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Abstract Research on succinct data structures has made significant progress in
recent years. An essential building block of many of those techniques is
a data structure to perform rank and select operations over a bit array.
The first operation tells how many bits are set up to some position, and
the second the position of the i-th bit set. Albeit there exist constant-
time solutions that require sublinear extra space, the practicality of
those solutions against more naive ones has not been carefully studied.
In this paper we show some results in this respect, which suggest that
in many practical cases the simpler solutions are better in terms of time
and extra space.
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Introduction

Recent years have witnessed an increasing interest on succinct data
structures, motivated mainly by the growth over time on the size of
textual information. Among the most important data structures of this
kind are the succinct data structures for pattern matching, commonly
known as succinct full-text indexes. There is a wide variety of these
indexes, each one with a different trade-off between search time and
space occupancy [2, 14, 5, 11, 3]. Interestingly, some of them, so-called
self-indexes, do not need the original text to operate, as they contain
enough information to recreate it.

An essential building block of many of those proposals is a data struc-
ture to perform rank and select operations over a bit array B[1 . . . n]
with n bits. The first operation, rank(B, i), is the number of 1’s in
B[1 . . . i], rank(B, 0) = 0. The second, select(B, j), gives the position
of the j-th bit set in B.

The first results achieving constant time on rank() and select() [10,
1]used n + o(n) bits: n bits for B itself and o(n) additional bits for
the data structures used to answer rank() and select() queries. Further
refinements [12–13]achieved constant time on the same queries by using
nH0(B)+ o(n) bits overall, where H0(B) is the zero-order entropy of B.
Recent lower-bounds [9]reveal that those results are almost optimal also
on the o(n) terms.

It is unclear how efficient are in practice those solutions, nor how
irrelevant is the o(n) extra space in practice. In this paper we focus on
the most promising solutions among those that use n + o(n) bits.

All our experiments ran on an AMD Athlon of 1.6 GHz, 1 GB of
RAM, 256 KB cache, running Linux. We use the GNU gcc compiler for
C++ with full optimizations. We measure user times.

1. Rank Queries

1.1 The Constant-Time Classical Solution

The constant-time solution for rank is relatively simple [6, 10–1]. We
divide the bit array into blocks of length b = ⌊log(n)/2⌋ (all our loga-
rithms are in base 2). Consecutive blocks are grouped into superblocks
of length s = b⌊log n⌋.

For each superblock j, 0 ≤ j ≤ ⌊n/s⌋ we store a number Rs[j] =
rank(B, j · s). Array Rs needs overall n/b = O(n/ log n) bits.

For each block k of superblock j = k div ⌊log n⌋, 0 ≤ k ≤ ⌊n/b⌋, we
store a number Rb[k] = rank(B, k · b) − rank(B, j · s). Array Rb needs
(n/b) log s = O(n log log n/ log n) bits.
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Finally, for every bit stream S of length b and for every position i
inside S, we precompute Rp[S, i] = rank(S, i). This requires O(2b · b ·
log b) = O(

√
n log n log log n) bits.

The above structures need O( n
log n

+ n log log n
log n

+
√

n log n log log n) =

o(n) bits. They compute rank in constant time as rank(B, i) = Rs[i div s]
+Rb[i div b] + Rp[B[(i div b) · b + 1 . . . (i div b) · b + b], i mod b].

This structure is can be implemented with little effort and promises
to work fast. Yet, for e.g., n = 230 bits, the o(n) extra space is 6.67% +
60% + 0.18% = 66.85% of n, which is not so negligible.

1.2 Resorting to Popcounting

The term popcount (population count) refers to counting how many
bits are set in a bit array. We note that table Rp can be replaced by
popcounting, as Rp[S, i] = popcount(S & 1i), where “&” is the bitwise
and and 1i is a sequence of i 1’s (obtained for example as 2i − 1). This
permits us removing the second argument of Rp, which makes the table
smaller. In terms of time, we perform an extra and operation in ex-
change for either a multiplication or an indirection to handle the second
argument. The change is clearly convenient.

