final time complexity of
O(k2

log(G − g)).
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Figure 5.4: Performance of the different compressors. The compression ratio is measured as
the size of the plain text divided by the size of the final compressed representation, so higher
is better.

For simulating in P a top-bottom traversal of the parse tree of G we use the constant-
time navigational function child defined for LOUDS, but also an extra function label(v) that
returns the label of a node v.

The traversal of the parse tree is as follows, we navigate P top-down using the child
operation as long as the nodes we visit are internal nodes. When we reach a leaf u, if label(u) ≤
σ, then we stop the traversal because we have reached a terminal symbol. If that is not the
case, then we continue the traversal from the subtree rooted at v = internalselect(K, label(v)−
σ). See Figure 5.3.

5.6 Experiments

We implemented our grammar compressor as a tool called LPG (https://bitbucket.org/
DiegoDiazDominguez/lms_grammar/src/bwt_imp2). The software is written in C++ and
uses the SDSL-lite library [76]. We compared the performance of LPG against BigRepair [72]
(BR), 7-zip [150] (7Z) and the FM-index [65]. BigRepair is a space-efficient variation of
RePair for large repetitive collections. We encoded the BigRepair grammars with the recent
representation of Gagie et al. [163], which allows fast random accession to substrings of the
text. For the FM-Index, we considered both the regular version (denoted as FM) and the run-
length compressed version (denoted as RLFM). The BWTs for the FM-indexes were calculated
using egap [55]. When parallelization was possible, we ran the experiments with 10 threads.

We used as input five distinct collections of reads produced from different human individu-
als. This data was obtained from the Human Genome Diversity Project2. The datasets were
identified with the number of individuals they contained. Their sizes in GB were 1=12.77,
2=23.43, 3=34.30, 4=45.89 and 5=57.37. All the reads were 152 characters long and had
an alphabet of six symbols (a,c,g,t,n,$). The instance of BR with collection 5 returned
an error and therefore it was not included in the analyses. For dataset 1, we allowed BR to
use at most 72 GB (6x the input size) of working memory. However, with the rest of the
collections we had to increase that value to 275.36 GB as the program was taking too long
to finish. The performance of the compressors is shown in Figure 5.4.

2https://www.internationalgenome.org/data-portal/data-collection/hgdp.
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Random access

Input LPG BR RLFM FM

0.05 0.5 1 0.05 0.5 1

1 104.30 98.67 804.11 116.71 78.45 682.40 104.92 71.16
2 111.35 101.59 788.37 115.91 77.86 692.62 104.09 70.85
3 124.04 98.56 784.40 116.96 77.85 682.09 104.66 71.18
4 128.58 104.72 821.12 118.71 81.01 681.80 104.65 71.62

Table 5.1: Random access. Average time in µsecs to randomly access a read. The columns of
RLFM and FM indicate the different sampling rates (0.05, 0.5, and 1) we used in those instances
for randomly accessing the reads.

We measured the time for randomly accessing the reads from the compressed represen-
tations. We sampled reads at regular text intervals in the FM-index instances (RLFM and
FM) to support fast access. For every sampled string, we stored the BWT position of its last
character. We selected three sampling rates; 0.05, 0.5, and 1. We store one BWT position
every 20 reads with the first sampling rate; one position every two strings with the second
one, and we stored the BWT positions for all the reads with the last one. We excluded 7Z
from this experiment as its current implementation does not support random access.

We augmented the LPG instances with a bit vector B[1, c] that marks in P the nodes at
depth one that recursively expand to string suffixes. We augmented B with select structures
to access the substrings of C that map complete reads. We also encoded the leaf labels of
P using arrays of log r-bit cells instead of Huffman-compressing them. This representation
allowed us to access the grammar tree labels in O(1) time. The results of the random access
experiments are depicted in Table 5.1.

5.7 Results and Discussion

The average compression ratio of LPG was 4.65. This result was better than the one obtained
by BR and RLFM (2.96 and 2.54, respectively), but worse than that of 7Z (6.47). Although 7Z
outperformed the other methods at reducing the space, the difference decreased as the inputs
grew and became more repetitive. For instance, the gap in the compression ratio between 7Z
and LPG for collection 1 was 2.44, while for collection 5 it was 1.37. The poor performance
of BR may be because its preprocessing step (Prefix-Free Parsing) did not capture well the
repetitiveness in the reads. BR produced, on average, 36% more grammar rules than LPG. On
the other hand, the small compression ratios obtained by RLFM can be due to the number of
BWT runs. In reads, this value is usually not as small as in other text families. The run heads
represented, on average, 23% of our inputs. Regarding the memory peaks, the consumption
of 7Z was negligible (0.7 GB). In contrast, LPG required a much more considerable amount
of working space (about 58% of the input size). Still, this value was far less than that of
BR and RLBWT, which used 7 and 3 times the input size, respectively. In elapsed time, LPG
outperformed all the other methods. The instance of BR with collection 2 took much more
time compared to collections 3 and 4 (63.18 hours versus 15.31 and 26.08 hours, respectively).
We assume this behavior is a bug in the implementation.
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The average time for accessing a random string in LPG was 117.06 µsecs. This result was
competitive with the performance of BR (100.89 µsecs, on average). The outcome of RLFM
and FM varied according to the sampling rate we used. In general, FM outperformed RLFM in
all the experiments. We expected this result as RLFM needs to carry out additional operations
to solve the rank queries over the run-length compressed representation of the BWT.

Interestingly, FM and RLFM became competitive with LPG and BR only when we sampled
more than 50% of the reads. FM and RLFM were the fastest methods in those instances where
we stored pointers for all the reads (columns 6 and 9 of Table 5.1). However, with a sampling
rate of 0.05, the average performance of FM and RLFM decreased dramatically, becoming the
slowest methods (see columns 4 and 7 of Table 5.1).

The extra space overhead required to support random access was small in all the cases.
For LPG, we used 16.80% of the original size of the grammar tree data structure. The space
overhead for FM and RLFM varied according to the sampling. However, it was smaller than in
LPG in all the cases. Using the sampling rate of 0.05, the space overhead in the FM-indexes
ranged from 0.30% to 0.42%. Using the sampling of 0.5 ranged from 2.96% to 4.23%, and
with the sampling rate of 1, it ranged from 5.91% to 8.47%.
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Chapter 6

Computing the eBWT

This chapter describes a new algorithm called infBWT to compute the eBWT of a string
collection from the grammar representation of Chapter 5. As explained earlier, the purpose
of that grammar is to store massive collections of raw sequencing data (reads) using little
space. Producing the eBWT, on the other hand, enables the efficient extraction of biolog-
ical information in succinct space. Further information on these ideas can be found in the
introduction of Chapter 5.

Our algorithm infBWT exploits the repetitive text patterns captured by the grammar
rules to reduce the working memory and CPU time. Thus, the amount of resources it
consumes depends more on the new information we add to the collection than on its size. For
instance, if the input grammar encodes two copies of the same sequencing experiment, then
the requirements of infBWT increase by a factor smaller than two compared to a grammar
encoding only one copy. This feature can be helpful in the processing of massive DNA
experiments as they usually contain several genomes of the same species, which are almost
identical.

We implemented infBWT as a module of LPG, the C++ implementation of the grammar
compressor of Chapter 5. The name of the module is G2BWT. Our experiments on real datasets
showed that G2BWT is competitive with the state-of-the-art algorithms that build the BWT
for string collections, and that it can be the most efficient when the input is massive and
with high DNA coverage.

6.1 Encoding Information with Circular Strings

We choose to build the eBWT as the strings in this representation are considered to be
circular. This feature allows us to encode the paired-end information of the reads for free
(see Section 4.2). Concretely, given we know a BWT position for a character in a read Sl, we
can infer the sequence of its pair Sr by performing LF steps. This idea also apply backwards;
we can obtain Sl provided we know a BWT position for Sr. Most genomic pipelines use
the pairing information to resolve ambiguities in the DNA sequence. For instance, when
assembling a genome using the overlap graph framework (Section 4.3), we might discard
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Figure 6.1: Example of an eBWT. (A) Paired-end reads {tct, aga} and {aag, tcc}. (B)
The circular encodings for the reads of (A), which include their reverse complements. (C)
The eBWT for the circular strings of (B). The vertical gray characters are the left contexts
of the BWT symbols. The gray numbers below the BWT are the LF steps we perform to
obtain the sequences of Sl = aag and its reverse complement Srcl = ctt. This operation is
also depicted with a dashed line in the right circle of (B).

overlaps between reads that belong to the same pair as, in some cases, we know they are too
far away in the genome as to have an overlap. In the BCR BWT (Section 3.2.1), the strings
are not circular so we need an extra array to store the links explicitly.

During the construction of the eBWT, we consider every pair (Sl,Sr) to be one circular
string Sl$Sr$. We can also consider the extra pair (Srcr ,S

rc
l ) with the reverse complements

of (Sl,Sr). The four string are thus encoded as one circular string Sl$Sr$S
rc
r $S

rc
l $. By

including the reverse complements in the BWT we can know which other strings in the
collection overlap them. This information is necessary as, in most of the cases, we do not
know the relative strands of the reads from different pairs. An example of the resulting BWT
is depicted in Figure 6.1.

We note our version of the eBWT is slightly different from the one described in Sec-
tion 3.2.1. The main difference is that we are including $ symbols to delimit boundaries
between strings, while the original version uses a bit vector for the same purpose. The $
symbols come from the grammar of the reads, and it was not clear to us how to get rid of
them as we construct the BWT.
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Algorithm 1 Overview of infBWT

1: proc infBWT(P) ▷ returns the eBWT of S∗
2: Compute the alphabets of the parses and store them in disk
3: Load Σ

h
= (Lh,Rh

, f
i) from disk

4: Compute the eBWT B
h of C from Σ

h and P
5: for i = h to 2 do
6: Load Σ

i−1
= (Li−1

,R
i−1

, f
i−1) from disk

7: Induce Bi−1 using Bi, Σ
i, Σ

i−1 and P
8: Discard Bi and Σ

i

9: i← i − 1
10: return B

1

6.2 Definitions

Let S = {S1 . . . Sm} be a collection of m paired-end reads. The strings in S are over the
alphabet Σ = {a, c, g, n, t}. For simplicity, we map Σ to the range [2, ∣Σ∣+ 1], and leave the
character $ = 1 as a separator symbol. We assume that for each odd position j ∈ [1,m− 1],
the strings Sj,Sj+1 ∈ S represent reads of the same pair. We also define a set S∗ that
encodes the read pairs of S and their reverse complements together. Each element Sx ∈ S∗
is a circular string of the form Sl$Sr$S

rc
r $S

rc
l $, where Sl,Sr ∈ S are the reads of the same

pair and Srcl and Srcr are their reverse complements, respectively. We also define the string
S = S1S2 . . . Sm/2 that represents the concatenation of the elements in S∗. We do not insert
extra separator symbols in S as we know that every four $ characters we have a string of
S∗. The total length of S is denoted as n. Let G = {V , Σ, S,R} be the grammar resulting
from running the algorithm of Chapter 5 over S. G is the grammar size, g is the number of
nonterminals and C is the string that represents the compressed version of S. The length
of C is denoted as c. We also consider P to be the grammar tree of G obtained with the
algorithm of Section 5.5. Let h be the number of parsing rounds LMSg performed to build
G, and let Si be the input text for round i. We denote as Di the set of phrases generated
during the partition of Si in the execution of LMSg. The operator ≺LMS denotes the LMS
ordering of the strings (Section 3.5.2).

6.3 Overview of infBWT

We divide the algorithm in three main steps. In step one, we reconstruct the alphabet Σ
i of

every Si. We represent Σ
i using three components; Li,Ri and f

i. The set Li ∈ [1,σ + g]
stores the identifiers in P (see Section 5.5) for the nonterminals assigned to the symbols in
S
i, the set Ri

∈ [1, ∣Li∣] encodes the alphabet of Si, and the function f
i ∶ Li → R

i maps
an identifier in Li to its symbol in Ri. In step two of infBWT, we compute the eBWT of C
using the alphabet Σ

h. We consider the circularity of the strings compressed in C to arrange
the symbols in Bh. Finally, in step three, we perform an iterative process in which we induce
the eBWT B

i of Si from the already computed transform B
i+1 and the alphabets Σ

i+1 and
Σ
i. Once we finish the iterations, we return B1 as the eBWT of S∗. Algorithm 1 depicts the

whole idea.
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6.4 Reconstructing the Alphabets

We propose an iterative approach to reconstruct the alphabets of the parses. We proceed as
follows in every iteration i; we find the loci in P of the nonterminals that map symbols in
S
i (see Section 5.3), and insert their identifier in L

i. Subsequently, we assign ranks to the
elements in Li and store them in Ri. The computation of these ranks requires the previous
triplet (Li−1

,R
i−1

, f
i−1). Once we build Ri, we use the new triplet Σ

i
= (Li,Ri

, f
i) as input

for the next iteration i+1. Our procedure requires a total of h iterations, one for each parsing
round of LMSg.

We implement the function f
i by encoding L

i as a bit vector L[1, r + σ], where L[l]
is set to 1 if l ∈ L

i and 0 otherwise. Additionally, we augment L with constant-time rank
support (Section 2.2.1), so that rank(L, l) is the number of 1s in L[1, l]. We store at position
R
i[rank(L, l)] the rank associated to l.

6.4.1 Finding the Nonterminals in the Parse Tree

For deciding whether a node label in P belongs to Li, we use the following lemmas:

Observation 1 Let X → F ∈ R be a nonterminal rule generated by the LMSg algorithm.
Assume all the suffixes of F up to position 1 < k ≤ ∣F ∣−1 appear in more than one right-hand
side in R. After creating the RS rules in G (Section 5.4), every internal node v in the parse
tree labeled with X will have its last ∣F ∣− k+ 1 children recursively encapsulated from right
to left inside RS nonterminals. This encapsulation pattern will generate a stair-like shape in
the children of v (Figure 5.2B depicts the stair-like shape).

By using the stair-like pattern described in Observation 1, we can recognize occurrences
of LMSg nonterminals just by looking at the topology of the parse tree of G.

Lemma 1 An internal node v of P is the locus of a nonterminal produced in the iteration
i of LMSg if its leftmost child is labeled with a symbol l ∈ L

i−1 and either v if the leftmost
child of its parent or the left sibling of v is labeled with a symbol l′ ∉ Li−1.

Proof. A nonterminal v whose first child has a label l ∈ Li−1 is either an LMSg nonterminal
of the iteration i or an RS nonterminal. If it is RS, then, due to the stair-like pattern, the
label of its left sibling must be in Li−1, otherwise v is LMSg.

Building Li requires us to scan the internal nodes of P one by one to check Lemma 1. We
can mark the internal nodes that were already visited during the reconstruction of previous
alphabets to avoid checking them again. Our grammar tree algorithm of Section 5.5 ensures
that if a nonterminal has a dual context, then its locus in P is always a LMSg occurrence.
In this way, building Li requires only visiting the internal nodes of P , not its leaves.
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Figure 6.2: Example of alphabet reconstruction. (A) The grammar tree P of Figure 5.3.
(B) The four dictionaries (Li,Ri) obtained from P . The mapping functions f i were omitted.
The labels of every set Li, with i > 1, are sorted in level order. The Ri lists store the ranks
of the labels in ≺LMS order. (C) Partial decompressions for L3. The symbols of L3 (left side)
are arranged according to their ranks in R3. Their partial decompressions are shown on the
right side.

6.4.2 Giving Ranks to the Labels

Once we compute the labels in Li, we need a mechanism to assign them ranks (the values in
R
i). For that end, we regard Li−1 as a set of logical leaves in the parse tree of G. If during

the decompression of an internal node v = internalselect(l − σ), with l ∈ Li, (Section 5.5) we
reach a node v′ with label(v′) ∈ L

i−1, then we do not visit its subtree but spell its symbol
f
i−1(label(v′)) ∈ Ri−1. We concatenate all the characters in f i−1 spelled during the traversal

of v’s subtree in one single string. We refer to this string as the partial decompression of l,
or just pd

i(l). Note that the set of partial decompressions obtained from L
i is actually Di−1;

the dictionary of phrases generated during the partition of Si−1 (see Section 5.3). We sort
Di in ≺LMS order so that if pd

i(l) has order o in Di, then the associated value of l in Ri is o.
Figure 6.2 shows the distinct alphabets we obtain from the grammar tree of Figure 5.3, and
Example 1 shows how to implement pd

i.

Example 1 Partial decompression pd
3(7) of symbol 7 ∈ L

3 in Figure 6.2. The symbol 7
identifies a nonterminal whose locus in P is the internal node v = internalselect(7 - σ). We
simulate in P a pre-order traversal over the subtree rooted at v in the parse tree and we find
that the grammar tree labels 12,13 and 14 of its children belong to L2. We replace their
values with their ranks in R2 and insert them to the partial decompression of 7. The resulting
string is 7 8 2. When the label l for pd

i identifies a transferred symbol (Section 5.3.2), it is
not necessary to traverse the subtree. For instance, 8 appears in both L3 and L2, so pd

3(8)
is just 4, its rank in R2.

In practice, we sort the string in Di−1 along with their distinct proper suffixes of length
> 1. The reason for this decision will be clear in Section 6.6. Maintaining all those strings
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Figure 6.3: Sorting example to compute R2. (A) The same grammar tree of Figure 5.3. (B)
Array U

2 storing the grammar pointers for the distinct suffixes of length > 1 in D1. The
gray dashed lines map the grammar pointers in U

2 to their corresponding positions in P .
The vertical strings above U2 are the partial decompressions obtained from those pointers.
(C) Array U2 after sorting the grammar pointers according the ≺LMS order of their partial
decompressions. The gray dashed rectangles are the distinct buckets of U2. The number
below U

2 are the labels in L2 for the parent nodes of the grammar pointers.

in plain form during the sorting might require a lot of working memory. On the other hand,
decompressing them on demand from P each time we access them can be slow. We came up
with a practical parallel solution to solve the problem.

First, we create an array U
i storing pointers to nodes in P . These nodes encode the

distinct suffixes in Di−1 of length > 1. If we want to access the non-proper suffix of a phrase
F ∈ Di−1, we use the leftmost child of the internal node v from which we partially decompress
F . In other words, the pointer is child(internalselect(l − σ), 1), with l ∈ L

i and pd
i(l) = F .

The next case is when a proper suffix F ′
= F [j..] is unique in Di−1. In that situation, we use

the child v′ of v from which we can partially decompress F ′. Finally, in the case F ′ appears
in different strings of Di−1, we use the leftmost child of the internal node v′ from which we
can obtain F ′. Note that v′ is the locus of an RS nonterminal by definition, so there is only
one possible position for that node in P . We store in U i the level orders of these nodes to
reduce the space usage. We refer to them as grammar pointers. We will use them again in
Section 6.6.

We use counting sort to reorder the grammar pointers in U i according the first symbol of
their partial decompressions. The idea is to partition the array into buckets; all the grammar
pointers whose partial decompressions are prefixed with the same symbol b ∈ Σ

i−1 appear
together in the bth bucket of U i. This presorting is fast as we can obtain the symbol b
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associated to U i[j] in constant-time as f i−1(label(nodeselect(U i[j]))). Once we finish the
counting sort, we sort the distinct buckets of U i in parallel using quicksort. When we sort a
bucket, we decompress the strings on demand from P , except the pivot which we maintain
in plain form. There is an overhead in decompressing the nodes on demand, but we amortize
it by quick-sorting the distinct buckets in parallel. Figure 6.3 shows en example of the whole
process.

6.4.3 Time Complexity for the Alphabet Reconstruction

We now give time and space upper bounds for reconstructing the alphabets of the h different
parses Si generated during the execution of LMSg (Line 2 of Algorithm 1). These upper
bounds consider the procedures described in Sections 6.4.1 and 6.4.2. We summarize our
results with the following theorem.

Theorem 4 The time complexity for reconstructing the alphabets of the parsing rounds of
LMSg is O((g+Gf)h) time, where f is longest right-hand side rule in the grammar of P and
h is the number of parsing rounds of LMSg. This task requires O(Gh logG) bits of working
space on top of P .

Proof. Let us first analyze the time complexity for constructing one alphabet Σ
i. The first

step is to visit the internal nodes of P to check which of them have labels in L
i. We use

the LOUDS function internalselect to move from one internal node to the next in O(1) time.
Additionally, checking if a node meets Lemma 1 requires us to perform a constant number of
operations. Therefore, as P has g+ 1 internal nodes, the construction of Li takes O(g) time.
The next step is constructing Ri. Our approach considers all the distinct suffixes of length
> 1 in Di−1. There cannot be more than G of such suffixes in Di−1 as each one corresponds to
a distinct symbol in the right-hand sides of P ’s grammar. On the other hand, these cannot
be more than f symbols long as this value is the maximum length a right-hand side can have.
Thus, the number of symbols we have to process to produce Ri is O(Gf). To obtain the
desired time complexity, we can use the sorting algorithm for strings described in Lemma
8.7 of Mäkinen et al. [120]. Given a string collection W = {W1, . . . ,Wn} over the alphabet
Σ = [1,σ], and with a total of N symbols, this algorithm sorts W in O(σ + N) time and
uses O(N logN) bits of working space. In our case, the alphabet of the suffixes is g, and N
is Gh, so the complexities for sorting the suffixes become O(g +Gh) time and O(Gh logG)
bits of working space.

