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ABSTRACTGiven the high proportion of HTTP traÆ
 in the Internet,Web 
a
hes are 
ru
ial to redu
e user a

ess time, networklaten
y, and bandwidth 
onsumption. Prefet
hing in a Web
a
he 
an further in
rease these bene�ts. Nevertheless, toa
hieve the best performan
e, the prefet
hing poli
y usedmust mat
h user and Web server 
hara
teristi
s. This im-plies that new prefet
hing poli
ies must be loaded dynami-
ally as needs 
hange.Most Web 
a
hes are large C programs, and thus adding asingle prefet
hing poli
y to an existing Web 
a
he is a daunt-ing task. Providing multiple poli
ies is even more 
omplex.The essential problem is that prefet
hing 
on
erns 
ross-
ut the 
a
he stru
ture. Aspe
t-oriented programming is anatural te
hnique to address this issue. Nevertheless, exist-ing approa
hes do not provide dynami
 weaving of aspe
tstargeted toward C appli
ations. In this paper, we present�Dyner, whi
h addresses these needs. �Dyner also provideslower overhead for aspe
t invo
ation than other approa
hes,thus meeting the need for good performan
e in Web 
a
hes.
KeywordsAdaptable software, aspe
t-oriented programming, 
ode in-strumentation, point
ut language, Web 
a
hes
1. INTRODUCTIONBe
ause HTTP amounts, at the very least, to 80% of theInternet traÆ
 [17℄, 
a
hing HTTP do
uments is an appeal-ing approa
h to de
rease the Internet laten
y and networkbandwidth 
onsumption [35℄. Two fa
tors, however, de-
rease Web 
a
he e�e
tiveness: (i) between 35% to 50% ofWeb do
uments are un
a
heable be
ause their 
ontent isspe
i�
 the initial request [35℄, (ii) on
e 
a
hed, many Webdo
uments are never requested again [25℄.

A strategy to over
ome these limitations is to prefet
hWeb do
uments so that they are already in the 
a
he andthus 
lose to the 
lient when �rst requested [19℄. Neverthe-less, a simple prefet
hing strategy su
h as prefet
hing all ofthe do
uments rea
hable from a do
ument requested by theuser only redu
es the user a

ess time for the few su
h pagesthat are a
tually referen
ed, at the expense of in
reasing theoverall bandwidth 
onsumption and the workloads of Webservers. Instead, strategies that are tailored to user prefer-en
es and Web server 
hara
teristi
s are needed to ensurethat most of the prefet
hed do
uments are eventually a
-
essed. For example, Issarny et al. have shown that in the
ontext of an ele
troni
 newspaper, a prefet
hing poli
y thatis based on user pro�les and spe
ialized to the targeted Webserver 
an a
hieve a prefet
h predi
tion a

ura
y of up to92% [18℄. To support the use of su
h poli
ies, a Web 
a
heshould be extensible and support dynami
 loading and un-loading of new poli
ies.Many Web 
a
hes, su
h as Squid [12℄, are implementedusing a module-based ar
hite
ture. A natural strategy toextend a module-based system with a new fun
tionality isto implement this fun
tionality as a new module. Unfortu-nately, prefet
hing poli
ies often 
ross
ut the fun
tionalitiesof several modules. Thus, a prefet
hing module would haveto redundantly implement many basi
 
a
he operations.In fa
t, the 
ross
utting nature of prefet
hing poli
ies sug-gests that su
h poli
ies should be implemented using aspe
t-oriented programming (AOP). Nevertheless, Web 
a
hes pos-sess spe
i�
 
hara
teristi
s that motivate the need for a spe-
i�
 AOP infrastru
ture, providing the following features:� Dynami
 weaving and deweaving of aspe
ts. Poli
iesrunning within a 
a
he must 
hange over time to 
opewith the 
hara
teristi
s of a

essed servers.� Continuous servi
ing. Loading or unloading a new pol-i
y must be done without losing the 
a
he 
ontent. Ad-ditionally, servi
e unavailability must be short enoughto be masked by TCP/IP retransmission me
hanisms.� Aspe
ts for C programs. Prefet
hing must be inte-grated within real Web 
a
hes su
h as Squid that arewritten in C.1



