
Web Cache Prefetching as an Aspect: Towards a
Dynamic-Weaving Based Solution

Marc Ségura-Devillechaise, Jean-Marc
Menaud, Gilles Muller

Obasco group, Ecole des Mines de
Nantes/INRIA

4, rue Alfred Kastler, La Chantrerie, Nantes,
France

msegura,jmenaud,gmuller@emn.fr

Julia L. Lawall
DIKU University of Copenhagen

2100 Copenhagen, Denmark

julia@diku.dk

ABSTRACTGiven the high proportion of HTTP traÆ in the Internet,Web ahes are ruial to redue user aess time, networklateny, and bandwidth onsumption. Prefething in a Webahe an further inrease these bene�ts. Nevertheless, toahieve the best performane, the prefething poliy usedmust math user and Web server harateristis. This im-plies that new prefething poliies must be loaded dynami-ally as needs hange.Most Web ahes are large C programs, and thus adding asingle prefething poliy to an existing Web ahe is a daunt-ing task. Providing multiple poliies is even more omplex.The essential problem is that prefething onerns ross-ut the ahe struture. Aspet-oriented programming is anatural tehnique to address this issue. Nevertheless, exist-ing approahes do not provide dynami weaving of aspetstargeted toward C appliations. In this paper, we present�Dyner, whih addresses these needs. �Dyner also provideslower overhead for aspet invoation than other approahes,thus meeting the need for good performane in Web ahes.
KeywordsAdaptable software, aspet-oriented programming, ode in-strumentation, pointut language, Web ahes
1. INTRODUCTIONBeause HTTP amounts, at the very least, to 80% of theInternet traÆ [17℄, ahing HTTP douments is an appeal-ing approah to derease the Internet lateny and networkbandwidth onsumption [35℄. Two fators, however, de-rease Web ahe e�etiveness: (i) between 35% to 50% ofWeb douments are unaheable beause their ontent isspei� the initial request [35℄, (ii) one ahed, many Webdouments are never requested again [25℄.

A strategy to overome these limitations is to prefethWeb douments so that they are already in the ahe andthus lose to the lient when �rst requested [19℄. Neverthe-less, a simple prefething strategy suh as prefething all ofthe douments reahable from a doument requested by theuser only redues the user aess time for the few suh pagesthat are atually referened, at the expense of inreasing theoverall bandwidth onsumption and the workloads of Webservers. Instead, strategies that are tailored to user prefer-enes and Web server harateristis are needed to ensurethat most of the prefethed douments are eventually a-essed. For example, Issarny et al. have shown that in theontext of an eletroni newspaper, a prefething poliy thatis based on user pro�les and speialized to the targeted Webserver an ahieve a prefeth predition auray of up to92% [18℄. To support the use of suh poliies, a Web aheshould be extensible and support dynami loading and un-loading of new poliies.Many Web ahes, suh as Squid [12℄, are implementedusing a module-based arhiteture. A natural strategy toextend a module-based system with a new funtionality isto implement this funtionality as a new module. Unfortu-nately, prefething poliies often rossut the funtionalitiesof several modules. Thus, a prefething module would haveto redundantly implement many basi ahe operations.In fat, the rossutting nature of prefething poliies sug-gests that suh poliies should be implemented using aspet-oriented programming (AOP). Nevertheless, Web ahes pos-sess spei� harateristis that motivate the need for a spe-i� AOP infrastruture, providing the following features:� Dynami weaving and deweaving of aspets. Poliiesrunning within a ahe must hange over time to opewith the harateristis of aessed servers.� Continuous serviing. Loading or unloading a new pol-iy must be done without losing the ahe ontent. Ad-ditionally, servie unavailability must be short enoughto be masked by TCP/IP retransmission mehanisms.� Aspets for C programs. Prefething must be inte-grated within real Web ahes suh as Squid that arewritten in C.1

� EÆieny. Poliy exeution must be as fast as possibleto avoid degrading ahe performane, both in termsof lateny and bandwidth.
This paperThis paper desribes the �Dyner AOP infrastruture forwriting and dynamially deploying aspets in running C pro-grams without induing servie unavailability. The design of�Dyner targets the adaptation needs of Web ahes. Morepreisely, our ontributions are as follows:� We demonstrate that prefething poliies an naturallybe implemented using aspets.� We provide an approah to insert aspets at run timeinto an appliation written in C. Unlike approahesbased on Java that rely on JIT ompilation for goodperformane, our approah manipulates only nativeode at run time, and thus diretly produes exeutableode.� The ost of alling a null funtion dynamially aug-mented by a null aspet is 9.5 times higher than thatof alling a null funtion with no woven aspet; similarexperiments with Java-based solutions show an over-head of 20-70 times.� Weaving a new aspet requires only a few hundredmiroseonds, and muh of this proess is transparentto the appliation. Thus, our approah indues littlefreeze time of the appliation.The rest of this paper is strutured as follows. Setion 2presents an overview of Web ahes and issues in implement-ing prefething. Setion 3 desribes the �Dyner framework.Setion 4 evaluates the ost of inserting a �Dyner aspet.Setion 5 presents related work. Setion 6 onludes anddesribes future work.
2. WEB CACHES AND PREFETCHINGThis setion �rst desribes the software arhiteture of atypial Web ahe, suh as Squid [12℄. Then, we presentissues in integrating a prefething poliy into an existingahe. Finally, we show that AOP onveniently addressesthese issues.
2.1 Web cache architectureA Web ahe has three goals:� for the end users: to derease the average aess time,� for the organization managing the Web ahe: to de-rease the bandwidth onsumption,� for the ISP: to derease the workload on eah serverenountered.The basi behavior of a Web ahe is as follows. A Webahe sits between users and Web servers and interepts userrequests. On the reeipt of a request, the Web ahe hekswhether the requested doument is already in its loal stor-age. If so, the ahe sends the doument to the user diretly.Otherwise, the ahe forwards the request to the Web server,downloads the doument to its loal storage, and returns itto the user. When the loal storage of the ahe is full, the