We have to reconstruct Li and R
i
h times, one for every parsing round of LMSg. Con-

sequently, the time complexity for reconstructing all the alphabets is O((g + Gf)h) time.
After computing (Li,Ri), we can discard all the auxiliary data structures to obtain the next
pair (Li+1

,R
i+1). In this way, the space complexity for reconstructing the alphabets remains

in O(Gh logG) bits.

We use quicksort to produce Ri instead of the algorithm described in Mäkinen et al. as
it is faster in practice and does not require auxiliary data structures. With this change,
the space complexity to produce the alphabets decreases to O(G logG) bits on top of P ,
which stands for the array U i with the grammar pointers. Quicksort incurs in no more than
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G logG comparisons on average to sort the O(G) suffixes encoded in U
i. In each of these

comparisons, we need to partially decompress a phrase from P . If we replace the Huffman
representation of P ’s labels (array Z of Section 5.5) with an array using fixed-length cells of
log(g + σ) bits, then we can access the grammar tree labels in O(1) time. This modification
allows us to partially decompress a phrase F from P in O(∣F ∣) time and thus speed up the
suffix comparisons during the execution of quicksort.

Note that the analyses for reconstructing the alphabets are rather pessimistic. Assuming
that the number of distinct suffixes in Di−1 is G implies that this dictionary stores all the
right-hand sides of P ’s grammar. Further, assuming that every dictionary has G distinct
suffixes implies that all the right-hand sides of the grammar were generated in the first
parsing round of LMSg, and later were transferred to subsequent parsing rounds, which is
not possible. However, we could not find better upper bounds. The alphabet reconstruction
depends on t = ∑h

1 ∣D
i∣. It is unclear which is the maximum number of distinct phrases we

can generate in a parsing round (value for ∣Di∣). On the other hand, it is also unclear which
is maximum value for t as the dictionaries are not disjoint. It is a value in G < t < Gh.

6.5 Computing the eBWT of the Compressed Text
Unlike the regular BWT, the position of each C[j] in our version of the eBWT does not de-
pend on the whole suffix C[j + 1..], but on the string S

′
= C[j + 1, j + p

′]C[j − p, j].
This sequence is a circular permutation of the compressed version of some string Sx =

Sl$Sr$S
rc
r $S

rc
l $ ∈ S∗ encoded in the range C[j − p, j + p′]. Computing S ′ from P is simple

as G is string independent (see Definition 6). This feature means that if we recursively ex-
pand every symbol of S ′ and concatenate the result, then we obtain the exact sequence of
Sx. We do not have to deal with border cases in which the prefix of Sx is a proper suffix in
the recursive expansion of C[j − p] or cases in which a suffix of Sx is a proper prefix in the
recursive expansion of C[j + p′].

For constructing the eBWT of C we require P and the alphabet Σ
h
= (Lh,Rh

, f
h).

Given the definition of P , we can easily obtain the root child v encoding C[j] as v =

nodeselect(j + 1). Once we retrieve v, we obtain C[j] with fh(label(v)). For accessing the
circular string S ′ from C[j], we define the function cright. This procedure receives as input a
position j ∈ [1, c] and returns another position j ′ ∈ [1, c] such that C[j ′] is the circular right
context of C[j]. We use cright as the underlying operator for another function, ccomp. This
method compares lexicographically two circular permutations located at different positions
of C. Similarly, we define a function cleft that returns the circular left context of C[j]. We
use cleft to get the eBWT symbols once we sort the circular permutations. To support these
operations, we consider the border cases C[u′ + 1] = C[u] and C[u − 1] = C[u′] for every
Sx ∈ S∗. These exceptions require us to include a bit vector E[1, c] that marks as E[j] = 1
every j th root child of P such that j mod 4 = 0 and its recursive expansion is suffixed by $.
The functions cleft, cright and ccomp are described in Algorithm 2.

We start the computation of the eBWT of C by creating a table A[1, c] with ∣Rh∣ lexi-
cographical buckets. Then, we scan the children of the root of P from left to right, and for
every node v, we store its child rank in the leftmost available cell of bucket fh(label(v)) in A.
This process yields a partial sorting of circular permutations of C; every bucket b contains
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Algorithm 2 Functions to simulate circularity over C
Require: A bitmap E[1, ∣C∣] marking the symbols of C expanding to phrases suffixed by

$.
1: proc cright(j) ▷ returns a j ′ such that C[j ′] is the circular right context of C[j]
2: if E[j] then
3: j ← j − 1
4: while U[j] is false do
5: j ← j − 1

6: return j + 1

7: proc cleft(j) ▷ returns a j ′ such that C[j ′] is the circular left context of C[j]
8: if U[j − 1] then
9: while U[j] is false do
10: j ← j + 1

11: return j
12: else
13: return j − 1

14: proc ccomp(a,b) ▷ circular lexicographical comparison of C[a] and C[b]
15: r1 ← f

h(label(nodeselect(a + 1)))
16: r2 ← f

h(label(nodeselect(b + 1)))
17: while r1 ≠ r2 do
18: a← cright(a), b← cright(b)
19: r1 ← f

h(label(nodeselect(a + 1)))
20: r2 ← f

h(label(nodeselect(b + 1)))
21: return r1 < r2

the permutations that start with symbol b. To finish the sorting, we apply a local quicksort
in every bucket using ccomp as the comparison function (something similar to what we did
in Section 6.4.2). Finally, we produce Bh by scanning A from left to right and appending
every symbol fh(label(nodeselect(cleft(A[j]) + 1))) with j ∈ [1, ∣A∣].

6.6 Inducing the eBWT

This section describes a method called nextBWT, which induces the extended B
i−1 of the

parse Si−1 from the already computed eBWT B
i of the parse Si (Line 7 of Algorithm 1). For

this task, we consider an extra function f iinv that maps a symbol Bi[j] ∈ Ri to its respective
label l ∈ L

i. We use this new function to partially decompress the phrase F = pd
i(l) =

S
i−1[u,u

′] ∈ Di−1 associated with Bi[j] (l = f iinv(B[j])). The general idea of nextBWT is to
decompress all the phrases in Si−1 from B

i and place their symbols in Bi−1. We note that, in
most of the cases, the suffix F [u + 1..] gives us enough right context to place F [u] in Bi−1.
When this information is not sufficient, we complete the operation by using the (circular)
partial ordering of Bi.
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Lemma 2 Let A and B be distinct strings of lengths a, b > 1 (respectively) that appear
as suffixes in two or more phrases of Di−1. Additionally, let Si−1[o, o + a − 1] = A and
S
i−1[p, p+ b−1] = B be any pair of occurrences of these strings as suffixes in phrases of Si−1.

Assume these occurrences of A and B are prefixes in two substrings Si−1[o, j] and Si−1[p, j ′]
(respectively) that recursively expand to different suffixes of S∗. If A ≺LMS B, then Si[o, j]
is lexicographically smaller than Si[p, j ′].

Proof. Clearly, if A and B are not one a prefix of the other, then their ≺LMS order is that of
the expanded strings, Si−1[o, j] and Si−1[p, j ′]. The problem arises when one string is prefix
of the other.

This situation does not happen if one of them is a border phrase (Section 5.3.1) or a
transferred symbol (Section 5.3.2). Border phrases never occur as prefixes of other phrases
because their last symbols always recursively expand to strings in Σ suffixed by a $, and due
to the string independence of G, this character cannot lie within a phrase. In the case of
transferred symbols, they have frequency one in Si−1.

The only scenario in which A can be a prefix of B (or vice-versa) is when both are suffixes
of LMS phrases (Section 5.3). Still, we can obtain their ≺LMS orders by inspecting the suffix
classification of their symbols. Let a string D over the alphabet [0, 1] be the description of
an LMS phrase F . If F [j] is L-type, then D[j] = 1 and if F [j] is S-type or LMS-type,
then D[j] = 0. Now consider the set U with the descriptions of all the LMS phrases of Di−1.
As the pattern LS = 10 only appears as a suffix in the descriptions, U is a prefix-free set.
Therefore, if A is a prefix of B or vice-versa, then we can still decide their orders as long as
both have length more than one.

Now let us go back to the partial decompression F extracted from B
i[j]. We can use

Lemma 2 to obtain the ≺LMS order of every distinct suffix F [u+ 1..] of length > 1 and thus
estimate an range for position for F [u] in Bi−1. In particular, if F [u+1..] has rank b among
the other suffixes in Di−1, then F [u] belongs to the bth block of Bi−1, where a block is a
contiguous segment of Bi−1 containing symbols that are followed in Si−1 by the same suffix
F [u + 1..]. In the following, we refine this idea to complete the induction of Bi−1.

The problem with the method described above is that we cannot obtain the ≺LMS order
for the last suffix s = F [∣F ∣] as it does not have the minimum length > 1 for Lemma 2. We
solve this limitation by building an FM-index of Bi. Thus, in addition to obtaining F , we
also compute the partial decompression F ′ from B

i[LF
−1(j)], the (circular) right context of

B
i[j]. Our purpose is to obtain the right extension sF ′ so we get enough information to find

the range for symbol F [∣F ∣ − 1] in Bi−1. We refer to sF ′ as an artificial string because it
does not necessarily exist in G due to the sequences’ circularity. The FM-index also helps us
to find the symbols that precede F in Si−1. We obtain the phrase F ′′ from B

i[LF(j)] and
we place the last symbol of F ′′ in the bth block of Bi−1, where b is the ≺LMS order of F .

Now we have all the necessary elements to describe how to assign every F [u] ∈ R
i−1

extracted from B
i to a specific block in Bi−1. We consider a new set Di−1

ext that contains all
the distinct suffixes of length > 1 in Di−1, the transferred symbols in Di−1, and the artificial
strings obtained from B

i. We use Di−1
ext to induce a partition over Bi−1; every block in this
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partition stores the symbols that are followed in Si−1 by the same phrase A ∈ Di−1
ext . Thus, if

F [u] is followed by A in Si−1, then it belongs to the bth block of Bi−1, where b is the ≺LMS

order of A in Di−1
ext . The only thing left to compute is the relative order of the symbols within

the blocks of Bi−1. We note we can induce these orders from B
i.

Lemma 3 Let Bi[j] and Bi[j ′] be two BWT symbols at different positions j and j ′, with
j < j

′, and whose pd
i phrases are F and F ′, respectively. Also let Pj and Pj ′ be suffixes of

F and F ′ with the same sequence P ∈ Di−1
ext . The occurrence Pj is lexicographically smaller

than Pj ′ .

Proof. As Pj and Pj ′ are equal, their relative orders depend on the lexicographical ranks of
the phrases to the (circular) right of F and F ′ in Si−1. As Bi[j] appears before (from left to
right) than Bi[j ′], the right context of Pj is lexicographically smaller than the right context
of Pj ′ .

If we generalize Lemma 3 to x ≥ 1 occurrences of P , then we can use the following lemma
for building the block of Bi−1 associated with P :

Lemma 4 Let P ∈ D
i−1
ext be a string with x occurrences as a suffix in the phrases of Si−1.

Let J = j1, j2, . . . , jx be a strictly increasing list of integers. Every Bi[jo], with jo ∈ J , is
a position where the partial decompression pd

i(Bi[jo]) is suffixed by P . Assume we scan J
from left to right, and for every jo, we extract the symbol in Si−1 that precedes the occurrence
B
i[jo] of P . The resulting list of symbols matches the block in Bi−1 for P .

Proof. Because of Lemma 3, we know that the suffix of Si−1 prefixed by the occurrence
B
i[jo] of P is lexicographically smaller than the suffix prefixed by the occurrence Bi[jo+1].

This holds for every jo, with o ∈ [1,x− 1]. In other words, the suffixes of Si−1 prefixed by P
are already sorted in lexicographical order in J . Now suppose we access the occurrences of
P in Si−1 in the same order they are encoded in J and append their preceding symbols into
a list OP . The sequence of the resulting list OP will match a range of Bi−1. That range will
be the bth block in the partition induced by Di−1

ext , where b is the ≺LMS order of P among the
strings in Di−1

ext .

We use Lemma 4 to build all the distinct blocks of Bi−1 in one linear scan of Bi. Then, we
use Lemma 2 to sort the blocks according their right contexts. More specifically, suppose the
symbols in block Bi−1[o, o′] are followed by the same string A ∈ Di−1

ext . If A has ≺LMS order b
in the set, then Bi−1[o, o′] is the bth block of Bi−1. Note that the number of strings we sort
to get Bi−1 is small compared to its size. We use one string per block of Bi−1, regardless of
the block length. On the other hand, it is not necessary to maintain these strings in plain
form as we can access them from P . In the following, we will see that most of these right
context strings were already sorted in a previous step of infBWT, so the whole process of
building Bi−1 is not exhaustive.

We implement nextBWT as follows; we create two empty list Q and Q′. Then, we start
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Figure 6.4: Example of nextBWT. (A) The parse S2 of Figure 5.1. The dashed vertical lines
are the boundaries between the original strings. The numbers below S

2 are the nonterminals
in P assigned to each symbol. The dashed arrow indicates the circular left context of S2[4].
(B) The eBWT B

2 of S2. The dashed rectangles are the suffix array buckets. Column f 2
inv

contains the labels in L2 for the symbols in B2. The strings in column pd
2 are the phrases in

Di−1 (partial decompressions) obtained from B
2. The symbols in column LF are the circular

left contexts in S1 for the strings in f 2
inv. The dashed arrow indicates an LF step for Bi[1].

(C) The information we retrieve the scan of B2. Each curly bracket contains the information
from one position of B2. These curly brackets are read from top to bottom and from left to
right. The symbol to the left of a curly bracket is the label l ∈ Li for the symbol in B2. The
tuples to the right are the elements we append to Q or Q′. They gray values below some
nodes of P are their level-orders, and correspond to the grammar pointers we insert into Q
or Q′. The dashed arrows indicate the steps to get the circular right context with an LF step.

a scan of Bi from left to right. For every Bi[j], we obtain first the partial decompression
F
′ from B

i[LF(j)] and insert the pair (F ′[∣F ′∣], p) to Q, where p is the grammar pointer
(Section 6.4.2) from which we obtain the sequence of F = pd(l), with l = f iinv(Bi[j]). Then,
for every suffix F [u + 1..] of length > 1, we insert the pair (F [u], p) to Q, where p is
the grammar pointer for the sequence F [u + 1..]. After consuming F , we obtain the label
l
′
= f

i
inv(Bi[LF

i−1(j)]) ∈ L
i that identifies in P the nonterminal assigned to Bi[LF

−1(j)].
Finally, we insert the triplet (F [∣F ∣ − 1],F [∣F ∣], p) to Q′, where p is the grammar pointer
from which we obtain the sequence of pd

i(l′). Figure 6.4 shows the related concepts.

After the scan of Bi, the next step is to merge Q and Q
′ to produce Bi−1. The idea is

simple; we stably sortQ by the ≺LMS order of the partial decompressions (second component).
Subsequently, we stably sort Q′ by the ≺LMS order of the artificial strings (second and third
components). Finally, we combine the first components of Q and Q′ in Bi−1. This last step
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Algorithm 3 Inferring Bi−1

Require: P
1: proc nextBWT(f iinv,L

i−1
,R

i−1
, f

i−1)
2: Q← Q

′
← ∅

3: for j = 1 to ∣Bi∣ do
4: F

′
← pd

i(f iinv(Bi[LF(j)]))
5: v ← internalselect(f iinv(Bi[j]) − σ)
6: push pair (F ′[∣F ′∣], nodemap(v)) to Q
7: if label(v) ∉ Li−1 then ▷ partial decompression of label(v)
8: b← f

i−1(label(child(v, 1)))
9: y ← child(v, 2)
10: while true do
11: if nsibling(y) ≠ 0 then ▷ y is not the rightmost child of its parent
12: push pair (b, nodemap(y)) to Q
13: b← f

i−1(label(y))
14: y ← nsibling(y)
15: else
16: if label(y) ∉ Li−1 then ▷ RS nonterminal
17: y ← child(internalselect(label(y) − σ), 1)
18: push pair (b, nodemap(y)) to Q
19: b← f

i−1(label(y))
20: y ← nsibling(y)
21: else ▷ rightmost symbol in the partial decompression
22: z ← child(internalselect(f iinv(Bi[LF

−1(j)]) − σ), 1)
23: push triplet (b, f i−1(label(y)), nodemap(z)) to Q′

24: break
25: Sort Q by second component and Q′ by second and third components
26: B

i−1
← merge Q.first and Q′

.first
27: return FM-index of Bi−1

is equivalent to merging two sorted lists. Let a block be a contiguous range in Q where all
the pairs contain the same grammar pointer p as second component. Similarly, a block in
Q
′ is a contiguous range where all the tuples have the same combination of second and third

components (b, l). Let q and q′ the current blocks of Q and Q′ (respectively) in the merge.
If the partial decompression encoded by p has a smaller ≺LMS order than the artificial string
encoded by (b, l), then we append to Bi−1 the first components of block q and move forward
to the next block q + 1. On the other hand, if the partial string of (b, l) is smaller, then
we insert the first components in the block q′ and move forward to next block q′ + 1. The
procedure of nextBWT is explained in more detail in Algorithm 3.

It might seem like that merging Q and Q′ requires to decompress several strings from P
and then sort them, but it does not. On one side, the distinct grammar pointers of Q were
already sorted in Section 6.4.2, and stored in the array U i. The only thing left is to reorder
Q according to them. More specifically, we scan Q from left to right, and if the second
component of a pair appears in the j th cell of U i then we stably move that pair to the j th
block of Q. On the other hand, the artificial strings of Q′ are partially sorted by the third
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Figure 6.5: The merge of Q and Q
′ in nextBWT. (A) The array U2 of Figure 6.3 and the

lists Q and Q
′ obtained from Figure 6.4(C). The gray symbols above Q are the positions

where the grammar pointers occur in U2. (B) Sorted versions of Q and Q′ and the partially
constructed B1. The dashed boxes are the sorting blocks of Q and Q′. Arrows above Q and
Q
′ indicate the current blocks in the merge. Symbols in gray in Q′ were already inserted into

B
1. (C) Comparison of the sorting blocks of Q and Q′. The grammar pointer for the block

in Q is 12 (ata). The artificial string for the block of Q′ is (a, 23) (a⋅cc$), where 23 is the
grammar pointer for cc$. As both strings start with a, their orders are decided by the next
suffixes ta and cc$. The grammar pointer of ta is 26, and its occurrence in U2 is at position
11. On the other hand, the grammar pointer of cc$ occurs at position 3 in U2. Hence, the
first components in the block of Q′ go first in B1.

component. Let Q′[x] and Q′[y] be two different triplets, with x < y. Also let px be the third
component of Q′[x] and py be the third component of Q′[y]. If px ≠ py, then the partial
decompression referenced by px has a smaller ≺LMS order than the partial decompression of
py as Q′[x] appears first than Q

′[y]. As a consequence, reordering Q′ reduces to a stable
sort by the symbol in the second component.

When inserting the symbols to Bi−1, we have to compare the strings that represent the
blocks q inQ and q′ inQ′. Suppose the grammar pointer for block q is px and the pair of second
and third components for block q′ is (b, py). Then, the string X = pd

i(label(nodeselect(px)))
represents the block for Q and Y = b ⋅ pd

i(label(nodeselect(py))) represents the block for Q′.
If X[1] is equal to Y [1] = b, then the relative order of X and Y is decided by the suffixes
X[2..] and Y [2..]. Still, references to these strings already exist in U

i, and we know they
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are in ≺LMS order. Therefore, it is not necessary to decompress X and Y from P . In U
i,

the cell whose value is nodemap(child(nodeselect(p), 2)) references X[2..] and the cell whose
value py references Y [2..]. From these two cells, the rightmost one indicates which string, X
or Y , has the greatest ≺LMS order. Figure 6.5 shows an example of how to merge Q and Q′

using array U i.

6.7 Implicit Occurrences of the LMS Phrases

So far, we have assumed that the strings in Di−1
ext that we partially decompress from B

i (those
we insert in Q) always appear as suffixes in the phrases of Si−1, but this is not always the
case as sometimes they occur in between phrases.

Definition 7 Let F = XY Z be a LMS phrase of Si−1. The position Si−1[j, j + 2] = F is
said to be an implicit occurrence of F if, during the parsing of LMSg, Si−1[j] = X becomes
a suffix of the phrase at Si[j − p, j], with p ≥ 1, and S

i[j + 1, j + 2] = Y Z is considered
another phrase.

