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Abstract. Self-indexes aim at representing text collections in a compressed format that allows ex-
tracting arbitrary portions and also offers indexed searching on the collection. Current self-indexes
are unable of fully exploiting the redundancy of highly repetitive text collections that arise in several
applications. Grammar-based compression is well suited to exploit such repetitiveness.
We introduce the first grammar-based self-index. It builds on Straight-Line Programs (SLPs), a
rather general kind of context-free grammars. If an SLP of n rules represents a text T [1, u], then an
SLP-compressed representation of T requires 2n log2 n bits. For that same SLP, our self-index takes
O(n log n) + n log2 u bits. It extracts any text substring of length m in time O((m+ h) log n), and
finds occ occurrences of a pattern string of length m in time O((m(m + h) + h occ) log n), where
h is the height of the parse tree of the SLP. No previous grammar representation had achieved o(n)
search time.
As byproducts we introduce (i) a representation of SLPs that takes 2n log2 n(1 + o(1)) bits and effi-
ciently supports more operations than a plain array of rules; (ii) a representation for binary relations
with labels supporting various extended queries; (iii) a generalization of our self-index to grammar
compressors that reduce T to a sequence of terminals and nonterminals, such as Re-Pair and LZ78.
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1. Introduction and Related Work

Grammar-based compression is well-known since at least the seventies, and still a very active area
of research. From the different variants of the idea, we focus on the case where a given text T [1, u]
is replaced by a context-free grammar (CFG) G that generates just the string T . Then one can store G
instead of T , thereby possibly achieving compression. Some grammar-based compressors are LZ78 [50],
Re-Pair [32] and Sequitur [39], among many others [9].

When a CFG deriving a single string is converted into Chomsky Normal Form, the result is called a
Straight-Line Program (SLP). This is a grammar where each nonterminal appears at the left-hand side
of a unique rule which defines it, and can be converted into either a terminal or the concatenation of two
previously defined nonterminals. SLPs are as powerful as CFGs for compression purposes. In particular
the three grammar-based compression methods listed above can be straightforwardly translated, with no
significant penalty, into SLPs.

Grammar-based methods are able of achieving universal compression [28]. They belong to the wider
class of textual substitution methods [48, 2, 27], which exploit repetitions in the text rather than frequen-
cies. Textual substitution methods are particularly suitable for compressing highly repetitive strings,
meaning strings containing a high degree of long identical substrings, not necessarily close to each other.
Such texts arise in applications like computational biology, software repositories, transaction logs, ver-
sioned documents, temporal databases, etc.

A well-known textual substitution method that is more powerful than any grammar-based compressor
is LZ77 [49]. Yet, SLPs are still able of capturing most of the redundancy of highly repetitive strings,
and are in practice competitive with the best compression methods [18]. In addition, they decompress in
linear time and can decompress arbitrary substrings almost optimally. The latter property, not achieved
on LZ77, is crucial for implementing compressed text databases, as we discuss next.

Finding the smallest SLP that represents a given text T [1, u] is NP-complete [42, 9]. Moreover, some
popular grammar-based compressors such as LZ78, Re-Pair and Sequitur, can generate a compressed file
much larger than the smallest SLP [9]. Yet, a simple method to achieve an O(log u)-approximation is to
parse T using LZ77 and then to convert it into an SLP [42], which in addition is balanced: the height
of the derivation tree for T is O(log u). (Also, any SLP can be balanced by paying an O(log u) space
penalty factor.)

Compressed text databases have gained momentum since the last decade. Compression is regarded
nowadays not just as an aid for cheap archival or transmission, but one wishes to handle a text collection
in compressed form all the time, and decompress just for displaying. Compressed text databases require
at least two basic operations over a text T [1, u]: extract and find. Operation extract returns any desired
portion T [l, l + m] of the text. Operation find returns the positions of T where a given pattern string
P [1,m] occurs in T . We denote by occ to the number of occurrences returned by a find operation.
Extract and find should be carried out in o(u) time in order to be practical for large databases.

There has been some work on random access to grammar-based compressed text, without decom-
pressing all of it [17, 8]. As for finding patterns, there has been much work on sequential compressed
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pattern matching [1], that is, scanning the whole grammar. The most attractive result is that of Kida et
al. [27], which can search general SLPs/CFGs in timeO(n+m2+occ). This may be o(u), but still linear
in the size of the compressed text. A more ambitious goal is indexed searching, where data structures are
built on the compressed text to permit searching in o(n) time (at least for small enough m and occ).

There has been much work on implementing compressed text databases efficiently supporting the
operations extract and find (usually in O(m polylog(u)) time, plus O(polylog(u)) per occurrence re-
turned) [38]. These are self-indexes, meaning that the compressed text representation itself can support
indexed searches. Most of these self-indexes, however, are based on the Burrows-Wheeler Transform or
on Compressed Suffix Arrays. These achieve compression related to the k-th order entropy of the text,
which measures the predictability of the next symbol given the k previous ones, for k = O(log n). While
this statistical compression performs well on several relevant kinds of texts, it performs poorly on highly
repetitive collections. These require self-indexes based on stronger compression methods able of exploit-
ing that repetitiveness, such as general SLPs. Indeed, there do exist a few grammar-based self indexes
based on LZ78-like parsings [37, 14, 41], but LZ78 is among the weakest grammar-based compressors.

As an example, a recent study on highly repetitive DNA collections [47] concluded that none of the
existing self-indexes (including an LZ78-based one [37]) was able to capture much of the repetitiveness,
and new self-indexes were designed whose compressibility is related to the amount of repetitiveness
instead of text statistics. It was also shown that LZ77 parsings are powerful enough for this task. LZ77-
based self-indexes do not yet exist, although there has been some recent progress on variants supporting
operation extract [30]. On the other hand, software Comrad [31] achieves good results on the same kind
of highly repetitive DNA sequences with a tuned grammar-based compression. It also provides operation
extract but not find.

Our contribution is the first grammar-based representation of texts that can support operations extract
and find in o(n) time, that is, a grammar-based self-index. Given an SLP with n rules that generates a
text, a plain representation of the grammar takes 2n log n bits1, as each new rule expands into two other
rules. Our self-index takes O(n log n) + n log u bits. It can carry out extract in time O((m+ h) log n),
where h is the height of the derivation tree, and find in timeO((m(m+h)+h occ) log n) (see the detailed
results in Theorem 5.1 and Corollary 5.1). There are faster solutions for the extraction problem, in time
O(m+ log u), yet using O(n log u) bits of space [8]. On the other hand, no previous SLP representation
had achieved o(n) search time.

A part of our index is a representation of SLPs which takes 2n log n(1 + o(1)) bits and is able of
retrieving any rule in time O(log n), but also of answering other queries on the grammar within the same
time, such as finding the rules mentioning a given non-terminal. We also show how to represent a labeled
binary relation supporting an extended set of operations on it.

Our self-index can be particularly relevant on highly repetitive text collections, as already witnessed
by some preliminary experiments [11]. Our method is independent on the way the SLP is generated, and
thus it can be coupled with different SLP construction algorithms, which might fit different applications.

The paper is organized as follows. In Section 2 we give the needed basic concepts to follow the
paper. In Section 3 we extend an existing representation of binary relations, so as to support labels
and range queries. Section 4 builds on this result to introduce a representation of SLPs that occupies
asymptotically the same space as a plain representation, yet it answers a number of useful queries on

1In this paper log stands for log2 unless stated otherwise.
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the grammar in logarithmic time. This is used in Section 5 as a building block for a self-index based on
SLPs, supporting substring extraction and pattern searches. In Section 6 we present an alternative index
that handles compressors that also generate rules but represent the text as a sequence of final symbols
instead of just one. We discuss in particular two such compression methods: Re-Pair and LZ78. Section
7 concludes and gives several open problems and lines for future research.

2. Basic Concepts

2.1. Rank/Select Data Structures

We make heavy use of succinct data structures for representing sequences with support for rank/select
and for range queries. Given a sequence S of length n, drawn from an alphabet Σ of size σ:

• rankS(a, i) counts the occurrences of symbol a ∈ Σ in S[1, i]; rankS(a, 0) = 0;

• selectS(a, i) finds the i-th occurrence of symbol a ∈ Σ in S; selectS(a, 0) = 0 and selectS(a,m) =
n+ 1 if S contains less than m occurrences of a;

• accessS(i) retrieves S[i].

For the special case Σ = {0, 1}, the problem has been solved using n + o(n) bits of space while
answering the three queries in constant time [10]. When there are only m� n 1-bits in the bitmap, this
can be improved to use m log n

m +O(m) +O(n log log n/ log n) bits [40]. The extra o(n) space can be
reduced to just O(log log n) if we only want to do select1 queries (and rank at the 1-bit positions) [40].