ahe's replaement poliy is ativated to remove potentiallyuseless douments.To improve e�etiveness, several Web ahes may be asso-iated by means of a ooperation protool suh as ICP [34℄.When suh a ooperative ahe does not already possess therequested doument, it �rst attempts to �nd it on one of itsassoiated neighbors before forwarding the request to theserver. This arhiteture relies on the assumption that om-muniation between ahes is muh faster than ommunia-tion with the server.Web ahes are often implemented as a olletion of mod-ules, eah implementing a single funtionality [2, 12, 36℄. Asillustrated in Figure 1, these modules implement three basifuntionalities: user request management, interation withthe neighbors, and loal storage management. To proess auser request, the ahe aepts and parses the request (1 and2), searhes for the doument in the loal storage (3 and 4),and possibly forwards the request to the Web server (6) or toits neighbors (7). If a new doument is obtained, it is savedto the loal storage (4), whih may require an ativation ofthe replaement poliy (10). Finally, the doument is sentto the user (8). To ommuniate with a neighbor, the aheaepts and parses requests from the neighbor (5), hekswhether the requested doument is loally available (3 and4), and answers the neighbor with either an error messageor the requested doument (9).
2.2 PrefetchingThe implementation of a prefething poliy must addressseveral issues that impat diverse parts of the Web ahe:� The kinds of inoming requests to whih prefething isapplied: To avoid overloading the network and over-owing the storage spae of the Web ahe, prefeth-ing should only be applied to user requests, not torequests from neighbors. Thus, the prefething poliymust be aware whether the request was reeived by theuser-request module or the ICP-request module of theahe.� The hoie of douments to prefeth in response to auser request: Possible approahes inlude �xed strate-gies suh as prefething a few links near the top of thedoument [6℄ and statistis-based approahes that re-quire the Web ahe to maintain and analyze a historyof its transations [9℄.� The hosts that are queried to �nd prefethed dou-ments: Querying only the Web server limits the in-rease in network bandwidth due to prefething. Query-ing the neighbors an produe a result more quikly.Whihever strategy is taken, the network module ofthe Web ahe must be aware that prefeth requestsshould be treated di�erently than ordinary user re-quests.� The lifetime of prefethed douments within the stor-age spae of the Web ahe: Prefethed doumentsshould remain in the ahe long enough to have a rea-sonable hane of being aessed, and thus should notbe the highest priority andidates of the Web ahe's2

Accept user request

Parse request

File

Lookup

Send User Reply

Local Space

Accept ICP Request

Replacement policy

Network module

Send ICP request

Send Internet request

(1)

(2)

(3)

(8)

(4)

(10)

(7)

(6)

(5)

Send ICP reply

(9)

User Cache

Web cache

Typical flow of user request Typical flow of ICP request

Network

Neighborhood

Internet

Figure 1: Struture of a modular Web ahereplaement poliy. On the other hand, when a dou-ment is removed from the ahe, the replaement pol-iy should remove douments prefethed for that do-ument as well.One approah to add prefething to an existing Web aheis to follow the model of a Web ahe itself and use an inter-position approah. That is, we add a new server in front ofthe Web ahe that implements the prefething poliy anddelegates all other ahing tasks to the Web ahe. Never-theless, this approah is inadequate in the ase of prefethingbeause of the signi�ant need for ommuniation betweenthe prefething poliy and the Web ahe. For example, theprefething poliy must instrut the Web ahe whether torequest prefethed douments from its neighbors, and theWeb ahe must inform the prefething poliy when dou-ments are removed from the ahe by the replaement poliy.Thus, the approah of implementing the prefething poliyin a separate server does not seem promising.The Apahe [2℄ and MOWS [36℄ Web ahes provide ex-tensibility using dynami loading and unloading of mod-ules.1 At spei� points in the treatment of a request, thesesystems hek whether a module is able to take over the om-putation. If there is suh a module, it is then responsible forall subsequent treatment of the request. This approah isnot well suited to the implementation of prefething, beauseit implies that the prefething poliy must reimplement asigni�ant subset of the Web ahe funtionality. Indeed, itis rather diÆult to de�ne a generi interfae that modulesshould export in order to support prefething. In fat, the1Squid does not support dynami loading of modules.