Popcounting can be implemented by several means, from bit manipu-
lation in a single computer register to table lookup. We have found that
the implementation of Gnu g++ is the fastest:

popc = { 0, 1, 1, 2, 1, 2, 2, 3, 1, ... }

popcount = popc[x & 0xFF] + popc[(x >> 8) & 0xFF]

+ popc[(x >> 16) & 0xFF] + popc[x >> 24]

where popc is a precomputed popcount table indexed by bytes.
Yet, this table lookup solution is only one choice among several al-

ternatives. The width of the argument of the precomputed table has
been fixed at 8 bits and b has been fixed at 32 bits, hence requiring 4
table accesses. In a more general setup, we can choose b = log(n)/k and
the width of the table argument to be log(n)/(rk), for integer constants
r and k. Thus the number of table accesses to compute popcount is r
and the space overhead for table Rb is k log log(n)/ log(n). What pre-
vents us to choose minimal r and k is the size of table popc, which is

n
1

rk log log(n). Condition rk > 1 yields a space/time trade-off.
In practice, b should be a multiple of 8 because the solutions to

popcount work at least by chunks of whole bytes. With the setting
s = b log n, and considering the range 216 < n ≤ 232 to illustrate, the
overall extra space (not counting Rp) is 112.5% with b = 8, 62.5% with
b = 16, 45.83% with b = 24 and 34.38% with b = 32.
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We have tried the reasonable (k, r) combinations for b = 16 and b =
32: (1) b = 32 and a 16KB popc table needing 2 accesses for popcount,
(2) b = 16 and a 16KB popc table needing 1 access for popcount, (3)
b = 16 and a 256-byte popc table needing 2 accesses for popcount, and
(4) b = 32 and a 256-byte popc table needing 4 accesses for popcount.
Other choices require too much space or too many table accesses. We
have also excluded b = 8 because its space overhead is too high and
b = 24 because it requires non-aligned memory accesses (see later).

Figure 1 (left) shows execution times for n = 212 to n = 230 bits.
For each size we randomly generate 200 arrays and average the times
of 1,000,000 rank queries over each. We compare the four alternatives
above as well as the mentioned method that does not use tables. As it
can be seen, the combination (4), that is, b = 32 making 4 accesses to a
table of 256 entries, is the fastest in most cases, and when it is not, the
difference is negligible.

On the other hand, it is preferable to read word-aligned numbers
than numbers that occupy other number of bits such as log n, which
can cross word boundaries and force reading two words from memory.
In particular, we have considered the alternative s = 28, which permits
storing Rb elements as bytes. The space overhead of Rb is thus only 25%
with b = 32 (and 50% for b = 16), and accesses to Rb are byte-aligned.
The price for such a small s is that Rs gets larger. For example, for
n = 220 it is 7.81%, but the sum is still inferior to the 34.38% obtained
with the basic scheme s = b log n. Actually, for little more space, we
could store Rs values as full 32-bit integers (or 16-bit if log n ≤ 16). The
overhead factor due to Rs becomes now 32/256 (or 16/256), which is
at most 12.5%. Overall, the space overhead is 37.5%, close to the non-
aligned version. Figure 1 (left) shows that this alternative is the fastest,
and it will be our choice for popcount-based methods.

Note that up to n = 220 bits, the original bit array together with
the additional structures need at most 176 KB with b = 32, and 208 KB
with b = 16. Thus our 256 KB cache accommodates the whole structure.
However, for n = 222, we need 512 KB just for the bit array. Thus the
cache hit ratio decreases as n grows, which explains the increase in query
times that should be constant. We make systematic study of the cache
effect in Sect. 1.3.

1.3 Using a Single Level Plus Sequential Scan

At this point we still follow the classical scheme in the sense that
we have two levels of blocks, Rs and Rb. This forces us to make two
memory accesses in addition to accessing the bit array block. We con-
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sider now the alternative of using the same space to have a single level
of blocks, Rs, with one entry each s = 32 · k bits, and using a sin-
gle 32-bit integer to store the ranks. To answer a rank(B, i) query,
we would first find the latest Rs entry that precedes i, and then se-
quentially scan the array, popcounting in chunks of w = 32 bits, until
reaching the desired position, as follows: rank(B, i) = Rs[i div s] +
∑

j=(((i div s)·s) div w)+1...(i div w)−1 popcount(B[j ·w+1 . . . j ·w+w])+

popcount(B[(i div w) · w + 1 . . . (i div w) · w + w] & 1i mod w).
Note that the sequential scan accesses at most k memory words, and

the space overhead is 1/k. Thus we have a space/time trade-off. For
example, with k = 3 we have approximately the same space overhead as
in our preferred two-level version.

Figure 1 (right) compares the execution time of different trade-offs
against the best previous alternatives. For the alternative of using only
one level of blocks, we have considered extra spaces of 5%, 10%, 25%,
33% (close to the space of our best two-level alternative), and 50%.
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Figure 1. On the left, different popcount methods to solve rank. On the right,
different mixed approaches to solve rank: classical alternative, popcounting with two
levels of blocks, and popcounting with one level of blocks.