The general case has been a little harder. Wavelet trees [20] achieve n log σ+o(n) log σ bits of space
while answering all the queries in O(log σ) time. This was later improved [15] with multiary wavelet
trees, achieving O(1 + log σ

log logn) time within the same space. Another proposal [19], focused on large
alphabets, achieves n log σ+ n o(log σ) bits of space and answers rank and access in O(log log σ) time,
while select takesO(1) time. A second tradeoff using the same space [19] achievesO(1) time for access,
O(log log σ) time for select, and O(log log σ log log log σ) time for rank.

2.2. Range Queries on Wavelet Trees

The wavelet tree reduces the rank/select/access problem for general alphabets to those on binary se-
quences. It is a perfectly balanced tree that stores a bitmap of length n at the root; every position in the
bitmap is either 0 or 1 depending on whether the symbol at this position belongs to the first half of the
alphabet or to the second. The left child of the root will handle the subsequence of S marked with a 0
at the root, and the right child will handle the 1s. This decomposition into alphabet subranges continues
recursively until reaching level dlog σe, where the leaves correspond to individual symbols.

Mäkinen and Navarro [33] showed how to use a wavelet tree to represent a permutation π of [1, n]
so as to answer range queries. We give here a slight extension we use in this paper. Given a general
sequence S[1, n] over alphabet [1, σ], we use the wavelet tree of S to find all the symbols of S[i1, i2]
(1 ≤ i1 ≤ i2 ≤ n) which are in the range [j1, j2] (1 ≤ j1 ≤ j2 ≤ σ). The operation takes O(log σ) to
count the number of results [33], see Algorithm 1.

This is easily modified to report each such occurrence in O(log σ) time: Instead of finishing at line 2
when [t1, t2] ⊆ [j1, j2] we wait until t1 = t2, at which point we are at a leaf of the wavelet tree and can
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Algorithm: RANGE(v, [i1, i2], [j1, j2], [t1, t2])

if i1 > i2 or [t1, t2] ∩ [j1, j2] = ∅ then return 0
if [t1, t2] ⊆ [j1, j2] then return i2 − i1 + 1
tm← b(t1 + t2)/2c
[il1, il2]← [rankBv(0, i1 − 1) + 1, rankBv(0, i2)]
[ir1, ir2]← [rankBv(1, i1 − 1) + 1, rankBv(1, i2)] // or, faster, [i1 − il1, i2 − il2]
return RANGE(vl, [il1, il2], [j1, j2], [t1, tm]) + RANGE(vr, [ir1, ir2], [j1, j2], [tm + 1, t2])

Algorithm 1: Range query algorithm: v is a wavelet tree node, Bv the bitmap stored at v, and vl/vr
its left/right children. It is invoked with RANGE(root, [i1, i2], [j1, j2], [1, σ]).

Algorithm: LOCATE(v, i, t)

if v is the root then output (i, t)
u← parent(v)
if v is left child of u then LOCATE(u, selectBu(0, i)) else LOCATE(u, selectBu(1, i))

Algorithm 2: Locating occurrences. Algorithm RANGE must be modified by changing the second line
to if t1 = t2 then for i = i1 to i2 do LOCATE(v, i, t1).

report i2 − i1 + 1 occurrences with symbol t1. The position in S of each such occurrence i1 ≤ i ≤ i2 is
found by Algorithm 2.

Parent and child pointers are in fact unnecessary: one can concatenate all the bitmaps of a wavelet
tree level `, so that nodes are identified with an interval at the proper bitmap B`. The left and right
children ofB`[vl, vr] areB`+1[vl, x] andB`+1[x+1, vr], where x = rankB`

(0, vr)−rankB`
(0, vl−1).

In the case of locating one can avoid the use of parent pointers: The kth occurrence can be located by
re-entering the wavelet tree from the root so that the ancestors are in the recursion stack [33]. This way,
using o(n) extra bits for rank/select on each B`, the n log σ + o(n) log σ bit space is achieved.

Figure 1 shows an example of wavelet tree for the sequence 132431422341 and the results of retriev-
ing all elements beween 2 and 4 contained between positions 5 and 9. The last level and the sequence on
top of the first bitmap are included as a visual aid and are not represented in the actual wavelet tree.

2.3. Straight-Line Programs

We now define a Straight-Line Program (SLP) and highlight some properties.

Definition 2.1. [25] A Straight-Line Program (SLP) G = (X = {X1, . . . , Xn},Σ) is a grammar that
defines a single finite sequence T [1, u], drawn from an alphabet Σ = [1, σ] of terminals. It has n rules,
which must be of the following types:

• Xi → α, where α ∈ Σ. It represents string F(Xi) = α.

• Xi → XlXr, where l, r < i. It represents string F(Xi) = F(Xl)F(Xr).

We call F(Xi) the phrase generated by nonterminal Xi, and T = F(Xn).
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1 3 2 4 3 1 4 2 2 3 4 1
0 1 0 1 1 0 1 0 0 1 1 0

0 1 0 1 1 0 0 1 0 1 0 1

1 1 1 2 2 2 3 3 3 4 4 4

0

0 0

1

11

Figure 1. Example of wavelet tree for the sequence 132431422341. The dotted boxes show the elements consid-
ered during a range query for elements whose value is in the range [2, 4] and appear at positions 5 to 9.

Definition 2.2. [42] The height of a symbol Xi in the SLP G = (X,Σ) is defined as height(Xi) = 1 if
Xi → α ∈ Σ, and height(Xi) = 1 + max(height(Xl), height(Xr)) if Xi → XlXr. The height of the
SLP is height(G) = height(Xn). We will refer to height(G) as h when G is clear from the context.

As some of our results will depend on the height of the SLP, it is interesting to recall the following
theorem, which establishes the cost of balancing an SLP.

Theorem 2.1. [42] Let an SLP G generate text T [1, u] with n rules. We can build in O(n log u) time an
SLP G′ generating T , with n′ = O(n log u) rules and height(G′) = O(log u).

Finally, as several grammar-compression methods are far from optimal [9], it is interesting that one
can find in linear time a reasonable (and balanced) approximation.

Theorem 2.2. [42] Let G be the minimal SLP generating text T [1, u] over integer alphabet, with n rules.
We can build in O(u) time an SLP G′ generating T , with O(n log u) rules and height(G′) = O(log u).

3. Labeled Binary Relations with Range Queries

In this section we introduce a data structure for labeled binary relations with range query capabilities.
Consider a binary relation R ⊆ A × B, where A = {1, 2, . . . , n1}, B = {1, 2, . . . , n2}, a function
L : A×B → L∪ {⊥}, which maps every pair inR to a label in L = {1, 2, . . . , `}, ` ≥ 1, and pairs not
inR to ⊥. We support the following queries:

• L(a, b).

• A(b) = {a, (a, b) ∈ R}.

• B(a) = {b, (a, b) ∈ R}.

• R(a1, a2, b1, b2) = {(a, b) ∈ R, a1 ≤ a ≤ a2, b1 ≤ b ≤ b2}.

• L(l) = {(a, b) ∈ R, L(a, b) = l}.

• The sizes of the sets: |A(b)|, |B(a)|, |R(a1, a2, b1, b2)|, and |L(l)|.
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SB 1 2 2 3 2

SL 1 2 2 2 1

XB 0 0 1 0 0 1 0 1

XA 0 1 0 0 0 1 0 1

Figure 2. Example of a labeled relation (left) and our representation of it (right). Labels are slanted and the
elements of B are in typewriter font.

We build on an idea by Barbay et al. [6]. Let a ∈ A and B(a) = {b1, b2, . . . , bk}. Then we
define s(a) = b1b2 . . . bk, where bi < bi+1 for 1 ≤ i < k. We concatenate those s(a) in a string
SB = s(1)s(2) . . . s(n1) and write down the cardinality of each B(a) in unary on a bitmap XB =
0|B(1)|10|B(2)|1 . . . 0|B(n1)|1. We also store a bitmapXA = 0|A(1)|10|A(2)|1 . . . 0|A(n2)|1. Finally, another
sequence SL lists the labels L(a, b) in the same order they appear in SB: SL = l(1)l(2) . . . l(n1), where
l(a) = L(a, b1)L(a, b2) . . .L(a, bk). Figure 2 shows an example.

We represent SB using wavelet trees [20], L with the structure for large alphabets [19], and XA and
XB in compressed form [40] (recall Section 2.1). Calling r = |R|, SB requires r log n2 + o(r) log n2
bits, L requires r log ` + r o(log `) bits (this is zero if no labels are used, i.e., ` = 1), and XA and XB

use O(n1 log r+n1
n1

+ n2 log r+n2
n2

) + o(r + n1 + n2) = O(r) + o(n1 + n2) bits.
We answer the queries as follows. Let us definemap(a) = selectXB

(1, a−1)− (a−1) the function
that gives the position in SB just before the area where the elements of B associated to a ∈ A are listed.
Similarly, unmap(p) = 1 + selectXB

(0, p) − p gives the row a ∈ A associated to a position p of SB .
Both can be computed in constant time.