When we execute nextBWT, the implicit occurrences of F are inserted to Q
′, but the

explicit occurrences are inserted to Q. The problem with that situation is that, in the
construction of Bi−1, F is the right context for two sorting blocks, one in Q and other in
Q
′. We know they represent, in practice, one single block of Bi−1, but we do not know how

to merge their symbols. We need to detect the implicit occurrences of F during the scan of
B
i and insert them into Q to fix the problem. We note that an implicit occurrence appears

when F [1] is classified as LMS-type during the parsing of Si−1. We use the following lemma
to detect this situation:

Lemma 5 The locus v of F in P has two children, the left one has a label in Li−1 and the
right one as a label in Li are encodes the occurrence of an RS nonterminal.

Proof. Let F = XY Z and A = Y Z be two LMS phrases in the partition of Si−1. Their
grammar rules are F → XYZ and A → YZ, respectively. As Y Z is a repeated suffix, LMSg
has to create a RS nonterminal for it, but it already exists, it is A. Thus, LMSg reuses it and
replaces YZ with A in the right-hand side of F’s rule. Now A becomes a nonterminal with
dual context.

Before running nextBWT, we scan L
i from left to right to find the internal nodes of P

that meet Lemma 5. For every node v′ that meets the lemma, we create a pair (ll, lr) with
the labels in P of its left and right children, respectively. Then, we record the pair in a hash
table H associated with the value p = nodemap(child(v′, 1)) (a grammar pointer). During
the execution of nextBWT, when we obtain the partial decompression F

′ from B
i[LF(j)]

(Line 4 of Algorithm 3), we add an extra step. We check if the pair formed by the label
in L

i−1 of F ′[∣F ′∣] and the label f iinv(Bi[j]) ∈ L
i has an associated value p in H. If that

happens, then we insert (F ′[∣F ′∣ − 1], p) to Q. Equivalently, when we process the partial
decompression F of Bi[j], we check if the pair formed by the label in L

i−1 of F [∣F ∣] and
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the label l = f
i
inv(Bi[LF

−1(j)]) has a value in H. If so, then we do not insert the triplet
(F [∣F ∣ − 1],F [∣F ∣], p) to Q′, with p = nodemap(child(1, internalselect(l − σ))). This last
step avoids inserting duplicated symbols in Bi−1.

6.8 Inducing the BWT in Run-Length Compressed Space

In every new round i of nextBWT, the size of Bi increases, but its alphabet decreases.
This pattern ensures that, in the last iterations of infBWT, we partially decompress a small
number distinct phrases from B

i several times. To reduce the time overhead produced by
this monotonous way of decompression, we exploit the runs of equal symbols in B

i. More
specifically, if a given range in Bi[j, j ′] of length x = j ′ − j + 1 has the same symbol s ∈ Ri,
then we partially decompress the associated phrase once and multiply the result by x instead
of performing the same operations x times. In other words, suppose the partial decompression
from label f iinv(s) ∈ Li yielded a list of pairs of the type (b, p) and one tuple (b, b′, p′), where
b and b′ are symbols in Ri−1 and p and p′ are grammar pointers. The pairs of type (b, p) are
those we insert to Q while the tuple (b, b′, p) is the one we insert to Q′. By Lemma 3, we
know that the x copies of (b, p) appear in a consecutive range of Bi−1. The same applies for
the x copies of (b, b′, p′). Therefore, when we do not insert every (b, p) x times to Q, but
insert (x, b, p) only once. We do the same for the triplet (b, b′, p′) of Q′.

It is also probable that in the last iterations of infBWT, BWT runs lying close to each
other in Bi will have the same symbol. Consider, for instance, three runs (x, s), (y, s

′) and
(z, s) placed consecutively at some range of Bi. The values s, s′ ∈ R

i are the run symbols
and x, y and z are their lengths. In the current version of nextBWT, we process (x, s) and
(z, s) independently as we are unaware that they are close to each other. However, these
runs are contiguous occurrences of s in Bi, so it is safe to insert (x + z, b, p) to Q instead of
two separated pairs (Lemma 3).

We modify the scan of Bi so that when we visit the second run (z, s), we do not insert its
pairs (z, b, p) into Q. Instead, we increment the first component of rightmost tuple (x, b, p) in
Q by z. To implement this idea, we maintain a small hash table that records the information
of the last visited symbols of Bi. When we reach a new run (x, s), we check first if s exists
as key in the hash table. If so, we extract the rightmost positions in Q for the distinct pairs
(b, p) in the partial decompression pd

i(f iinv(s)), and increment their first components by x.
If s is not in the hash table, then we partially decompress its phrase from scratch and store
its information in the hash table. We can limit the size of the hash table so it is always
maintained in some of the L1-3 caches, and when we exceed this limit, we just simply reset
the hash. Figure 6.6 shows an example.

Another way of exploiting the equal-symbol runs of Bi is with the strings in Di−1
ext that

are unique in the grammar. Consider an internal node v of P whose partial decompression
pd

i(label(v)) is F . If the jth child y of v from left to right has a label in Li−1, then the suffix
F [j..] ∈ Di−1

ext is decompressed only from y. We know this because y was not encapsulated
by any RS nonterminal during the grammar construction. This property means that if the
symbol s = f i(label(v)) ∈ Ri has x occurrences in Bi, then the string F [j..] has x occurrences
in Si−1 as well. All these occurrences are preceded by the same symbol F [j−1]. Therefore, we
can insert (x,F [j − 1], nodemap(y)) to Q only once and forget about F [j..] during the scan
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Figure 6.6: Scanning Bi in run-length compressed space. (A) Run-length compressed version
of Bi. The right column has the run heads and the left column has the run lengths. The
arrow to the left indicates that the scan of Bi is currently at the run (2, 8). The information
of the runs within the white segment of Bi is stored in the hash table H. For each of these
runs, we have the indexes in Q where the pairs of their partial decompressions were stored.
For simplicity, H only shows the information for 8. The positions in Q for the pairs in the
partial decompression of 8 are (4, 5, 6, 7). In those pairs, we increase the first component
(the frequency) by 2, which is the length of the run (2, 8). The grammar subtree for the
nonterminal assigned to 8 is depicted in (B).

of Bi. Computing all the distinct strings like F [j..] from B
i is simple; for each label l ∈ Li,

we get the internal node v = internalselect(l−σ), and its number of children a = nchildren(v).
If a > 2, then we count the x occurrences of s = f i(l) ∈ Ri in Bi using the rank operation in
the FM-index of Bi. Then, for every child y of v whose child rank is in the range [2, a − 1],
we push the pair (x, b, nodemap(y)) to Q, where b ∈ R

i−1 is the symbol obtained from the
left sibling of y. Then, during the scan of Bi, we just skip these y nodes. In Figure 6.6(A),
the grammar pointer p2 encodes a substring cggta that only occurs under the nonterminal
20 in the grammar.

6.8.1 Practical Considerations of nextBWT

The lists Q and Q
′ can be large. However, as we access them linearly, it is not necessary

to have them completely in main memory during the scan of Bi. We can represent them
as semi-external vectors. Additionally, we can build them in parallel. Let p the number of
working threads. We divide Bi into p chunks and we build an independent pair of lists Qu

and Q′
u per each chunk u ∈ [1, p] of Bi. Once we finish the scan, we merge all the Qu lists

in one single Q and all the Q′
u in another list Q′ and continue as before. The parallel scan of

B
i help us to amortize the partial decompressions of the BWT symbols.

Once we infer Bi−1, we produce a RLFM-index from it. This task is not difficult as the
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Number of Plain Compressed % BWT
collections size (GB) size (GB) runs

1 12.77 3.00 31.46
2 23.43 5.30 26.11
3 34.30 7.41 22.70
4 45.89 9.38 20.12
5 57.37 11.31 18.74

Table 6.1: Input datasets for building multi-string BWTs. The compressed size is the space
of the LPG representation. We measured the percentage of BWT runs in a dataset (fourth
column) as the number of equal-symbol runs in its multi-string BWT divided by its total
number of symbols and multiplied by 100. We used the multi-string BWT produced by eGap
to perform the computations.

resulting Bi−1 is actually half-way of being run-length compressed. The only drawback of this
representation is that manipulating Bi−1 can be slow. The RLFM-Index usually represents
the BWT using a wavelet tree (Section 2.2.2). In our case, this feature implies that accessing
a symbol in Bi or performing rank has a slowdown factor of O(log r). This value can be too
slow for our purposes. In practice, we use a bit-compressed array to represent Bi−1 instead of
a Wavelet Tree. We also include an integer vector K of the same size of Bi−1. In every K[j]
we store the rank of symbol Bi−1[j] up to position j. Thus, when we need to perform LF
over Bi−1[j], we replace the rank part in the equation with K[j]. Notice it is not necessary
to fully load K into main memory as its access pattern is linear. We load it in chunks as we
scan Bi−1 during iteration i − 1.

6.9 Experiments

We implemented infBWT as a C++ tool called G2BWT. This software uses the SDSL-lite li-
brary [76] and is available at https://bitbucket.org/DiegoDiazDominguez/lms_grammar/
src/bwt_imp2. As far as we know, there is no available implementation for the eBWT,
so we compared G2BWT against the tools that produce the BCR BWT, the data structure
that most closely resembles the eBWT. We assesed the tools eGap (EG) [55], gsufsort-64
(GS64) [118] and BCR_LCP_GSA (BCR) [7]. EG and BCR are algorithms for constructing the
BCR BWT of a string collection in external or semi-external settings, while GS64 is an in-
memory algorithm for building the suffix array of an string collection, but it can also build
the BCR BWT. We also considered the tool bwt-lcp-em [20] for the experiments. Still,
by default it builds both the BCR BWT and the LCP array, and there is no option to
turn off the LCP array, so we decided not to use it. For BCR, we used the implementa-
tion of https://github.com/giovannarosone/BCR_LCP_GSA. All the tools were compiled
according their authors’ description. For G2BWT, we used the compiler flags -O3 -msse4.2
-funroll-loops.

We used the same five read collections described in Section 5.6 for building the BWTs.
All the reads were 152 characters long and had an alphabet of six symbols (a,c,g,t,n,$).
The input datasets are described in Table 6.1.
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During the experiments, we limited the RAM usage of EG to at most three times the
input size. For BCR, we turned off the construction of the data structures other than the
BCR BWT, and left the memory parameters by default1. In the case of GS64, we used the
parameter –bwt to indicate that only the BCR BWT had to be built. The other options were
left by default. For G2BWT, we first grammar-compressed the datasets using LPG (Chapter
5) and then used the resulting files as input for building the eBWTs. In addition, we let
G2BWT to use up to 18 threads. The other tools ran in serial as none of them supported
multi-threading.

There is an extra decompression cost when working with BCR, EG, and GS64 that G2BWT
does not have. Sequencing platforms or public repositories of DNA sequences usually deliver
read collections in compressed form2, but BCR, EG, and GS64 manipulate the input in plain
form. This difference in the input format means that we have to decompress the reads first
to use these tools. In contrast, G2BWT processes the input in compressed form as it works on
top of the grammar computed with LPG.

We simulated this extra cost by compressing our input datasets using p7-zip and then
measuring the decompression time. We assessed the performance of G2BWT first without
adding that cost to BCR, EG, and GS64 and then adding it. All the experiments were carried
out on a machine with Debian 4.9, 736 GB of RAM, and processor Intel(R) Xeon(R) Silver
@ 2.10GHz, with 32 cores.

6.10 Results and Discussion

The results of our experiments without considering the decompression costs for BCR, GS64
and EG are summarized in Figure 6.7. The fastest method for building the eBWT was GS64,
with a mean time of 0.91 µsecs per input symbol. It is then followed by BCR, G2BWT and EG,
with mean times of 0.94, 1.32 and 2.61 µsecs per input symbol, respectively (Figure 6.7A).
Regarding the working space, the most efficient method was BCR, with an average space of
0.17 bytes of RAM per input symbol. G2BWT is the second most efficient, with an average of
0.78 bytes. EG and GS64 are much more expensive, using 3.07 and 10.54 bytes on average,
respectively (Figure 6.7B). Adding the decompression overhead to BCR, GS64 and EG increases
the running times by 0.02 µsecs per input symbols in all the cases. This negligible penalty
owes to the fact that p7-zip is fast at decompressing the text.

Although G2BWT is not the most efficient method on average, it is the only one that becomes
more efficient as the size of the collection increases. While the space and time functions of
BCR, EG and GS64 seem to be linear with respect the input size, and with a non-negative slope
in most of the cases, in G2BWT these functions resemble a decreasing logarithmic function.
This behavior is due to the fact that G2BWT processes several occurrences of a given phrase
as a single unit, unlike the other methods. Thus, the cost of building the eBWT depends of
S more on the number of distinct patterns in the input rather than on its size. As genomes
are repetitive, appending new read collections to a dataset increases its size considerably, but

1We asked the authors how to select the best parameters for I/O buffers. They advised us not to increase
the buffers too much and find a value that fitted our architecture. We decided to leave it as the default.

2gzip is the preferred format.
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Figure 6.7: Performance of the tools for building the eBWTs. These results do not include
the decompression overhead for BCR, GS64, and EG.

not its number of distinct patterns. As a consequence, the per-symbol processing efficiency
increases.

The performance improvement of G2BWT is also observed when we asses the trade-off
between time and space (Figure 6.7C). Although BCR is the one with the best trade-off, the
instances of G2BWT move toward the bottom-left corner of the graph as we concatenate more
read collections. In other words, the more massive and repetitive the input is, the less is
the time and space we spend on average per input symbol to build the eBWT. This is an
important remark, considering that the input collections are not as repetitive as other types
of texts. In most of the datasets, the number of eBWT runs is relatively high (see Table 6.1).
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Chapter 7

An Index for Navigating the Layout of
Reads

The algorithmic ideas we have developed so far (Chapters 5 and 6) facilitate manipulating
raw sequencing data in compressed space. In particular, we can compute the eBWT of a
collection of reads directly from its grammar representation. However, this functionality per
se is still not enough for practical biological analyses.

In this chapter, we describe a new framework based on Wheeler graphs (Section 3.2.1)
that enables the extraction of biological information in succinct space. We first formalize
the idea of the layout query, and explain how this concept can be used to perform genomic
analyses. Then, we show how to answer the layout query within the context of variable-order
de Bruijn graphs (vo-dBG) (Section 4.3.1). Using these ideas, we derive a new data structure
that we call the overlap tree, which allows us to answer the layout query in a much more
efficient way.

We augment BOSS (Section 4.3.1), the succinct representation for dBGs, with the overlap
tree and implement a genome assembler on top it. We call the resulting data structure
rBOSS. Our rBOSS index increases the space by 4n + o(n) bits, where n is the number of
rows in the BOSS matrix. In exchange, we can compute the layout query in O((k+ o) log σ)
time, where k is the dBG order and o the number of overlapping strings in the input. In
contrast, VO-BOSS (Section 4.3.1), the succinct encoding of a vo-dBG, uses n log k(1+o(1))
extra bits and it is much more slower at answering the layout query.

Our experimental results showed that, by using k = 100, the assembler implemented on
top of rBOSS produces contigs of mean sizes over 10,000, which is twice the size obtained by
using a pure dBG of fixed length k. Additionally, rBOSS was 20% smaller than VO-BOSS
in our datasets.

The use of the overlap tree is not limited to dBGs only. We describe at the end of the
chapter how to adapt it for other BWT-based representations, such as the BCR BWT or the
eBWT. This last subject is of interest considering the algorithmic ideas we developed in the
previous chapters of this thesis.
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A preliminary version of this work [51] was presented at the 30th Annual Symposium on
Combinatorial Pattern Matching (CPM 2019).

7.1 Definitions
Let S = {S1, . . . ,Sq} be a collection of q sequencing reads with average length z. Further, let
S∗ = {S1,S

rc
1 , . . . ,Sq,S

rc
q } be a collection of size 2q that contains the strings in S along with

their reverse complements. Let us denote G the dBG of order k obtained from S∗ and G
′

the variable-order dBG with maximum order k obtained from S∗. A walk P = v1, v2, . . . , vt
over G, or over G′, is a sequence of t nodes where every vi, with i ∈ [1, t − 1], is connected
with vi+1 by an edge. P will be a path if all the nodes are different, except possibly the first
and the last ones. If v0 = vt, P is said to be a cycle. P is unary if the nodes (v0, . . . , vt−1)
have out-degree one and the nodes (v1, . . . , vt) have in-degree one. P will be a right walk if
we follow the edge from vi to vi+1, and a left walk if we follow the edge from vi+1 to vi (i.e., in
reverse direction to the edge). The string formed by the concatenation of the edge symbols
of P is referred to as its label.

We assume G and G′ are encoded using the BOSS and VO-BOSS representations (respec-
tively). Let M be the matrix (implicitly) encoding the nodes with order k in BOSS and
VO-BOSS. We denote the range of rows in M suffixed by the label of v as qv . Additionally,
we make use of the BOSS functions outneighbor, nodelabel , label2node, and the VO-BOSS
function shorter (see Section 4.3.1).

Rows of M representing substrings of size k − 1 in S∗ are called solid nodes and rows
representing artificial (k − 1)-length strings padded with dummy symbols from the left, and
that represent prefixes in S∗, are called linker nodes. For a linker node v, the function
llabel(v) returns the non-$ suffix of its label. A solid node appearing as a suffix in S∗ is
called an s-node and a solid node appearing as a prefix in S∗ is called a p-node. A linker
node v is said to be contained within another node v′ (solid or linker) if llabel(v) is a suffix
in the label of v′.

An overlap of size o between two solid nodes v and u, denoted v ⊕o
u, occurs when the

o-length suffix of v is equal to the o-length prefix of u. Relative to v, v ⊕o
u is a forward

overlap and u ⊕o
v is a backward overlap. We consider a minimum threshold m < k − 1 so

that the overlap v⊕o
u is valid if (i) m ≤ o < k − 2 and u is a p-node, or (ii) o = k − 2 and u

is a solid node of any kind.

The consensus string formed by the union of the solid nodes v and u is denoted label(v⊕o
u).

We lift the operator v1⊕
o1 v2 . . . vp−1⊕

op−1 vp to denote a sequence Q of p solid nodes in which
every vi, with i ∈ [1, p − 1], has a valid forward overlap with the nodes vi+1, . . . , vp. The
function label(Q) returns the consensus string formed by the union of the nodes in Q. We
say that Q is right-maximal for v1 if there is no solid node vp+1 such that Q⊕op vp+1 is a valid
sequence of forward overlaps. Equivalently, an overlap sequence Q = vp ⊕

op vp−1 . . . v2 ⊕
o2 v1

is left-maximal for v1 if there is no other solid node vp+1 such that vp+1 ⊕
op+1 Q is a valid

sequence of forward overlaps. When Q is not right-maximal for v1 and label(Q) is a prefix
in more than one different right-maximal overlap sequence for v, then Q is ambiguous. We
also extend this nomenclature for reads in S∗, not just dBG nodes.

106



7.2 The Layout Query

We define the layout query as a function that receives as input a string Si ∈ S∗ and returns
a list of tuples Q = {Q1,Q2, . . . ,Qe}, where each Qj ∈ Q is a set of reads that form a right-
maximal sequence of overlaps for Si. Depending on the output of the layout query, we can
recognize different biological signals. We describe some of them and their causes:

1. Q contains only one tuple Q. If the read coverage is enough, then it is highly likely
that the string label(Q) exists as a substring in only one place of the source DNA.

2. Q = {Q1,Q2} has two elements and A = label(Q1) and B = label(Q2) are almost
identical strings. In this case, it is possible that A and B match the same segment of
the source DNA, and that the matched segment contains variable nucleotides (i.e., a
SNP). The chances for A and B to represent this kind of signal increases if Q1 and
Q2 have similar lengths and the source DNA was extracted from a diploid organism
(Section 4.2).

3. Q has two elements and their labels are almost identical (as in case 2). However, one
of the tuples is smaller, and it has only one element. This situation might indicate that
the label of the smaller tuple contains a sequencing error.

4. Q has several tuples, and all with similar lengths. This signal might indicate that Si is
a string that appears several times in the source DNA, with different right contexts.

Using the signals described above we can perform most genomic analyses that rely on
sequencing data. For instance, if we are assembling a genome, we can append new reads into
a contig as long as the layout query returns tuples of type 1, 2 and 3 for them. If, on the
other hand, we are interested in SNP calling, we can focus on reads with tuples of type 2.
Still, it might happen that a sequence Q′

= S1 ⊕
1
v2 . . . Se−1 ⊕

Se−1 Se is a prefix in more than
one element of Q. In such case, it is better not to use Q′ to make any biological inference as
it is ambiguous. Considering this detail, we define a confidence measure for each Qj ∈ Q:

weight(Qj) =
∣Qj∣ − ∣Q′

j∣
x ,

where Q′
j is the longest ambiguous prefix that Qj shares with another element of Q and x is

the number of reads that overlap Si and that were uniquely assigned to one sequence of Q.
The reads in Qj and Q

′
j are a subset of all the reads overlapping Si, so weight(Qj) is always

in the range [0, 1]. With this formula, we formally define the function layout(Si) as follows:

• layout(Si) : returns a tuple (Sj,Oj,wj) for every element of Qj ∈ Q, where Sj is
the rightmost read of Qj, Oj is the suffix of label(Qj) that does not overlap Si, and
wj = weight(Qj).