� EÆ
ien
y. Poli
y exe
ution must be as fast as possibleto avoid degrading 
a
he performan
e, both in termsof laten
y and bandwidth.
This paperThis paper des
ribes the �Dyner AOP infrastru
ture forwriting and dynami
ally deploying aspe
ts in running C pro-grams without indu
ing servi
e unavailability. The design of�Dyner targets the adaptation needs of Web 
a
hes. Morepre
isely, our 
ontributions are as follows:� We demonstrate that prefet
hing poli
ies 
an naturallybe implemented using aspe
ts.� We provide an approa
h to insert aspe
ts at run timeinto an appli
ation written in C. Unlike approa
hesbased on Java that rely on JIT 
ompilation for goodperforman
e, our approa
h manipulates only native
ode at run time, and thus dire
tly produ
es exe
utable
ode.� The 
ost of 
alling a null fun
tion dynami
ally aug-mented by a null aspe
t is 9.5 times higher than thatof 
alling a null fun
tion with no woven aspe
t; similarexperiments with Java-based solutions show an over-head of 20-70 times.� Weaving a new aspe
t requires only a few hundredmi
rose
onds, and mu
h of this pro
ess is transparentto the appli
ation. Thus, our approa
h indu
es littlefreeze time of the appli
ation.The rest of this paper is stru
tured as follows. Se
tion 2presents an overview of Web 
a
hes and issues in implement-ing prefet
hing. Se
tion 3 des
ribes the �Dyner framework.Se
tion 4 evaluates the 
ost of inserting a �Dyner aspe
t.Se
tion 5 presents related work. Se
tion 6 
on
ludes anddes
ribes future work.
2. WEB CACHES AND PREFETCHINGThis se
tion �rst des
ribes the software ar
hite
ture of atypi
al Web 
a
he, su
h as Squid [12℄. Then, we presentissues in integrating a prefet
hing poli
y into an existing
a
he. Finally, we show that AOP 
onveniently addressesthese issues.
2.1 Web cache architectureA Web 
a
he has three goals:� for the end users: to de
rease the average a

ess time,� for the organization managing the Web 
a
he: to de-
rease the bandwidth 
onsumption,� for the ISP: to de
rease the workload on ea
h serveren
ountered.The basi
 behavior of a Web 
a
he is as follows. A Web
a
he sits between users and Web servers and inter
epts userrequests. On the re
eipt of a request, the Web 
a
he 
he
kswhether the requested do
ument is already in its lo
al stor-age. If so, the 
a
he sends the do
ument to the user dire
tly.Otherwise, the 
a
he forwards the request to the Web server,downloads the do
ument to its lo
al storage, and returns itto the user. When the lo
al storage of the 
a
he is full, the


a
he's repla
ement poli
y is a
tivated to remove potentiallyuseless do
uments.To improve e�e
tiveness, several Web 
a
hes may be asso-
iated by means of a 
ooperation proto
ol su
h as ICP [34℄.When su
h a 
ooperative 
a
he does not already possess therequested do
ument, it �rst attempts to �nd it on one of itsasso
iated neighbors before forwarding the request to theserver. This ar
hite
ture relies on the assumption that 
om-muni
ation between 
a
hes is mu
h faster than 
ommuni
a-tion with the server.Web 
a
hes are often implemented as a 
olle
tion of mod-ules, ea
h implementing a single fun
tionality [2, 12, 36℄. Asillustrated in Figure 1, these modules implement three basi
fun
tionalities: user request management, intera
tion withthe neighbors, and lo
al storage management. To pro
ess auser request, the 
a
he a

epts and parses the request (1 and2), sear
hes for the do
ument in the lo
al storage (3 and 4),and possibly forwards the request to the Web server (6) or toits neighbors (7). If a new do
ument is obtained, it is savedto the lo
al storage (4), whi
h may require an a
tivation ofthe repla
ement poli
y (10). Finally, the do
ument is sentto the user (8). To 
ommuni
ate with a neighbor, the 
a
hea

epts and parses requests from the neighbor (5), 
he
kswhether the requested do
ument is lo
ally available (3 and4), and answers the neighbor with either an error messageor the requested do
ument (9).
2.2 PrefetchingThe implementation of a prefet
hing poli
y must addressseveral issues that impa
t diverse parts of the Web 
a
he:� The kinds of in
oming requests to whi
h prefet
hing isapplied: To avoid overloading the network and over-
owing the storage spa
e of the Web 
a
he, prefet
h-ing should only be applied to user requests, not torequests from neighbors. Thus, the prefet
hing poli
ymust be aware whether the request was re
eived by theuser-request module or the ICP-request module of the
a
he.� The 
hoi
e of do
uments to prefet
h in response to auser request: Possible approa
hes in
lude �xed strate-gies su
h as prefet
hing a few links near the top of thedo
ument [6℄ and statisti
s-based approa
hes that re-quire the Web 
a
he to maintain and analyze a historyof its transa
tions [9℄.� The hosts that are queried to �nd prefet
hed do
u-ments: Querying only the Web server limits the in-
rease in network bandwidth due to prefet
hing. Query-ing the neighbors 
an produ
e a result more qui
kly.Whi
hever strategy is taken, the network module ofthe Web 
a
he must be aware that prefet
h requestsshould be treated di�erently than ordinary user re-quests.� The lifetime of prefet
hed do
uments within the stor-age spa
e of the Web 
a
he: Prefet
hed do
umentsshould remain in the 
a
he long enough to have a rea-sonable 
han
e of being a