• |A(b)|: This is selectXA
(1, b)− selectXA

(1, b− 1)− 1, the length of the area in XA related to b.

• |B(a)|: It is computed in the same way using XB . The formula is actually map(a+ 1)−map(a).

• L(a, b): If rankSB
(b,map(a)) = rankSB

(b,map(a + 1)) then a and b are not related and we
return ⊥, as SB[map(a) + 1,map(a + 1)] lists the elements related to a, and b is not mentioned
in that range. Otherwise we return SL[selectSB

(b, rankSB
(b,map(a)) + 1)].

• A(b): We first compute |A(b)| and then retrieve the i-th element with unmap(selectSB
(b, i)),

which gives the row a where each occurrence of b is mentioned in SB , for 1 ≤ i ≤ |A(b)|.

• B(a): This is simply SB[map(a) + 1,map(a+ 1)], or ∅ if map(a) = map(a+ 1).

• R(a1, a2, b1, b2): We first determine which elements in SB correspond to the range [a1, a2]:
[a′1, a

′
2] = [map(a1) + 1,map(a2)]. If a′1 > a′2 we return zero or the empty set, otherwise,

using the range query described in Section 2.2 on the wavelet tree of SB , we count or retrieve the
elements from SB[a′1, a

′
2] which are in the range [b1, b2].

• L(l): We retrieve consecutive occurrences yi = selectSL(l, i) of l in SL, reporting the correspond-
ing pairs (a, b) = (unmap(yi), SB[yi]). Determining |L(l)| is done via rankSL(l, r).
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We note that, if we do not support queries R(a1, a2, b1, b2), we can use also the faster data structure
[19] for SB . We have thus proved the next theorem.

Theorem 3.1. LetR ⊆ A×B be a binary relation, where A = {1, 2, . . . , n1}, B = {1, 2, . . . , n2}, and
a function L : A×B → L∪{⊥}, which maps every pair inR to a label in L = {1, 2, . . . , `}, ` ≥ 1, and
pairs not inR to⊥. ThenR can be indexed using (r+o(r))(log n2+log `+o(log `)+O(1))+o(n1+n2)
bits of space, where r = |R|. Queries can be answered in the times shown below, where k is the size
of the output. One can choose (i) rnk(x) = acc(x) = log log x and sel(x) = 1, or (ii) rnk(x) =
log log x log log log x, acc(x) = 1 and sel(x) = log log x, independently for x = ` and for x = n2.

Operation Time (with range) Time (without range)

L(a, b) O(log n2 + acc(`)) O(rnk(n2) + sel(n2) + acc(`))

A(b) O(1 + k log n2) O(1 + k sel(n2))

B(a) O(1 + k log n2) O(1 + k acc(n2))

|A(b)|, |B(a)| O(1) O(1)

R(a1, a2, b1, b2) O((k + 1) log n2) —
|R(a1, a2, b1, b2)| O(log n2) —
L(l) O((k + 1)sel(`) + k log n2) O((k + 1)sel(`) + k acc(n2))

|L(l)| O(rnk(`)) O(rnk(`))

We note the asymmetry of the space and time with respect to n1 and n2, whereas the functionality is
symmetric. This makes it always convenient to arrange that n1 ≥ n2.

Further development of the ideas in this section has led to binary relation representations supporting
a wealth of range counting and locating queries [5]. While they do not consider labels in that work, it is
not hard to add our structures related to L in order to combine the functionalities.

4. A Powerful SLP Representation

We provide in this section an SLP representation that supports various queries on the SLP within asymp-
totically the same space as a plain representation.

Recalling that Σ is the alphabet of the SLP and σ its size, it will usually be the case that all the
symbols of Σ are used in the SLP. Otherwise, we use a bitmap C[1, σ] marking the symbols of Σ that are
used in the SLP. We use selectC(1, i) to find the i-th alphabet symbol used in the SLP and rankC(1, x)
to find the rank of symbol x in a contiguous list of those used in the SLP. By using Raman et al.’s
representation [40], C requires at most n log σ

n + O(n) + o(σ) bits, while supporting rank and select
on C in constant time. Note this space is O(n) + o(σ), both if n = Ω(σ) and if n = o(σ). With this we
can assume that the alphabet used is contiguous in [1, σ], which will be called the effective alphabet.

We will assume that the rules of the form Xi → α are lexicographically sorted, that is, if there are
rules Xi1 → α1 and Xi2 → α2, then i1 < i2 if and only if α1 < α2. The SLP can obviously be
reordered so that this holds. If for some reason we need to retain the original order, then σ log σ extra
bits are needed to record the rule reordering.
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A plain representation of an SLP with n rules over effective alphabet [1, σ] requires at least 2(n −
σ)dlog ne + σdlog σe ≤ 2ndlog ne bits. Based on our labeled binary relation data structure of Theo-
rem 3.1, we give now an alternative SLP representation which requires asymptotically the same space,
2n log n + o(n log n) bits, and is able to answer a number of interesting queries on the grammar in
O(log n) time. This will be a key part of our indexed SLP representation.

We regard again a binary relation as a table where the rows represent the elements of set A and the
columns the elements ofB. In our representation, rows, columns, and labels correspond to nonterminals.
Every row corresponds to a symbol Xl (set A) and every column to a symbol Xr (set B). Pairs (l, r) are
related, with label i, whenever there exists a rule Xi → XlXr. Since A = B = L = {1, 2, . . . n} and
|R| = n, the structure uses 2n log n+ o(n log n) bits. Note function L is invertible, |L(l)| = 1.

To handle the rules of the form Xi → α, we set up a bitmap Y [1, n] so that Y [i] = 1 if and only
if Xi → α for some α ∈ Σ. Thus we know Xi → α in constant time because Y [i] = 1 and α =
rankY (1, i). The space for Y is n+ o(n) bits [10]. This works because these rules are lexicographically
sorted and all the symbols in Σ are used; we have already explained how to proceed otherwise.

This representation supports the following queries.

• Access to rules: Given i, find l and r such that Xi → XlXr, or α such that Xi → α. If Y [i] = 1
we obtain α in constant time as explained. Otherwise, we obtain L(i) = {(l, r)} from the labeled
binary relation, in O(log n) time.

• Reverse access to rules: Given l and r, find i such that Xi → XlXr, if any. This is done in
O(log n) time via L(l, r) (if it returns ⊥, there is no such Xi). We can also find, given α, the
Xi → α, if any, in O(1) time via i = selectY (1, α).

• Rules using a left/right symbol: Given i, find those j such that Xj → XiXr (left) or Xj → XlXi

(right) for some Xl, Xr. The first is answered using {L(i, r), r ∈ B(i)} and the second using
{L(l, i), l ∈ A(i)}, in O(log n) time per each j found.

• Rules using a range of symbols: Given l1 ≤ l2, r1 ≤ r2, find those i such that Xi → XlXr for
any l1 ≤ l ≤ l2 and r1 ≤ r ≤ r2. This is answered, in O(log n) time per symbol retrieved, using
{L(a, b), (a, b) ∈ R(l1, l2, r1, r2)}.

Again, if the last operation is not provided, we can choose the faster representation [19] (alternative
(i) in Theorem 3.1), to achieve O(log log n) time for all the other queries. Or, if we want to provide
“access to rules” in constant time as a plain SLP representation, we choose (i) for SL and (ii) for SB ,
obtaining O(log log n log log log n) time for the other operations.

Theorem 4.1. An SLP G = (X = {X1, . . . , Xn},Σ), Σ = [1, σ], can be represented using 2n log n +
o(σ + n log n) bits, such that all the queries described above (access to rules, reverse access to rules,
rules using a symbol, and rules using a range of symbols) can be answered inO(log n) time per delivered
datum. If we do not support the rules using a range of symbols, time drops to O(log log n), or to O(1)
for access to rules and O(log log n log log log n) for the others.
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5. Indexable Grammar Representations

We now provide an SLP-based text representation that permits indexed search and random access. We
assume our text T [1, u], over alphabet Σ = [1, σ], is represented with an SLP G of n rules.

We will represent G using a variant of Theorem 4.1, where we carry out some reordering of the rules.
First, we will reorder all the rules in lexicographic order of the strings represented, that is, F(Xi) ≤
F(Xi+1) for all 1 ≤ i < n. Therefore the columns of the binary relation will still represent Xr, yet
lexicographically sorted by F(Xr). Instead, the rows will represent Xl sorted by reverse lexicographic
order, that is lexicographically sorted by F(Xl)

rev, where Srev is string S read backwards. We will
also store a permutation π, which maps reverse to direct lexicographic ordering. This must be used to
translate row positions to nonterminal identifiers (as these are sorted in direct lexicographical order). We
use Munro et al.’s representation [36] for π, with parameter ε = 1

logn , so that π can be computed in
constant time and π−1 in O(log n) time, and the structure needs n log n+O(n) bits of space.