Figure 7.1 depicts graphical examples of these ideas.
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Figure 7.1: Graphical examples of the signals described in Section 7.2. In (B), the read
gaccgggaatt (above S1) is not assigned to any overlap sequence because it is ambiguous.

To our knowledge, there is no data structure that supports the layout query. The classical
dBG and string graph could not answer it because they lack information. In a dBG of order
k, the overlaps of less than k − 1 characters between the reads are not encoded. In a string
graph, on the other hand, the transitive edges are removed to perform structural compression,
but these edges are necessary to compute the tuples in Q. We consider layout(Si) to be a
useful primitive to traverse the reads and make inferences on the fly about the underlying
source DNA.

We note that the concept of layout(Si) can be easily adapted to dBGs; instead of using
reads as input, we use solid nodes. In later sections, we show how to augment BOSS to
support the layout primitive. We believe this extra feature would make BOSS almost as
powerful as the BCR BWT or the eBWT for extracting genomic information. The idea is
compelling if we consider that this succinct dBG representation requires less space than the
BCR or the eBWT, and it is cheaper to construct.

The first step to implement layout in BOSS is to have a primitive that computes overlaps
between node labels. This function would allow us to detect overlaps of less than k − 1
characters between reads. The only succinct dBG representation we know of that could
support the layout query is VO-BOSS (Section 4.3.1), the one aimed for vo-dBGs. In the
next section, we show how varying the order in VO-BOSS is related to computing overlaps
of less than k − 1 characters between reads.

7.3 Computing Overlaps in a vo-dBG

Let A = {Si, . . . ,Si+x} be a set of reads in S∗ forming a valid sequence of forward overlaps
Q = Si ⊕

oi Si+1 . . . Si+x−1 ⊕
oi+x−1 Si+x, where the overlaps oi, . . . , oi+x−1 are of length ≥ k − 1.

Also, let Wi+j be the walk in G spelling the read Si+j, with j ∈ [0,x]. Given the definition
of the dBG, we know the nodes in Wi+j are reachable from the nodes in any of the other
walks of G spelling strings of A. Still, these walks can be entangled with other walks in
G spelling other strings of S∗, which makes the navigation of Q difficult. We can reduce
the entanglement of G by choosing a high order k, but this decision can make the dBG
too disconnected to be useful. Notice, however, that the nodes in Wi+j remain connected,
regardless the value of k. The real problem in using a high dBG order is that the overlaps
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between reads of Q will not be captured by edges of G if the length of the overlaps is less
than k − 1, which becomes more likely when k is high. We can solve this problem using the
VO-BOSS index for G′, the vo-dBG constructed from S∗.

Assume we select a high order k for building G′. We pick an arbitrary node y at order k
representing a prefix of Si (a p-node). We can easily check that by inspecting whether the
label in one of the incoming nodes of y is padded from the left with a dummy symbol. Then,
we perform a right walk over G′ starting from y. If we reach a solid node v with out-degree
one, and whose outgoing edge is labeled with $, then nodelabel(v) only appears as a suffix
in the reads of S∗ (as s-node), and the overlaps of these reads (if any) are less than k − 1
characters long. We need to find a p-node whose label overlaps the label of v to continue
with the navigation of Q. For that purpose, we decrease the order of v using shorter to obtain
a node u whose label is both a suffix of nodelabel(v) and a prefix of some read in S∗. From
u, we retrieve the overlapping p-nodes of v using the function outneighbor.

In VO-BOSS, however, shorter does not ensure that the label of u appears as a prefix in
S∗. The next lemma precises the condition that must hold to ensure this.

Lemma 6 In VO-BOSS, applying the operation shorter to a node v of order k′ ≤ k will
return a node u of order k′′ < k′ that encodes a forward overlap for v iff qu [1] is a linker node
contained by v.

Proof. Let the left contexts of u be the prefixes of length k − k′′ in the range of rows qu of
M . If all the left contexts of u are non-dummy strings, then nodelabel(u) does not appear as
a prefix in S∗, and hence, following none of its edges will lead to a valid overlap of v. On the
other hand, if nodelabel(u) appears as a prefix in S∗, then there is a node v′ in G′ at order k
whose label is formed by the concatenation of a dummy string and nodelabel(u), and that by
definition is a linker node contained by v. As the rows in M are sorted in colexicographical
order, the ties for the labels in qu are broken by the left contexts of u. Therefore, v′ is placed
in qu [1] because the dummy string is always colexicographically the smallest.

Lemma 6 allows us to spell the sequence of a read Si ∈ S∗ provided we already spelled a
read Sj ∈ S∗ that overlaps one of the prefixes of Si. Unlike the regular dBG, this property
holds even if Si and Sj overlap by less than k − 1 characters. With Lemma 6 there is no
problem in selecting a high dBG order for G′ as we can still retrieve most of the overlap
sequences for the reads (the Q list). Recall that a high value for k avoids the entanglement
of the dBG. The only caveat is that we need to define a minimum threshold 1 < m < k − 1
for the overlaps to reduce spurious connections between strings of S∗. We now formalize the
idea of Lemma 6 in a function called nextlinker. Let v be a vo-dBG node at order k, then the
function is defined as follows:

• nextlinker(v): returns the greatest linker node v′ < v at order k whose llabel represents
both a suffix of label(v) and a prefix of some other node in G′.

Theorem 5 There is an algorithm that solves nextlinker(v) in O((k −m)k log σ) time.
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Algorithm 4 Build set E with the linker nodes contained by v
1: proc nextlinker(v,m) ▷ returns the greatest linker node v′ contained by v with

∣llabel(v′)∣ ≥ m
2: d← v.order − 1
3: while d ≥ m do
4: u← shorter(v, d)
5: if

q
u ⊃

q
v then

6: if islinker(u) and ∣llabel(u)∣ = d then
7: return

q
u [1]

8: v ← u
9: d← d − 1
10: return 0 ▷ dummy node

11: proc getlinkers(v,m) ▷ v is a vo-dBG node and m is the minimum suffix size
12: E ← ∅
13: c← nextlinker(v,m)
14: while c>0 do
15: E ← E ∪ {c}
16: c← nextlinker(c,m)
17: return E

Proof. Incrementally decrease the order of v by one until reaching a node u with qu ⊃ qv , and
that satisfies Lemma 6. If such u exists, return it. If the order of v decreases below m before
finding u, then v does not contain any linker node v′ with ∣llabel(v′)∣ ≥ m. In such case, we
return a dummy vo-dBG node. The function reduces the order at most k−m−2 times. In each
decrement of order, we use the operations shorter and llabel to check Lemma 6, which take
O(log k) and O(k log σ) time (respectively). Thus, the total time is O((k −m)k log σ).

Notice, however, that a vo-dBG node in G
′ might have more than one contained linker

node v′ with ∣llabel(v′)∣ ≥ m. A useful operation then would be one that returns a set E with
the identifiers in VO-BOSS of all those relevant linkers. We can then follow the outgoing
edges of every l ∈ E to infer the solid nodes that overlap v by at least m symbols.

• getlinkers(v,m): the set E with all the linker nodes contained by v that represent a
suffix of v of length ≥ m.

The function getlinkers applies nextlinker iteratively until it returns a node u whose llabel
has length less than m. The rationale is that if v contains v′, and in turn v′ contains v′′, then
v also contains v′′. If we iterate over the k −m orders of the vo-dBG, then we can obtain all
the linkers contained by v. Consequently, nextlinker and getlinkers have the same worst-case
time complexity under the vo-dBG model. Algorithm 4 shows the details.

Now we use getlinkers to define a new primitive for VO-BOSS:

• foverlaps(v): returns the set of p-nodes whose prefixes overlap suffixes of v with length
≥ m.
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We implement this function by computing the set E = getlinkers(v) and then traversing
all the forward paths that start in a node l ∈ E and end in a p-node. We use the BOSS
function forward to traverse these paths. Thus, the time complexity for foverlaps(v) is given
by the next theorem.

Theorem 6 Computing foverlaps(v) takes O((k −m)((k + σk−m) log σ)) time.

Proof. Computing getlinkers(v) takes O((k −m)k log σ) time, and the resulting list E con-
tains no more than k−m linker nodes. If we assume that the path Pl staring in a node l ∈ E
and ending in a p-node is unary, then its traversal requires no more than k −m outneighbor
operations. Thus, the total time for reaching all the p-nodes from the linker nodes in E is
O((k −m)2

log σ). In reality, however, each node in Pl can have up to σ distinct outgoing
edges, which rises the time complexity to O((k −m)σk−m log σ). This time complexity plus
the time complexity for computing E gives us the final result for this theorem.

If we chose k = z+1 to build VO-BOSS index for G′, then we can simulate the full overlap
graph in compact space. Every vo-dBG node v at order k with an outgoing edge labeled
with $ encodes a specific read Si ∈ S∗. The arcs of the node labeled with Si in the overlap
graph are not stored explicitly, but computed on the fly from v. More specifically, we can
reach from v all the vo-dBG nodes whose labels are reads in S∗ and that overlap suffixes of
Si. For this task, we compute E = getlinkers(v) and then follow the outgoing edges of every
node l ∈ E until reaching another node that has an outgoing edge labeled with $. Still,
the complexities of the involved operations nextlinker makes VO-BOSS slow for exhaustive
traversals, which is our main interest. We describe a faster alternative in the next section.

7.4 The Overlap Tree and rBOSS

We can regard the function getlinkers as a bottom-up traversal of the trie T induced by the
(k−1)-length labels of M read in reverse. Every trie node t corresponds to a vo-dBG node v
whose order is the string depth of t. The traversal starts in the trie leaf t corresponding to the
vo-dBG node v given to getlinkers, and continues upward until finding the last ancestor t′ of t
with string depth ≥ m. The movement from t to t′ is equivalent to the successive application
of nextlinker. In each such application, we move from a node t to its nearest ancestor t′ that
is maximal (i.e., has more than one child) and whose leftmost child edge is labeled by a $.

Since non-maximal nodes in T are not relevant for building E, we can implement nextlinker
using the topology of the compact trie T (i.e., collapsing unary paths) instead of using shorter.
In this way, we get rid of the LCS structure of VO-BOSS (see Section 4.3.1). Moreover, we
can succinctly encode the topology of the compact trie if we use one of the representations
of Section 2.2.3. For this particular case, we will use BP [138].

Replacing the LCS with the topology of T poses two problems, though. First, it is
not possible to define a minimum dBG order m from which overlaps are not allowed, and
second, Lemma 6 cannot be checked. Both problems arise because, unlike the LCS, the BP
representation does not encode the string depths of the tree nodes (and thus, the represented
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Figure 7.2: Example of rBOSS with parameters k = 11 and m = 2. (A) The range of rows
in M for solid node 11 (atttggagta) and the linker nodes contained by it (rows 4 to 10).
Columns L and B are the elements of the succinct dBG encoding. The dashed rows are linker
nodes, but they are not contained by node 11. For simplicity, we did not include the padding
of $ characters in M . (B) Subtree of T ′ mapping the range [4, 11] in M . The squares are
leaves and the circles are internal nodes. The leaf in black maps node 11 in M . The numbers
next to the leaves are their leaf ranks in pre-order. The dashed leaves map the rows in M
that are not contained by 11. The array of parentheses below represents the same subtree in
BP format. The rank of every leaf (leafrank) is shown above its relative position in the BP
array (leafselect). Each dashed arrow represents a call of the function nextlinker and all the
arrows together stand for the function getlinkers.

node lengths). Still, we can reduce the topology of T to precisely the nodes of interest for
nextlinker, and thus avoid any check. We call this structurally-compressed version of T the
overlap tree.

Theorem 7 There is a structure using 4 + o(1) bits per dBG node that implements the
function nextlinker in O(1) time and the function getlinkers in O(k −m) time.

Proof. The structure is the BP encoding of a tree T ′ that we obtain by removing some nodes
from the compact trie T (T has one leaf per dBG node, and less than 2 nodes per dBG node
because it is compact). First, we discard all the internal nodes of T with string depth below
m, and connect the subtrees left to the root of T ′. Second, we discard every internal node
t
′
∈ T whose leftmost-child edge is not labeled by a dummy string, and recursively connect

its children to the parent of t′. Note that all the leaves of T are in T ′.

T
′ has precisely the nodes of interest to implement nextlinker(v). We simply find the ith

left-to-right leaf t in T
′, where i is the row of M corresponding to v (note that rows of M

and leaves of T and T ′ are in the same order). Then, we move to the parent t′ of t and return
its leftmost child. An exception occurs if the leftmost child of t′ is precisely t, which means
that v is a linker node and thus its next contained node is the leftmost child of the parent of
t
′. Finally, we return the rank in of the desired leftmost leaf. Algorithm 5 shows the details.

All the operations are implemented in O(1) time in BP, and thus nextlinker(v) is also
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Algorithm 5 Function nextlinker implemented with the topology of T ′

1: proc nextlinker(v) ▷ v is a vo-dBG node at order k
2: t← leafselect(T ′, v) ▷ node in T ′ mapping v
3: t

′
← parent(T ′, t)

4: if fchild(T ′, t′) = t then ▷ t is already the leftmost child of its parent
5: t

′
← parent(T ′, t′)

6: l ← fchild(T ′, t′)
7: return leafrank(T ′, l) ▷ vo-dBG node mapping l

implemented in O(1) time. The function getlinkers stays the same, and its cost is dominated
by the (at most) k −m calls to nextlinker.

In what follows we devise a more efficient approach for computing foverlaps(v) that uses
the topology of the overlap tree and the reverse complements of the node labels. We need to
define first the idea of bidirectionality in rBOSS.

7.5 Simulating Bidirectionality

We build rBOSS on S∗ because the reads in S are produced from any of the strands of the
source DNA. Consequently, there are several combinations in which two strings, Si,Sj ∈ S
can have a valid suffix-prefix overlap: (Si,Sj), (Si,Srcj ), (Srci ,Sj), or (Srci ,S

rc
j ), and all must

be encoded in T ′. An interesting consequence of including the reverse complements is that
the topology of the dBG becomes symmetric.

Lemma 7 The incoming symbols of a dBG node v are the DNA complements of the outgoing
symbols of vrc, the node labeled with the reverse complement of nodelabel(v). Equivalently,
the outgoing nodes of vrc are the same as the DNA complements of the incoming nodes of v.

Proof. Consider the (k − 1)-length substring bXc of S, and a symbol a that appears to
the left of some occurrences of bXc. We consider both abXc and its reverse complement
(abXc)rc = c

c
X
rc
b
c
a
c to build rBOSS. This decision produces the dBG node v labeled bXc

to have an incoming symbol a, and the dBG node vrc labeled (bXc)rc = c
c
X
rc
b
c to have an

outgoing symbol ac. Thus, the label of node outneighbor(vrc, ac) will be Xrc
b
c
a
c, which is the

reverse complement of string abX, the label of node inneighbor(v, a).

As a result of including the reverse complements of the reads, the cost of computing the
incoming symbols of node v becomes proportional to the cost of computing the position of
v
rc in the BOSS matrix. We refer to this latter operation as rcnode, and formally define it

as follows:

• rcnode(v): node vrc such that nodelabel(vrc) = nodelabel(v)rc
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Figure 7.3: Implementing foverlap using the bidirectionality of rBOSS. (A) A solid node v1,
with label atttggacga, along with the other nodes that overlap its suffixes (gray sequences).
(B) The range of rows inM for v1 = 11 and the linker nodes contained by it. The dashed box
indicates llabel(4) = ca. (C) Range [i, j] of nodes in M suffixed with X = llabel(4)rc = tg.
The strings to the right of M are path labels that match prefixes of Z = ctccaaat.

Theorem 8 Computing rcnode(v) takesO(k log σ) time. By augmenting rBOSS with s log n
extra bits, s being the number of solid nodes, the time decreases to O(1).

Proof. We compute first the string X = nodelabel(v)rc in O(k log σ) time using the BOSS
primitives, and then we perform label2node(X) to find v

rc. Therefore, rcnode(v) takes
O(k log σ) time. Alternatively, we can store an explicit permutation on the s solid nodes
in M , so that using s log n bits we find the position of vrc in M in O(1) time.

Theorem 8 allows us to compute the forward overlaps of v in time proportional to the size
of the label of v.

Theorem 9 Using the bidirectionality of rBOSS we can implement foverlaps(v) in O((k +
o) log σ) time, where o is the number of nodes that overlap suffixes of v by at least m
characters.

Proof. We first obtain E = getlinkers(v) to get the linker node l = E[∣E∣] representing the
smallest suffix of v. Then, we compute X = llabel(l)rc and search for the range [i, j] of rows
in M where the labels are suffixed by X. From the nodes in [i, j], we follow the dBG paths
spelling prefixes of Z = nodelabel(v)rc[∣X∣+ 1..]. However, instead of traversing these paths
independently, we apply the function outneighbor in batch. The idea is as follows; let p be
the current step in the path traversals and let a = Z[p] be the symbol that the paths should
match at step p. During step p, we obtain the nodes in [i, j] with an outgoing edge labeled
with $, and report their reverse complement nodes as overlaps for v. Then, we update [i, j]
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for the next traversal step p + 1 as:

i = select1(B, i − 1) + 1)
j = select1(B, j))
i = rank1(I,C[a] + ranka(L, i))
j = rank1(I,C[a] + ranka(L, j)),

where C and I are elements of BOSS. C is the array with the symbol frequencies and I
is the bit vector encoding the nodes’ in-degree. We continue doing this process until the
symbols of Z are consumed completely or [i, j] becomes empty. Computing the first range
[i, j] takes O((k −m)+ k log σ) time. Then, every batched outneighbor step takes O(log σ)
time, and there are no more than k − m of them as this is the maximum length for Z.
Additionally, extracting the o distinct $ symbols takes O(o log σ) time, and computing their
reverse complement nodes takes O(1) if we use the permutations. Thus, foverlaps can be
performed in O((k + o) log σ) time.

Figure 7.3 exemplifies the overlap function. Note we can obtain the backward overlaps for
v if we use foverlaps on the reverse complement node for v. We formally define the symmetric
function boverlaps:

• boverlaps(v): the set of s-nodes whose suffixes overlap prefixes of v with length ≥ m.

7.6 Implementing the Layout Query
In this section, we explain how to implement layout on top of rBOSS. First, we slightly
modify the definitions of Section 7.2 to adapt the function for dBGs. The input will be a
solid node v in BOSS representation for G instead of a read in S∗. Additionally, the list
Q = {Q1,Q2, . . . ,Qe} will contain the e distinct right-maximal overlap sequences for v. In
this case, however, the strings of every Qj = v ⊕

ov v2 . . . vu−1 ⊕
ou−1 vu ∈ Q are not reads but

solid nodes.

Implementing layout(v) requires us to modify the regular foverlaps function as follows: once
we obtain the range [i, j] of M ’s rows for X (see Section 7.5), we initialize three vectors, Y ,
O and P . Y = i, . . . , j will initially store the nodes in [i, j], and O and P will be empty. In
every batched outneighbor step p, we remove Y [u− i+ 1] if node u, with u ∈ [i, j], does not
have an outgoing edge labeled with a = Z[p], and maintain the relative order of the other
nodes that remain in Y . Additionally, when a node u in [i, j] has an outgoing edge labeled
with $, we move Y [u− i+ 1] to O and push the pair (urc, ∣X∣+ p) to P . After finishing the
batched outneighbor steps, O will contain the nodes in the first range [i, j] from which we
can start a path traversal labeled with a prefix of Z. On the other hand, P will contain the
information of the solid nodes that overlap label(v).

The next step is to get the different right-maximal overlap sequences of v using O, P ,
and T

′. For simplicity, we assume O was left sorted in increasing order after the batched
outneighbor steps. We first initialize an empty list X and two temporal variables c = ∣O∣
and l = 1. Also, we obtain the leaf y in T ′ that maps the dBG node O[c]. Then, we begin a
bottom-up traversal in T ′ from y. In each step, we go to the leftmost sibling y′ of y. When
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Figure 7.4: Implementing layout in rBOSS. (A) The same solid node v1 of Figure 7.3 along
with its overlapping nodes. The node v5 (light gray) belongs to the right-maximal overlap
sequence Q2, while nodes v2,v3 and v4 (dark gray) belong to the right-maximal sequence Q1.
The output of layout(v1) is depicted below. (B) Range [i, j] of labels in M suffixed with
tg = carc and the subtree of T ′ that maps the range [i, j] of M . The leaf colors (except
the black one) denote the right-maximal sequences to which the corresponding dBG nodes
belong.

y is already the leftmost child of its parent, y′ becomes the leftmost sibling of the parent of
y. If y′ maps the dBG node O[c − 1], then we increment l by one, decrement c by one, and
set y = y′. When y′ does not map O[c − 1], we distinguish two cases:

• The leaf y′ maps some node O[c′], with c′ < c− 1. This situation means that the solid
node in P [c′] can be assigned to more than one sequence of Q. We mark O[c′] to skip
it later.