We can see that the direct implementation of the theoretical solution
is far from competitive: It wastes the most space and is among the
slowest. Our two-level popcount alternative is usually the fastest by far,
showing that the use of two levels of blocks plus an access to the bit
array is normally better than using the same space (and even more) for
a single level of blocks. Yet, note that the situation is reversed for large
n. The reason is the locality of reference of the one-level versions: They
perform one access to Rs and then a few accesses to the bit array (on
average, 1 access with 50% overhead, 1.5 accesses with 33% overhead
and 2 accesses with 25% overhead). Those last accesses are close to each
other, thus from the second on they are surely cache hits. On the other
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hand, the two-level version performs three accesses (Rs, Rb, and the bit
array) with no locality among them. When the cache hit ratio decreases
significantly, those three nonlocal accesses become worse than the two
nonlocal accesses (plus some local ones) of the one-level versions.

Thus, which is the best choice among one and two levels depends on
the application. Two levels is usually better, but for large n one can use
even less space and be faster. Yet, there is no fixed concept of what is
“large”, as other data structures may compete for the cache and thus
the real limit can be lower than in our experiments, where only the rank
structures are present.

2. Select Queries

2.1 Binary Searching with Rank

A simple, yet O(log n) time, solution to select(B, j), is to binary
search in B the position i such that rank(B, i) = j and rank(B, i−1) =
j−1. Hence, the same structures used to compute rank(B, i) in constant
time can be used to compute select(B, j) in O(log n) time.

More efficient than using rank(B, i) as a black box is to take advan-
tage of its layered structure: first binary search for the proper superblock
using Rs, then binary search that superblock for the proper block using
Rb, and finally binary search for the position inside the block.

For the search in the superblock of s bits, there are three alternatives:
(2a) binary search using Rb, (2b) sequential search using Rb (since there
are only a few blocks inside a superblock), and (2c) sequential search
using popcount. The last alternative consists of simply counting the
number of bits set inside the superblock, and has the advantage of not
needing array Rb at all. For the search in the last block of b bits, binary
search makes little sense because popcount proceeds anyway bytewise,
so we have considered two alternatives: (3a) bytewise search using pop-
count plus bitwise search in the final byte, and (3b) sequential bitwise
search in the b bits.

In the case of select, the density of the bit array may be significant.
We have generated bit arrays of densities (fraction of bits set) from 0.001
to 1. For each density we randomly generated 50 different arrays of each
size. For each array, we average the times of 400,000 select queries.

The results for the binary search version are almost independent of
the density of bits set in B, hence we show in Figure 2 (left) only the
case of density 0.4. We first compare alternatives (2a, 3b), (2b, 3b) and
(2c, 3b). Then, as (2c, 3b) turns out to be the fastest, we consider also
(2c, 3a), which is consistently the best. We have also plotted the basic
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binary search (not level-wise) to show that it is much slower than any
other. In this experiment we have used b = 32 and s = b log n.
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Figure 2. Comparison of alternatives to solve select by binary search (left), and
comparison of different space overheads for select based on binary search (right).

Note that the best alternative only requires space for Rs (that is,
1/32), as all the rest is solved with sequential scanning. Once it is clear
that using a single level is preferable for select, we consider speeding up
the accesses to Rs by using 32-bit integers (or 16-bits when log n ≤ 16).
Moreover, we can choose any sampling step of the form s = k · b so that
the sequential scan accesses at most k blocks and we pay 1/k overhead.

Figure 2 (right) compares different space overheads, from 5% to 50%.
We also include the case of 1/ log n overhead, which is the space needed
by the version where Rs stores log n bit integers instead of 32 bits. It
can be seen that these word-aligned alternatives are faster than those
using exactly log n bits for Rs. Moreover, there is a clear cache effect
as n grows. For small n, higher space overheads yield better times as
expected, albeit the difference is not large because the binary search on
Rs is a significant factor that smoothes the differences in the sequential
search. For larger n, the price of the cache misses during the binary
search in Rs is the dominant factor, thus lower overheads take much less
time because their Rs arrays are smaller and their cache hit ratios are
higher. The sequential search, on the other hand, is not so important
because only the first access may be non-local, all the following ones are
surely cache hits. Actually, the variant of 1/ log n overhead is finally the
fastest because for n = 30 it is equivalent to 3.33% overhead.

The best alternative is the one that balances the number of cache
misses during binary search on Rs with those occurring in the sequential
search on the bit array. It is interesting, however, that a good solution
for select requires little space.
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2.2 The Constant-Time Solution

The constant time solution to select(B, j) is significantly more com-
plex than for rank(B, i). Clark’s structure [1]uses a three-level directory
tree and requires 3n

⌈log log n⌉ +O(
√

n log n log log n) bits of extra space. For

example, for n = 230, the overhead is 60%.
Figure 3 shows the execution times for our implementation of Clark’s

select (we show different lines for different densities of the bit arrays).
We note that, although the time is O(1), there are significant differences
as we change n or the density of the arrays (albeit of course those differ-
ences are bounded by a constant). For lack of space we cannot explain
the reason for the curve shapes.
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Figure 3. Comparison of Clark’s select on different densities and two binary search
based implementations using different space overheads.