With the SLP representation and π, the space is 3n log n+o(σ+n log n) bits. We add other ndlog ue
bits for storing the lengths |F(Xi)| of all the nonterminals Xi. Note that our reordering preserves the
lexicographic ordering of the rules Xi → α, needed for our binary relation based representation.

Figure 3 (left) gives an example grammar representation. Disregard for now the arrows and shadings,
which illustrate the extraction and search process.

5.1. Extraction of Text from an SLP

To expand a substring F(Xi)[j, j
′], we first find position j by recursively descending in the parse tree

rooted at Xi. Let Xi → XlXr, then if |F(Xl)| ≥ j we descend to Xl, otherwise to Xr, in this second
case looking for position j − |F(Xl)|. This takes O(height(Xi) log n) time (where the log n factor is
the time for “access to rules” operation). In our way back from the recursion, if we return from the left
child, we fully traverse the right child left to right, until outputting j′ − j + 1 terminals.

This takes in total O((height(Xi) + j′− j) log n) time, which is at most O((h+ j′− j) log n). This
is because, on one hand, we will follow both children of a rule at most j′ − j times, as each time we
do this we increase the number of symbols to output. On the other, at most two times per level it might
happen that we follow only one child of a node, as otherwise two of them would share the same parent,
since all the nodes traversed at a level are consecutive.

Figure 3 (top-right) illustrates the extraction of a substring. Note that there are at most 2 cases per
level where we follow one child, and at most j − i cases where we follow both.

5.2. Searching for a Pattern in an SLP

The problem is to find all the occurrences of a pattern P = p1p2 . . . pm in the text T [1, u] defined by an
SLP of n rules. As in previous work [24], except for the special case m = 1, occurrences can be divided
into primary and secondary. A primary occurrence in F(Xi), Xi → XlXr, is such that it spans a suffix
ofF(Xl) and a prefix ofF(Xr), whereas each timeXi is used elsewhere (directly or transitively in other
nonterminals that include it) it produces secondary occurrences. In the case P = α, we say that the only
primary occurrence is at Xi → α and the other occurrences are secondary.

Our strategy is to first locate the primary occurrences, and then track all their secondary occurrences
in a recursive fashion. To find primary occurrences of P , we test each of the m − 1 possible partitions
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T = abracadabra
F

A → a a
B → b b
C → c c
D → d d
R → r r
U → AB ab
V → RA ra
W → UV abra
X → CA ca
Y → DW dabra
Z → WX abraca
S → ZY abracadabra

initial symbol: X5

F
X1→ a a
X2→ X1X6 ab
X3→ X2X12 abra
X4→ X3X8 abraca
X5→ X4X10 abracadabra
X6→ b b
X7→ c c
X8→ X7X1 ca
X9→ d d
X10→ X9X3 dabra
X11→ r r
X12→ X11X1 ra

⇒
Sort

X9 X11 X1 X6 X7

X12 X2 X8

X3

X10 X4

X5

d r a b c

d r a b c

ra ab ca

abra

abracadabra

abracadabra

initial symbol: X5

F
X1→ a a
X2→ X1X6 ab
X3→ X2X12 abra
X4→ X3X8 abraca
X5→ X4X10 abracadabra
X6→ b b
X7→ c c
X8→ X7X1 ca
X9→ d d
X10→ X9X3 dabra
X11→ r r
X12→ X11X1 ra

|F| 1 2 4 6 11 1 1 2 1 5 1 2
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 X2

X8

X4 X5

X12

X3 X4

X10

X5

X6

X2 X3

X7 X8

X9 X10

X11 X12

π = [1, 8, 4, 13, 3, 10, 5, 6, 2, 7, 9, 11]
SB = 6 10 8 12 1 3 2 SL = 2 5 4 3 8 10 12

XB = 0110110111101010101 XA = 0011011101101101101

X9 X11 X1 X6 X7

X12 X2 X8

X3

X10 X4

X5

d r a b c

d r a b c

ra ab ca

abra

abracadabra

abracadabra

+1 +0

+0+6

primary occurrence

at offset 2

secondary occurrence

at offset 3+6=9

secondary occurrence

secondary occurrencesecondary occurrence

at offset 2+1=3 at offset 2+0=2

at offset 2+0=2

Figure 3. An example grammar for the text T = "abracadabra". On the top-left, the nonterminals are renamed
according to their lexicographic order, so that A corresponds to X1, U to X2, and so on. On the top-right, the
paths followed when extracting T [2, 5] = brac. On the bottom-left, our data structure representing T . What
the index stores is SB , SL, XB , XA, π, and |F|; all the rest is given for illustrative purposes (we omit bitmap
Y = 100001101010). We also illustrate the search process for P = "br": We search the rows for the nonter-
minals finishing with "b" and the columns for the nonterminals starting with "r". The intersection contains X3

(formerly W ), where P has its only primary occurrence. The arrows show how we look for the rows and columns
corresponding to X3, to find out that it is used within X4 (formerly Z) and X10 (formerly Y ), and these in turn
yield the two occurrences within X5, the initial symbol. On the bottom-right we illustrate the process of extracting
the secondary occurrences in the grammar.
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P = PlPr, Pl = p1p2 . . . pk and Pr = pk+1 . . . pm, 1 ≤ k < m. For each partition PlPr, we first
find all those Xls such that Pl is a suffix of F(Xl), and all those Xrs such that Pr is a prefix of F(Xr).
The latter form a lexicographic range [r1, r2] in the F(Xr)s, and the former a lexicographic range [l1, l2]
in the F(Xl)

revs. Thus, using our SLP representation, the Xis containing the primary occurrences
correspond those labels i found between rows l1 and l2, and between columns r1 and r2, of the binary
relation. Hence a query for rules using a range of symbols will retrieve each such Xi in O(log n) time.
If P = α, our only primary occurrence is obtained in O(1) time using reverse access to rules.

Now, given each primary occurrence at Xi, we must track all the nonterminals that use Xi in their
right hand sides. As we track the occurrences, we also maintain the offset of the occurrence within the
nonterminal. The offset for the primary occurrence at Xi → XlXr is |F(Xl)|−k+ 1 (l is obtained with
an access to rule query for i). Each time we arrive at the initial symbol Xs, the offset gives the position
of a new occurrence.

To track the uses of Xi, we first find all those Xj → XiXr for some Xr, using query rules using
a left symbol for π−1(i). The offset is unaltered within those new nonterminals. Second, we find all
those Xj → XlXi for some Xl, using query rules using a right symbol for i. The offset in these new
nonterminals is that within Xi plus |F(Xl)|, where again π−1(l) is obtained from the result using an
access to rule query, and then we apply π to get l. We proceed recursively with all the nonterminals Xj

found, reporting the offsets (and finishing) each time we arrive at Xs.
Note that we are tracking each occurrence individually, so that we can process several times the same

nonterminal Xi, yet with different offsets. Each occurrence may require to traverse all the syntax tree up
to the root, and we spend O(log n) time at each step. Moreover, we carry out m−1 range queries for the
different pattern partitions. Thus the overall time to find the occ occurrences is O((m+ h occ) log n).

We remark that we do not need to output all the occurrences of P . If we just want occ occurrences,
our cost is proportional to this occ. Moreover, the existence problem, that is, determining whether or not
P occurs in T , can be answered just by considering whether or not there are any primary occurrences.

Figure 3 (bottom) illustrates the search process. We describe next how to solve the remaining problem
of finding the range of phrases starting/ending with a suffix/prefix of P .

5.3. Prefix and Suffix Searching

We present different time/space tradeoffs to search for Pl and Pr in the respective sets.

Binary search based approach. We can perform a binary search over the F(Xi)s and over the
F(Xi)

revs to determine the ranges where Pr and P revl , respectively, belong. In order to do the string
comparisons in the first binary search, we extract the (at most) m first terminals of F(Xi), in time
O((m + h) log n) (Section 5.1). As the binary search requires O(log n) comparisons, the total cost is
O((m+ h) log2 n) for each partition PlPr. The search within the reverse phrases is similar, except that
we extract the (at most) m rightmost terminals and must use π to find the rule from the position in the
reverse ordering. This variant needs no extra space.

Compact Patricia Trees. Another option is to build Patricia trees [35] for the F(Xi)s and for the
F(Xi)

revs (adding them a terminator so that each phrase corresponds to a leaf). Consider a binary
digital tree where each root-to-leaf path spells out one string (where the character values are converted to
binary). Then the Patricia tree is formed by collapsing unary paths of that tree into edges, and storing at
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each node the number of bits skipped from its parent. By using the Y bitmap, our symbols can be thought
of as drawn from an alphabet of size σ′ ≤ min(σ, n). A search proceeds normally on the explicit bits in
O(m log σ′) steps, and a final check against any leaf of the subtree found is used to verify the matching
of the skipped bits in the search path (this takes O(m) symbol comparisons).