• The leaf y′ maps a node u in [i, j], but u is not in O. No path starting at u and
finishing in a solid node matches a prefix of Z. In this case, we do not mark any node.

When one of these two situations occur, we insert the pair (x, s, l) toX, where P [c+l−1] =
(x, s). We also set l = 1 and decrement c until finding the next unmarked node in O. The
tuple in X is a succinct encoding for an overlap sequence Qj ∈ Q, where x is the rightmost
node in Qj, s is the length of the prefix in nodelabel(x) that overlaps nodelabel(v) and l is
the length of Qj. After updating c and l, we update y to the leave in T ′ that maps the dBG
node O[c] and start a new bottom-up traversal of T ′ from y. We stop when O is completely
consumed.

In the last step of layout, we obtain from X the tuple (vj,Oj,wj) of every overlap sequence
Qj ∈ Q. Let (x, s, l) be the tuple in X[j], then we set vj = x, Oj = label(x)[s + 1..], and
wj = l/l′, where l′ is the sum of all the distinct l values in X. Figure 7.4 shows an example
of the process.

Theorem 10 The function layout(v) can be implemented in O((k+ r+ e(k−m)) log σ+ o)
time in rBOSS, where r is the length of the first range [i, j], o is the number solid nodes
that overlap suffixes of v and e is the size of Q.
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Function Description Time
Complexity

nextlinker(v) greatest linker node contained by v O(1)
getlinkers(v) all linker nodes contained by v O(k)
rcnode(v) node vrc with nodelabel(vrc) = nodelabel(v)rc O(1) / O(k log σ)
foverlaps(v) solid nodes overlapping suffixes of v O((k + o) log σ)
boverlaps(v) solid nodes overlapping prefixes of v O((k + o) log σ)
layout(v) right-maximal overlaps sequences for v O((k + r + e(k −m)) log σ + o)

Table 7.1: Primitives for rBOSS. The time complexity of rcnode vary depending on if we add
the permutation.

Proof. Computing the first range [i, j] and then the batched outneighbor steps takes us
O((k−m)+ k log σ) time as before. However, this time we have to check which positions in
the range [i, j] of every outneighbor step p do not match a = Z[p]. For doing so, we consider
the array L of BOSS (Section 4.3.1) to be run-length compressed. In every step p, we use
the selecta operation on L to visit the equal-symbol runs labeled with a within [i, j]. The
symbols between these runs are mismatches for a, so we use their positions to build the sets
P and O. Note that the number of equal-symbol runs of a we visit in every distinct range
[i, j] depends on the number of mismatches. In turns, the sum of mismatches in all the
outneighbor steps is no more than r, the length of the first range [i, j]. Therefore, we do not
incur in more than r selecta operations, which take O(r log σ) time. Then, building the set
X takes O(o) time as the only leaves of T ′ we visit are in O. Building the e distinct tuples of
layout from X takes us O(e(k−m) log σ) time. This last complexity is due to the extraction
of string Oj. Thus, the final time complexity for layout is O((k+ r+ e(k−m)) log σ+o).

Table 7.6 summarizes all the new primitives that rBOSS supports.

7.7 The Layout Query and the BWT of the Reads

We can implement the layout function described in Section 7.2 using the eBWT of S∗ (Sec-
tion 2.2.2). Before explaining the idea, let us first define the function spellsuffix(i), which
is equivalent to nodelabel in BOSS. Let L be the eBWT for S∗. Given the position L[j],
spellsuffix(j) returns the sequence of the j th suffix of S∗ in <ω order (see Section 3.2.1).
We implement spellsuffix by performing LF

−1 from L[j] until reaching the range L[1, 2q]
with the preceding symbols of the $ characters in S∗. For simplicity, we identify every
read Si with its lexicographical rank i in S∗. In this way, we can obtain its sequence as
spellsuffix(select$(L, i)).

The function layout(i) receives as input the rank i of Si, and returns a list Q with all the
left-maximal overlap sequences for Si. Every list Qj ∈ Q is encoded as a tuple (Sj,Oj,wj),
where Sj is the identifier of leftmost read in Qj, Oj is the prefix of Sj that does not overlap
Si and wj is the weight of Qj as described in Section 7.2.

We compute the left-maximal overlaps because the ordering in the BWT is inverse to
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that in BOSS. In the former representation, the suffixes of S∗ are sorted in >ω and L stores
their proceeding symbols, while in the latter, the substrings of length k − 1 are sorted in
colexicographical order, and L stores the symbols that follows them in S∗. For the same
reason, we build the overlap tree T ′ for the eBWT from the topology of the generalized suffix
tree of S∗. We also need to consider a bitmap B[1, ∣L∣] marking equal suffixes of S∗. In
other words, if B[i] and B[j] are set to 1, and no other position in between is set to 1, then
spellsuffix(u), with u ∈ [i + 1, j], returns the same string. Note that the number of 1s in B
is the same as the number of leaves in T ′.

The algorithm for layout remains almost the same. The only difference is that we replace
outneighbor with the LF function, nodelabel becomes spellsuffix, and that k becomes z in the
time complexity, where z is the average length of the reads in S∗. However, unlike rBOSS,
we can enrich the result as described in Section 6.1. Recall that variation of the eBWT
uses the string circularity to encode the reverse complements of the reads, or to encode their
pairs when S∗ is a paired-end library (Section 4.2). We use the information encoded with
the circularity to remove erroneous overlaps from the result of layout. For instance, when
Si ∈ S∗ overlaps its reverse complement or its mate in a paired-end library.

7.8 Genome Assembly

In this section, we explain how to use the rBOSS framework to spell contigs of the source
DNA of S∗ (Section 4.3). Our method considers an extended version of G that contains
extra labeled edges. The idea is as follows; let v and u be two solid nodes in G, where v is
an s-node with out-degree one and u is a p-node. An edge (v,u) labeled with Ou exists if
layout(v) = Q contains the tuple (u,Ou,wu). The definition of (v,u) differs from that of a
regular dBG edge as the label Ou is a string, not a character. However, for our purposes,
this difference helps us to extend the contig lengths. We do not store (v,u) explicitly as we
can compute it on the fly using the rBOSS primitives as we traverse G.

Similar to most genome assemblers, we perform walks over G and store their labels as
contigs. Recall from Section 4.3 that the walks over unary paths are the most likely to spell
real segments of the source DNA. Still, unary paths represent only a small fraction of the
underlying genome. An alternative to unary paths would be to search for omnitigs in G,
but these types of walks produce safe strings only if the underlying genome is circular, there
are no gaps in the sequencing coverage, and there are no sequencing errors. These model
constraints make the idea of omnitigs difficult to implement.

We solve the limitations of unary paths and omitigs by spelling contigs from walks without
loops (i.e., paths) that can be deterministically extended to the left or right. We formally
describe these walks as follows.

Definition 8 A path P = v1, v2, . . . , vp is right-maximal if all its nodes have out-degree one,
except vp. Equivalently, P is left-maximal if all its nodes have in-degree one, except v1.

Definition 9 A path P = vi−p′ . . . vi . . . vi+p is maximal if there is a node vi such that the
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prefix Pl = vi−p′ . . . vi is left-maximal and the suffix Pr = vi . . . vi+p is right-maximal.

Maximal paths have fewer constraints than unary paths, so we expect them to produce
longer contigs. On the other hand, although maximal paths could spell shorter contigs than
omnitigs, they do not have the model constraints that omnitigs have.

Another advantage of maximal paths is that they are safe, i.e., any genomic reconstruction
we produce from G will have the label of a maximal path P as substring (see Section 4.3).
This property makes the label of P likely to exists in the source DNA of S∗. We say
“likely” because sequencing errors, sporadic overlaps, lack of sequencing coverage, among
other things, introduce spurious edges (or remove real edges) in G, making it difficult to
differentiate between walks spelling real contigs from those that do not. Safe paths are the
best tool we have under the dBG model.

We demonstrate that P is safe with the following lemma.

Lemma 8 Let P = vi−p′ . . . vi . . . vi+p be a maximal path, where the prefix Pl = vi−p′ , . . . , vi
is left-maximal and the suffix Pr = vi, . . . , vi+p is right-maximal. Then the label of P is safe.

Proof. Let us first demonstrate that Pl is safe. Let us denote Wl the set of all possible left
walks over G that cross vi and vi−p′ . As all the nodes in Pl have in-degree one, except vi−p′ ,
all the walks in Wl must visit the nodes of Pl in an orderly manner from right to left. This
property implies that the label of Pl appears as a substring in all the labels spelled from
Wl, and by definition, that means that Pl is safe. Extending Pl with one of the incoming
nodes of vi−p′ is not safe. Node vi−p′ has in-degree > 1, and the nodes in Pl are allowed to
have out-degree > 1. Hence, several left walks can converge in vi−p′ . We do not have enough
information to select an incoming node of vi−p′ , say x, so that the label of the new left walk
(x,Pl) exists in the source DNA. The whole argument that proves that Pl is safe applies
symmetrically to Pr. Let Wr be the set with all right walks over G that cross vi and vi+p.
The elements in Wr must visit the nodes of Pr as all of them have out-degree one, except
vi+p. Consequently, the label of Pr appears as a substring in all the labels spelled from Wr,
meaning that Pr is safe. Further extending Pr to the right is not safe as vi+p has out-degree
> 1, and the nodes in Pr are allowed to have in-degree > 1, which produces several right
walks to converge in vi+p. As Pl and Pr are safe and share the same node vi, then P is also
safe. Figure 7.5 depicts examples of these ideas.

We now explain how to produce a contig from a maximal path from G using rBOSS. We
pick an arbitrary node v from G and initialize a new contig Cf = nodelabel(v). We start a
right walk over G from v and continue as long as the nodes we visit have out-degree one. If
we reach an s-node x with out-degree one at some point of the right walk, and the label of
its outgoing edge is $, we call the function Q = layout(x) to compute its extended outgoing
edges. If Q has only one tuple (y,Oy,wy), we append the sequence Oy to Cf and continue
the walk from y. When layout(x) has more than one tuple, we stop the right walk.

Considering Q only if it has one tuple is too strict, especially if S∗ contains sequencing
errors (see case 3 for the layout query in Section 7.2). Alternatively, we can define a threshold
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(B)(A) (C)

Figure 7.5: (A) A left-maximal path. The gray arrow indicates the nodes that belong to
the path. It also indicates the direction in which the nodes are visited (from right to left).
White nodes are adjacent to the nodes at the ends of the path. Gray nodes are adjacent to
the internal nodes of the path. (B) A right-maximal path. (C) A maximal path. The black
node connects the left-maximal prefix with the right-maximal suffix.

ω, and ifQ has several tuples, we only keep those with weight wy ≥ ω. By choosing a relatively
high value for ω, say > 0.8, we can discard the tuples representing sequencing errors from Q,
leaving (hopefully) one extended outgoing edge for x. This filtering will increase the length
of the right walk, producing thus longer contigs.

Once we finish the right walk, we begin a left walk from v to extend the contig to the left.
For that purpose, we compute the node vrc = rcnode(v) with the reverse complement label
of v. We also create an empty string Cr. We start a right walk from v

rc and repeat the same
process as with v. However, instead of inserting symbols in Cf , we insert them in Cr. After
finishing the right walk, we create the final contig as Crc

r ⋅Cf .

7.9 Experiments

We implemented rBOSS as a C++ tool on top of the SDSL-lite library [76]. Our imple-
mentation encodes L using run-length compression [122] to exploit repetitions in the reads.
For the experiments, we included an extra bitmap A[1,n] that marks the solids nodes in
rBOSS. We augmented A with a select1 data structure to support fast access to the solid
nodes. We did not include the permutation to compute the reverse complements of the dBG
nodes in constant time. Instead, we used label2node as stated in Theorem 8. Addition-
ally, we implemented the VO-BOSS data structure by modifying our rBOSS implementation
and merging it with segments of the code1 from Boucher et al. [21]. Our code is available
at https://bitbucket.org/DiegoDiazDominguez/eboss-dt/src/master/. We used the
compilation flags -msse4.2 -O3 -funroll-loops -fomit-frame-pointer -ffast-math.

We used wgsim [110] to simulate a sequencing dataset (in FASTQ format) from the E.coli
genome with 15x of sequencing coverage. We generated a total of 549,845 reads, each 150
bases long, yielding a dataset of 185 MB. The input parameters for building rBOSS were k
and m. We used a minimum value of 50 for k, and increased it up to 110 in intervals of 5.
For every k, we used six values for m, from 15 to 40, also in intervals of 5. This setting makes
up 72 indexes. We also built equivalent VO-BOSS instances using the same values for k.

1https://github.com/cosmo-team/cosmo.
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Figure 7.6: Index size statistics. (A) Sizes of the different rBOSS instances. The shapes
denote distinct values for m. (B) Comparison of rBOSS against VO-BOSS. The rBOSS
instances were built using m = 30. (C) Stacked barplot with the percentage that each
substructure uses in rBOSS. The numbers on top of the plot are the m values.

7.9.1 Space and Construction Time

The sizes of the resulting rBOSS indexes are shown in Figure 7.6.A. They grow linearly with
k, at 0.29 + 0.036k bits per input symbol, and do not depend much on m. Figure 7.6B
compares the sizes of VO-BOSS and rBOSS, showing that rBOSS is 20% smaller on average.
The space breakdown of rBOSS is given in Figure 7.6C. The most expensive data structure
in terms of space (50%–65%) is the BP representation of T ′. The sequence L uses 20%–35%,
and the rest are the bitmaps B and A.

Figure 7.7 shows the elapsed times and memory peaks for the construction of the different
rBOSS instances. Both metrics grow linearly with k. However, it is not clear how the
parameter m affects the elapsed time. In the case of the memory peak, the smaller the value
for m, the greater the peak. This pattern may be generated because smaller values of m
produce larger overlap trees.

7.9.2 Time for the Primitives

We took 1000 solid nodes at random for every index and computed the mean elapsed time
for the functions nextlinker, getlinkers, foverlaps. For the rBOSS indexes, we also measured
the mean elapsed time for rcnode. Table 7.2 shows the results. The function nextlinker is the
fastest operation among the implemented functions, with a stable time of around 1.5 µsec
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Figure 7.7: Statistics about the construction of rBOSS.

rBOSS VO-BOSS

k m nextlinker getlinkers foverlaps rcnode nextlinker getlinkers foverlaps

50 20 1.49 5.09 389.42 1226.53 225.93 804.81 825.11
50 30 1.53 4.22 352.41 1209.02 216.47 581.31 802.23
50 40 2.00 3.38 255.02 1226.56 191.62 337.95 770.70
70 20 1.55 6.46 601.94 1620.22 311.46 1614.49 1155.22
70 30 1.57 5.82 546.53 1620.78 310.74 1382.25 1115.33
70 40 1.54 5.26 517.43 1621.98 297.23 1083.36 1080.17
90 20 1.73 8.11 828.12 2013.00 374.09 2441.96 1495.37
90 30 1.58 7.35 768.83 2012.36 368.71 2211.05 1444.93
90 40 1.56 6.67 714.42 2016.41 372.76 1871.19 1398.07
110 20 1.67 9.25 1088.41 2411.10 429.86 3491.07 1865.60
110 30 1.77 8.64 1014.32 2410.03 428.17 3226.45 1801.85
110 40 1.64 8.10 942.17 2414.11 436.15 2965.48 1745.31

Table 7.2: Mean elapsed time in µseconds for some of the new functions proposed in this
chapter.

across different values of m and k. Operation getlinkers becomes slower as we increase k but
faster as we increase m. We expected this trend because the larger k, the longer the traversal
through T ′, but if m grows, the traversal shortens. In all the cases, getlinkers takes under 10
µsec. The cost of foverlaps grows linearly with k but also decreases as we increase m, reaching
the millisecond. This performance is much slower than previous operations, dominated by
the time to find the reverse complement of the shortest linker node with backwardsearch.
Finally, the time of rcnode is also a few milliseconds, growing steadily with k regardless of
the value for m.

Table 7.2 also compares the implementations of rBOSS and VO-BOSS. All the functions
are slower in VO-BOSS, by two orders of magnitude for nextlinker and getlinkers, and by a
factor around 2 for foverlaps.
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Figure 7.8: Experiments on genome assembly with rBOSS. (A) The memory peak for the
assembly. (B) The memory peak of the assembly, but without considering the index size.
(C) Elapsed time for the assembly.

7.9.3 Genome Assembly

We empirically assessed the genome assembler described in Section 7.8. We partially im-
plemented the idea because our current version of rBOSS does not fully support layout yet.
Our implemented assembler differs from the method described in Section 7.8 in that when it
reaches an s-node x with out-degree one during a walk, it calls E = getlinkers(x), and if all
the nodes in E have out-degree one; it continues the walk from the linker node in E whose
label matches the smallest suffix of nodelabel(x).

We tested our assembler using the same E. coli dataset we used in the previous experi-
ments. As before, we produced several instances of rBOSS. We chose a minimum value for
k of 60, increasing it up to 100 in intervals of 5. For each k, we selected five values for m,
from 30 to 50, also in intervals of 5. We produced contigs in those instances of rBOSS using
our assembly algorithm. We selected the assemblies obtained with the rBOSS instances of
m = 50 and compared them against the results of bcalm [33], a compact representation for
dBGs that spells contigs from the unary paths. We build equivalent dBGs instances for
bcalm using the same values for k we used for rBOSS. We selected m = 50 because this value
produced the longest contigs in rBOSS. We assessed the assembly results using the mean and
maximum contig sizes.

The memory peak and the elapsed time for the assemblies were again linear on k (see
Figure 7.8). The memory peaks on top of rBOSS were generally small (between 18 and 31
MB, see Figure 7.8B). We expected this behavior as spelling contigs from the dBG is an online
task. Interestingly, the memory peaks increased for higher values of m. Choosing high values
for m reduces the number of valid overlaps in the extended dBG, so the assembler produces a
larger number of contigs, but their lengths are shorter than those obtained with small values
of m. The problem is that our method generates overlapping contigs, and maintaining them
in RAM increases the memory peak.

On the other hand, the elapsed time decreased with higher values of m (Figure 7.8C).
This trend is more evident for small values of k, less than 70. High values for m generate
the dBG nodes to have fewer valid overlaps, so the assembler spent less time computing the
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Figure 7.9: Comparison of the contigs generated with our assembler and bcalm. The x-axis
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by our assembler from the maximal paths in the extended dBG of rBOSS (m = 50). The (A)
side of the figure depicts the mean contig sizes for the different values of k while the (B) side
depicts the length of the longest contig.

extended edges. The impact of m becomes less relevant as we increase k. We believe this is
because the dBG becomes highly disconnected when k is high, and most of the elapsed time
is spent on computing extended edges, regardless of the value we use for m.

The bcalm framework consumed less computational resources than ours in the experi-
ments. The time it took bcalm to produce a dBG and then spell contigs from it was no more
than 2 minutes in all its instances, with a memory peak of at most 674 MB. In contrast, the
time our framework took to build a dBG and then spell the contigs was more than 7 min-
utes in all the instances, with a memory peak of at least 2.5 GB. Interestingly, the memory
peak of bcalm did not increase linearly with k. The greatest memory peak was 492.16 MB
(k = 63), and the smallest one was 674.94 (k = 64). It is important to note that rBOSS and
our assembler are not optimized yet. We construct the dBG using the LCP array and the
suffix array of S∗. In contrast, bcalm uses bloom filters and minimizers (see Section 2.3),
which are faster in practice.

Regarding the assembly results, our method produced, on average, much longer contigs
than bcalm (see Figure 7.9A). The mean contig size of our assembler does not vary much
as we modify k. It increased from 10, 009 characters with k = 60 to 10, 639 characters with
k = 100. In contrast, the mean contig size for bcalm decreased with higher values of k.
Using k = 61, the mean contig size was 5,145, while for k = 99, it reduced to 4,112. We see a
similar pattern for the longest contig (Figure 7.9B). The longest contig was, on average, much
longer with our method than with bcalm (327,742 versus 45,608, respectively). Additionally,
the length of the longest contig in our assembler remained similar throughout the different
values of k (between 327,710 and 327,784). On the other hand, the longest contig in bcalm
dramatically reduced its length as we increased k; from 133,531 with k = 61 to 6,853 with
k = 99.

The advantage of our method is that we can use the extended edges of layout to reconnect
the dBG at our convenience when k is high. This feature allows producing long contigs even
though the graph is highly disconnected.
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Chapter 8

Succinct Colored de Bruijn Graphs

This chapter describes a succinct index for reads that we can use to extract biological infor-
mation. Similarly to the framework described in Chapter 7, this data structure uses a dBG
built from the reads. However, instead of computing extra overlaps, we enrich the graph
with colors (see Section 4.3.1). The idea of coloring the dBG is not new, nor are the data
structures we use to encode the final representation. The main novelty of our work is the
way we assign the colors to the graph and the algorithms we develop on top of the index to
answer biological questions.