kinds of interations that are needed are highly dependenton the behavior of prefething poliy.The problem of the degree of module granularity and thediÆulty of de�ning an appropriate interfae suggest thatprefething ould be implemented in simpler manner usingaspet-oriented programming.
2.3 Prefetching as a collection of aspectsWe now illustrate how a prefething poliy an be imple-mented using aspets. As an example, we use the Intera-tive Prefething poliy of Chinen and Yamaguhi [6℄ thatprefethes a few douments referened from the top of therequested doument as well as all of the images required forthese douments. For onreteness, we onsider the imple-mentation of this poliy in a ooperative ahe, for whih wespeify that prefethed douments should only be obtainedfrom the Web server. We alse assume a LRU replaementpoliy. In desribing the aspets needed to implement thispoliy, we use the following AOP notions [21℄:� Join points: A join point is a point in the ode thatan be modi�ed by an aspet.� Pointuts: A pointut is a desription of the exeutionontexts in whih an aspet should be ativated.� Advie: Advie is the ode implementing the funtion-ality provided by an aspet.The Interative Prefething poliy selets the doumentsto prefeth based on information ontained within the do-ument itself. This implies that prefething for new dou-ments an only be initiated after the network module, at3

whih point the ontents of the doument have been re-eived. Aspets implementing prefething, however, shouldonly be ativated if the request is a user request, rather thana neighbor or prefething request. Beause this informationis no longer part of the ontrol stak at the point when thedoument is reeived from the network, pointuts are notsuÆient to distinguish between these ases. Instead, thisinformation an be reorded in a new hash table maintainedby the prefething poliy that maps eah request identi�erto the soure of the request. The user request module andthe ICP request module must both be adapted with adviethat updates this hash table.Prefething should also be initiated when there is an in-oming request for a doument that is found in the ahe,but for whih prefething has not previously been applied(as would be the ase for a prefethed doument, for exam-ple). Again, prefething should only be applied when therequest omes from the user. In this ase, pointuts an beused so that the advie is only invoked when the �le lookupmodule is alled from the user request module.A LRU replaement poliy relies on doument aess timeto hoose the douments to remove from the ahe. Be-ause the basi assumption of a prefething poliy is thatprefethed douments will be used shortly after the requesteddoument, the aess time assoiated with a prefethed do-ument should be based on the aess time of the requesteddoument, and not on the aess time of the prefethed do-ument itself. Thus, the loal spae module must be adaptedwith an aspet that identi�es new prefethed douments andsets their aess times aordingly. The �le lookup modulemust similarly be adapted with an aspet that updates theaess times of the assoiated prefethed douments whena requested doument is reaessed from the ahe. Fi-nally, the replaement poliy itself should be adapted withan aspet that removes the assoiated prefethed doumentswhen the requested doument is removed from the ahe.Many other prefething strategies have been developed.[4,9, 8, 14, 26, 33℄ These strategies vary in how they rossuta Web ahe implementation. For example, prefething de-isions an be made based on statistial observations aboutthe history of inoming requests [9℄. The implementation ofsuh a strategy more deeply rossuts the module that a-epts user requests and the modules that manage the stor-age spae than does the implementation of the InterativePrefething poliy. An alternative implementation of thisstrategy is for Web servers to maintain these statistis. Inthis ase, a piggybaking protool must be established withthe server, so that it an transmit prefething hints to theWeb ahe. The implementation of this strategy thus ross-uts the network module. Rather than prefething dou-ments, the Web ahe an simply pre-establish a onnetionwith the Web server [8℄, thus reduing the lateny pereivedby the user. Suh a strategy rossuts the Network mod-ule, but in a di�erent way than the use of a piggybakingprotool.
3. OVERVIEW OF �DYNERThe �Dyner aspet system provides the ability to dynami-ally weave and deweave aspets in exeuting C appliations.Three types of users interat with �Dyner: the maintainer

of the base ode, the aspet developer, and the ahe admin-istrator. The maintainer of the base ode is responsible forannotating the ahe implementation to indiate the pointsat whih adaptation is allowed. The aspet developer is re-sponsible for identifying appropriate prefething algorithms,writing the orresponding aspet ode, and ompiling theseaspets using the �Dyner dediated ompiler. Ideally, theWeb ahe should monitor inoming requests and selet ap-propriate prefething poliies as onditions hange. In a �rststep, to validate our approah, aspets are installed manu-ally by a ahe administrator.
3.1 Modifying a cache to support aspects�Dyner allows weaving of aspets at run time. To avoidostly runtime deompilation and reorganization of the odeof the running appliation, the �Dyner approah relies on asoure instrumentation of the program to prepare for lateradaptation. Spei�ally, �Dyner provides a soure-level an-notation hookable with whih the program maintainer an-notates the points in the program at whih adaptation is al-lowed. Only global variables and funtions an be delaredto be hookable.Besides the pratial bene�t of reduing the ost of adap-tation, the use of the hookable annotation also gives thebase program maintainer, who knows the struture of theode best, some degree of ontrol over the subsequent adap-tation. In partiular, the maintainer is aware of ritial seg-ments of the ode in whih adaptation should not be allowed,and an thus ensure that no hookable onstruts are men-tioned in these segments.The base program maintainer must also link the appli-ation with the �Dyner instrumentation kernel. When theappliation is deployed, this kernel forks a thread that waitson a soket for weaving and deweaving requests from theahe administrator.
3.2 Aspect developmentThe aspet developer de�nes the pointuts and the advieneeded to implement the prefething poliy. Based on thisinformation, the �Dyner ompiler produes exeutable odethat drives the instrumentation proess.The syntax of the aspet language is de�ned in Figure 2.The de�nition of an aspet onsists of its name and a nestedsequene of pointuts that desribe the a�eted join point.Eah pointut but the last must desribe a funtion invoa-tion (funtion-invoation), and the sequene represents asequene of diret nested alls. The innermost pointut aneither be another funtion invoation or a global variable a-ess (global-variable-aess). The latter ase desribes avariable aess that ours in the body of the funtion men-tioned in the innermost funtion-invoation, or anywherein the program if no funtion-invoation is mentioned.The sequene of pointuts ends with an advie, whih is im-plemented as an ordinary C statement.The advie assoiated with an aspet is exeuted whenthe urrent exeution ontext mathes that desribed by thesequene of pointuts. Exeution of the advie replaes exe-ution of the join point represented by the innermost point-4