Our Patricia trees haveO(n) nodes. There are many succinct tree representations requiringO(n) bits
and supporting navigation in constant time, for example a recent one [45]. The ith leaf of the tree for the
F(Xi)s corresponds to nonterminalXi (and the ith of the tree for the F(Xi)

revs, toXπ(i)). Hence, upon
reaching the tree node corresponding to the search string, we obtain the lexicographic range by counting
the number of leaves up to the node subtree and past it, which can also be done in constant time [45].

The skips can be stored in an array indexed by preorder number (excluding leaves, as the skips
are unnecessary for these), which can also be computed in constant time from the tree nodes [45]. The
problem is that in principle the skips require other 2n log u bits of space. If we do not store the skips at all,
we can still compute them at each node by extracting the corresponding substrings for the leftmost and
rightmost leaves of the node subtree, and checking in how many more bits they coincide [10]. This can
be obtained in timeO((d`/ log σ′e+h) log n), where ` is the skip value obtained (Section 5.1). The total
search time is thus O(m log n + mh log n log σ′) = O(mh log n log σ′), since the O(d`/ log σ′e log n)
terms cannot add up to more than O(m log n) as one cannot skip more than m log σ′ overall, and the
term O(h log n) can be paid for every bit in the pattern if all skips are 1, obtaining the second term
O((m log σ′)(h log n)).

Instead, we can use b bits for the skips, so that skips in [1, 2b− 1] can be represented, and a skip zero
means ≥ 2b. Now we need to extract leftmost and rightmost descendants only when the edge length is
` ≥ 2b, and we will work O((d(`− 2b)/ log σ′e+h) log n) time. Although the `− 2b terms still can add
up to O(m log σ′) (e.g., if all the lengths are ` = 2b+1), the h terms can be paid only O(1 +m log σ′/2b)

times. Hence the total search cost isO((m+h+ mh log σ′

2b
) log n), at the price of at most 2nb extra bits of

space. We must also account for the m log σ′ tree node traversals and for the final Patricia tree check due
to skipped characters, but these add onlyO((m+h) log n) time. For example, using b = log h+log log σ′

we get O((m+ h) log n) time and 2n(log h+ log log σ′) = 2n log h+ o(n log n) extra bits of space.

As we carry out m− 1 searches for prefixes and suffixes of P , as well as m− 1 range searches, plus
occ extractions of occurrences, we have the following result.

Lemma 5.1. Let T [1, u] be a text over alphabet [1, σ] represented by an SLP of n rules and height
h. Then there exists a representation of T using n(log u + 3 log n + 2 log h + o(log n)) + o(σ) bits,
such that any substring T [l, r] can be extracted in time O((r − l + h) log n), and the positions of the
occurrences of a pattern P [1,m] in T can be located in a fixed time O(m(m+ h) log n) plus O(h log n)
time per occurrence reported. By removing the 2 log h term in the space, the fixed locating time raises to
O(m(m+ h) log2 n). The existence problem is solved within the fixed locating time.

Compared with the 2n log n bits of the plain SLP representation, ours requires at least 4n log n +
o(n log n) bits, that is, roughly twice the space. More generally, as long as u = nO(1), our representation
uses O(n log n) bits, of the same order as required by the SLP itself. Otherwise, our representation
can be superlinear in the size of the SLP (almost quadratic in the extreme case n = O(log u)). Yet,
if n = o(u/ logσ u), our representation takes o(u log σ) bits, asymptotically smaller than the original
text. Any parsing of T into distinct phrases, for example with a LZ78 grammar [50], achieves at most
u/ logσ u phrases, even for incompressible texts T , thus n = o(u/ logσ u) is roughly equivalent to saying
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that T is asymptotically grammar-compressible. Also, since the LZ78 parsing takes O(u) time, we can
ensure that within this optimal time one can find an SLP that at least guarantees O(u log σ) size for our
self-index.

Combining both methods. We can combine the two previous approaches as follows. We sample one
string out of k lexicographically consecutive ones, for a parameter k. We build the Patricia tree for the
sampled set of strings. After finding the range of sampled strings that are prefixed with a pattern, we must
conclude with a binary search on the unsampled range preceding the first sampled result, and another
on the range following the last sampled result. (If the Patricia range is empty we must binary search the
range preceding the first leaf larger than the search pattern; this leaf is easily found by reentering the tree
after the final check determines the point where the pattern and the followed path differ.) We store the
Patricia tree skips using b bits of precision. The total cost is the O((m + h) log n) time of the Patricia
tree search, plus the O((m+ h) log n log k) time required by the binary searches. In exchange, the extra
space is 2n log h

k + o(n log n) bits. This leads to our main theorem.

Theorem 5.1. Let T [1, u] be a text over alphabet [1, σ] represented by an SLP of n rules and height
h. Then there exists a representation of T using n(log u + 3 log n + 2

k log h + o(log n)) + o(σ) bits,
for any parameter 1 ≤ k ≤ log h, such that any substring T [l, r] can be extracted in time O((r − l +
h) log n), and the positions of the occurrences of a pattern P [1,m] in T can be located in a fixed time
O(m(m+ h) log n log(k + 1)) plus O(h log n) time per occurrence reported. The existence problem is
solved within the fixed locating time.

By setting k = 1 and k = α(h) (the inverse Ackermann function) we obtain the two most relevant
space/time tradeoffs.

Corollary 5.1. In Theorem 5.1 we can achieve fixed locating time O(m(m + h) log n) and n(log u +
O(log n)) + o(σ) bits of space. We can also achieve O(m(m + h) log n logα(h)) fixed locating time
and n(log u+ 3 log n+ o(log n)) + o(σ) bits of space.

5.4. Construction

We discuss now how to carry out the construction of our index given the SLP.
Let us start with the binary relation that represents the grammar. Assume we have already computed

the proper direct and reverse lexicographical orderings for Xr and Xl, respectively. We reorder once
again the rules Xi → XlXr by their Xr component. Now we create one list per Xl, and traverse the
rulesXi → XlXr inXr order, adding pair (Xr, Xi) to the end of listXl. Then we traverse the lists inXl

order, adding the Xr components to SB and the Xis to SL. All this takes O(n log n) time, dominated by
the ordering of rules. Bit vectors XA and XB are easily built in O(n) time, including their rank/select
structures. The permutation π, including its extra structures for computing π−1, is built in O(n) time
once the lexicographical orderings of the rules is found.

Building the wavelet trees for SB and SL takes O(n log n) additional time. The wavelet trees are
built in linear time per level, and the reordered children for the next level are also obtained in linear
time using the bits of the bit vector of the current level. There are O(log n) levels, which leads to the
O(n log n) construction time.
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The lengths |F(Xi)| are easily obtained in O(n) time, by performing a bottom-up traversal of the
DAG of the grammar (going first top-down, marking the already traversed nodes to avoid re-traversing,
and assigning the lengths in the return of the recursion).

The remaining cost is that of lexicographically sorting the strings F(Xr) and F(Xl)
rev, or alterna-

tively, building the tries. In principle this can take as much as
∑n

i=1 |F(Xi)|, which can be even ω(u).
Let us focus on sorting the direct phrases F(Xi), as the reversed ones can be handled identically.

Our solution is based on the fact that all the phrases are substrings of T [1, u]. We first build the
suffix array [34] of T in O(u) time [23]. This is an array A[1, u] pointing to all the suffixes of T [1, u] in
lexicographic ordering, T [A[i], u] < T [A[i+ 1], u]. As it is a permutation, we can also build its inverse
A−1[1, u] in O(u) time. Next, we build the LCP array in O(u) time [26]: LCP [k] is the length of the
longest common prefix between T [A[k − 1], u] and T [A[k], u]. On top of this array, we build in O(u)
time an O(u)-bits data structure that answers range minimum queries in constant time [16]. With this
data structure we compute RMQ(i, j) = mini<k≤j LCP [k], which is the longest common prefix between
T [A[i], n] and T [A[j], n], in constant time.

To sort the phrases, we start by simulating the expansion of T using the grammar and recording one
starting text position pi for each string F(Xi). Now, comparing A−1[pi] with A−1[pj ] would give us
an ordering between pi and pj if none of them were a prefix of the other. Instead, if one is a prefix of
the other, the prefix must be regarded as smaller than the other string. We know that F(Xi) is a prefix
of F(Xj) if |F(Xi)| ≤ RMQ(A−1[pi], A

−1[pj ]), and vice versa. Then the phrases can be sorted in
O(n log n) time.