The plot also shows the time for our binary search versions using 5%
and 50% space overhead. For very low densities (up to 0.005 and some-
times 0.01), Clark’s implementation is superior. However, we note that
for such low densities, the select problem is trivially solved by explic-
itly storing all the positions of all the bits set (that is, precomputing all
answers), at a space overhead that is only 32% for density 0.01. Hence
this case is not very interesting. For higher densities, our binary search
versions are superior up to n = 222 or 226 bits, depending on the space
overhead we chose (and hence on how fast we want to be for small n).
After some point, however, the O(log n) nature of the binary search so-
lution shows up, and the constant-time solution of Clark finally takes
over. We remark that Clark’s space overhead is 60% at least.

3. The Cache Effect

Hardware cache and memory management play a key role in the user
time for rank and select queries. Solutions that are clearly constant
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time, which is especially obvious for rank, turn out to increase almost
linearly with log n because of cache effects (recall Figure 1).

The hardware components involved are the L1 and L2 cache and the
TLB (Translation Lookaside Buffer). L1 and L2 are a first- (smaller
and faster) and second-level memory caches, while the TLB is a small
associative memory that maps virtual to physical page table resolutions.
In the Linux version we use, the TLB is sequentially scanned to solve
each address, thus the cost of every access to memory depends linearly on
the amount of memory allocated [4, Sect. 3.8, pp. 43–44]. This is usually
mild because of the locality of reference exhibited by most applications,
but this is not the case, for example, with rank() queries.

We use Cachegrind (http://webcvs.kde.org/valgrind/cachegrind) to mea-
sure the effect of L1 and L2 cache. Cachegrind, a part of a larger tool
known as Valgrind, is a tool for doing cache simulations and annotating
the source line-by-line with the number of cache misses. In particular, it
records: L1 instruction cache reads and misses; L1 data cache reads and
read misses, writes and write misses; L2 unified cache reads and read
misses, writes and writes misses. In our case, we use this tool to count
the number of cache hits and misses of rank and select queries.

From our configuration we know that an L1 miss will typically cost
around 10 cycles, and an L2 miss costs around 200 cycles. With the
Cachegrind tool, we obtained that there is a very close correlation be-
tween the predicted number of cycles (mostly coming from the L1 and
L2 misses) and the measured user time for queries. Moreover, optimiz-
ing the cost of L1 and L2 misses in terms of number of cycles we get
numbers very close to the predicted 10 and 200.

For rank queries the miss ratio is stabilized for n ≥ 226 (that is, all
are L2 misses at that point), but the user time still grows with n. Then
the TLB size comes into play, because as the size n of the arrays grows,
the search time on the TLB will also grow linearly with n.

For select queries the miss ratio never reaches 100%, and the number
of cycles due to cache misses (without considering TLB) can perfectly
explain the measured user time.

Overall, we obtained the following general model to explain the user
time in microseconds: U ′

t = L1m CL1m
+ L2m CL2m

+ CTLB(n).
Here, U ′

t is the estimated user time, L1m is the number of L1 misses,
L2m the number of L2 misses, CL1m

is the cost of L1 misses (fixed
at 10/(1.6 × 109) × 106), that is, 10 cycles divided by 1.6 GHz times
microseconds), CL2m

the cost of L2 misses (fixed at 200/(1.6×109)×106),
and CTLB(n) is the cost to access the TLB.

Given the operation mechanism of the TLB we choose the model
CTLB(n) = a + bn, where a stands for the time spent on the other CPU
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operations not related to cache misses nor to the TLB access, and b is
related to the TLB traversal time.

Figure 4 (left) compares the actual versus the estimated user time, for
rank queries over a rank structure of two levels where the numbers are
word-aligned. This structure has a space overhead of 37.5%. Figure 4
(right) compares the actual versus estimated user time for select queries
over Clark’s select structure, with an overhead of 50%. Our least squares
estimation gives CTLB(n) = 0.0233678+0.390059×10−9 n for rank and
CTLB(n) = 0.330592+0.918287×10−9 n for select, both with correlation
above 0.99. Note that the fitting is better for rank, which is expected
since select executes a varying (albeit constant) number of instructions,
whereas we assume a fixed number of instructions.
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Figure 4. Comparison between estimated user time versus the actual user time.
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