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ABSTRACT

Given the high proportion of HTTP traffic in the Internet,
Web caches are crucial to reduce user access time, network
latency, and bandwidth consumption. Prefetching in a Web
cache can further increase these benefits. Nevertheless, to
achieve the best performance, the prefetching policy used
must match user and Web server characteristics. This im-
plies that new prefetching policies must be loaded dynami-
cally as needs change.

Most Web caches are large C programs, and thus adding a
single prefetching policy to an existing Web cache is a daunt-
ing task. Providing multiple policies is even more complex.
The essential problem is that prefetching concerns cross-
cut the cache structure. Aspect-oriented programming is a
natural technique to address this issue. Nevertheless, exist-
ing approaches do not provide dynamic weaving of aspects
targeted toward C applications. In this paper, we present
pDyner, which addresses these needs. pDyner also provides
lower overhead for aspect invocation than other approaches,
thus meeting the need for good performance in Web caches.
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1. INTRODUCTION

Because HTTP amounts, at the very least, to 80% of the
Internet traffic [17], caching HTTP documents is an appeal-
ing approach to decrease the Internet latency and network
bandwidth consumption [35]. Two factors, however, de-
crease Web cache effectiveness: (i) between 35% to 50% of
Web documents are uncacheable because their content is
specific the initial request [35], (ii) once cached, many Web
documents are never requested again [25].
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A strategy to overcome these limitations is to prefetch
Web documents so that they are already in the cache and
thus close to the client when first requested [19]. Neverthe-
less, a simple prefetching strategy such as prefetching all of
the documents reachable from a document requested by the
user only reduces the user access time for the few such pages
that are actually referenced, at the expense of increasing the
overall bandwidth consumption and the workloads of Web
servers. Instead, strategies that are tailored to user prefer-
ences and Web server characteristics are needed to ensure
that most of the prefetched documents are eventually ac-
cessed. For example, Issarny et al. have shown that in the
context of an electronic newspaper, a prefetching policy that
is based on user profiles and specialized to the targeted Web
server can achieve a prefetch prediction accuracy of up to
92% [18]. To support the use of such policies, a Web cache
should be extensible and support dynamic loading and un-
loading of new policies.

Many Web caches, such as Squid [12], are implemented
using a module-based architecture. A natural strategy to
extend a module-based system with a new functionality is
to implement this functionality as a new module. Unfortu-
nately, prefetching policies often crosscut the functionalities
of several modules. Thus, a prefetching module would have
to redundantly implement many basic cache operations.

In fact, the crosscutting nature of prefetching policies sug-
gests that such policies should be implemented using aspect-
oriented programming (AOP). Nevertheless, Web caches pos-
sess specific characteristics that motivate the need for a spe-
cific AOP infrastructure, providing the following features:

e Dynamic weaving and deweaving of aspects. Policies
running within a cache must change over time to cope
with the characteristics of accessed servers.

e Continuous servicing. Loading or unloading a new pol-
icy must be done without losing the cache content. Ad-
ditionally, service unavailability must be short enough
to be masked by TCP/IP retransmission mechanisms.

e Aspects for C programs. Prefetching must be inte-
grated within real Web caches such as Squid that are
written in C.



e Efficiency. Policy execution must be as fast as possible
to avoid degrading cache performance, both in terms
of latency and bandwidth.

This paper

This paper describes the pDyner AOP infrastructure for
writing and dynamically deploying aspects in running C pro-
grams without inducing service unavailability. The design of
pDyner targets the adaptation needs of Web caches. More
precisely, our contributions are as follows:

e We demonstrate that prefetching policies can naturally
be implemented using aspects.

e We provide an approach to insert aspects at run time
into an application written in C. Unlike approaches
based on Java that rely on JIT compilation for good
performance, our approach manipulates only native
code at run time, and thus directly produces executable
code.

e The cost of calling a null function dynamically aug-
mented by a null aspect is 9.5 times higher than that
of calling a null function with no woven aspect; similar
experiments with Java-based solutions show an over-

head of 20-70 times.

e Weaving a new aspect requires only a few hundred
microseconds, and much of this process is transparent
to the application. Thus, our approach induces little
freeze time of the application.