To build the Patricia trees, instead, we build the suffix tree of T in O(u) time [13]. This can be seen
as a Patricia tree built on all the suffixes of T . We find each of the n suffix tree leaves corresponding
to phrase beginnings (that is, the A−1[pi]-th leaves), and create new leaves at depth |F(Xi)| which are
ancestors of the original suffix tree leaves. The points to insert these n new leaves are found by binary
searching the string depths |F(Xi)| with level ancestor queries [7] from the original suffix tree leaves.
These binary searches take O(n log u) time in the worst case. Finally, the desired Patricia tree is formed
by collecting the ancestor nodes of the new leaves while collapsing unary paths again, which yieldsO(n)
nodes. The Patricia tree is converted to binary by translating skip values and replacing each node having
s children by a small Patricia tree where we insert the s strings of log σ′ bits corresponding to the s
characters. This adds O(n log σ′) time overall.

The whole process takes O(u+ n log u) time, and O(u log u) bits of working space.
We can reduce the construction space by using compressed suffix arrays and trees, which slightly in-

creases construction time. Instead of a classical suffix array, we build a Compressed Suffix Array (CSA)
[43], within O(u log log σ) time and O(u log σ) bits of space [21]. Similarly, we build a Compressed
Suffix Tree (CST) [44] within time O(u logε u) and the same O(u log σ) bits [21]. Among other opera-
tions the CST can, in constant time, determine if a node is an ancestor of another, count the number of
nodes and leaves below any node, move to the parent, first child and next sibling, to the ancestor of any
depth (“level ancestor”), and find the lowest common ancestor between any two nodes. In addition, we
can obtain the preorder number of any node, the node of any preorder number, the left-to-right rank of
any leaf, and the ith left-to-right leaf.

The CSA supports the query A−1[p] within time O(logε u), for any constant 0 < ε < 1. Hence,
except for the prefix problem, ordering the strings takes time O(n(log n + logε u)), by first storing the
A−1[pi] values for the rules and then sorting them. To find out if F(Xi) is a prefix of F(Xj) we see if
the suffix tree node corresponding to F(Xi) is an ancestor of that of F(Xj). Thus we first compute and



1016 F. Claude and G. Navarro / Self-Indexed Grammar-Based Compression.

store the nodes for all the phrases F(Xi) and then complete the sorting. To compute the node for any
F(Xi) we first find the A−1[pi]th tree leaf in constant time. Now we compute its ancestor representing
a string of length |F(Xi)|. Although level ancestor queries are also supported in constant time, knowing
the length of the string corresponding to a suffix tree node takes O(logε u) time. Thus we binary search
the correct ancestor in O(log1+ε u) time. Overall, the sorting takes O(n log1+ε u) time.

For constructing the Patricia trees we also use the CST. We set up a bitmap M [1, O(u)], so that M [i]
will be a mark for the node with preorder number i. As we can map from preorder numbers to nodes
and back in constant time, we will refer to nodes and their preorder numbers indistinctly. We mark in M
the suffix tree nodes corresponding to the phrases F(Xi) found as explained in the previous paragraph.
If these fall at an edge, we mark their child node in M . Now we traverse the marked nodes from left
to right in M (in overall time O(u)), and for each consecutive pair of marked nodes, we also mark its
lowest common ancestor in M . This process marks all the nodes that should belong to our Patricia tree.
Finally, we traverse again the marked nodes of M left to right, which is equivalent to traversing the
marked tree nodes in preorder, and create the Patricia tree with those nodes. Note that a single marked
node may correspond to several strings whose insertion point is at the edge leading to the marked node.
Since a preorder traversal of marked nodes corresponds to a left-to-right traversal of the suffix tree leaves
A−1[pi], all the strings to consider are next in the left-to-right traversal, so it is not hard to delimit them,
sort them by |F(·)|, and create the successive Patricia tree nodes, all within the current time bounds.

The overall cost is dominated by O(u logε u + n log1+ε u) time and O(u log σ + n log u) bits of
space. Since u+ n log u = O(u+ n log n), we have the result.

Theorem 5.2. Let T [1, u] be a text over alphabet [1, σ] represented by an SLP of n rules. Our represen-
tation can be built in O(u + n log n) time and O(u log u) bits of space. Alternatively, it can be built in
O((u+ n log n) logε u) time and O(u log σ + n log n) bits of space.

We remind that n log u = O(u log σ) for many simple grammar-based compression methods, for
example LZ78 [50].

5.5. Faster Locating and Counting

We are right now locating occurrences individually, even if they share the same phrase (albeit with dif-
ferent offsets). We show now that, if one uses some extra space for the query process, theO(h occ log n)
time needed for the occ occurrences can be turned to O(min(h occ, n) log n + occ), thus reducing the
time when there are many occurrences to report.

We set up a min-priority queue H , where we insert the phrases Xi where primary occurrences are
found. We do not yet propagate those to secondary occurrences. The priority of Xi will be |F(Xi)|. For
each such Xi, with Xi → XlXr, we store l and r; the minimum and maximum offset of the primary
occurrences found in Xi; left and right pointers, initially null and later pointing to the data for Xl and
Xr, if they are eventually inserted in H; and left and right offsets associated to those pointers. The data
of thoseXi will be kept in a fixed memory position across all the process, so we can set pointers to them,
which will be valid even after we remove them fromH (H contains just pointers to those memory areas).
The left and right pointers point to those areas as well. Separately, we store a balanced binary search tree
that, given i, gives the memory position of Xi, if it exists (this tree permits, in particular, freeing all the
memory areas at the end).
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Now, we repeatedly extract an element Xi with smallest |F(Xi)| from H , and find using our binary
relation data structures all the other Xjs that mention Xi in their rule. We use the balanced tree to
determine whether Xj is already in H (and where is its memory area) or not (Xj could already be in H ,
e.g., if it has its own primary occurrences). If it is not, we allocate memory for Xj and insert it into H .
Now, if Xj → XiXr, then we set the left pointer of Xj (1) to the left pointer of Xi if Xi does not have
primary occurrences nor right pointer, setting the left offset of Xj to that of Xi; (2) to the right pointer
of Xi if Xi does not have primary occurrences nor left pointer, setting the left offset of Xj to the right
offset of Xi; (3) to Xi itself otherwise, setting the left offset of Xi to zero. If Xj → XlXi, we assign
the right pointer and offset of Xj in the same way, except that we add |F(Xl)| to the right offset of Xj .
Note that the priority queue ordering implies that all the occurrences descending from Xj are already
processed when we process Xj itself.

The process finishes when we extract the initial symbol from H and H becomes empty. At this point
we are ready to report all of the occurrences with a recursive procedure starting at the initial symbol.
Moreover, we can report them in text order: To report Xi → XlXr, we first report the occurrences at the
left pointer of Xi (if not null), shifting their values by the left offset of Xi; then the primary occurrences
of Xi (if any); and then the occurrences at the right pointer of Xi (if not null), shifting their values by
the right offset of Xi. Those shifts accumulate as recursion goes down the tree, and become the true
occurrence positions at the end.

To display all the primary occurrences of a node knowing only the first and last positions, we notice
that these occurrences must overlap, thus we know the full text content of the area where the primary
occurrences other than the first and the last may appear. By preprocessing the pattern we can obtain those
occurrences in constant time each: Let last − first = d, so last − d is the first primary occurrence. This
means that P [d + 1,m] = P [1,m − d], thus P occurs at positions 1 (first) and d + 1 (last) of string
X = P [1, d]·P = P ·P [m−d+1,m]. We wish to know which is the occurrence of P inX that precedes
that at position d+ 1. We can search for P in X[1,m+ d− 1] in time O(m) using algorithm KMP [29]
and store the position d′ < d of the last occurrence in a table O[d]. For the second previous occurrence,
we have already that P occurs at position d′+ 1 of string X ′ = P [1, d′] ·P , thus it corresponds to O[d′].

Therefore, it is enough to precompute all those O[1,m] values in O(m2) time beforehand. Later,
given first and last, we report each primary occurrence in constant time by doing d ← last − first ,
reporting last − d, then d← O[d], reporting last − d, and so on until d = 0, where we report last .

Let us now analyze the algorithm. Although each occurrence can trigger h insertions into H , nodes
are not repeated in H , and thus there are at most O(min(h occ, n)) elements in H . Thus the space is
in the worst case O(min(h occ, n) log u + m logm) bits (the second part is for O). As for the time, we
spend O(log n) time to insert each primary occurrence into H and compute its associated data, O(log n)
time to extract it from H , and O(log n) time to find each of its parents and insert them into H (each
parent Xi → XlXr is processed at most twice, from Xl and from Xr). Thus the overall cost of filling
and emptying H is O(min(h occ, n) log n).

As for the process of reporting onceH is emptied, note that the left and right pointers can be traversed
in constant time and, because in the tree induced by the left/right pointers each pointed node either has
at least one distinct primary occurrence, or it has two children, it follows that the total traversal time is
O(occ). Reporting all the primary occurrences can also be done in time O(occ).