A colored dBG G of order k, built from a string collection S, assigns a specific integer
value ci (a color) to every Si ∈ S, and then stores ci in the edges of the walk of G that spell
Si. When two or more strings in S have kmers in common, their paths in G get entangled
(i.e., they share some nodes and edges). For that reason, the edges in G can have more than
one possible color assigned. We then store the colors as a binary matrix C, where the rows
represent the edges and the columns represent the colors.

The concept of a colored dBG is useful for genomic analyses because we can disentangle
the strings of S as we walk through G. Suppose we are traversing a path where the last z
edges are colored with some ci. When we reach a node v with out-degree > 1, we can continue
the traversal through the outgoing edge colored with ci (if any). This process guarantees that
the label spelled by the last z + 2 nodes in the path exists in S. Supporting this feature is
not possible in a regular dBG as all the outgoing edges of v are equally likely to produce a
string that does not exist in S.

The original colored dBG (Section 4.3.1) considers one single graph built from multiple
string collections, where the colors are assigned to the collections instead of the strings. The
color space overhead in this scheme is not significant as the number of distinct collections is
small or moderate in most genomic applications. However, in our case, we consider S to be
a multiset of reads, and we require to assign a color to every Si ∈ S. This alternative scheme
enables later to disentangle the sequence of Si from G. The space overhead in this setting is
considerable as S can contain millions of reads, meaning that we need a color matrix with
millions of columns.
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Our main interest in coloring G is to disentangle strings in S. This allows us to relax the
representation. First, it unnecessary to color the full walk in G spelling Si ∈ S, only the
critical points. Second, similarly to the idea of Alipanahi et al. [1], we can reuse the same
colors for the reads in S that do not have kmers in common.

Considering these ideas, we propose a greedy algorithm that partially colors G and reuses
the same colors for different reads when possible. Once we assign the colors, we encode
G using the BOSS representation and C using compact data structures. We develop two
algorithms on top of our representation that can serve as a base to perform bioinformatic
analyses in succinct space. The first algorithm extracts the original reads from the dBG and
the second algorithm assembles contigs of the source DNA from which S was obtained.

Our experimental results show that, on average, the percentage of nodes in BOSS that
need to be colored is about 12.4%, the space usage of the whole index is about half the space
of the plain representation of S∗ (taken as 1 byte/DNA symbol), and that more than 99%
of the original reads can be reconstructed from the index.

A preliminary version of this work [49] was presented at the 26th International Symposium
on String Processing and Information Retrieval (SPIRE’19).

8.1 Definitions

Let S = {S1, . . . ,Sq} be a collection of q reads, and let S∗ = {S1,S
rc
1 , . . . ,Sq,S

rc
q } be a

collection of size 2q that contains the strings in S along with their reverse complements. Let
us denote the dBG of order k constructed from S∗ as G = (V ,E). Similarly, we denote an
instance of BOSS for G as BOSS(G) = (V ′

,E
′), where V ′ and E ′ include the dummy nodes

and their edges (see Section 4.3.1). A node in V ′ is considered a starting node if its label is
of the form $A, where $ is a dummy symbol and A is a k− 2 prefix in one or more sequences
of S∗. Equivalently, a node is considered an ending node if its label is of the form A$, with
A being a k − 2 suffix in one or more sequences of S∗. Nodes whose labels do not contain
dummy symbols are solid, and solid nodes with at least one incoming node with out-degree
> 1 are critical. For practical reasons, we define two extra functions for BOSS, isstarting and
isending. We use them to check if a node is starting or ending, respectively.

A walk P = v1, v2, . . . , vt over BOSS(G) is a sequence of t nodes, where every vi, with
i ∈ [1, t − 1], is connected by an edge with vi+1. P is a path if all its nodes are different.
When v1 = vt, P is said to be a cycle. A sequence Si ∈ S∗ is unambiguous if there is a
path in BOSS(G) whose label matches the sequence of Si and if no pair of colored nodes in
(u, v) ∈ P share a predecessor node v′ ∈ P . In any other case, Si is ambiguous. Finally, the
path Pi that spells the sequence of Si is said to be safe if every one of its branching nodes
has only one successor colored with the color assigned to Si.

We assume that S∗ is a factor-free collection, i.e., no Si ∈ S∗ is also a substring of another
sequence Sj, with i ≠ j.
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8.2 Coloring a dBG of Reads
In this section, we define a coloring scheme for BOSS(G) that generates a more succinct
color matrix, and that allows us to reconstruct and assemble unambiguous sequences of S∗.
We use the dBG of S∗ because most of the bioinformatic analyses require the inspection of
the reverse complements of the reads. Unlike previous works (Section 4.3.1), the rows in C
represent the nodes in BOSS(G) instead of the edges.

8.2.1 Partial Coloring

We make C more sparse by coloring only those nodes in the graph that are strictly necessary
for reconstructing the sequences. We formalize this idea with the following lemma:

Lemma 9 For the path Pi in BOSS(G) spelling an unambiguous sequence Si ∈ S∗ to be
safe, we have to color the starting node si ∈ Pi that encodes the k−2 prefix of Si, the ending
node ei ∈ Pi that encodes the k − 2 suffix of Si and the critical nodes in Pi.

Proof. We start a walk from si using the following rules: (i) if the current node v in the
walk has out-degree one, then we follow its only outgoing edge, (ii) if v has out-degree > 1 ,
then we inspect its successor nodes and follow the one colored with the same color of si and
(iii) if v is equal to ei, then we stop the walk.

Note that the successor nodes of a branching node (i.e., with out-degree > 1) are critical
by definition, so they are always colored. On the other hand, nodes with out-degree one do
not require a color inspection because they have only one possible way out.

Coloring the nodes si and ei for every Si is necessary; otherwise, it would be difficult to
know when a path starts or ends. Consider, for example, using the solid nodes that represent
the k− 1 prefix and the k− 1 suffix of Si as starting and ending points respectively. It might
happen that the starting point of Si can also be a critical point of another sequence Sj. If we
start a reconstruction from si and pick the color of Sj, then we will generate an incomplete
sequence. A similar argument can be used for ending nodes. The concepts associated with
our coloring idea are depicted in Figure 8.2.

8.2.2 Unsafe Coloring

We can use the recoloring idea of Alipanahi et al. [1] to reduce the number of columns in C.
Still, using the same colors for unrelated strings is not safe for reconstructing unambiguous
sequences.

Lemma 10 Using the same color c for two unambiguous sequences Si,Sj ∈ S∗ that do not
share any k − 1 substring can make the dBG paths for Si or Sj unsafe.

Proof. Assume there is another pair of sequences Sx,Sy ∈ S∗ that do not share any k − 1

subsequence either, to which we assign them color c′. Suppose that the paths of Sx and Sy
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(A) (B)
Ri Rj Rx Ry Rz u u0 v v0 v00 c c

Ri Rj Rx Ry Rz u u0 v v0 v00 c c

Ri Rj Ry Rz u u0 v v0 v00 c c0
Ri Rj Ry Rz u u0 v v0 v00 c c0

Ri Rj Ry Rz u u0 v v0 v00 c c0

Ri Rj Ry Rz u u0 v v0 v00 c c0

Ri Rj Ry Rz u u0 v v0 v00 c c0
Ri Rj Ry Rz u u0 v v0 v00 c c0

Ri Rj Rx Ry Rz u u0 v v0 v00 c c

Ri Rj Ry Rz u u0 v v0 v00 c c0

Recoloring

Ri Rj Ry Rz u u0 v v0 v00 c c0

Sequences

Ri Rj Rx Ry Rz u u0 v v0 v00 c c

Figure 8.1: Example of unsafe paths produced by a graph recoloring. (A) The dBG generated
from the unambiguous sequences Ri, Rj, Rx and Ry. Every texture represents the path of a
specific string. (B) Recolored dBG. Sequences Ri and Rj are assigned the same color c (light
gray) as they do not share any k − 1 substring. Similarly, sequences Rx and Ry are assigned
another color c′ (horizontal lines) as they do not share any k − 1 sequence neither. Nodes
u,u

′
, v, v

′ and v′′ are those mentioned in the proof of Lemma 10. The sequences of Ri and
Rx cannot be reconstructed as their paths become unsafe after the recoloring.

cross the paths of Si and Sj such that the resulting dBG topology resembles a grid. In other
words, if Si has the edge (u,u

′) and Sj has the edge (v, v
′), then Sx has the edge (u, v) and Sy

has the edge (u′, v′). In this scenario, v will have two successors, node v′ from the path of Sj
and some other node v′′ from the path of Sx. Both v

′ and v′′ are critical by definition so they
will be colored with c and c′ respectively. The problem is that node v′ is also a critical node
for Sy, so it will also have color c′. The reason is that u′, a node that precedes v′, appears
in Si and Sy. As a consequence, the path of Sx is no longer safe because one of its nodes (v
in this example) has two successors colored with c′. A similar argument can be made for Si
and color c. Figure 8.1 depicts the idea of this proof.

When spurious edges connect paths of unrelated sequences that are assigned the same
color (as the in the proof of Lemma 10), we can generate chimeric strings if, by error, we
follow one of those edges. In our coloring algorithm, we solve this problem by assigning
different colors to those strings with sporadic edges, even if they do not share any k − 1
substring.

8.2.3 Safe and Greedy Coloring

Our greedy coloring algorithm starts by marking in a bit vector N = [1, ∣V ′∣] the p nodes of
BOSS(G) that need to be colored (starting, ending and critical). After that, we create an
array M of p entries. Every M[j] with j ∈ [1, p] will contain a vector that stores the colors
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Figure 8.2: Succinct colored dBG. (A) The topology of the graph. Colors and textures
represent the paths that spell the input sequences of the dBG. Numbers over the nodes are
their identifiers. Nodes 4,1,6 and 10 are starting nodes (darker borders). Nodes 11,13 and
12 are ending nodes and nodes 3,9,11 and 5 are critical. (B) Result of our greedy coloring
algorithm. (C) The binary matrix C that encodes the colors of Figure B. The left side is C
in its uncompressed form and the right side is our succinct version of C using the arrays N ,
M

′, and F .

of the j th colored node in the BOSS ordering. We also add rank1 support to N to map a
node v ∈ V to its array of colors in M . Thus, its position can be inferred as rank1(N , v).

The only inputs we need for the algorithm are N , S∗ and BOSS(G). For every Si ∈ S∗
we proceed as follows; we append a $ symbol at the ends of Si, and then use the function
label2node (Section 4.3.1) to find the node v labeled with the k − 1 prefix of Si. Note that
this prefix will map a starting node as we appended $ to Si. From v, we begin a walk on
BOSS(G) and follow the edges whose symbols match the characters in the suffix Si[k..]. As
we move through the edges, we store in an array Wi the starting, ending, and critical nodes
associated with Si. Additionally, we store into another array Ii the neighboring nodes of the
walk that need to be inspected to assign a color to Si. The rules for adding elements into Ii
are as follows;

• If v is a node with out-degree > 1 in the path of Si, then we add all its outgoing nodes
into Ii.

• If v is a node with in-degree > 1 in the path of Si, then we visit every incoming node
v
′ of v, and if v′ has out-degree > 1, then we insert into Ii the outgoing nodes of v′.

Once we finish the walk, we create a set H and fill it with the colors that were previously
assigned to the nodes in Ii and Wi. After that, we pick the smallest color c′ that is not in H,
and add it to every array M[rank1(N , j)] with j ∈ Wi. After we process all the sequences
in S∗, the final list of colors is represented by the values in M . The complete process for
coloring Si is described in more detail by the procedure greedycol in Algorithm 6.

The construction of the sets Wi and Ii is independent for every string in S∗, so it can be
done in parallel. However, the construction of H and the assignment of the color c′ to the
elements of Wi has to be performed sequentially as all the sequences in S∗ need concurrent
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Algorithm 6 Function greedycol

1: proc greedycol(N ,Si,M) ▷ N is a bitmap, Si is a string and M is array of lists
2: Si ← $Si$ ▷ append dummy symbols at the ends of Si
3: v ← label2node(Si[1, k − 1])
4: W ← ∅
5: I ← I ∪ rank1(N , v)
6: for each r ∈ Si[k − 1..] do ▷ traverse the dBG path of Si
7: o← outdegree(v)
8: if o > 1 then
9: for j ← 1 to o do
10: I ← I ∪ rank1(N , outneighbor(v, j))
11: i← indegree(v)
12: if i > 1 then
13: for j ← 1 to i do
14: v

′
← inneighbor(v, j)

15: o
′
← outdegree(v′)

16: if o′ > 1 then
17: for j ← 1 to o′ do
18: I ← I ∪ rank1(N , outneighbor(v′, j))
19: if N[v] is true then
20: W ← W ∪ rank1(N , v)
21: v ← outneighbor(v, r)
22: W ← W ∪ rank1(N , v)
23: I ← I ∪ rank1(N , v)
24: initialize set H
25: for each n ∈ I do ▷ compute the colors already used
26: for each c ∈M[n] do
27: insert(H, c)
28: c

′
← minimum color not in H

29: for each n ∈ W do ▷ color the nodes
30: M[n]←M[n] ∪ c′
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access to M .

8.2.4 Ambiguous Sequences

The main limitation of our coloring method is that it cannot be used to safely retrieve
ambiguous sequences.

Lemma 11 Ambiguous sequences of S∗ cannot be reconstructed safely from the color matrix
C and BOSS(G).

Proof. Assume the collection S∗ is composed just by one string S1 = XbXc, where X is
a repeated substring and b, c are two different symbols in Σ. Consider also that the order
of BOSS(G) is k = ∣X∣ + 1. The instance of BOSS(G) will have a node v labeled with
X, with two outgoing edges, whose symbols are b and c. Given our coloring scheme, the
successor nodes of v will be both colored with the same color. As a consequence, if during a
walk we reach v, we will get stuck because there is not enough information to decide which
is the correct edge to follow (both successor nodes have the same color).

A sequence Si will be ambiguous if it has the same k− 1 pattern in two different contexts.
Another case in which Si is ambiguous is when a spurious edge connects an uncolored node
of Si with two or more critical nodes in the same path. Note that an ambiguous sequence
will always be encoded by an unsafe path, regardless of the recoloring algorithm. In general,
the number of ambiguous sequences will depend on the value we use for k.

8.3 Compressing the Colored dBG

The pair (M ,N) can be regarded as a compact representation of C, where the empty rows
were discarded. Every M[i], with i ∈ [1, ∣M∣], is a row with at least one value, and every
color M[i][j], with j ∈ [1, ∣M[i]∣], is a column. However, M is not succinct enough to be
practical. We are still using a machine word for every color of M . Besides, we need ∣M∣
extra words to store the pointers for the lists in M .

We compress M by using an idea similar to the one implemented in BOSS to store the
edges of the dBG. The first step is to sort the colors of every list M[i]. Because the greedy
coloring generates a set of unique colors for every node, each M[i] becomes an array of
strictly increasing elements after the sorting. Thus, instead of storing the values explicitly,
we encode them as differences, i.e.,M[i][j] =M[i][j]−M[i][j−1]. After transformingM ,
we concatenate all its values into one single listM ′ and create a bit map F = [1, ∣M ′∣] to mark
the first element of everyM[i] inM ′. We storeM ′ using Elias-Fano encoding (Section 2.1.3)
and F using a compressed representation for bit vectors (Section 2.2.1). Finally, we add select1

support to F to map a range of elements in M ′ to an array in M . The full representation of
the color matrix is C = N +F +M ′ (see Figure 8.2). The complete index of the colored dBG
is thus composed of our version of C plus BOSS(G). We now formalize the idea of retrieving
the colors of a node from the succinct representation of C.
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• getcolors(v): list of colors assigned to node v.

Theorem 11 the function getcolors(v) computes in O(c) time the c colors assigned to v.

Proof. We first compute the rank r of node v within the colored nodes. This operation is
carried out with r = rank1(N , v). After retrieving r, we obtain the range M ′[i, j] where
the colors assigned to v lie. For this purpose, we perform two select1 operations over F ,
i = select1(F , r) and j = select1(F , r + 1)− 1. Finally, we scan the range M ′[i, j], and as we
read the values, we incrementally reconstruct the colors from the differences. All the rank
and select operations take O(1) time, and reading the c = j − i + 1 entries from M

′ takes
O(c) time as retrieving an element from an Elias-Fano-encoded array takes O(1) time. In
conclusion, computing the colors of v takes O(c) time.

8.4 Reconstructing Unambiguous Sequences

We describe now an online algorithm that works on top of our index and that reconstructs
all the unambiguous sequences in S∗. We cannot tell, however, if a reconstructed string
Si was present in the original collection S or if it was its reverse complement Srci . This is
not really a problem, because a sequence and its reverse complement are equivalent in most
bioinformatic analyses.

The algorithm receives as input a starting node v. It first computes an array A with the
colors assigned to v using the function getcolors, and then initializes a string S = nodelabe(v).
For every color a ∈ A, the algorithm performs the following steps; initializes two temporary
variables, an integer v′ = v and string S ′ = S, and then begins a walk over BOSS(G) staring
from v

′. If the out-degree of v′ is one, then the next node in the walk is the outgoing node
v
′
= outneighbor(v′, 1). On the other hand, if the out-degree of v′ is more than one, then the

algorithm inspects all the outgoing nodes of v′ to check which one of them is the node v′′

colored with a. If there is only one such v′′, then it sets v′ = v
′′. This procedure continues

until v′ becomes an ending node. During the walk, the edge symbols are appended to S ′.
When the algorithm reaches an ending node, it reports S ′[1, ∣S ′∣ − 1] as the reconstructed
sequence.

If at some point during a walk, the algorithm visits a node with out-degree > 1, and with
more than one outgoing node colored with a, then it aborts the reconstruction of the string
as the path is unsafe for color a. Then, it returns to v and continues with the next sequence.
The complete procedure is detailed in the function buildseqs of Algorithm 7.

8.5 Assembling Contigs

We propose a simple procedure called contigassm that traverses the dBG and uses the color
information to weight the outgoing edges on the fly in order to estimate which are the most
probable walks of BOSS(G) spelling contigs (Section 4.3). This procedure is equivalent
to simulating a traversal over the layout of unambigous reads. Our algorithm is not a full
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Algorithm 7 Function buildseqs

1: proc buildseqs(v) ▷ v is a starting node
2: L← ∅ ▷ list of sequences rebuilt from v
3: A← getcolors(v)
4: S ← nodelabel(v) ▷ initialize an string with the label of v
5: for each a ∈ A do
6: v

′
← v ▷ temporal dBG node

7: S
′
← S,m← 0

8: while isending(v′) is false do
9: o← outdegree(v′)
10: if o is 1 then
11: S

′
← S

′ ∪ edgesymbol(v′, 1) ▷ push the new symbol into S ′

12: v
′
← outneighbor(v′, 1)

13: else
14: m← 0, i′ ← 0, t← 0
15: for i← 1 to o do ▷ check which successors of v′ has color a
16: x← outneighbor(v′, i)
17: if a ∈ getcolors(x) then
18: t← x, m← m + 1, i′ ← i

19: if m = 1 then
20: S

′
← S

′ ∪ edgesymbol(v′, i′)
21: v

′
← t

22: else
23: break
24: if m = 1 then
25: L← L ∪ S[2, ∣S∣ − 1]
26: return L

assembler. It only deals with the extraction of contigs from the dBG. It does not address
other technical issues such as paired-end reads, scaffolding or gap filling.

For simplicity, we identify every unambiguous reads Si ∈ S∗ in BOSS(G) with the pair
(c, v), where c is the color assigned to Si and v is the starting node of its path.

The input for contigassm is a starting node v and a set L with the identifiers of the reads
that were already assigned to contigs. The output will be the list Pv = {Cv

1 , . . . ,C
v
u} with

the contigs spelled by walks in BOSS(G) beginning at v.

We obtain Pv by iterating through the colors of v. For every ci ∈ getcolors(v), we proceed
as follows. We initialize a hash table H, where the keys are colors and their values are nodes
in BOSS(G). We also initialize the contig Ci = label(v) and insert the pair (ci, v) to H.
Subsequently, we begin a walk over BOSS(G) from v. If v has out-degree > 1, we follow the
outgoing node labeled with ci. For every new node v′ we reach during the walk, we check if
one of its incoming nodes, say u, is a starting node. If so, then for each c ∈ getcolors(u), we
insert the pair (c,u) into H. On the other hand, if one of the outgoing nodes of v′, say u′,
is an ending node, then we obtain the set C = getcolors(u′). For every c ∈ C, we check if
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Figure 8.3: Example of the assembly of a contig using our index. (A) Inexact overlap of
four sequences. The circle to the left of every string represents its color in the dBG. Light
gray symbols are mismatches in the overlap. (B) The colored dBG of the sequences. Circles
with darker borders are starting and ending nodes. Light gray values over the starting nodes
are their identifiers. The contig assembly begins in node 5 (denoted with a dashed arrow)
and the threshold x to continue the extension is set to 0.5. The state of the hash table H
when the walk reaches a branching node (dashed circles) is depicted below the graph. The
assembly ends in the rightmost branching node as it has not a successor node that contains
at least 50% of the colors in Q. The final contig is shown as a light grey path over the graph,
and its sequence is stored in S.

c exists in H as a key. If it does, then we extract its associated node x, remove (c,x) from
H, and insert it to L. After checking the neighboring nodes of v′, we continue the walk by
selecting one of the outgoing edges of v′. If v′ has out-degree one, we take its only outgoing
edge. However, if v′ has out-degree > 1, we inspect first how the colors in H distribute
between the outgoing nodes of v′. If there is only one successor of v′, say v′′, colored with
at least f% of the colors in H, where f is a parameter, we follow v

′ and remove the other
colors from H, along with their values. Once we select the outgoing node, we add the label
of (v′, v′′) to Ci. The walk stops if:

• There is no such v′′ that meets the f threshold.
• There is more than one outgoing node of v′ with the same color.
• The node v′ has out-degree one, but the outgoing node is an ending node.