The rest of this paper is structured as follows. Section 2
presents an overview of Web caches and issues in implement-
ing prefetching. Section 3 describes the yDyner framework.
Section 4 evaluates the cost of inserting a pDyner aspect.
Section 5 presents related work. Section 6 concludes and
describes future work.

2. WEB CACHESAND PREFETCHING

This section first describes the software architecture of a
typical Web cache, such as Squid [12]. Then, we present
issues in integrating a prefetching policy into an existing
cache. Finally, we show that AOP conveniently addresses
these issues.

2.1 Web cachearchitecture
A Web cache has three goals:

e for the end users: to decrease the average access time,

e for the organization managing the Web cache: to de-
crease the bandwidth consumption,

e for the ISP: to decrease the workload on each server
encountered.

The basic behavior of a Web cache is as follows. A Web
cache sits between users and Web servers and intercepts user
requests. On the receipt of a request, the Web cache checks
whether the requested document is already in its local stor-
age. If so, the cache sends the document to the user directly.
Otherwise, the cache forwards the request to the Web server,
downloads the document to its local storage, and returns it
to the user. When the local storage of the cache is full, the

cache’s replacement policy is activated to remove potentially
useless documents.

To improve effectiveness, several Web caches may be asso-
ciated by means of a cooperation protocol such as ICP [34].
When such a cooperative cache does not already possess the
requested document, it first attempts to find it on one of its
associated neighbors before forwarding the request to the
server. This architecture relies on the assumption that com-
munication between caches is much faster than communica-
tion with the server.

Web caches are often implemented as a collection of mod-
ules, each implementing a single functionality [2, 12, 36]. As
illustrated in Figure 1, these modules implement three basic
functionalities: user request management, interaction with
the neighbors, and local storage management. To process a
user request, the cache accepts and parses the request (1 and
2), searches for the document in the local storage (3 and 4),
and possibly forwards the request to the Web server (6) or to
its neighbors (7). If a new document is obtained, it is saved
to the local storage (4), which may require an activation of
the replacement policy (10). Finally, the document is sent
to the user (8). To communicate with a neighbor, the cache
accepts and parses requests from the neighbor (5), checks
whether the requested document is locally available (3 and
4), and answers the neighbor with either an error message
or the requested document (9).

2.2 Prefetching

The implementation of a prefetching policy must address
several issues that impact diverse parts of the Web cache:

e The kinds of incoming requests to which prefetching is
applied: To avoid overloading the network and over-
flowing the storage space of the Web cache, prefetch-
ing should only be applied to user requests, not to
requests from neighbors. Thus, the prefetching policy
must be aware whether the request was received by the
user-request module or the ICP-request module of the
cache.

e The choice of documents to prefetch in response to a
user request: Possible approaches include fixed strate-
gies such as prefetching a few links near the top of the
document [6] and statistics-based approaches that re-
quire the Web cache to maintain and analyze a history
of its transactions [9].

e The hosts that are queried to find prefetched docu-
ments: Querying only the Web server limits the in-
crease in network bandwidth due to prefetching. Query-
ing the neighbors can produce a result more quickly.
Whichever strategy is taken, the network module of
the Web cache must be aware that prefetch requests
should be treated differently than ordinary user re-
quests.

e The lifetime of prefetched documents within the stor-
age space of the Web cache: Prefetched documents
should remain in the cache long enough to have a rea-
sonable chance of being accessed, and thus should not
be the highest priority candidates of the Web cache’s
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Figure 1: Structure of a modular Web cache

replacement policy. On the other hand, when a docu-
ment is removed from the cache, the replacement pol-
icy should remove documents prefetched for that doc-
ument as well.

One approach to add prefetching to an existing Web cache
is to follow the model of a Web cache itself and use an inter-
position approach. That is, we add a new server in front of
the Web cache that implements the prefetching policy and
delegates all other caching tasks to the Web cache. Never-
theless, this approach is inadequate in the case of prefetching
because of the significant need for communication between
the prefetching policy and the Web cache. For example, the
prefetching policy must instruct the Web cache whether to
request prefetched documents from its neighbors, and the
Web cache must inform the prefetching policy when docu-
ments are removed from the cache by the replacement policy.
Thus, the approach of implementing the prefetching policy
in a separate server does not seem promising.