Overall, the time is O(m2 + min(h occ, n) log n + occ), provided we can afford the extra space
at search time. Note the O(m2) part (to build O[1,m]) is dominated by higher terms in the search
complexity.
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Theorem 5.3. Under the same conditions as those in Theorem 5.1, we can locate the occ occurrences
of P [1,m] within the fixed locating time reported in that theorem plus O(min(h occ, n) log n+ occ), by
using O(min(h occ, n) log u+m logm) extra bits of space at search time.

A simplification of this technique lets us count the number of occurrences of P [1,m] more efficiently
than by locating them all. We follow the same process of detecting the primary occurrences and using
a heap to process the nonterminals by increasing length. We store, for each nonterminal, the number
of occurrences of P inside it (initially zero). Each primary occurrence adds 1 to the counter of the
corresponding nonterminal. Each nonterminal we extract from the heap adds its counter value to that of
all the nonterminals that use it. When we finally extract the initial symbol, its counter is the number of
occurrences of P . It is easy to see that the overall additional counting time is O(min(h occ, n) log n),
which is interesting when occ = Ω(n/h) (otherwise it is better to locate the occurrences one by one).

Theorem 5.4. Under the same conditions of Theorem 5.1, we can count the occurrences of P [1,m]
within the fixed locating time reported in those theorems plus O(n log n), by using O(n log u) extra bits
of space at search time.

Incidentally, this result provides an improved solution to a recently proposed problem on SLPs [22].

Corollary 5.2. Given a text T [1, u] over an alphabet of size σ, and an SLP of n rules generating T , the
problem of finding the most repeated substring of T of length at least two can be solved usingO(n log u)
bits of space and O(σ2n log n) time.

Proof:
Clearly it is sufficient to try with the substrings of length 2, as longer ones cannot be more frequent.
We first build our self-index from the SLP and then count the occurrences of all the σ2 possible pairs
of characters. The construction takes in principle O(u + n log n) time. However, the O(u) term comes
from sorting the strings F(Xr) and F(Xl)

rev. For the purpose of this problem, these can be just sorted
by their first/last two symbols. The first/last two symbols of all the phrases are easily obtained in O(n)
time with a recursive traversal of the grammar (marking traversed nodes to avoid re-traversing them).
Then the phrases can be sorted in O(n log n) time. Once the self-index is built, we apply Theorem 5.4
for each possible pair of symbols, using our fastest SLP representation of Theorem 5.1 and m = 2 to
obtain the fixed locating time O(m(m+ h) log n) = O(n log n). ut

The best previous result [22] needs O(σ2n2) time and O(n2) words of space, thus we significantly
improve it in both aspects.

6. More General Grammar Compressors

Until now we have considered the case where the grammar-based compressor generates a single non-
terminal symbol that represents the text. Many grammar-based compressors [50, 32, 39] output instead
a set of rules (which can be seen as a forest of parse trees) and a sequence of terminals and nonterminals,
whose expansion using the rules leads to the original text. This is captured by the following definition.
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Definition 6.1. (Relaxed Straight-Line Program (RSLP))
A Relaxed Straight-Line Program (RSLP) G = (X = {X1, . . . , Xn},Σ, C = C1C2 . . . Cc) is a tuple
where (X,Σ) is a grammar on an alphabet Σ = [1, σ] of terminals, such that each Xi generates a single
finite string F(Xi), and can be of two types, as follows:

• Xi → α, where α ∈ Σ. It generates string F(Xi) = α.

• Xi → XlXr, where l, r < i. It generates string F(Xi) = F(Xl)F(Xr).

Moreover, C is a sequence of terminals and nonterminalsCi ∈ X∪Σ, and G represents the text T [1, u] =
F(C1)F(C2) . . .F(Cc), assuming F(α) = α for α ∈ Σ.

It is clear that an RSLP can be converted into an SLP by adding c−1 new rules that derive C from an
initial symbol I , and then the symbols of C expand as usual. The new rules can be balanced, thus adding
only log c to the height of the grammar. We might also need to introduce nonterminals for any terminal
that could be mentioned in C.

Definition 6.2. Given an RSLP G = (X = {X1, . . . , Xn},Σ, C), let n′ ≤ n+ min(c, σ) be the number
of rules in X once we add those of the form Xi → α for the terminals α mentioned in C and not in X .

Definition 6.3. The height of RSLP G = (X = {X1, . . . , Xn},Σ, C) is height(G) = max{height(Xi),
1 ≤ i ≤ n}. We will refer to height(G) as h when the referred grammar is clear from the context.

Corollary 6.1. Let T [1, u] be a text over alphabet [1, σ] represented by an RSLP of n rules and height
h, and a sequence of c nonterminal symbols. Then T can be represented using Theorem 5.1, using
an SLP of n′ + c − 1 rules and height h + dlog ce + 1. For example, it can be represented using
(n′ + c)(log u + 3 log(n′ + c)) + o(σ) bits, such that any substring T [l, r] can be extracted in time
O((r− l+ h+ log c) log(n′ + c)), and the positions of the occurrences of a pattern P [1,m] in T can be
located in a fixed time O(m(m+h+ log c) log(n′+ c) logα(h+ log c)) plus O((h+ log c) log(n′+ c))
time per occurrence reported.

We propose now a more sophisticated scheme that can achieve better results.

1. We use our binary relation data structure to represent the forest of rules X . Thus it will require
n′(log u+ 3 log n′ + o(log n′)) + o(σ) bits of space, according to Section 5.

2. The sequence C is represented with the structure for sequences over large alphabets [19] (re-
call Section 2.1). This will require c(log n′ + o(log n′)) bits of space and carry out access in
O(log log n′) time and select in O(1) time.

3. We store a bitmap B[1, u] marking the positions of T where the symbols of C begin. It can be
represented such that it uses c log u

c + O(c + log log u) bits as we only will need constant-time
select1 queries on it [40] (recall Section 2.1).

4. We store another labeled binary relation of c rows and n′ columns. Value 1 ≤ i ≤ c is related
to 1 ≤ j ≤ n′ with label 2 ≤ k ≤ c if the suffix of T that starts at the k-th symbol of C is at
lexicographical position i among all such suffixes, and the lexicographic position of F(Ck−1)

rev,
among all the distinct reversed nonterminals (and terminals) F(Xi)

rev, is j. We wish to carry out
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range searches on this binary relation. Yet, as there is exactly one point per row, we do not need the
bitmapXB . We choose constant-time access for SL. This binary relation takes (c+o(c))(log n′+
log c+o(log c)+O(1))+o(n′) = c(log n′+log c+o(log(n′+c)))+o(n′) bits of space, according
to Theorem 3.1.

The total space is (c+ n′) log u+ (2c+ 3n′) log n′ + o((c+ n′) log(c+ n′)). This can be up to one
quarter the space of Corollary 6.1 if c� n′, and never asymptotically larger.

The search for P proceeds just like for SLPs, within timeO((m(m+h) log n′ logα(h)+h occ log n′)
if using the most compact variant offered by Corollary 5.1, which would not change the asymptotic
space formula given above. However, this will only find occurrences inside dictionary symbols. To
complete the search, for each occurrence with offset o within symbol Xi, we look for all the positions
pj = selectC(Xi, j), for j = 1, 2, . . ., and report the text position select1(B, pj)+o, within overall time
O(occ). This includes the cases where Xi does not occur in C, as in this case the occurrence will still
appear in T and thus we can charge the search cost to it.

It remains to find the occurrences that overlap two or more entries in C. To find each of them just once,
we will find the partitions PlPr such that Pl is the suffix of a single entry in C and Pr is the prefix of a
concatenation of entries in C. Our second binary relation will let us find the positionsCk−1C[k . . .] where
Pl appears at the end of Ck−1 and Pr at the beginning of C[k . . .]. We already know the lexicographical
range of each P revl within the F(Xi)

revs. We can now binary search each corresponding Pr within
the c suffixes starting at phrase beginnings. The content of the t-th lexicographical suffix is obtained
by accessing C[SL[t] . . .] and expanding each symbol of C using the binary relation that represents the
rules. This givesO((m+h) log n′) time per access (note the h overhead applies only to the last, partially
expanded, symbol, as the rest are fully expanded). The binary search can be sped up with a partial Patricia
tree, just as done in Theorem 5.1, as bitmap B lets us know exactly which offset from which symbol of
C to extract. So the overall time is O(m(m + h) log n′ logα(h)) and the extra space for the Patricia
trees is o(c log h) = o(c log n′). Now, given the m lexicographical ranges of the suffixes, we carry out
the m range searches in the second binary relation in O(m log n′) time, and extract each occurrence in
O(log n′) time. We must map each position in C to the corresponding position in T via bit vector B, and
subtract |Pl| to yield the final offset.