essed, and thus should notbe the highest priority 
andidates of the Web 
a
he's2
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Figure 1: Stru
ture of a modular Web 
a
herepla
ement poli
y. On the other hand, when a do
u-ment is removed from the 
a
he, the repla
ement pol-i
y should remove do
uments prefet
hed for that do
-ument as well.One approa
h to add prefet
hing to an existing Web 
a
heis to follow the model of a Web 
a
he itself and use an inter-position approa
h. That is, we add a new server in front ofthe Web 
a
he that implements the prefet
hing poli
y anddelegates all other 
a
hing tasks to the Web 
a
he. Never-theless, this approa
h is inadequate in the 
ase of prefet
hingbe
ause of the signi�
ant need for 
ommuni
ation betweenthe prefet
hing poli
y and the Web 
a
he. For example, theprefet
hing poli
y must instru
t the Web 
a
he whether torequest prefet
hed do
uments from its neighbors, and theWeb 
a
he must inform the prefet
hing poli
y when do
u-ments are removed from the 
a
he by the repla
ement poli
y.Thus, the approa
h of implementing the prefet
hing poli
yin a separate server does not seem promising.The Apa
he [2℄ and MOWS [36℄ Web 
a
hes provide ex-tensibility using dynami
 loading and unloading of mod-ules.1 At spe
i�
 points in the treatment of a request, thesesystems 
he
k whether a module is able to take over the 
om-putation. If there is su
h a module, it is then responsible forall subsequent treatment of the request. This approa
h isnot well suited to the implementation of prefet
hing, be
auseit implies that the prefet
hing poli
y must reimplement asigni�
ant subset of the Web 
a
he fun
tionality. Indeed, itis rather diÆ
ult to de�ne a generi
 interfa
e that modulesshould export in order to support prefet
hing. In fa
t, the1Squid does not support dynami
 loading of modules.

kinds of intera
tions that are needed are highly dependenton the behavior of prefet
hing poli
y.The problem of the degree of module granularity and thediÆ
ulty of de�ning an appropriate interfa
e suggest thatprefet
hing 
ould be implemented in simpler manner usingaspe
t-oriented programming.
2.3 Prefetching as a collection of aspectsWe now illustrate how a prefet
hing poli
y 
an be imple-mented using aspe
ts. As an example, we use the Intera
-tive Prefet
hing poli
y of Chinen and Yamagu
hi [6℄ thatprefet
hes a few do
uments referen
ed from the top of therequested do
ument as well as all of the images required forthese do
uments. For 
on
reteness, we 
onsider the imple-mentation of this poli
y in a 
ooperative 
a
he, for whi
h wespe
ify that prefet
hed do
uments should only be obtainedfrom the Web server. We alse assume a LRU repla
ementpoli
y. In des
ribing the aspe
ts needed to implement thispoli
y, we use the following AOP notions [21℄:� Join points: A join point is a point in the 
ode that
an be modi�ed by an aspe
t.� Point
uts: A point
ut is a des
ription of the exe
ution
ontexts in whi
h an aspe
t should be a
tivated.� Advi
e: Advi
e is the 
ode implementing the fun
tion-ality provided by an aspe
t.The Intera
tive Prefet
hing poli
y sele
ts the do
umentsto prefet
h based on information 
ontained within the do
-ument itself. This implies that prefet
hing for new do
u-ments 
an only be initiated after the network module, at3



whi
h point the 
ontents of the do
ument have been re-
eived. Aspe
ts implementing prefet
hing, however, shouldonly be a
tivated if the request is a user request, rather thana neighbor or prefet
hing request. Be
ause this informationis no longer part of the 
ontrol sta
k at the point when thedo
ument is re
eived from the network, point
uts are notsuÆ
ient to distinguish between these 
ases. Instead, thisinformation 
an be re
orded in a new hash table maintainedby the prefet
hing poli
y that maps ea
h request identi�erto the sour
e of the request. The user request module andthe ICP request module must both be adapted with advi
ethat updates this hash table.Prefet
hing should also be initiated when there is an in-
oming request for a do
ument that is found in the 
a
he,but for whi
h prefet
hing has not previously been applied(as would be the 
ase for a prefet
hed do
ument, for exam-ple). Again, prefet
hing should only be applied when therequest 
omes from the user. In this 
ase, point
uts 
an beused so that the advi
e is only invoked when the �le lookupmodule is 
alled from the user request module.A LRU repla
ement poli
y relies on do
ument a

ess timeto 
hoose the do
uments to remove from the 
a
he. Be-
ause the basi
 assumption of a prefet
hing poli
y is thatprefet
hed do
uments will be used shortly after the requesteddo
ument, the a

ess time asso
iated with a prefet
hed do
-ument should be based on the a

ess time of the requesteddo
ument, and not on the a

ess time of the prefet
hed do
-ument itself. Thus, the lo
al spa
e module must be adaptedwith an aspe
t that identi�es new prefet
hed do
uments andsets their a

ess times a

ordingly. The �le lookup modulemust similarly be adapted with an aspe
t that updates thea

ess times of the asso
iated prefet
hed do
uments whena requested do
ument is rea

essed from the 
a
he. Fi-nally, the repla
ement poli
y itself should be adapted withan aspe
t that removes the asso
iated prefet
hed do
umentswhen the requested do
ument is removed from the 
a
he.Many other prefet
hing strategies have been developed.[4,9, 8, 14, 26, 33℄ These strategies vary in how they 
ross
uta Web 
a
he implementation. For example, prefet
hing de-
isions 
an be made based on statisti
al observations aboutthe history of in
oming requests [9℄. The implementation ofsu
h a strategy more deeply 
ross
uts the module that a
-
epts user requests and the modules that manage the stor-age spa
e than does the implementation of the Intera
tivePrefet
hing poli
y. An alternative implementation of thisstrategy is for Web servers to maintain these statisti
s. Inthis 
ase, a piggyba
king proto
ol must be established withthe server, so that it 
an transmit prefet
hing hints to theWeb 
a
he. The implementation of this strategy thus 
ross-
uts the network module. Rather than prefet
hing do
u-ments, the Web 
a
he 
an simply pre-establish a 
onne
tionwith the Web server [8℄, thus redu
ing the laten
y per
eivedby the user. Su
h a strategy 
ross
uts the Network mod-ule, but in a di�erent way than the use of a piggyba
kingproto
ol.
3. OVERVIEW OF �DYNERThe �Dyner aspe
t system provides the ability to dynami-
ally weave and deweave aspe
ts in exe
uting C appli
ations.Three types of users intera
t with �Dyner: the maintainer