After finishing the walk, we insert the suffix Ci[2..] to Pv. Algorithm 8 describes in detail
contigassm, and a graphical example is shown in Figure 8.3.

8.6 Experiments

We used a set of reads generated from the E.coli genome1 to test the ideas described in this
chapter. The raw file was in FASTQ format and contained 14,214,324 reads of 100 characters
each. We preprocessed the file by removing sequencing errors using the tool SPAdes [5], and
discarding reads with n symbols. The preprocessing yielded a dataset of 8,655,214 reads (a
FASTQ file of 2GB). Additionally, we discarded sequencing qualities and the identifiers of the
reads as they are not considered in our data structure. From the resulting collection S (a

1http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc.
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Algorithm 8 Function contigassm

1: proc contigassm(v, f ,L) ▷ v is a starting node, f is a threshold, and L is a set
2: Pv ← ∅ ▷ list of contigs obtained from v
3: for each c ∈ getcolors(v) do
4: Cc ← nodelabel(v) ▷ contig produced with color c
5: insert(H, c, v)
6: v

′
← v

7: while true do
8: if indegree(v′) > 1 then
9: x← inneighbor(v′, 1)
10: if isstarting(x) then ▷ add new reads to the contig
11: for each c

′
∈ getcolors(x) do

12: insert(H, c
′
,x)

13: if o← outdegree(v′) > 1 then
14: m← 0, i′ ← 0, t← 0, A′ ← ∅
15: for i← 1 to o do ▷ compute the most likely outgoing node
16: x← outneighbor(v′, i)
17: A← getcolors(x)
18: if isending(x) then ▷ flag reads ending at x as used
19: for each c

′
∈ A do

20: u← retrieve(H, c
′)

21: delete(H, c
′)

22: insert(L, (c′,u))
23: else
24: w ← % of colors in A appearing in H as keys
25: if w ≥ f then
26: t← x, m← m + 1, i′ ← i, A′ ← A

27: if m = 1 then ▷ only one outgoing node meets the threshold
28: Cc ← Cc ∪ edgesymbol(v, i

′)
29: v

′
← t

30: Delete entries in H whose keys are not in A′

31: else
32: break ▷ more than on possible way to extend the contig
33: else
34: s← edgesymbol(v′, 1)
35: if s = $ then break
36: Cc ← Cc ∪ s
37: v

′
← outneighbor(v′, 1)

38: Pv ← Pv ∪ Cc
39: return Pv
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dBG Total number Number of Number of Index Compression
order of nodes solid nodes edges size ratio

25 106,028,714 11,257,781 120,610,151 446.38 1.86
30 142,591,410 11,425,646 157,186,548 443.82 1.87
35 179,167,289 11,561,630 193,773,251 441.18 1.88
40 215,751,326 11,667,364 230,365,635 438.23 1.90
45 252,337,929 11,743,320 266,958,709 435.30 1.91
50 288,925,674 11,791,640 303,552,318 432.13 1.92

Table 8.1: Statistics about the different colored dBGs generated in the experiments. The
index size is expressed in MB and considers the space of BOSS(G) plus the space of our
succinct version of C. The compression ratio was calculated as the space of the plain repre-
sentation of the reads (833.67 MB) divided by the index size.

text file of 833.67 MB), we created another collection S∗ that considers the elements in S
and their reverse complements.

Our index for colored dBGs and the algorithms greedycol, buildseqs were implemented in
C++2 on top of the SDSL-lite library [76]. In our implementation, we precompute the lengths
of arrays M ′ and F before coloring the graph so that when we apply our greedy algorithm,
we store the color information directly to them. We do not use the array M described in
Section 8.2.3 because we cannot store its vectors contiguously in RAM, making the coloring
process not cache-friendly. The problem is that we do not know how many colors each of the
lists of M will have before applying our greedy algorithm. All our code, except contigassm,
can be executed using multiple threads.

We built six instances of our index using S∗ as input. We chose different values for k, from
25 to 50 in steps of five. The coloring of every one of these instances was carried out using eight
threads. Statistics about the topology of the graphs are shown in Table 8.1, and statistics
about the coloring process are shown in Table 8.2. In every instance, we reconstructed the
unambiguous reads (see Table 8.1). Additionally, we generated an FM-index of S∗ to locate
the reconstructed reads and checked that they were real sequences. All the tests were carried
out on a machine with Debian 4.9, 252 GB of RAM and processor Intel(R) Xeon(R) Silver
@ 2.10GHz, with 32 cores.

8.7 Results

The average compression ratio achieved by our index is 1.89, meaning that, in all the cases,
the data structure used about half the space of the plain representation of the reads (see
Table 8.1). We also note that the smaller the value for k, the greater the size of the index.
This behavior is expected as the dBG becomes denser when we decrease k. Thus, we have
to store a higher number of colors per node.

The number of colors of every instance is several orders of magnitude smaller than the

2https://bitbucket.org/DiegoDiazDominguez/colored_bos/src/master.
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dBG Number of Number of Color space Ambiguous Elapsed Memory
order colored nodes colors usage sequences Time peak

25 21,882,874 6,552 83.03 1904 97.25 4,391
30 21,907,324 4,944 79.14 1502 92.52 4,119
35 21,926,687 2,924 75.27 1224 85.52 3,847
40 21,942,083 2,064 71.40 1054 81.20 3,575
45 21,954,138 1,888 67.51 714 75.12 3,303
50 21,964,947 1,689 63.58 176 69.98 3,030

Table 8.2: Statistics about our greedy coloring algorithm. The column “Color space usage”
refers to the percentage of the index space used by our succinct version of C. Elapsed time
and memory peak are expressed in minutes and MB, respectively, and both consider only the
process of building, filling, and compacting the color matrix.

number of reads, being k = 25 the instance with the most colors (6552) and k = 50 the
instance with the fewest (1689). Even though the fraction of colored nodes in every instance
is small, the percentage of the index space used by the color matrix is still high (73% on
average). Regarding the time for coloring the graph, it seems to be reasonable for practical
purposes if we use several threads. In fact, building, filling and compacting C took 83.59
minutes on average, and the value decreases if we increment k. The working space, however,
is still considerable. We had memory peaks ranging from 3.03 GB to 4.3 GB, depending on
the value for k (see Table 8.2).

The process of reconstructing the reads yielded a small number of ambiguous sequences
in all the instances (2, 760 sequences on average), and decreases with higher values of k,
especially for values above 40 (see Table 8.2).
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Chapter 9

Practical Locally Consistent Grammar

Most of the contributions of the previous chapters have been focused on algorithms and data
structures for processing massive collections of sequencing reads in succinct space. In this
chapter, we deviate a little from that topic to develop other ideas of independent interest,
but with important applications in Genomics.

We show that the LMS-based parsing technique we used in Chapter 5 5 to obtain a com-
pressed representation for reads yields a locally consistent grammar (Section 3.2.2). Given
a string S[1,n], we use this method to produce a locally consistent grammar that only
produces S, and then use this representation as input to build the grammar index of Sec-
tion 3.3.4. The result is a compressed representation for S that can locate the occurrences
of a pattern P [1,m] in O((m logm + occ) logG) time, where G is the size of the grammar
(see Section 3.2.2). We believe this idea can serve in the future to develop a self-index for
pangenomes that exploits DNA repetitions not just for compressing but also for boosting
analyses.

We briefly describe the aspects of the grammar index that are relevant for this chapter.
We refer the reader to Section 3.3.4 for more details on this data structure. A grammar self-
index has two elements; a grammar G that only produces S and a grid to perform efficient
pattern matching on S. The leaves in the grammar tree of G (Section 3.2.2) induce a partition
over S. The occurrences of P spanning two or more phrases are called primary, while those
fully contained within a phrase are secondary. When locating P , we use the grid to find its
primary occurrences and the grammar tree of G to find its secondary occurrences. Looking
for the primary occurrences requires us to generate a cut P [1, q]P [q + 1,m], binary search
for P [1, q] in the row labels of the grid, and then binary search for P [q + 1,m] in the
column labels. The time for performing both binary searches adds up to O(m logG), where
G represents the number of columns in the grid. However, any of the m possible cuts of
P can yield primary occurrences, so we need to try them all. This problem raises the time
complexity for locating the primary occurrences to O(m2

logG)1.

Grammar indexes could be helpful for genomic applications as they use small space when
the text is repetitive. However, the quadratic dependence onm for finding the primary occur-

1This time complexity does not consider the cost of extracting the information from the grid cells.
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rences makes them less competitive than other methods such as the r-index (Section 3.3.3).
Christiansen et al. [34] recently proposed an algorithm that generates a locally consistent
grammar to solve this problem (see Section 3.2.2). They build the self-index of Section 3.3.4
using their grammar and show that they only require to try O(logm) cuts of P in the grid.

Their idea consists of preprocessing the pattern at query time using the grammar algo-
rithm. The local consistency of their algorithm produces P and its occurrences in S (if any)
to have almost the same parse tree (same topology and node labels). This property reduces
the number of cuts to try in the grid (see Sections 3.2.2 and 3.3.4 for more details on this
idea).

The algorithm of Christiansen et al. differs from classical greedy algorithms such as RePair
(Section 3.2.2) in which the creation of new nonterminals does not depend on the phrase
frequencies but on the way the symbols are arranged in S. This non-greedy approach makes
their grammar potentially large. They solve this problem by creating random permutations
for the nonterminals as they build the grammar. This idea reduces the lengths of the right-
hand sides of the rules, thus reducing the space usage. The drawback of this technique is
that it requires storing the permutations for the self-index as they are necessary to parse P
at query time. Although the space overhead of the permutations is proportional to G, they
have a considerable impact in practice in the index size2.

The algorithm we propose in this chapter also yields a locally consistent grammar. How-
ever, unlike Christiansen et al., we do not have to store permutations of the nonterminals
to perform pattern matching. When querying P in the index, we use the lexicographical
relations of its symbols to infer how its occurrences in S would be parsed. By not generating
the random permutations, we are likely to obtain a larger representation than Christiansen
et al. We offset this disadvantage by simplifying our grammar in a way that does not affect
its locally consistent properties. We use our result to build the index of Section 3.3.4, thus
requiring O(logm) cuts for finding the primary occurrences of P . This self-index is smaller
than that of Christiansen et al. and retains the same complexities.

Our method builds on the concept of induced suffix sorting (Section 3.3). The idea is
a simpler version of the LMS-based parsing technique we developed for the grammar of
Chapter 5. Using induced suffix sorting for grammar compression is not an original work
of this chapter, nor is the idea of simplifying the grammar [142, 52]. Our contribution is to
establish a new way of performing locally consistent parsing that has not been used before.
Further, self-indexing on grammars that rely on this idea, and exploiting their properties to
boost pattern matching, is an original work of this chapter.

Our experimental results showed that our grammar is comparable in size (G value) with
that of Christiansen et al., but, as explained before, it does not require the permutations.
Further experiments also showed that the grammar index built with our algorithm is larger
than that built with RePair, but considerably faster as the pattern length grows.

The work on this chapter is a collaboration with the Ph.D. thesis of Alejandro Pacheco.
2This claim is true at least in the theoretical version of the data structure of Christiansen et al., where

the permutations are stored explicitly. In practice, however, we can replace them with pseudorandom per-
mutations and Karp-Rabin fingerprints, thus avoiding the space overhead.
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The contribution of our thesis was to notice and prove that the parsing induced by the
LMS substrings is indeed locally consistent. We also implemented the grammar algorithm
described in Section 9.2.1 and the procedure that preprocesses the input pattern P at query
time to find the O(logm) cuts (Section 9.2.2). The source code of this grammar algorithm3

is a modification of the implementation of the grammar compressor described in Chapter 5.
The contribution of Alejandro Pacheco’s thesis was to implement the grammar index of
Section 3.3.4 and the locate function to find the occurrences of P in the grammar. He also
ran the experiments described in Section 9.3.

Our results [50] will be presented at the 28th International Symposium on String Processing
and Information Retrieval (SPIRE’21).

9.1 Definitions
We consider the string S[1,n] to be the input of our algorithm. We denote as G the grammar
that only produces S and that we obtain with our algorithm. As in previous chapters, R
is the set of rules and G is the grammar size. We define G as the sum of the lengths of
the right-hand sides of R. Our method uses the classifications L-type, S-type and LMS-type
(Section 3.5.2) to create the nonterminals in G. We also make use of the ≺LMS ordering
described in Section 5.2. Let S ′[1,n

′] be any string of length n
′, and let D[1,n

′] be a bit
vector of equal size. If S ′[j] is L-type, then we set D[j] to 0. When S

′[j] is S-type or
LMS-type, we set D[j] to 1. We refer to D as the description of S ′.

9.2 A Grammar Self-Index based on LMS Parsing

9.2.1 LMS parsing

We define LMS parsing as the procedure of parsing S using its LMS substrings. The idea
is similar to the method described in the SA-IS algorithm (Section 3.5.2). We compute the
description of S, and define a phrase S[i, i′] for every consecutive pair of LMS-type positions
S[i − 1] and S[i′]. We refer those phrases as LMS phrases.

The LMS parsing is locally consistent. We demonstrate this claim by proving that equal
substrings of S have the same descriptions, except possibly at their endpoints.

Lemma 12 The LMS parsing is locally consistent.

Proof. Let S[a, b] = S[a′, b′] be two equal substrings. Let their suffixes of length u ≥ 1
be equal-symbol runs, and symbols S[b − u] and S[b′ − u] be different from S[b − u + 1]
and S[b′ − u + 1], respectively. The symbols within the same run have the same types,
by definition. However, those types might differ if S[b] and S[b′] are followed by different
symbols. In particular, if S[b − u + 1] is L-type and S[b′ − u + 1] is not, then S[b′ − u + 1]
can be LMS-type, and thus a phrase may end at S[b′ − u + 1] and not at S[b − u + 1] (or
vice versa).

3https://github.com/ddiazdom/LPG/tree/LPG_grid.
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Instead, the positions S[b − u] and S[b′ − u] preceding those runs will always have the
same type because they are followed by the same symbol, S[b − u + 1] = S[b′ − u + 1].
Furthermore, the equal substrings S[a + 1, b − u − 1] and S[a′ + 1, b

′ − u − 1] will also have
the same types because they are preceded and followed by the same symbols.

Finally, the types of S[a] and S[a′] may differ because they may depend on the preceding
symbol. Both or none can be L-type, but if they are not, then one may be LMS-type and
the other be S-type, depending on the symbols at S[a − 1] and S[a′ − 1]. Therefore, one
substring may have an LMS phrase ending at the first position and not the other.

To conclude, there can be at most one LMS phrase boundary appearing in each extreme
of one of the substrings and not in the order.

We then produce a locally consistent grammar G using several rounds of LMS parsing.
In every round i, we create a dictionary Di with all the distinct LMS phrases of Si. Then,
for every F ∈ Di, we create a new rule X → F , where X is the number of rules in R built
before round i plus the ≺LMS rank of F among the strings in Di. After generating the new
rules, we create Si+1 by replacing the LMS phrases in Si with their nonterminal symbols. If
there are still repeated symbols in Si+1, we perform another parsing round i + 1 using Si+1

as input.

Note that this procedure is very similar to that of Christiansen et al. [34]. They randomly
permute the alphabet and place a phrase boundary after every local minimum. In our
LMS parsing, we place a phrase boundary after every LMS-type symbol, which is also a local
minimum. The key difference is that Christiansen et al. need to store the symbol permutations
of the parsing rounds to replicate the same parsing on the search pattern, whereas our parsing
is given by the lexicographic order and thus can be applied on the pattern without further
information.

To further reduce the grammar, we create a new rule Y → X
l for every maximal equal-

symbol run X l appearing on a right-hand side. The grammar tree represents rules Y → X
l as

Y → X X
l−1, where X l−1 is a special leaf. This unique cut is enough to detect the occurrences

of any pattern, provided a special procedure is carried out to report the secondary occurrences
inside X l−1 [34].

We also reduce space by replacing the nonterminals appearing once with the right-hand
sides of their rules, unless they represent equal-symbol runs. The rules of those replaced
symbols are then removed from R.

9.2.2 Computing the cuts during the pattern matching

We use our grammar to build the self-index of Claude et al. [37] (Section 3.3.4), with the
special provision for run-length rules. The main change of our version compared to the
original one is the way we cut the pattern.

Let us call the projection of P i[p] the index q ∈ [1,m] such that P [p] is the rightmost leaf
under the subtree rooted at P i[p] in P ’s parse tree; similarly with the projection of P̂ i[p].
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Our procedure for finding the cuts for P is analogous to that of Christiansen et al. [34].
We start with an empty set Q and apply successive rounds of LMS parsing over P . In every
round i, we insert into Q the projection of P i[1] and P̂ i[1]. We then hash the distinct LMS
phrases in P i. We discard for the hashing, however, the prefix P i[1, a] where P i[a] is the
leftmost LMS-type symbol, and the suffix P i[b..] where P i[b− 1] is the rightmost LMS-type
symbol. These elements can be incomplete phrases, so we do not use them for the next round.
Still, we do record in Q the projection of P i[a] and the projection of P i[b − 1] in P ’s parse
tree. Additionally, when the rightmost equal-symbol run of P i (last symbol in P̂ i) has length
u > 1 and P i[∣P i∣ − u] is L-type, we also insert the projection of P i[∣P i∣ − u + 1] into Q.
We consider this position because if the rightmost run of P i is S-type, then P i[∣P i∣− u+ 1]
can be LMS-type if P i[∣P i∣ − u] is L-type. After scanning P i, we sort the hashed phrases
in ≺LMS order and create a new string P i+1 that replaces the phrases’ occurrences with their
≺LMS orders. The new parse P i+1 is the input for the next round. The processing of P stops
when there are no more LMS-type symbols in P i.

The length of P i+1 is at most half that of P i, so we scan O(m) symbols along the O(logm)
parsing rounds. On the other hand, we sort the distinct LMS subtrings of P i in O(∣P i∣)
time [141], which adds up to O(m) total time. Therefore, the complete preprocessing of P
requires O(m) time.

To find the primary occurrences, we binary search the cut P [1, q]P [q + 1,m] associated
to every q ∈ Q. Since ∣Q∣ ∈ O(logm), the total time to look for the primary occurrences
is O(∣Q∣m logG) ⊆ O(m logm logG), plus O(∣Q∣ logG) ⊆ O(logm logG) for the geometric
searches, plus O(occ logG) to extract the grid points. Our final result borrows the space
figures of Claude et al. [37].

Theorem 12 Let our grammar, built for S[1,n], be of size G. Then our index uses G log n+
(2+ε)G logG bits of space, for any constant ε > 0, and finds all the occ occurrences of P [1,m]
in time O((m logm + occ) logG).

We note that, still within O(G) space, we can use Patricia trees to speed up the binary
searches, obtaining O(m logm + (logm + occ) logG) time.

9.3 Experiments

We implemented our version of the grammar index in C++ on top of the SDSL-lite library [76].
The source code is available at https://github.com/ddiazdom/LPG/tree/LPG_grid. This
software combines source code of the grammar compressor4 of Section 5 and the grammar
index5 of Claude et al. [37]. We generated two versions of our index. The regular version
(lms-ind) implements the wavelet tree of the grid data structure using plain bit vectors.
The second variant (lms-ind-rrr) encodes the wavelet tree using the data structure for
compressed bit vectors of Section 2.2.1. We compared our software against the state-of-the-
art self-indexes for repetitive collections:

4https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2.
5https://github.com/apachecom/grammar_improved_index.
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• r-ind6: The run-length compressed FM-index described in Section 3.3.3. It uses
O(r log n) bits, where r is the number of runs in the text’s BWT, and supports lo-
cate within that space.

• lz-ind7: A self-index based on Lempel-Ziv [101] that guarantees O(z log z) bits of
space over a Lempel-Ziv parse of z phrases. We also included the variant that uses
LZ-end parsing (lz-end-ind) [100].