The Apache [2] and MOWS [36] Web caches provide ex-
tensibility using dynamic loading and unloading of mod-
ules.! At specific points in the treatment of a request, these
systems check whether a module is able to take over the com-
putation. If there is such a module, it is then responsible for
all subsequent treatment of the request. This approach is
not well suited to the implementation of prefetching, because
it implies that the prefetching policy must reimplement a
significant subset of the Web cache functionality. Indeed, it
is rather difficult to define a generic interface that modules
should export in order to support prefetching. In fact, the

'Squid does not support dynamic loading of modules.

kinds of interactions that are needed are highly dependent
on the behavior of prefetching policy.

The problem of the degree of module granularity and the
difficulty of defining an appropriate interface suggest that
prefetching could be implemented in simpler manner using
aspect-oriented programming.

2.3 Prefetching asa collection of aspects

We now illustrate how a prefetching policy can be imple-
mented using aspects. As an example, we use the Interac-
tive Prefetching policy of Chinen and Yamaguchi [6] that
prefetches a few documents referenced from the top of the
requested document as well as all of the images required for
these documents. For concreteness, we consider the imple-
mentation of this policy in a cooperative cache, for which we
specify that prefetched documents should only be obtained
from the Web server. We alse assume a LRU replacement
policy. In describing the aspects needed to implement this
policy, we use the following AOP notions [21]:

e Join points: A join point is a point in the code that
can be modified by an aspect.

e Pointcuts: A pointcut is a description of the execution
contexts in which an aspect should be activated.

e Advice: Adviceis the code implementing the function-
ality provided by an aspect.

The Interactive Prefetching policy selects the documents
to prefetch based on information contained within the doc-
ument itself. This implies that prefetching for new docu-
ments can only be initiated after the network module, at



which point the contents of the document have been re-
ceived. Aspects implementing prefetching, however, should
only be activated if the request is a user request, rather than
a neighbor or prefetching request. Because this information
is no longer part of the control stack at the point when the
document is received from the network, pointcuts are not
sufficient to distinguish between these cases. Instead, this
information can be recorded in a new hash table maintained
by the prefetching policy that maps each request identifier
to the source of the request. The user request module and
the ICP request module must both be adapted with advice
that updates this hash table.

Prefetching should also be initiated when there is an in-
coming request for a document that is found in the cache,
but for which prefetching has not previously been applied
(as would be the case for a prefetched document, for exam-
ple). Again, prefetching should only be applied when the
request comes from the user. In this case, pointcuts can be
used so that the advice is only invoked when the file lookup
module is called from the user request module.

A LRU replacement policy relies on document access time
to choose the documents to remove from the cache. Be-
cause the basic assumption of a prefetching policy is that
prefetched documents will be used shortly after the requested
document, the access time associated with a prefetched doc-
ument should be based on the access time of the requested
document, and not on the access time of the prefetched doc-
ument itself. Thus, the local space module must be adapted
with an aspect that identifies new prefetched documents and
sets their access times accordingly. The file lookup module
must similarly be adapted with an aspect that updates the
access times of the associated prefetched documents when
a requested document is reaccessed from the cache. Fi-
nally, the replacement policy itself should be adapted with
an aspect that removes the associated prefetched documents
when the requested document is removed from the cache.

Many other prefetching strategies have been developed.[4,
9, 8, 14, 26, 33] These strategies vary in how they crosscut
a Web cache implementation. For example, prefetching de-
cisions can be made based on statistical observations about
the history of incoming requests [9]. The implementation of
such a strategy more deeply crosscuts the module that ac-
cepts user requests and the modules that manage the stor-
age space than does the implementation of the Interactive
Prefetching policy. An alternative implementation of this
strategy is for Web servers to maintain these statistics. In
this case, a piggybacking protocol must be established with
the server, so that it can transmit prefetching hints to the
Web cache. The implementation of this strategy thus cross-
cuts the network module. Rather than prefetching docu-
ments, the Web cache can simply pre-establish a connection
with the Web server [8], thus reducing the latency perceived
by the user. Such a strategy crosscuts the Network mod-
ule, but in a different way than the use of a piggybacking
protocol.