of the base 
ode, the aspe
t developer, and the 
a
he admin-istrator. The maintainer of the base 
ode is responsible forannotating the 
a
he implementation to indi
ate the pointsat whi
h adaptation is allowed. The aspe
t developer is re-sponsible for identifying appropriate prefet
hing algorithms,writing the 
orresponding aspe
t 
ode, and 
ompiling theseaspe
ts using the �Dyner dedi
ated 
ompiler. Ideally, theWeb 
a
he should monitor in
oming requests and sele
t ap-propriate prefet
hing poli
ies as 
onditions 
hange. In a �rststep, to validate our approa
h, aspe
ts are installed manu-ally by a 
a
he administrator.
3.1 Modifying a cache to support aspects�Dyner allows weaving of aspe
ts at run time. To avoid
ostly runtime de
ompilation and reorganization of the 
odeof the running appli
ation, the �Dyner approa
h relies on asour
e instrumentation of the program to prepare for lateradaptation. Spe
i�
ally, �Dyner provides a sour
e-level an-notation hookable with whi
h the program maintainer an-notates the points in the program at whi
h adaptation is al-lowed. Only global variables and fun
tions 
an be de
laredto be hookable.Besides the pra
ti
al bene�t of redu
ing the 
ost of adap-tation, the use of the hookable annotation also gives thebase program maintainer, who knows the stru
ture of the
ode best, some degree of 
ontrol over the subsequent adap-tation. In parti
ular, the maintainer is aware of 
riti
al seg-ments of the 
ode in whi
h adaptation should not be allowed,and 
an thus ensure that no hookable 
onstru
ts are men-tioned in these segments.The base program maintainer must also link the appli-
ation with the �Dyner instrumentation kernel. When theappli
ation is deployed, this kernel forks a thread that waitson a so
ket for weaving and deweaving requests from the
a
he administrator.
3.2 Aspect developmentThe aspe
t developer de�nes the point
uts and the advi
eneeded to implement the prefet
hing poli
y. Based on thisinformation, the �Dyner 
ompiler produ
es exe
utable 
odethat drives the instrumentation pro
ess.The syntax of the aspe
t language is de�ned in Figure 2.The de�nition of an aspe
t 
onsists of its name and a nestedsequen
e of point
uts that des
ribe the a�e
ted join point.Ea
h point
ut but the last must des
ribe a fun
tion invo
a-tion (fun
tion-invo
ation), and the sequen
e represents asequen
e of dire
t nested 
alls. The innermost point
ut 
aneither be another fun
tion invo
ation or a global variable a
-
ess (global-variable-a

ess). The latter 
ase des
ribes avariable a

ess that o

urs in the body of the fun
tion men-tioned in the innermost fun
tion-invo
ation, or anywherein the program if no fun
tion-invo
ation is mentioned.The sequen
e of point
uts ends with an advi
e, whi
h is im-plemented as an ordinary C statement.The advi
e asso
iated with an aspe
t is exe
uted whenthe 
urrent exe
ution 
ontext mat
hes that des
ribed by thesequen
e of point
uts. Exe
ution of the advi
e repla
es exe-
ution of the join point represented by the innermost point-4



<aspe
t> ::= <name> ":[" <filters-advi
e> "℄"<name> ::= <identifier><filters-advi
e> ::= <fun
tion-invo
ation> ":[" <filters-advi
e> "℄"| <fun
tion-invo
ation> ":[" <advi
e>"℄"| <global-variable-a

ess> ":[" <advi
e> "℄"<fun
tion-invo
ation> ::= <type> <identifier> "(" <params> ")"<type> ::= <C-type><params> ::= <type> <identifier> | <params> "," <params><global-variable-a