<aspet> ::= <name> ":[" <filters-advie> "℄"<name> ::= <identifier><filters-advie> ::= <funtion-invoation> ":[" <filters-advie> "℄"| <funtion-invoation> ":[" <advie>"℄"| <global-variable-aess> ":[" <advie> "℄"<funtion-invoation> ::= <type> <identifier> "(" <params> ")"<type> ::= <C-type><params> ::= <type> <identifier> | <params> "," <params><global-variable-aess> ::= <global-variable-read>| <global-variable-write><global-variable-read> ::= <type> <identifier><global-variable-write> ::= <type> <identifier> "=" <identifier><advie> ::= <C-ompound-instrution>Figure 2: The aspet language.prevent_propagation :[int handle_request(har * req) :[int relay_request(strut req_data * request) :[{ #inlude "prefething.h"if (is_prefething_request(request)) {return NO_NEIGHBOR_HAS_FILE;}return ontinue_relay_request(request);}℄℄℄ Figure 3: An extrat of a prefething poliy.ut. Advie runs in the same address spae as the baseprogram, and thus an refer to the base program's globalvariables. If the advie replaes a funtion all, the adviean also refer to the arguments of this all, via the param-eter names delared in the innermost pointut. The ad-vie an furthermore all the replaed funtion using theimpliitly generated funtion ontinue <funtion named-in the pointut>. A pointut representing an assignment(global-variable-write) inludes both the name of the af-feted variable and a new variable representing the value ofthe right-hand-side expression. This new variable an alsobe referred to by the advie. In all ases, the advie anmaintain loal state aross invoations using C stati loalvariables. When the exeution of the advie ompletes, itsreturn value is returned to the base program as the result ofthe join point exeution.Figure 3 presents an aspet from the implementation of aprefething poliy that prevents the propagation of a requestto ahe neighbors. This aspet assumes that the Web aheuses a funtion handle request to handle requests, and thatpropagation of a request to the neighbors is implemented bythe funtion relay request. The aspet prevent-propaga-tion replaes a all to relay request from handle requestby advie that heks whether the request, obtained as theargument to relay request, is a prefething request. If so,the advie returns NO NEIGHBOR HAS FILE, indiating to theWeb ahe that it must request the doument from the Webserver. If the request is not a prefething request, the advie

invokes the original de�nition of relay request, using thefuntion ontinue relay request. To allow the weaving ofthis aspet, the soure ode need only delare the funtionrelay request to be hookable.
3.3 Aspect deploymentIn the urrent stage of our experiments, aspets are de-ployed by the administrator of the Web ahe. �Dyner pro-vides two ommands weave and deweave to deploy and un-deploy aspets. The ommand weave has two forms. Theform:weave <pid> <aspet-weaver> ...weaves the ompiled aspets aspet-weaver ... into thehost proess identi�ed by pid. The form:weave <pid>lists the names of all of the aspets urrently woven into theproess pid. The ommand deweave has the form:deweave <pid> <aspet-name> ...If any of the aspets named aspet-name ... are urrentlywoven into the proess identi�ed by pid, the aspets are de-woven. Otherwise, deweave returns immediately.
3.4 Implementation of �DynerFigure 4 illustrates the e�et of weaving the aspet of Fig-ure 3 into a Web ahe proess. We now desribe how dy-nami weaving and deweaving are implemented by �Dyner.
Compile-time processingMuh of the proess of dynami weaving is prepared at om-pile time, inluding proessing of the soure program andproessing of the aspets. This ompile-time proessing al-lows weaving at run time to be very eÆient.Weaving is performed diretly on the exeutable imageof the host program, whih is urrently loaded into memory.This proess requires the ability to identify join points in theexeutable ode and the ability to modify the join points tojump to the ode implementing the advie. The hookableannotations ause the ode to be ompiled in a manner thatensures these apabilities, as desribed below.A funtion-all join point is implemented by modifying thefuntion de�nition rather than the all sites. Deteting theposition at whih advie should be added is thus straight-forward: a funtion is ompiled as a sequene of instrutionsat an o�set from the beginning of the exeutable image thatis determined at link time. The hookable attribute on thefuntion is used to ensure that there is suÆient spae atthe beginning of the funtion to insert a jump to the ad-vie before the atual ompiled funtion body. Spei�ally,hookable expands to a branh instrution to the atual startof the funtion followed by NOP instrutions if needed to�ll the remaining reserved spae. When advie is added,the reserved spae is overwritten by a jump to the advie,as shown in Figure 4, and the address of the atual fun-tion body is stored in the de�nition of the implitly gen-erated ontinue <funtion name> funtion. The hookableattribute also prevents the funtion from being inlined.5

function return

 return

int handle_request(char* req) {

relay_request(request)

Host process
}

Aspect.so

Hook

 prepare stack and JUMP relay_request+7

int prevent_propagation() {

}

else
return NO_NEIGHBOR_HAS_FILE;

int continue_relay_request(struct * request) {

JUMP relay_request+7

return

of the aspect

continue_relay_request(request);

if(!pointcut) {

generated at compilation

generated at compilation

}

of the base program

}

Legend

function call

 // original function code

int relay_request(struct * request) {
 JUMP Hook

}

 CALL advice()

return

 return

if (is_prefetching_request(request))

generated at weaving
timeFigure 4: Exeution of an aspet.A variable-aess join point is implemented by modifyingeah aess to the variable. In general, a variable an be im-plemented as a memory loation or as a register, or indeed asboth. Beause it is non-trivial to trak aesses through reg-isters, �Dyner requires that a variable-aess join point beimplemented as an aess to an expliit memory loation.The hookable annotation on a variable delaration thusmaro-expands into a volatile delaration, whih foresthe ompiler to implement every aess to the variable as anexpliit aess to the assoiated memory loation.2For eah aspet, the �Dyner ompiler generates ode thatheks whether the urrent exeution stak mathes the spe-i�ation of the pointuts. The �Dyner ompiler also invokesthe C ompiler to generate ode for the advie.