3. OVERVIEW OF .DYNER

The pDyner aspect system provides the ability to dynami-
cally weave and deweave aspects in executing C applications.
Three types of users interact with gDyner: the maintainer

of the base code, the aspect developer, and the cache admin-
istrator. The maintainer of the base code is responsible for
annotating the cache implementation to indicate the points
at which adaptation is allowed. The aspect developer is re-
sponsible for identifying appropriate prefetching algorithms,
writing the corresponding aspect code, and compiling these
aspects using the pDyner dedicated compiler. Ideally, the
Web cache should monitor incoming requests and select ap-
propriate prefetching policies as conditions change. In a first
step, to validate our approach, aspects are installed manu-
ally by a cache administrator.

3.1 Modifying a cache to support aspects

pDyner allows weaving of aspects at run time. To avoid
costly runtime decompilation and reorganization of the code
of the running application, the pDyner approach relies on a
source instrumentation of the program to prepare for later
adaptation. Specifically, uDyner provides a source-level an-
notation hookable with which the program maintainer an-
notates the points in the program at which adaptation is al-
lowed. Only global variables and functions can be declared
to be hookable.

Besides the practical benefit of reducing the cost of adap-
tation, the use of the hookable annotation also gives the
base program maintainer, who knows the structure of the
code best, some degree of control over the subsequent adap-
tation. In particular, the maintainer is aware of critical seg-
ments of the code in which adaptation should not be allowed,
and can thus ensure that no hookable constructs are men-
tioned in these segments.

The base program maintainer must also link the appli-
cation with the yDyner instrumentation kernel. When the
application is deployed, this kernel forks a thread that waits
on a socket for weaving and deweaving requests from the
cache administrator.

3.2 Asgpect development

The aspect developer defines the pointcuts and the advice
needed to implement the prefetching policy. Based on this
information, the yDyner compiler produces executable code
that drives the instrumentation process.

The syntax of the aspect language is defined in Figure 2.
The definition of an aspect consists of its name and a nested
sequence of pointcuts that describe the affected join point.
Each pointcut but the last must describe a function invoca-
tion (function-invocation), and the sequence represents a
sequence of direct nested calls. The innermost pointcut can
either be another function invocation or a global variable ac-
cess (global-variable-access). The latter case describes a
variable access that occurs in the body of the function men-
tioned in the innermost function-invocation, or anywhere
in the program if no function-invocation is mentioned.
The sequence of pointcuts ends with an advice, which is im-
plemented as an ordinary C statement.

The advice associated with an aspect is executed when
the current execution context matches that described by the
sequence of pointcuts. Execution of the advice replaces exe-
cution of the join point represented by the innermost point-



<aspect> ::= <name> ":[" <filters-advice> "]"

<name> ::= <identifier>
<filters-advice> ::= <function-invocation> ":[" <filters-advice> "]"

| <function-invocation> ":[" <advice>"]"

| <global-variable-access> ":[" <advice> "]"
<function-invocation> ::= <type> <identifier> " (" <params> ")"
<type> ::= <C-type>
<params> ::= <type> <identifier> | <params> "," <params>
<global-variable-access> ::= <global-variable-read>

| <global-variable-write>

<global-variable-read> ::= <type> <identifier>
<global-variable-write> ::= <type> <identifier> "=" <identifier>
<advice> ::= <C-compound-instruction>

Figure 2: The aspect language.

prevent_propagation :[
int handle_request(char * req) :[
int relay_request(struct req_data * request) :[
{ #include "prefetching.h"
if (is_prefetching_request(request)) {
return NO_NEIGHBOR_HAS_FILE;
}
return continue_relay_request(request);

}

Figure 3: An extract of a prefetching policy.

cut. Advice runs in the same address space as the base
program, and thus can refer to the base program’s global
variables. If the advice replaces a function call, the advice
can also refer to the arguments of this call, via the param-
eter names declared in the innermost pointcut. The ad-
vice can furthermore call the replaced function using the
implicitly generated function continue <function_named-
_in_the_pointcut>. A pointcut representing an assignment
(global-variable-write) includes both the name of the af-
fected variable and a new variable representing the value of
the right-hand-side expression. This new variable can also
be referred to by the advice. In all cases, the advice can
maintain local state across invocations using C static local
variables. When the execution of the advice completes, its
return value is returned to the base program as the result of
the join point execution.