ess> ::= <global-variable-read>| <global-variable-write><global-variable-read> ::= <type> <identifier><global-variable-write> ::= <type> <identifier> "=" <identifier><advi
e> ::= <C-
ompound-instru
tion>Figure 2: The aspe
t language.prevent_propagation :[int handle_request(
har * req) :[int relay_request(stru
t req_data * request) :[{ #in
lude "prefet
hing.h"if (is_prefet
hing_request(request)) {return NO_NEIGHBOR_HAS_FILE;}return 
ontinue_relay_request(request);}℄℄℄ Figure 3: An extra
t of a prefet
hing poli
y.
ut. Advi
e runs in the same address spa
e as the baseprogram, and thus 
an refer to the base program's globalvariables. If the advi
e repla
es a fun
tion 
all, the advi
e
an also refer to the arguments of this 
all, via the param-eter names de
lared in the innermost point
ut. The ad-vi
e 
an furthermore 
all the repla
ed fun
tion using theimpli
itly generated fun
tion 
ontinue <fun
tion named-in the point
ut>. A point
ut representing an assignment(global-variable-write) in
ludes both the name of the af-fe
ted variable and a new variable representing the value ofthe right-hand-side expression. This new variable 
an alsobe referred to by the advi
e. In all 
ases, the advi
e 
anmaintain lo
al state a
ross invo
ations using C stati
 lo
alvariables. When the exe
ution of the advi
e 
ompletes, itsreturn value is returned to the base program as the result ofthe join point exe
ution.Figure 3 presents an aspe
t from the implementation of aprefet
hing poli
y that prevents the propagation of a requestto 
a
he neighbors. This aspe
t assumes that the Web 
a
heuses a fun
tion handle request to handle requests, and thatpropagation of a request to the neighbors is implemented bythe fun
tion relay request. The aspe
t prevent-propaga-tion repla
es a 
all to relay request from handle requestby advi
e that 
he
ks whether the request, obtained as theargument to relay request, is a prefet
hing request. If so,the advi
e returns NO NEIGHBOR HAS FILE, indi
ating to theWeb 
a
he that it must request the do
ument from the Webserver. If the request is not a prefet
hing request, the advi
e

invokes the original de�nition of relay request, using thefun
tion 
ontinue relay request. To allow the weaving ofthis aspe
t, the sour
e 
ode need only de
lare the fun
tionrelay request to be hookable.
3.3 Aspect deploymentIn the 
urrent stage of our experiments, aspe
ts are de-ployed by the administrator of the Web 
a
he. �Dyner pro-vides two 
ommands weave and deweave to deploy and un-deploy aspe
ts. The 
ommand weave has two forms. Theform:weave <pid> <aspe
t-weaver> ...weaves the 
ompiled aspe
ts aspe
t-weaver ... into thehost pro
ess identi�ed by pid. The form:weave <pid>lists the names of all of the aspe
ts 
urrently woven into thepro
ess pid. The 
ommand deweave has the form:deweave <pid> <aspe
t-name> ...If any of the aspe
ts named aspe
t-name ... are 
urrentlywoven into the pro
ess identi�ed by pid, the aspe
ts are de-woven. Otherwise, deweave returns immediately.
3.4 Implementation of �DynerFigure 4 illustrates the e�e
t of weaving the aspe
t of Fig-ure 3 into a Web 
a
he pro
ess. We now des
ribe how dy-nami
 weaving and deweaving are implemented by �Dyner.
Compile-time processingMu
h of the pro
ess of dynami
 weaving is prepared at 
om-pile time, in
luding pro
essing of the sour
e program andpro
essing of the aspe
ts. This 
ompile-time pro
essing al-lows weaving at run time to be very eÆ
ient.Weaving is performed dire
tly on the exe
utable imageof the host program, whi
h is 
urrently loaded into memory.This pro
ess requires the ability to identify join points in theexe
utable 
ode and the ability to modify the join points tojump to the 
ode implementing the advi
e. The hookableannotations 
ause the 
ode to be 
ompiled in a manner thatensures these 
apabilities, as des
ribed below.A fun
tion-
all join point is implemented by modifying thefun
tion de�nition rather than the 
all sites. Dete
ting theposition at whi
h advi
e should be added is thus straight-forward: a fun
tion is 
ompiled as a sequen
e of instru
tionsat an o�set from the beginning of the exe
utable image thatis determined at link time. The hookable attribute on thefun
tion is used to ensure that there is suÆ
ient spa
e atthe beginning of the fun
tion to insert a jump to the ad-vi
e before the a
tual 
ompiled fun
tion body. Spe
i�
ally,hookable expands to a bran
h instru
tion to the a
tual startof the fun
tion followed by NOP instru
tions if needed to�ll the remaining reserved spa
e. When advi
e is added,the reserved spa
e is overwritten by a jump to the advi
e,as shown in Figure 4, and the address of the a
tual fun
-tion body is stored in the de�nition of the impli
tly gen-erated 
ontinue <fun
tion name> fun
tion. The hookableattribute also prevents the fun
tion from being inlined.5



function return

    return

int handle_request(char* req) {

relay_request(request)

Host process
}

Aspect.so

Hook

    prepare stack and JUMP relay_request+7

int prevent_propagation() {

}

else 
return NO_NEIGHBOR_HAS_FILE;

int continue_relay_request(struct * request) {

JUMP relay_request+7

return 

of the aspect

continue_relay_request(request);

if(!pointcut) {

generated at compilation

generated at compilation

}

of the base program

}

Legend

function call

    // original function code

int relay_request(struct * request) {
    JUMP Hook

}

    CALL advice()

return

    return

if (is_prefetching_request(request))

generated at weaving
timeFigure 4: Exe
ution of an aspe
t.A variable-a

ess join point is implemented by modifyingea
h a

ess to the variable. In general, a variable 
an be im-plemented as a memory lo
ation or as a register, or indeed asboth. Be
ause it is non-trivial to tra
k a

esses through reg-isters, �Dyner requires that a variable-a

ess join point beimplemented as an a

ess to an expli
it memory lo
ation.The hookable annotation on a variable de
laration thusma
ro-expands into a volatile de
laration, whi
h for
esthe 
ompiler to implement every a

ess to the variable as anexpli
it a

ess to the asso
iated memory lo
ation.2For ea
h aspe
t, the �Dyner 
ompiler generates 
ode that
he
ks whether the 
urrent exe
ution sta
k mat
hes the spe
-i�
ation of the point
uts. The �Dyner 
ompiler also invokesthe C 
ompiler to generate 
ode for the advi
e.