WeavingThe weaving funtion of �Dyner sends a message to thesoket assoiated with the �Dyner instrumentation kernel inthe host proess. On reeipt of this message, the �Dyner ker-nel loads the requested aspet into the address spae of thehost proess as a shared library (using dlopen) and then in-struments the join points desribed by the innermost point-ut of the aspet. This instrumentation onsists of reatinghooks that manage the invoation of the advie and updat-ing eah join point with a all to the assoiated hook. Ahook heks whether the sequene of pending return pointson the exeution stak orresponds to the sequene of point-uts desribed by the aspet, and if so, invokes the advie. Ifthe pointuts are not satis�ed, the hook performs the ationof the join point and returns ontrol to the appliation. Theexat behavior of the hook depends on whether the joinpoint is a funtion-invoation, global-variable-read,or global-variable-write, as desribed below. Beausethe de�nition of a hook depends on both the base programand the aspet, hooks are reated dynamially.2This approah is insuÆient to detet referenes to a vari-able via a pointer. The �Dyner ompiler gives an error if thesoure program ever takes the address of a variable delaredas hookable.

As shown in Figure 4, a single hook is used for an aspetwhose innermost pointut is a funtion-invoation. Thishook �rst saves the omplete set of registers of the proes-sor and then heks that all of the pointuts for the aspetare satis�ed. If they are, the hook alls the advie on thearguments given to the funtion. The result returned bythe advie is itself returned by the hook. Beause the hookis invoked by a jump instrution rather than by a funtionall, the return address on the stak at this point is the re-turn address of the all to the join point funtion, so ontrolreturns to the all site rather than to the original funtionbody, as shown in Figure 4. If some of the pointuts of theaspet are not satis�ed, the hook restores the registers andjumps bak to the funtion body.When the innermost pointut of the aspet is a global--variable-read, �Dyner reates a hook for eah refereneto the variable. Eah suh hook is instantiated with the ad-dress of the variable referene and the instrution formerlypresent at that address, and thus is able to ontinue theomputation from the point of the variable referene. Asfor a hook for a funtion-invoation join point, the hookfor a global-variable-read join point initially heks thatall of the pointuts for the aspet are satis�ed. If so, thehook invokes the advie. Beause all of the global variablesof the program are visible to the advie, there is no needto pass the address of the variable assoiated with the as-pet to the advie. When the advie ompletes, the e�et ofthe original variable-referene instrution is applied to thisvalue, and the hook jumps bak to the instrution followingthe join point. If the pointuts of the aspet are not all sat-is�ed, the original variable referene instrution is exeutedand the hook jumps bak to the instrution following thejoin point.The treatment of a global-variable-write hook is sim-ilar to that of a global-variable-read hook exept that inthis ase, the advie must be able to aess the value of theright-hand side expression of the assignment, via the vari-able name spei�ed in the pointut. If the pointuts of the6

aspet are satis�ed, the hook examines the instrution im-plementing the assignment in the original program to obtainthe value of the right-hand side expression. The hook thenpasses this value to the advie.
DeweavingDeweaving an aspet simply overwrites the ode at eah joinpoint with its original instrution, frees the spae alloatedfor the hook, and unloads the aspet, using dllose.
4. PERFORMANCE EVALUATIONTo evaluate the ost of dynami weaving in �Dyner, wehave measured the overhead introdued by the hookable an-notations, the ost of weaving a new aspet, and the ost ofinvoking an aspet one woven. Our experiments were on-duted on an Intel Pentium 4 running at 1.6 GHz with 256MB of RAM under Linux (kernel 2.4.17, g 3.0.4 with theoption -O2).The hookable annotation introdues a short branh andNOP instrutions at the beginning of eah funtion that isa potential join point, and auses eah aess to a globalvariable that is a potential join point to be implemented asan aess to a memory loation. To assess the overhead in-trodued by the hookable annotation, we ompare the per-formane of the quiksort program presented in AppendixA with and without hookable annotations on funtions and(globalized) variables in the program's ritial path, whenapplied to an array of 10 million random integers. We foundthat no overhead was introdued by the hookable anno-tation as ompared to using ordinary funtions and globalvariables. This result suggests that it is feasible to plaehookable annotations throughout the program in order toallow a wide range of possible adaptations.Weaving an aspet into the base program requires load-ing the aspet and instrumenting the a�eted join point(s).The ost of loading the aspet is dominated by the ostof dlopen; loading the aspet of Figure 5 requires 175 �s.The instrumentation proess replaes the join point with ajump instrution and reates the hook. The ost of writinga single jump instrution is minimal. Creating a hook fora funtion-invoation join point requires alloating spaefor the ode (using mallo) and opying the ode, whih ispre-generated by the �Dyner ompiler, from the ompiledaspet into this spae (using mempy). The ost of theseoperations is proportional to the number of pointuts. Forthe trivial aspet of Figure 5, the total instrumentation ostis 19�s. Creating a hook for a global-variable-aessjoin point additionally requires instantiating the preom-piled hook with the ontents and address of the instrutionat the join point. The ost these extra operations is, how-ever, minimal. Note, though, that a distint hook is reatedfor eah aess (referene or update, depending on the point-ut) to the variable, and thus the instrumentation ost mustbe multiplied by the number of suh aesses.Deweaving essentially inverses the proess of weaving. Eahof the operations involved is equally or less expensive thanits weaving ounterparts. For example, unloading the as-pet with dllose requires only 119 �s. Thus, the ost of