Figure 3 presents an aspect from the implementation of a
prefetching policy that prevents the propagation of a request
to cache neighbors. This aspect assumes that the Web cache
uses a function handle_request to handle requests, and that
propagation of a request to the neighbors is implemented by
the function relay_request. The aspect prevent-propaga-
tion replaces a call to relay_request from handle_request
by advice that checks whether the request, obtained as the
argument to relay_request, is a prefetching request. If so,
the advice returns NO_NEIGHBOR_HAS_FILE, indicating to the
Web cache that it must request the document from the Web
server. If the request is not a prefetching request, the advice

invokes the original definition of relay_request, using the
function continue_relay _request. To allow the weaving of
this aspect, the source code need only declare the function
relay_request to be hookable.

3.3 Agpect deployment

In the current stage of our experiments, aspects are de-
ployed by the administrator of the Web cache. uDyner pro-
vides two commands weave and deweave to deploy and un-
deploy aspects. The command weave has two forms. The
form:

weave <pid> <aspect-weaver>

weaves the compiled aspects aspect-weaver into the

host process identified by pid. The form:
weave <pid>

lists the names of all of the aspects currently woven into the
process pid. The command deweave has the form:

deweave <pid> <aspect-name>

If any of the aspects named aspect-name . are currently
woven into the process identified by pid, the aspects are de-
woven. Otherwise, deweave returns immediately.

3.4 Implementation of ,Dyner

Figure 4 illustrates the effect of weaving the aspect of Fig-
ure 3 into a Web cache process. We now describe how dy-
namic weaving and deweaving are implemented by pDyner.

Compile-time processing

Much of the process of dynamic weaving is prepared at com-
pile time, including processing of the source program and
processing of the aspects. This compile-time processing al-
lows weaving at run time to be very efficient.

Weaving is performed directly on the executable image
of the host program, which is currently loaded into memory.
This process requires the ability to identify join points in the
executable code and the ability to modify the join points to
jump to the code implementing the advice. The hookable
annotations cause the code to be compiled in a manner that
ensures these capabilities, as described below.

A function-call join point is implemented by modifying the
function definition rather than the call sites. Detecting the
position at which advice should be added is thus straight-
forward: a function is compiled as a sequence of instructions
at an offset from the beginning of the executable image that
is determined at link time. The hookable attribute on the
function is used to ensure that there is sufficient space at
the beginning of the function to insert a jump to the ad-
vice before the actual compiled function body. Specifically,
hookable expands to a branch instruction to the actual start
of the function followed by NOP instructions if needed to
fill the remaining reserved space. When advice is added,
the reserved space is overwritten by a jump to the advice,
as shown in Figure 4, and the address of the actual func-
tion body is stored in the definition of the implictly gen-
erated continue_<function_name> function. The hookable
attribute also prevents the function from being inlined.
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Figure 4: Execution of an aspect.

A variable-access join point is implemented by modifying
each access to the variable. In general, a variable can be im-
plemented as a memory location or as a register, or indeed as
both. Because it is non-trivial to track accesses through reg-
isters, uDyner requires that a variable-access join point be
implemented as an access to an explicit memory location.
The hookable annotation on a variable declaration thus
macro-expands into a volatile declaration, which forces
the compiler to implement every access to the variable as an
explicit access to the associated memory location.?

For each aspect, the pDyner compiler generates code that
checks whether the current execution stack matches the spec-
ification of the pointcuts. The pDyner compiler also invokes
the C compiler to generate code for the advice.

Weaving

The weaving function of pDyner sends a message to the
socket associated with the pDyner instrumentation kernel in
the host process. On receipt of this message, the uDyner ker-
nel loads the requested aspect into the address space of the
host process as a shared library (using dlopen) and then in-
struments the join points described by the innermost point-
cut of the aspect. This instrumentation consists of creating
hooks that manage the invocation of the advice and updat-
ing each join point with a call to the associated hook. A
hook checks whether the sequence of pending return points
on the execution stack corresponds to the sequence of point-
cuts described by the aspect, and if so, invokes the advice. If
the pointcuts are not satisfied, the hook performs the action
of the join point and returns control to the application. The
exact behavior of the hook depends on whether the join
point is a function-invocation, global-variable-read,
or global-variable-write, as described below. Because
the definition of a hook depends on both the base program
and the aspect, hooks are created dynamically.