WeavingThe weaving fun
tion of �Dyner sends a message to theso
ket asso
iated with the �Dyner instrumentation kernel inthe host pro
ess. On re
eipt of this message, the �Dyner ker-nel loads the requested aspe
t into the address spa
e of thehost pro
ess as a shared library (using dlopen) and then in-struments the join points des
ribed by the innermost point-
ut of the aspe
t. This instrumentation 
onsists of 
reatinghooks that manage the invo
ation of the advi
e and updat-ing ea
h join point with a 
all to the asso
iated hook. Ahook 
he
ks whether the sequen
e of pending return pointson the exe
ution sta
k 
orresponds to the sequen
e of point-
uts des
ribed by the aspe
t, and if so, invokes the advi
e. Ifthe point
uts are not satis�ed, the hook performs the a
tionof the join point and returns 
ontrol to the appli
ation. Theexa
t behavior of the hook depends on whether the joinpoint is a fun
tion-invo
ation, global-variable-read,or global-variable-write, as des
ribed below. Be
ausethe de�nition of a hook depends on both the base programand the aspe
t, hooks are 
reated dynami
ally.2This approa
h is insuÆ
ient to dete
t referen
es to a vari-able via a pointer. The �Dyner 
ompiler gives an error if thesour
e program ever takes the address of a variable de
laredas hookable.

As shown in Figure 4, a single hook is used for an aspe
twhose innermost point
ut is a fun
tion-invo
ation. Thishook �rst saves the 
omplete set of registers of the pro
es-sor and then 
he
ks that all of the point
uts for the aspe
tare satis�ed. If they are, the hook 
alls the advi
e on thearguments given to the fun
tion. The result returned bythe advi
e is itself returned by the hook. Be
ause the hookis invoked by a jump instru
tion rather than by a fun
tion
all, the return address on the sta
k at this point is the re-turn address of the 
all to the join point fun
tion, so 
ontrolreturns to the 
all site rather than to the original fun
tionbody, as shown in Figure 4. If some of the point
uts of theaspe
t are not satis�ed, the hook restores the registers andjumps ba
k to the fun
tion body.When the innermost point
ut of the aspe
t is a global--variable-read, �Dyner 
reates a hook for ea
h referen
eto the variable. Ea
h su
h hook is instantiated with the ad-dress of the variable referen
e and the instru
tion formerlypresent at that address, and thus is able to 
ontinue the
omputation from the point of the variable referen
e. Asfor a hook for a fun
tion-invo
ation join point, the hookfor a global-variable-read join point initially 
he
ks thatall of the point
uts for the aspe
t are satis�ed. If so, thehook invokes the advi
e. Be
ause all of the global variablesof the program are visible to the advi
e, there is no needto pass the address of the variable asso
iated with the as-pe
t to the advi
e. When the advi
e 
ompletes, the e�e
t ofthe original variable-referen
e instru
tion is applied to thisvalue, and the hook jumps ba
k to the instru
tion followingthe join point. If the point
uts of the aspe
t are not all sat-is�ed, the original variable referen
e instru
tion is exe
utedand the hook jumps ba
k to the instru
tion following thejoin point.The treatment of a global-variable-write hook is sim-ilar to that of a global-variable-read hook ex
ept that inthis 
ase, the advi
e must be able to a

ess the value of theright-hand side expression of the assignment, via the vari-able name spe
i�ed in the point
ut. If the point
uts of the6



aspe
t are satis�ed, the hook examines the instru
tion im-plementing the assignment in the original program to obtainthe value of the right-hand side expression. The hook thenpasses this value to the advi
e.
DeweavingDeweaving an aspe
t simply overwrites the 
ode at ea
h joinpoint with its original instru
tion, frees the spa
e allo
atedfor the hook, and unloads the aspe
t, using dl
lose.
4. PERFORMANCE EVALUATIONTo evaluate the 
ost of dynami
 weaving in �Dyner, wehave measured the overhead introdu
ed by the hookable an-notations, the 
ost of weaving a new aspe
t, and the 
ost ofinvoking an aspe
t on
e woven. Our experiments were 
on-du
ted on an Intel Pentium 4 running at 1.6 GHz with 256MB of RAM under Linux (kernel 2.4.17, g