deweaving is lower than the ost of weaving.A single hook is installed atomially from the viewpointof the host program, and so the appliation need not bestopped in this ase. Nevertheless, the power of aspetsomes from the ability to make hanges throughout the pro-gram. When multiple hooks or multiple aspets are needed,the administrator may need to stop the host proess duringweaving, if there is the possibility of inorret interationswithin inompletely installed ode. Nevertheless, even inthis ase, the proess need only be stopped during the up-dating of the host proess ode with jump instrutions. Themore time-onsuming loading of aspets and onstrution ofthe hooks an proeed in parallel with host proess exeu-tion.The ost of weaving an aspet should be ompared tothe retransmission timeout [27℄ in TCP. Typial values ona BSD implementation of TCP vary between 0.5 and 1 se-ond [1℄. It has been argued that the timeout should not belower than 250ms [1℄. This suggests that �Dyner is eÆientenough to enable dynami adaptation of web ahes.empty :[int trivial() :[{ return ontinue_trivial();}℄℄ Figure 5: A null aspet.To assess the overhead of alling a funtion adapted byan aspet, we onsider a funtion trivial that immediatelyreturns and the trivial aspet empty shown in Figure 5 thatsimply alls bak to this funtion. We ompare the ost ofalling trivial, when this funtion is not delared to behookable, with the ost of alling trivial when it is de-lared to be hookable and has the aspet empty woven intoits de�nition. We �nd that with the advie woven, invok-ing trivial osts 9.5 times as muh as alling the funtionwithout the advie. In general, however, the ost of invokingadvie varies with the omplexity of the pointut. Similarexperiments have been performed for Java-based dynamiaspet systems and meta objet systems. Table 6 summa-rizes the overhead of invoking dynamially woven advie asompared to a normal funtion all for several suh systems(IguanaJ [29℄, MetaXa [22℄, Prose [28℄, and Guaran�a [24℄).Tool Ratio�Dyner 9.5IguanaJ (MOP) 24MetaXa (MOP) 28Prose (AOP) 40Guaran�a (MOP) 70Figure 6: Ratio between aspet invoation and or-dinary allThe overall e�et of the overhead of alling an aspet onthe performane of an appliation depends on how often the7

aspet is invoked. We again test the quiksort implemen-taion of Appendix A, with partition delared as hookable.In sorting an array of 10 million random integers, the trivialaspet of Figure 7 adds an overhead of less than 10% (8%in many ases) as ompared to the original implementationof quiksort (using neither the aspet nor any hookableannotations).empty :[int * partition(int * p, int * r) :[{ return ontinue_partition(p,r);}℄℄ Figure 7: Benhmarking aspet.
5. RELATED WORK�Dyner is related to systems that allow modi�ation ofbinary ode, and to other aspet systems.Several tools allow the rewriting of an exeutable afterompilation and, in some ases, after linking. While thisapproah is relatively ommon in Java [5, 10, 13, 20, 32℄, itis relatively rare on native exeutables [3, 23, 30℄. Eel [23℄and Eth [30℄ an aggressively restruture the program, andan thus improve its performane. They annot, however,modify a running exeutable and they o�er APIs that arelose to assembly language.One tool that does allow dynami instrumentation of arunning native program. is Dyninst [3℄, whih is based onthe Unix debugging API (ptrae). This API is arhite-tured in terms of the interation between two proesses, theproess being debugged and the debugger. Dyninst instanti-ates the host proess as the proess being debugged and theproess injeting new ode as the debugger. This approahhas high ost beause ptrae requires the proess being de-bugged and the debugger to synhronize on eah writteninstrution. An instrumentation analogous to the weavingof the null aspet of Figure 5 requires 1.2s using Dyninst.Moreover, although the API is lose to the C language, itseems diÆult to trigger an advie exeution on an aess toa variable with Dyninst: the translation from the variableidenti�er to e�etive address is left to the user.Cowan et al. [11℄ present an approah to dynamially load-ing and unloading new implementations of existing opera-tions into running programs. Here the goal is to improveperformane based on transitory invariants, rather than toadd new funtionality. They address the problem of inor-ret interations with outdated and inompletely installedode by using loks to ensure that no thread is exeutingrelevant ode during the replaement proess. When there isindeed no proess urrently exeuting ode that is sheduledto be replaed, they report an overhead of a few hundred y-les on a HP 9000 series 800 G70 (9000/887) dual-proessorserver. We are urrently investigating eÆient approahesto address this issue in the setting of �Dyner.