• slp-ind : An optimized implementation of the grammar index of Claude et al. 2012 [36].
This version speeds up the binary searches by storing q-grams8 of the prefixes to which
the nonterminals expand (grid labels). We used three q-gram values in our experi-
ments; 4,8, and 16. We refer to these variants as slp-ind4, slp-ind8 and slp-ind16,
respectively.

• g-ind: The grammar index of Claude et al [37] described in Section 3.3.4. The first
variant of this index (g-ind-bs) uses binary searches over the grid labels to find the
primary occurrences of P . The second variant (g-ind-pt) speeds up the search by
maintaining two Patricia trees, one for a subset of uniformly sampled column labels
in the grid and the other for a subset of uniformly sampled row labels. We used
three sampling rates; 1/4, 1/16, and 1/64. We refer to these variants as g-ind-pt4,
g-ind-pt16, and gt-ind-pt64, respectively.

We used five data sets of the Pizza&Chilli9 corpus for the experiments. The characteristics
of these datasets are shown in Table 9.1. We assessed the compression ratio and the running
time for locating patterns. We extracted random substrings from the datasets and then we
searched them back with the different indexes. The length of these patterns ranged from 10
to 100 characters.

We also compared our grammar algorithm against RePair and the method of Christiansen
et al. [34]. The metric we used for the comparison was the grammar size (G value). The
algorithm of Christiansen et al. has no formal implementation, so we produced one ourselves.

All the experiments were carried out on a machine with eight Intel(R) Xeon(R) CPU
E5-2407 processors at 2.40 GHz and 250 GB RAM. We compiled our source code using full
compiler optimizations and we do not use multi threading.

9.4 Results and Discussion
The grammars produced with our method were, on average, 4.2 times bigger than the RePair
grammars (see columns 4 and 5 of Table 9.1). This considerable difference is expected as
our grammar algorithm prioritizes consistency over compression. By further processing the
grammars produced with our method (see Section 9.2), we reduced their sizes by 41% on
average. However, their final sizes were still far from those of RePair; they were 1.82 times
bigger on average. Interestingly, the sizes of our post-processed grammars were similar to
those of Christiansen et al. (columns 6 and 7 of Table 9.1), even though we are not using

6https://github.com/nicolaprezza/r-index.
7https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/LZ.
8They are also referred to as kmers.
9http://pizzachili.dcc.uchile.cl.
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Dataset n σ RePair LMS LMS post LC

para 429,265,758 5 5,344,480 22,787,047 8,933,303 8,888,002
cere 461,286,644 5 4,069,450 37,426,507 6,802,801 4,069,450
influenza 154,808,555 15 1,957,370 4,259,746 3,304,035 4,477,322
einstein.en 467,626,544 139 212,903 643,338 427,142 601,755
kernel 257,961,616 162 1,374,650 3,769,839 2,870,350 3,795,801

Table 9.1: Datasets. The second and third columns are the number of symbols and alphabet,
respectively. The rest of the columns are grammar sizes (value for G) obtained with differ-
ent grammar algorithms. The column for RePair considers the postprocessing described in
Section 3.3.4. LMS is the grammar obtained with LMS parsing and LMS post is grammar
resulted from the postprocessing described in Section 9.2. The last column (LC) refers to
the grammar of Christiansen et al. 2020.

random permutations. It is important to note that it is unknown how to further simplify the
grammar of Christiansen et al. without losing local consistency.

Figure 9.1 shows the trade-offs between index space usage and time for locating patterns
of length 100. The results varied widely depending on the dataset. For instance, in cere and
para, the index that used the most space was r-ind (1.93 and 2.76 bps, respectively), but it
was also the fastest (0.34 and 0.37 µsecs). The second-largest index was lms-ind (1.32 and
1.89 bps), and the second-fastest after r-ind. In both datasets, the variant lms-ind-rrr
reduced the space usage and stayed competitive for locating, but in the other datasets,
lms-ind-rrr reduced the space at the cost of becoming slower. The smallest representation
in cere and para was lz-ind (0.49 and 0.70 bps), but it was the slowest at locating (10.2
and 15.5 µsecs). In einstein.en, lms-ind was the biggest index (0.076 bps), even bigger than
r-ind, which remained the fastest. However, lms-ind was the fastest dictionary-based data
structure. The lms-ind-rrr variant reduced the space, but it did not outperform r-ind.

Things went differently with influenza and kernel. The Lempel-Ziv data structures (lz-ind
and lz-end-ind) were competitive with r-ind for locating (14.16 and 18.05 µsecs versus 5.89
µsecs, respectively). Nevertheless, they used less space. This result is unexpected as influenza
and kernel are not as repetitive as einstein.en. Our index performed poorly in these datasets.
Both variants (lms-ind and lms-ind-rrr) were the biggest dictionary-based data structures,
and they were not the fastest ones. However, they were competitive with r-ind in terms of
space, with lms-ind-rrr using less space than r-ind in kernel (0.81 bps versus 0.89 bps,
respectively), although they were significantly slower.

Figure 9.2 shows the performance of the indexes for the locate operation using different
pattern lengths (from 100 to 800). In para and cere, lms-ind greatly outperformed the other
dictionary-based indexes as the pattern length increased. This was not the case in einstein.en
and kernel, where the performance of lms-ind-rrr was not different from that of slp-ind.
We also noted that in those datasets, the performance of lz-ind was very close to that
of r-ind. Interestingly, the performance of r-ind remained steady as the pattern length
increased.
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Figure 9.1: Time-space tradeoffs for locating 1000 random pattern of length 100 on different
collections and indexes. The time (y-axis) is given in µsecs per occurrence and the index
space (x-axis) in bits per symbol (bps).

9.5 Locally Consistent Grammars and Pangenomes

A relevant application (not explored yet) of locally consistent grammars is indexing pange-
nomic collections (Section 4.5). Putting aside the fact that we could achieve high compres-
sion ratios as pangenomes are repetitive, they could also help develop efficient methods for
aligning third-generation reads (Section 4.2) in compressed space. These strings are long
(several thousands of characters) and more prone to sequencing errors than regular NGS
reads. Therefore, aligning them to a pangenome requires a self-index with efficient support
for approximate pattern matching of long strings. The r-index is the state-of-the-art com-
pressed index for pangenomes, but most of its variations are tailored to perform exact pattern
matching of short strings.

In the previous sections, we saw that locally consistent parsing improves the time com-
plexity when locating a pattern in the grammar self-index of Section 3.3.4, thus enabling
the alignment of long strings. However, the benefits of this technique are not limited to
the grammar index. We believe that locally consistent parsing could also serve as a base to
develop other indexes that support approximate string matching. We now briefly sketch our
idea.

Assume S is a concatenated pangenome, and we require to search for the occurrences of a
(possibly) long read P [1,m], allowing a few mismatches. We use locally consistent parsing
to detect long substrings of P that have exact matches in S. We use the matched substrings
of S as anchors for possible inexact alignments, which we later extend using, for instance,
dynamic programming or colinear chaining. This is the classic method most aligners use to
map DNA sequences to genomic databases (see Section 4.4 for examples of these ideas). The
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Figure 9.2: Locating time for increasing pattern lengths. The time is given in µsecs per
occurrence. The upper x-axes indicate the number of occurrences (in millions) searched in
every combination of document and pattern length.

only difference here is that we are using locally consistent parsing to compute the anchors.

We find the substrings of P with exact matches in S as follows. Suppose we have a locally
consistent grammar G that only produces S and an index for the rules of G. We preprocess
P using the same algorithm we used for G. In every parsing round i, we query the index
to find the distinct phrases of P i appearing in the right-hand sides of G’s rules. We extract
their associated nonterminals to build the next parse P i+1. In doing so, we put wildcards in
P
i+1 to represent the phrases that were not found in G. In the subsequent parsing round, we

only query complete phrases that do not contain wildcards. Those substrings of P i+1 with
incomplete phrases are replaced in the next parse with wildcard symbols. The preprocessing
finishes when P i has no more valid phrases. The substrings of P h (the last parse) containing
non-wildcard symbols recursively expand to substrings in P that have exact matches in S.
The positions in S for those matches will be the anchors for the inexact alignments.

It is not yet clear how to locate the positions in S for the anchors in compressed space. We
are also unclear on extending the alignments in compressed space once we find the anchors.
We believe that encoding G using the Wheeler framework (Section 3.4) could help us perform
these tasks.
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Chapter 10

Conclusion and Further Work

We addressed the problem of manipulating massive collections of genomic data in succinct
or compressed space. Our contributions were focused on, but not limited to, processing large
datasets of short strings called sequencing reads. These are the raw form in which DNA se-
quences are delivered and require further processing on the computer to obtain the final prod-
uct (i.e., a genome). We implemented different compact data structures and compression-
aware algorithms for reads that exploit the repetitive patterns of DNA. Our experiments
demonstrated that these methods reduce space usage and improve the results of the analy-
ses. In this regard, it is important to note that, unlike complete genomes, the types of read
collections we considered in this thesis have short repetitive patterns. We conclude thus that
it is possible, in practice, to use the text redundancies to lower the computational costs of
manipulating large datasets, even in not so highly repetitive scenarios.

10.1 Summary of contributions
• In Chapter 5, we described a practical algorithm called LMSg to compress a read

collection S. This method reduces the space usage by constructing a context-free
grammar G that only produces S. The particular construction of G allows us to compute
the eBWT of S without fully decompressing the text. On the other hand, if we augment
G with extra data structures, we can also support random access to individual reads.
We believe these features are suitable for genomic applications where the reads are
processed once and then discarded from downstream analyses. An example of this
situation is, for instance, the assembly of an individual genome.
The experimental results demonstrated that our method is a practical alternative to
the state-of-the-art compressors when S is massive. LPG, the software that implements
LMSg, was the fastest method in the benchmarks. Its memory peak was about 58% of
the input size. This value is considerable compared to the negligible amount of memory
that the popular tool 7-zip required. However, it was far less than what the RePair
variation for large collections (BigRePair) used. LPG also used less working memory
than egap, the software we used for building the BCR BWT of S. The experimental
results also showed that our compressed representation for S can support random access
without increasing the space too much. The extra data structures we required for this

147



task increased the space of G’s encoding by about 17%. In exchange, we could extract
random strings of length 152 in about 100 µsecs. This result was competitive with the
other tested methods.

• In Chapter 6, we described infBWT, an algorithm for building from G the eBWT of S.
We also described a variation of the eBWT that we can use to encode extra information
about the reads. This variation offers the following functionality. Let S∗ be a string
collection with the reads of S along with their reverse complements, and let L be the
eBWT of S∗. Given that we know a position in L encoding a symbol in Si ∈ S∗,
we can access the other BWT positions spelling the DNA reverse complement of Si or
the BWT positions spelling its mate if S is a paired-end collection. Supporting this
functionality does not require extra space on top of L.
The experimental results showed that infBWT was not the fastest method, nor was the
most space-efficient. On the other hand, it was not the method that required the most
time or space either. However, it was the only one whose performance improved as the
repetitiveness of the input increased (i.e., as we appended to S more read collections
from other individuals of the same species). The number of bytes and µsecs per input
symbol our algorithm took decreased with every new collection we appended to S. This
result implies that infBWT is indeed exploiting the repetitions. We believe that, if we
continue appending more collections to S, infBWT will eventually become the most
efficient method.

• In Chapter 7, we presented rBOSS; a BWT-based index for short reads that enables the
navigation of the reads’ layout (Section 4.3) in succinct space. This index augments the
BOSS representation for dBGs of Bowe et al. [24] with a new compact data structure
that speeds up the computation of overlaps between strings. We call this new structure
the overlap tree. We showed that the use of the overlap tree is not limited to dBGs. We
can also combine it with the eBWT of S to produce a self-index that computes overlaps
between reads. We experimentally compared rBOSS against other succinct represen-
tation for variable-order dBGs called VO-BOSS. Our results showed that rBOSS uses,
on average, 20% less space than VO-BOSS and it is faster at reporting string overlaps.
The framework of rBOSS supports new string queries tailored for genomic analyses. To
our knowledge, these queries had not been proposed before in literature. By combining
these new functions with the features of BOSS we can navigate the dBG and take more
informed decisions. In particular, we can better estimate if the edges we visit in the
traversal represents real genome information or sequencing noise. We implemented a
simple genome assembler (Section 4.3) on top of rBOSS and showed that we produce
longer genome segments (a.k.a contigs) than regular approaches based on dBGs of fixed
order.

• In Chapter 8 we presented an alternative succinct index for short reads. We build a
dBG G from S and assign a specific color ci to every string Si ∈ S. We then store ci in
the path of G that spells Si. The idea is to use the colors to disentangle the reads from
G. We reduce the space usage of the colors in the index by using an observation made
by Alipanahi et al [1]; it is safe to assign the same color to those reads that do not
share kmers. We further develop their idea showing that (i) reads spelled in G by walks
containing cycles cannot be disentangled, (ii) it is not safe to assign the same color to
those reads that do not share kmers if their paths in G are connected by spurious edges,
and (iii) it is not necessary to color all the nodes in G to disentangle the reads. We
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developed a new greedy coloring coloring for G that considers our observations. We
encode the resulting color matrix using compact data structures and the topology of
G using BOSS. We also implemented two practical algorithms on top of our version of
the colored dBG. The first one, buildseqs, extracts the reads from G, while the second,
contigassm, assembles contigs from G taking into consideration the path colors.
Our experimental results show that, on average, the percentage of nodes in G that need
to be colored is about 12.4%, the space usage of the whole index is about half the space
of S, and more than 99% of the reads can be spelled from the colored graph.

• In Chapter 9, we demonstrated that the parsing technique we used in Chapter 5 to
compress S is locally consistent. We exploited this fact to develop a practical algorithm
that, given an input string S, produces a locally consistent grammar G ′ whose language
only contains the string S. We use G ′ as input to build the grammar index of Claude et
al [37] (Section 3.3.4). Similarly to Christiansen et al [34], we combine the machinery
of the grammar index with the local consistency of G ′ to locate the occ occurrences in S
of a pattern P [1,m] in O((m logm+ occ) logG) time, where G is the size of G ′. In the
regular index of Claude et al., the same operation is implemented in O((m2+occ) logG)
time. Our advantage compared to Christiansen et al. is that we do not require to store
extra information to retain the local consistency of G ′ in the index.
Our experimental results showed that our method is a practical alternative to the tech-
nique of Christiansen et al., as we obtain a locally consistent grammar of comparable
size without storing the symbol permutations. The resulting self-index is thus not much
larger than the other popular dictionary-based indexes but generally faster at locating
patterns, especially long ones.

10.2 Further Work
The techniques we developed in this thesis mainly focused on processing NGS reads (short
strings) as these datasets were the most widespread four years ago when we started our
research. However, the rapid advances in sequencing technologies make things go fast in
Genomics. Third-generation reads (long strings) are nowadays becoming equally or more
relevant than NGS data. Because of this fact, our future research direction will be to adapt
the ideas we developed in this thesis for manipulating third-generation datasets. We are also
interested in adapting our algorithmic framework for indexing pangenomes, as this topic is
also relevant for the Bioinformatics community. We now discuss the future research directions
and open problems in our different contributions.

• The most relevant improvement for LMSg (Chapter 5) is to reduce the size of the
grammar G without losing its features for constructing the eBWT of S. A possible
solution for this problem was recently pointed out to us by Dominik Köppl at DCC’21.
He suggested that we could reduce the number of nonterminals in G by considering the
strings in S to be circular. The purpose is to remove the extra $ symbol we have to
append to every string in S when constructing the grammar. The rationale of his idea
is that by removing one symbol from the alphabet of S ($ in this case), the number of
distinct nonterminals we can generate from the reads also decreases. The only caveat
is that we require to add a bit vector of size proportional to C, the compressed version
of S in G, to mark every symbol in C[i] representing the end of a string.
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We would also like to find theoretical bounds for LMSg. Recall that our method builds
on the ISS idea of Section 3.5.2. In this algorithm, the size of the parse Si+1 is always at
most half the size of the previous parse Si+1, so the number of symbols the algorithm
processes is proportional to the size of the input text. However, LMSg can transfer
symbols from one parsing round to the next one, meaning that the aforementioned
property of ISS no longer holds for our method. A simple solution would be to run the
algorithm of Nunes et al. [142] and then simplify the grammar. This idea would make
LMSg linear-time. However, it is not clear for us if we can use the resulting grammar
to compute the eBWT of S.
Another possible application of LMSg is the compression of pangenomes. The idea is
interesting, not just because we can achieve better compression ratios than with reads
but also because we can exploit the long DNA repetitions to boost the computation
of the pangenome’s eBWT. Several pangenomic self-indexes based on the r-index are
being actively developed nowadays, and the construction of the collection’s BWT is
a crucial topic in all of them. Our current implementation of LMSg speeds up the
grammar construction by exploiting the fact that the reads in S are short. We need to
modify our source code to make it compatible with the cases when the strings in S are
arbitrarily long.

• Although infBWT (Chapter 6) increases its performance as S becomes repetitive, it
is still slow compared to other alternatives for constructing the BCR BWT that run
in semi-external mode. A possible solution to overcome this problem is to avoid re-
constructing the alphabet of symbols for every parse Si (see Section 6.4). Ideally, one
would like to have a grammar construction with the following property. Let X and
X be two nonterminals. If X < Y, then exp(X) <LMS exp(Y). We conjecture that
this property would enable the direct use of nonterminals for computing the eBWT,
thus avoiding the alphabet reconstruction. However, this idea makes sense only if G is
balanced and the nonterminals of every parse tree level are disjoint, which is not our
case. We have some preliminary ideas about renaming the symbols in G, so we do not
require the alphabet reconstructions, but they require modifying big portions of LMSg
and infBWT.
One of the main arguments we gave in this thesis for building the eBWT from G was
the indexing of S. However, most self-indexes for reads require other data structures as
well. We plan to extend the idea of infBWT to compute the LCP array while producing
the eBWT. We also wonder if it is possible to obtain the dBG with order k of S by
modifying infBWT. We also plan to address this challenge in the future.

• One of the most important topics unfinished in rBOSS (Chapter 7) is its implementation
on top of our variation of the eBWT (Section 6.1). There are several technical problems
we need to tackle first. First, we need an efficient method to compute the overlap tree
from the generalized suffix tree of S. We intend to modify infBWT to get the overlap
tree while it infers the eBWT L of S, but it is not clear to us yet how to carry out this
task. Another problem is that rBOSS considers the reverse complements of S, but the
array L we obtain with infBWT does not have these symbols as G does not store the
reverse complements. We can tackle this problem by modifying infBWT to produce an
alternative eBWT L

rc for the reverse complements, and then merge L and Lrc into one
array. This task, however, is not trivial, and (again) we are not clear about how to
proceed. Besides, we still need to find a way to produce the overlap tree for the final

150



eBWT.
Another relevant feature that was not implemented in rBOSS is the computation of
inexact overlaps. This functionality is not difficult to implement, but it will affect the
performance of layout. However, it is necessary as it is a more realistic model for the
reads.
We also plan to improve the genome assembler we created on top of rBOSS. Although
the contigs we obtained with our assembler were longer than those obtained with bcalm,
they overlap. The problem arises because maximal paths in rBOSS are not disjoint.
A simple solution is to reassemble the contigs recursively. We build another rBOSS
instance with a higher maximum order k using the contigs as input, and then repeat the
same assembly process. We keep doing this idea until the contigs no longer overlap. This
approach is similar to the iterative dBG-based genome assembler of Peng et al. [152]
and Pevzner et al. [5].

• We believe that a more careful algorithm for constructing the colored dBG (Chapter 8)
is still necessary to reduce the memory peaks. Further compaction of the color matrix
can be achieved by using more elaborated compression techniques. However, this extra
compression can increase the construction time of the colored dBG and produce a con-
siderable slowdown in the algorithms that work on top of it for extracting information
from the reads. Comparison of our results with other similar data structures is difficult
at the moment. Most of the indexes based on colored dBGs were not designed to handle
huge sets of colors like ours. On the other hand, the greedy recoloring of Alipanahi et
al. [1] does not scale well and it needs extra information for reconstructing the reads.

• The performance for locating patterns of the grammar index we obtained in Chapter 9
was better than in the previous variations of this index. However, we are still not com-
petitive with the widely used r-index, at least not for the time for the locate operation.
On the other hand, the relatively big grammar that results from our algorithm and
the heavy machinery required to implement the grammar index produces our final data
structure to be big compared to other dictionary-based self-indexes. These drawbacks
do not mean that the ideas we developed are impractical. We believe that we can
increase our performance in both time and space if we encode our locally consistent
grammar using the Wheeler Graph framework (Section 3.4). The grammar tree would
be replaced by a BWT obtained from the right-hand sides of the grammar rules, and
the grid functionality would be simulated using the LF and backwardsearch operations.
Another aspect we would like to address in the future is the use of local consistency to
support approximate mismatches in the grammar-based self-index. The idea we gave
in Section 9.5 is just a sketch and needs to be further developed. Enabling approximate
mismatches is an important feature we must develop to design practical pangenomic
representations.
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