 3.0.4 with theoption -O2).The hookable annotation introdu
es a short bran
h andNOP instru
tions at the beginning of ea
h fun
tion that isa potential join point, and 
auses ea
h a

ess to a globalvariable that is a potential join point to be implemented asan a

ess to a memory lo
ation. To assess the overhead in-trodu
ed by the hookable annotation, we 
ompare the per-forman
e of the qui
ksort program presented in AppendixA with and without hookable annotations on fun
tions and(globalized) variables in the program's 
riti
al path, whenapplied to an array of 10 million random integers. We foundthat no overhead was introdu
ed by the hookable anno-tation as 
ompared to using ordinary fun
tions and globalvariables. This result suggests that it is feasible to pla
ehookable annotations throughout the program in order toallow a wide range of possible adaptations.Weaving an aspe
t into the base program requires load-ing the aspe
t and instrumenting the a�e
ted join point(s).The 
ost of loading the aspe
t is dominated by the 
ostof dlopen; loading the aspe
t of Figure 5 requires 175 �s.The instrumentation pro
ess repla
es the join point with ajump instru
tion and 
reates the hook. The 
ost of writinga single jump instru
tion is minimal. Creating a hook fora fun
tion-invo
ation join point requires allo
ating spa
efor the 
ode (using mallo
) and 
opying the 
ode, whi
h ispre-generated by the �Dyner 
ompiler, from the 
ompiledaspe
t into this spa
e (using mem
py). The 
ost of theseoperations is proportional to the number of point
uts. Forthe trivial aspe
t of Figure 5, the total instrumentation 
ostis 19�s. Creating a hook for a global-variable-a

essjoin point additionally requires instantiating the pre
om-piled hook with the 
ontents and address of the instru
tionat the join point. The 
ost these extra operations is, how-ever, minimal. Note, though, that a distin
t hook is 
reatedfor ea
h a

ess (referen
e or update, depending on the point-
ut) to the variable, and thus the instrumentation 
ost mustbe multiplied by the number of su
h a

esses.Deweaving essentially inverses the pro
ess of weaving. Ea
hof the operations involved is equally or less expensive thanits weaving 
ounterparts. For example, unloading the as-pe
t with dl
lose requires only 119 �s. Thus, the 
ost of

deweaving is lower than the 
ost of weaving.A single hook is installed atomi
ally from the viewpointof the host program, and so the appli
ation need not bestopped in this 
ase. Nevertheless, the power of aspe
ts
omes from the ability to make 
hanges throughout the pro-gram. When multiple hooks or multiple aspe
ts are needed,the administrator may need to stop the host pro
ess duringweaving, if there is the possibility of in
orre
t intera
tionswithin in
ompletely installed 
ode. Nevertheless, even inthis 
ase, the pro
ess need only be stopped during the up-dating of the host pro
ess 
ode with jump instru
tions. Themore time-
onsuming loading of aspe
ts and 
onstru
tion ofthe hooks 
an pro
eed in parallel with host pro
ess exe
u-tion.The 
ost of weaving an aspe
t should be 
ompared tothe retransmission timeout [27℄ in TCP. Typi
al values ona BSD implementation of TCP vary between 0.5 and 1 se
-ond [1℄. It has been argued that the timeout should not belower than 250ms [1℄. This suggests that �Dyner is eÆ
ientenough to enable dynami
 adaptation of web 
a
hes.empty :[int trivial() :[{ return 
ontinue_trivial();}℄℄ Figure 5: A null aspe
t.To assess the overhead of 
alling a fun
tion adapted byan aspe
t, we 
onsider a fun
tion trivial that immediatelyreturns and the trivial aspe
t empty shown in Figure 5 thatsimply 
alls ba
k to this fun
tion. We 
ompare the 
ost of
alling trivial, when this fun
tion is not de
lared to behookable, with the 
ost of 
alling trivial when it is de-
lared to be hookable and has the aspe
t empty woven intoits de�nition. We �nd that with the advi
e woven, invok-ing trivial 
osts 9.5 times as mu
h as 
alling the fun
tionwithout the advi
e. In general, however, the 
ost of invokingadvi
e varies with the 
omplexity of the point
ut. Similarexperiments have been performed for Java-based dynami
aspe
t systems and meta obje
t systems. Table 6 summa-rizes the overhead of invoking dynami
ally woven advi
e as
ompared to a normal fun
tion 
all for several su
h systems(IguanaJ [29℄, MetaXa [22℄, Prose [28℄, and Guaran�a [24℄).Tool Ratio�Dyner 9.5IguanaJ (MOP) 24MetaXa (MOP) 28Prose (AOP) 40Guaran�a (MOP) 70Figure 6: Ratio between aspe
t invo
ation and or-dinary 
allThe overall e�e
t of the overhead of 
alling an aspe
t onthe performan
e of an appli
ation depends on how often the7