AspetJ [21℄, targeted toward Java, is the de-fato linguafrana of all aspet systems. It o�ers a rih set of point-ut operators, but provides only weaving at ompile time.AspetC [7℄ and AspetC++ [31℄ extend C and C++, re-spetively, with aspets. These systems also provide onlystati weaving. Douene et al. [15, 16℄ propose a formalmodel to de�ne the semantis of aspet systems. We planto try to merge the �Dyner aspet model with this model,to take advantage of the ability to formally prove propertiesof the interations between a olletion of aspets.To the best of our knowledge, no urrent aspet systemprovides all of the features of �Dyner. In partiular, mostexisting aspet systems provide only stati, rather than dy-nami, weaving.
6. CONCLUSIONGiven the high proportion of HTTP traÆ in the Internet,ahing of douments is an important tehnique to redue la-teny, bandwidth onsumption, and server load. Augment-ing a Web ahe with a prefething poliy further improvesits e�etiveness. Nevertheless, there is no single prefeth-ing poliy that is best for all situations; good performanerequires using a prefething poliy targeted to harateris-tis of the Web server and of the lient. Thus, a Web aheshould be extensible and provide the ability to load and un-load new poliies at run time.In this paper, we have presented a new approah to imple-menting prefething poliies in an existing Web ahe. Wehave shown that prefething rossuts the struture of a Webahe, and that it an thus appropriately be implemented asa olletion of aspets. To address the need to install newpoliies in response to hanging onditions, we have devel-oped an arhiteture allowing the weaving and deweaving ofaspets in an exeuting program. Our approah is based onthe C language, whih is typially used in the implementa-tion of Web ahes. Weaving and deweaving of an aspethave a relatively low ost, whih is within the delay toler-ated by TCP/IP retransmission mehanisms.Our initial experiments with �Dyner have shown that thesystem provides both good performane and a useful degreeof expressiveness. In the short term, we are planning to use�Dyner to implement a prefething poliy suh as Intera-tive Prefething (see Setion 2.3) in Squid. In this ontext,we will investigate how a Web ahe an be extended to itselfdownload and deploy new prefething poliies. More gener-ally, we are investigating whether these ideas an be used asa basis for a more general framework for onstruting adapt-able appliations with ritial performane and ontinuousservie requirements suh as operating systems.
7. REFERENCES[1℄ M. Allman and V. Paxson. On estimating end-to-endnetwork path properties. In Proeedings of the ACMSIGCOMM '99 Conferene on Appliations,Tehnologies, Arhitetures, and Protools forComputer Communiation, pages 263{274,Cambridge, MA, Aug. 1999.[2℄ Apahe Software Foundation. Apahe.www.apahe.org.8

[3℄ B. Buk and J. K. Hollingsworth. An API for runtimeode pathing. The International Journal of HighPerformane Computing Appliations, 14(4):317{329,Winter 2000.[4℄ X. Chen and X. Zhang. Coordinated data prefethingby utilizing referene information at both proxy andweb servers. In Proeedings of the 2nd ACM Workshopon Performane and Arhiteture of Web Servers,(PAWS-2001), June 2001.[5℄ S. Chiba. Load-time strutural reetion in Java. InECOOP 2000 - Objet-Oriented Programming, 14thEuropean Conferene, volume 1850 of Leture Notes inComputer Siene, pages 313{336, Sophia Antipolisand Cannes, Frane, June 2000.[6℄ K.-I. Chinen and S. Yamaguhi. An interativeprefething proxy server for improvement of WWWlateny. In Proeedings of the Seventh AnnualConferene of the Internet Soiety (INET'97), KualaLumpur, June 1997.[7℄ Y. Coady, G. Kizales, M. Feeley, N. Huthinson, andJ. S. Ong. Struturing operating system aspets: usingAOP to improve OS struture modularity.Communiations of the ACM, 44(10):79{82, 2001.[8℄ E. Cohen and H. Kaplan. Prefething the means fordoument transfer: A new approah for reduing weblateny. In INFOCOM, volume 2, pages 854{863, TelAviv, Israel, Mar. 2000.[9℄ E. Cohen, B. Krishnamurthy, and J. Rexford. EÆientalgorithms for prediting requests to web servers. InINFOCOM, volume 1, pages 284{293, New York, NY,Mar. 1999.[10℄ G. Cohen, J. Chase, and D. Kaminsky. Automatiprogram transformation with JOIE. In 1998 USENIXAnnual Tehnial Symposium, pages 167{178, 1998.[11℄ C. Cowan, T. Autrey, C. Krasi, C. Pu, andJ. Walpole. Fast onurrent dynami linking for anadaptive operating system. In Proeedings of theInternational Conferene on Con�gurable DistributedSystems (ICCDS'96), pages 108{115, Annapolis MD,May 1996.[12℄ D. Wessels and ontributors. Squid web proxy ahe.www.squid-ahe.org.[13℄ M. Dahm. Byte ode engineering. In JIT'99,Java-Informations-Tage, pages 267{277. Springer,Sept. 1999.[14℄ M. D. Dikaiakos and A. Stassopoulou.Content-seletion strategies for the periodiprefething of WWW resoures via satellite. ComputerCommuniations, 24(1):93{104, 2001.[15℄ R. Douene, P. Fradet, and M. S�udholt. A frameworkfor the detetion and resolution of aspet interations.In Proeedings of the ACM SIGPLAN/SIGSOFTConferene on Generative Programming andComponent Engineering (GPCE'02), pages 173{188,Pittsburgh, PA, Ot. 2002.[16℄ R. Douene, O. Motelet, and M. S�udholt. A formalde�nition of rossuts. In Proeedings of the 3rdInternational Conferene on Reetion andCrossutting Conerns, volume 2192 of Leture Notesin Computer Siene, pages 170{186, Kyoto, Japan,Sept. 2001. Springer Verlag.[17℄ C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski,