Overall, the search time is O(m(m + h) log n′ logα(h) + h occ log n′). This can be up to O(log c)
times faster than Corollary 6.1 (if c� n′), and never worse.

Finally, to extract T [l, r], we first binary search, using select1 on B, the symbols of C to extract, and
then expand them one by one using the grammar, in overall time O((r − l + h) log n′ + log c).

Theorem 6.1. Let T [1, u] be a text over alphabet [1, σ] represented by an RSLP of n rules, height h, and
a sequence of c nonterminal symbols. Let n′ the number of rules after expanding them to contain the
explicit terminals in the sequence. Then T can be represented using (c+ n′) log u+ (2c+ 3n′) log n′ +
o((c+n′) log(c+n′)) bits of space. Any substring T [l, r] can be extracted in timeO((r− l+h) log n′+
log c), and the positions of the occurrences of a pattern P [1,m] in T can be located in a fixed time
O(m(m+ h) log n′ logα(h)) plus O(h log n′) time per occurrence reported.

6.1. Applications

One example where Theorem 6.1 applies straightforwardly is for the Re-Pair compression algorithm [32].
Re-Pair is a grammar-based compression method based on repeatedly replacing the most frequent pair of
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(terminal or nonterminal) symbols in the text by a new nonterminal, until the most frequent pair appears
once. The result of Re-Pair compression is a set of n rules (essentially in SLP form) plus a sequence of
c terminal or nonterminal symbols. It runs in O(u) time and O(u log u) bits of space over a text T [1, u]
[32]. It is also possible to select the rules in a balanced fashion [46] so as to guarantee that h = O(log n),
thus we achieve a practical index for this particular algorithm.

A practical implementation of this Re-Pair-based self-index was compared against state-of-the-art
indexes for highly repetitive DNA sequences [11]. In particular, when the mutation rate from one se-
quence to the other in the collection is near 0.01%, the Re-Pair self-index improves upon the RLCSA
[47], the best alternative self-index obtained so far for this setting. Such mutation rates are realistic when
the database contains genomes of different individuals of the same species [12].

A less straightforward application is the LZ78 compression algorithm, where we obtain a self-index
that is competitive with previous work.

Consider the LZ78-parsing [50] of a string T of length u, drawn over an alphabet Σ of size σ. The
text is processed left-to-right and, at each step, a new phrase is produced from the longest possible prefix
of the remaining text which is formed by a previous phrase plus a character. The process produces n
phrases Xi, corresponding to a grammar of the form Xi → Xjα, where j < i and α ∈ Σ. The text is
obtained by expanding the sequence C = X1X2 . . . Xn.

Much research has been carried out to obtain self-indexes for this compression method [37, 4, 41],
usually called the LZ-Index. The first proposal [37] achieves 4n log n + 2n log σ + o(n log n) bits of
space, and is able of locating the occ occurrences of P [1,m] in time O(m3 log σ + (m+ occ) log n). In
order to report true text positions of occurrences (and not just phrase positions), n log u

n +O(n) + o(u)
additional bits are necessary, for a total of n log u+ 3n log n+ 2n log σ + o(u+ n log n) bits of space.

A verbatim application of Theorem 6.1 leads to about doubling this space. We show now that, by
a slight adaptation of our general technique to the specificities of the LZ78 grammar, we can achieve a
result that is competitive with the previous proposals, carefully focused on LZ78.

Let us first consider the first binary relation of Theorem 6.1. Because the right-hand side of rules
is always a character, our binary relation has actually σ columns. The rules can always be ordered by
F(Xl)

rev (that is, their row order), and permutation π serves as a tool to know their original identifier
(which coincides with their only occurrence position in C); π−1 is needed only for extracting T [l, r]. We
do not need to store the lengths |F(Xl)|, as we descend always to the left rule knowing that the length
of the child is one less than its parent. Finally, n′ = n since C mentions only nonterminals. This makes
the space n(2 log n+ log σ + o(log n)) bits (σ is assumed to be o(n) in LZ78 self-indexes, so we do the
same for comparison). The n log σ bits are for SB and the 2n log n for π and SL. The operations on SB
run in O(log σ) time and those on SL run in O(1) time for select and O(log log n) time for access.

Sequence C = X1X2 . . . Xn does not need to be stored. The bitmap B is stored as in the LZ78
proposal, requiring n log u

n +O(n) + o(u) bits and doing the mapping in constant time [40].
For the second binary relation of Theorem 6.1, we do not require SL, as we know that the element

at column j is Xπ(j) and thus the label is π(j) + 1. Therefore the structure requires n(log n+ o(log n))
bits. Furthermore, we do not need XA because there is also one point per column in the binary relation.

Thus the total space is n log u+ 2n log n+n log σ+o(u+n log n) bits, which is less by a n log n+
n log σ term than the original LZ78 proposal [37].

The search for P starts by locating the occurrences within the nonterminals. The only possible
partition of P [1,m] is P = P [1,m − 1]P [m]. The second part is easily searched for in constant time,
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whereas the first part requires O(m log σ logα(h)) time because we search the reversed rules, which are
unrolled in right-to-left order and thus the height we need to descend is bounded by m. The O(log σ)
cost is that of accessing the rules and the O(logα(h)) corresponds to the binary search speeded up with
the partial Patricia trees. Once the searches are finished, each occurrence within rules is extracted in
O(log σ + log log n) time. These are mapped to C using π and B in constant additional time.

To spot the occurrences that span more than one phrase, we split P = PlPr in all the m− 1 possible
ways and search for Pl in the columns in time O(m log σ logα(h)) (using the first binary relation as
done for P [1,m − 1]) and for Pr in the rows of the second binary relation in time O((m log n + (m +
h) log σ) logα(h)). The latter is because for extracting the first m symbols of a row we need to (1) find
in time O(log n) the only column j related to the row; (2) use π−1(π(j) + s) to find the row in the first
binary relation corresponding to the sth phrase to extract, in O(log n) time per phrase; (3) once that row
is located, spending O(log σ) time to find each symbol of each phrase in the first binary relation. Finally,
we use a partial Patricia tree to speed up the binary search. Overall, as σ = o(n), the m searches add
up to O(m(m log n+ h log σ) logα(h)) time, plus a negligible O(m log n) time for the range searches.
Each occurrence within the ranges is found in time O(log n).

Overall, the search time is O(m(m log n + h log σ) logα(h) + occ log n). This is not comparable
with the original work [37], but under the usual assumption for random texts h = O(logσ n), the time
is usually dominated by O(m2 log n logα(h) + occ log n). This compares favorably with O(m3σ +
occ log n) of the original work for long enough m. Although more recent developments [4] achieve
essentially (2 + ε)n log n bits of space and O(m2 + (m+ occ) log n) time, it is remarkable that we get
close to such carefully engineered work with our general approach, even beating the original proposal.

7. Conclusions and Future Work

We have presented the first compressed indexed text representation based on Straight-Line Programs
(SLPs), which are as powerful as context-free grammars. It achieves space proportional to that of the bare
SLP representation in most relevant cases and, in addition to just uncompressing, it permits extracting
arbitrary substrings of the text, as well as carrying out pattern searches, in time usually sublinear on the
grammar size. We also give, as byproducts, powerful SLP and binary relation representations.

We regard this as a foundational result on the extremely important problem of achieving self-indexes
built on compression methods potentially more powerful than the current ones [38]. As such, there are
many lines open to future research:

1. Our space complexity has an n log u term, which can be superlinear on the SLP size for very
compressible texts. We tried hard to remove this term, for example by storing the sizes for some
sampled nonterminals and computing it for the others, but did not succeed in producing a suitable
sampling on the grammar DAG. The problem is related to minimum cuts in graphs [3], which is
not easy.

2. We have an O(h) term in the time complexities, which in case of very skewed grammar trees can
be as bad as O(n). There exist methods to balance a grammar to achieve h = O(log u) [42],
but they introduce a space penalty factor of O(log u), which is too large in practice. It would be
interesting to achieve less balancing (e.g., h = O(

√
u), as in LZ78) in exchange for a much lower

space penalty.
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3. We have an O(m2) term in the search time. It would be interesting to try to reduce it to O(m), as
done for some LZ78-based compressed indexes [41]. The problem is that our Patricia trees are not
suffix-closed, so the time spent on edges labeled by long strings is not amortized.

4. The construction time of our index is O(u + n log n). The O(u) term is dominant when n is
much smaller than u. Removing such a term when we already receive the SLP and do not want to
generate the text is an interesting challenge.

5. Finally, as in other compressed indexes, there is the challenge of updating the SLP and the index
upon changes in the text, of working efficiently on secondary memory, and of allowing more
complex searches [38] (several inspiring problems and some solutions are given in recent work
[22, 8]). Extending the technique to LZ77-based compression [49] is also an interesting challenge.
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