aspe
t is invoked. We again test the qui
ksort implemen-taion of Appendix A, with partition de
lared as hookable.In sorting an array of 10 million random integers, the trivialaspe
t of Figure 7 adds an overhead of less than 10% (8%in many 
ases) as 
ompared to the original implementationof qui
ksort (using neither the aspe
t nor any hookableannotations).empty :[int * partition(int * p, int * r) :[{ return 
ontinue_partition(p,r);}℄℄ Figure 7: Ben
hmarking aspe
t.
5. RELATED WORK�Dyner is related to systems that allow modi�
ation ofbinary 
ode, and to other aspe
t systems.Several tools allow the rewriting of an exe
utable after
ompilation and, in some 
ases, after linking. While thisapproa
h is relatively 
ommon in Java [5, 10, 13, 20, 32℄, itis relatively rare on native exe
utables [3, 23, 30℄. Eel [23℄and Eth [30℄ 
an aggressively restru
ture the program, and
an thus improve its performan
e. They 
annot, however,modify a running exe
utable and they o�er APIs that are
lose to assembly language.One tool that does allow dynami
 instrumentation of arunning native program. is Dyninst [3℄, whi
h is based onthe Unix debugging API (ptra
e). This API is ar
hite
-tured in terms of the intera
tion between two pro
esses, thepro
ess being debugged and the debugger. Dyninst instanti-ates the host pro
ess as the pro
ess being debugged and thepro
ess inje
ting new 
ode as the debugger. This approa
hhas high 
ost be
ause ptra
e requires the pro
ess being de-bugged and the debugger to syn
hronize on ea
h writteninstru
tion. An instrumentation analogous to the weavingof the null aspe
t of Figure 5 requires 1.2s using Dyninst.Moreover, although the API is 
lose to the C language, itseems diÆ
ult to trigger an advi
e exe
ution on an a

ess toa variable with Dyninst: the translation from the variableidenti�er to e�e
tive address is left to the user.Cowan et al. [11℄ present an approa
h to dynami
ally load-ing and unloading new implementations of existing opera-tions into running programs. Here the goal is to improveperforman
e based on transitory invariants, rather than toadd new fun
tionality. They address the problem of in
or-re
t intera
tions with outdated and in
ompletely installed
ode by using lo
ks to ensure that no thread is exe
utingrelevant 
ode during the repla
ement pro
ess. When there isindeed no pro
ess 
urrently exe
uting 
ode that is s
heduledto be repla
ed, they report an overhead of a few hundred 
y-
les on a HP 9000 series 800 G70 (9000/887) dual-pro
essorserver. We are 
urrently investigating eÆ
ient approa
hesto address this issue in the setting of �Dyner.

Aspe
tJ [21℄, targeted toward Java, is the de-fa
to linguafran
a of all aspe
t systems. It o�ers a ri
h set of point-
ut operators, but provides only weaving at 
ompile time.Aspe
tC [7℄ and Aspe
tC++ [31℄ extend C and C++, re-spe
tively, with aspe
ts. These systems also provide onlystati
 weaving. Douen
e et al. [15, 16℄ propose a formalmodel to de�ne the semanti
s of aspe
t systems. We planto try to merge the �Dyner aspe
t model with this model,to take advantage of the ability to formally prove propertiesof the intera
tions between a 
olle
tion of aspe
ts.To the best of our knowledge, no 
urrent aspe
t systemprovides all of the features of �Dyner. In parti
ular, mostexisting aspe
t systems provide only stati
, rather than dy-nami
, weaving.
6. CONCLUSIONGiven the high proportion of HTTP traÆ
 in the Internet,
a
hing of do
uments is an important te
hnique to redu
e la-ten
y, bandwidth 
onsumption, and server load. Augment-ing a Web 
a
he with a prefet
hing poli
y further improvesits e�e
tiveness. Nevertheless, there is no single prefet
h-ing poli
y that is best for all situations; good performan
erequires using a prefet
hing poli
y targeted to 
hara
teris-ti
s of the Web server and of the 
lient. Thus, a Web 
a
heshould be extensible and provide the ability to load and un-load new poli
ies at run time.In this paper, we have presented a new approa
h to imple-menting prefet
hing poli
ies in an existing Web 
a
he. Wehave shown that prefet
hing 
ross
uts the stru
ture of a Web
a
he, and that it 
an thus appropriately be implemented asa 
olle
tion of aspe
ts. To address the need to install newpoli
ies in response to 
hanging 
onditions, we have devel-oped an ar
hite
ture allowing the weaving and deweaving ofaspe
ts in an exe
uting program. Our approa
h is based onthe C language, whi
h is typi
ally used in the implementa-tion of Web 
a
hes. Weaving and deweaving of an aspe
thave a relatively low 
ost, whi
h is within the delay toler-ated by TCP/IP retransmission me
hanisms.Our initial experiments with �Dyner have shown that thesystem provides both good performan
e and a useful degreeof expressiveness. In the short term, we are planning to use�Dyner to implement a prefet
hing poli
y su
h as Intera
-tive Prefet
hing (see Se
tion 2.3) in Squid. In this 
ontext,we will investigate how a Web 
a
he 
an be extended to itselfdownload and deploy new prefet
hing poli
ies. More gener-ally, we are investigating whether these ideas 
an be used asa basis for a more general framework for 
onstru
ting adapt-able appli
ations with 
riti
al performan
e and 
ontinuousservi
e requirements su
h as operating systems.
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APPENDIX

A. ANNOTED QUICKSORT.Cinline void swap(int *i, int *j) {int temp;temp = *i;*i = *j;*j = temp;}int *partition(int *p, int *r) {int x, *i, *j;x = *p;i = p - 1;j = r + 1;while(1) {do { i++; } while(*i > x);do { j--; } while(*j < x);if (i < j)swap(i, j);elsereturn j ;}}void sort(int *p, int *r) {int *q;if (p < r) {q=partition(p,r);

sort(p,q-1);sort(q+1,r);}}
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