D. Papagiannaki, and F. Tobagi. Design anddeployment of a passive monitoring infrastruture. InEvolutionary Trends of the Internet, ThyrrhenianInternational Workshop on Digital Communiations,IWDC 2001, volume 2170 of Leture Notes inComputer Siene, pages 556{575, Taormina, Italy,Sept. 2001.[18℄ V. Issarny, M. Banâtre, B. Charpiot, and J.-M.Menaud. Quality of servie and eletroni newspaper:The Etel solution. Leture Notes in Computer Siene,1752:472{496, 2000.[19℄ Q. Jaobson and P. Cao. Potential and limits of Webprefething between low-bandwidth lients andproxies. In Proeedings of the Third InternationalWWW Cahing Workshop, 1998.[20℄ R. Keller and U. H�olzle. Binary omponentadaptation. In ECCOP'98 - Objet-OrientedProgramming, 12th European Conferene, volume 1445of Leture Notes in Computer Siene, pages 307{329,Brussels, Belgium, July 1998.[21℄ G. Kizales, E. Hilsdale, J. Hugunin, M. Kersten,J. Palm, and W. Griswold. Getting started withASPECTJ. Communiations of the ACM,44(10):59{65, 2001.[22℄ J. Kleinoder and M. Golm. MetaJava: An eÆientrun-time meta arhiteture for Java. In Proeedings ofthe International Workshop on Objet-Orientation inOperation Systems - IWOOOS '96, pages 54{61,Seattle, Washington, Ot. 1996.[23℄ J. R. Larus and E. Shnarr. EEL:mahine-independent exeutable editing. InProeedings of the ACM SIGPLAN'95 Conferene onProgramming Language Design and Implementation(PLDI), pages 291{300, La Jolla, CA, June 1995.ACM Press.[24℄ A. Oliva and L. E. Buzato. The implementation ofGuaran�a on Java. Tehnial Report IC-98-32,Institute of Computing, University of Campinas,Campinas, Brazil, Sept. 1998.[25℄ V. N. Padmanabhan and L. Qui. The ontent andaess dynamis of a busy web site: �ndings andimpliations. In Proeedings of the ACM SIGCOMM2000 Conferene on Appliations, Tehnologies,Arhitetures, and Protools for ComputerCommuniation, pages 111{123, Stokholm, Sweden,Aug. 2000.[26℄ T. Palpanas and A. Mendelzon. Web prefething usingpartial math predition. In Proeedings of the 4thInternational Web Cahing Workshop, 1999.[27℄ V. Paxson and M. Allman. RFC 9188: ComputingTCP's retransmission timer, Nov. 2000.[28℄ A. Popovii, T. Gross, and G. Alonso. Dynamiweaving for aspet-oriented programming. InProeedings of the 1st international onferene onAspet-oriented software development, pages 141{147,Enshede, The Netherlands, Apr. 2002. ACM Press.[29℄ B. Redmond and V. Cahill. Supporting unantiipateddynami adaptation of appliation behaviour. InECOOP 2002 - Objet-Oriented Programming, 16thEuropean Conferene, volume 2374 of Leture Notes inComputer Siene, pages 205{230, Malaga, Spain,June 2002.9

[30℄ T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong,H. Levy, B. Bershad, and B. Chen. Instrumentationand optimization of Win32/Intel exeutables usingEth. In Proeedings of the USENIX Windows NTWorkshop, pages 1{8, Seattle, Washington, Aug. 1997.[31℄ O. Spinzyk, A. Gal, and W. Shr�oder-Preikshat.AspetC++: An aspet-oriented extension to theC++ programming language. In Proeedings of the40th International Conferene on Tehnology ofObjet-Oriented Languages and Systems (TOOLSPai� 2002), Sydney, Australia, Feb. 2002.[32℄ E. Tanter, M. S�egura-Devillehaise, J. Noy�e, andJ. Piquer. Altering Java semantis via byteodemanipulation. In Proeedings of the ACMSIGPLAN/SIGSOFT Conferene on GenerativeProgramming and Component Engineering(GPCE'02), volume 2487 of Leture Notes inComputer Siene, pages 283{298, Pittsburgh, PA,Ot. 2002.[33℄ Z. Wang and J. Crowroft. Prefething in world wideweb. In Proeeedings of Global Internet, pages 28{32,London, England, Nov. 1996. IEEE.[34℄ D. Wessels and K. Cla�y. RFC 2186: Internet CaheProtool (ICP), version 2, Sept. 1997.[35℄ A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,A. R. Karlin, and H. M. Levy. On the sale andperformane of ooperative web proxy ahing. InSymposium on Operating Systems Priniples, pages16{31, Kiawah Island Resort, SC, De. 1999.[36℄ A. Yoshida. MOWS: distributed web and ahe serverin Java. Computer Networks and ISDN Systems,29(8-13):965{975, 1997.
APPENDIX

A. ANNOTED QUICKSORT.Cinline void swap(int *i, int *j) {int temp;temp = *i;*i = *j;*j = temp;}int *partition(int *p, int *r) {int x, *i, *j;x = *p;i = p - 1;j = r + 1;while(1) {do { i++; } while(*i > x);do { j--; } while(*j < x);if (i < j)swap(i, j);elsereturn j ;}}void sort(int *p, int *r) {int *q;if (p < r) {q=partition(p,r);

sort(p,q-1);sort(q+1,r);}}

10