2This approach is insufficient to detect references to a vari-
able via a pointer. The gDyner compiler gives an error if the
source program ever takes the address of a variable declared
as hookable.

As shown in Figure 4, a single hook is used for an aspect
whose innermost pointcut is a function-invocation. This
hook first saves the complete set of registers of the proces-
sor and then checks that all of the pointcuts for the aspect
are satisfied. If they are, the hook calls the advice on the
arguments given to the function. The result returned by
the advice is itself returned by the hook. Because the hook
is invoked by a jump instruction rather than by a function
call, the return address on the stack at this point is the re-
turn address of the call to the join point function, so control
returns to the call site rather than to the original function
body, as shown in Figure 4. If some of the pointcuts of the
aspect are not satisfied, the hook restores the registers and
jumps back to the function body.

When the innermost pointcut of the aspect is a global-
-variable-read, puDyner creates a hook for each reference
to the variable. Each such hook is instantiated with the ad-
dress of the variable reference and the instruction formerly
present at that address, and thus is able to continue the
computation from the point of the variable reference. As
for a hook for a function-invocation join point, the hook
for a global-variable-read join point initially checks that
all of the pointcuts for the aspect are satisfied. If so, the
hook invokes the advice. Because all of the global variables
of the program are visible to the advice, there is no need
to pass the address of the variable associated with the as-
pect to the advice. When the advice completes, the effect of
the original variable-reference instruction is applied to this
value, and the hook jumps back to the instruction following
the join point. If the pointcuts of the aspect are not all sat-
isfied, the original variable reference instruction is executed
and the hook jumps back to the instruction following the
join point.

The treatment of a global-variable-write hook is sim-
ilar to that of a global-variable-read hook except that in
this case, the advice must be able to access the value of the
right-hand side expression of the assignment, via the vari-
able name specified in the pointcut. If the pointcuts of the



aspect are satisfied, the hook examines the instruction im-
plementing the assignment in the original program to obtain
the value of the right-hand side expression. The hook then
passes this value to the advice.

Deweaving

Deweaving an aspect simply overwrites the code at each join
point with its original instruction, frees the space allocated
for the hook, and unloads the aspect, using dlclose.

4. PERFORMANCE EVALUATION

To evaluate the cost of dynamic weaving in pgDyner, we
have measured the overhead introduced by the hookable an-
notations, the cost of weaving a new aspect, and the cost of
invoking an aspect once woven. Qur experiments were con-
ducted on an Intel Pentium 4 running at 1.6 GHz with 256
MB of RAM under Linux (kernel 2.4.17, gce 3.0.4 with the
option -02).

The hookable annotation introduces a short branch and
NOP instructions at the beginning of each function that is
a potential join point, and causes each access to a global
variable that is a potential join point to be implemented as
an access to a memory location. To assess the overhead in-
troduced by the hookable annotation, we compare the per-
formance of the quicksort program presented in Appendix
A with and without hookable annotations on functions and
(globalized) variables in the program’s critical path, when
applied to an array of 10 million random integers. We found
that no overhead was introduced by the hookable anno-
tation as compared to using ordinary functions and global
variables. This result suggests that it is feasible to place
hookable annotations throughout the program in order to
allow a wide range of possible adaptations.

Weaving an aspect into the base program requires load-
ing the aspect and instrumenting the affected join point(s).
The cost of loading the aspect is dominated by the cost
of dlopen; loading the aspect of Figure 5 requires 175 pus.
The instrumentation process replaces the join point with a
jump instruction and creates the hook. The cost of writing
a single jump instruction is minimal. Creating a hook for
a function-invocation join point requires allocating space
for the code (using malloc) and copying the code, which is
pre-generated by the pDyner compiler, from the compiled
aspect into this space (using memcpy). The cost of these
operations is proportional to the number of pointcuts. For
the trivial aspect of Figure 5, the total instrumentation cost
is 19us. Creating a hook for a global-variable-access
join point additionally requires instantiating the precom-
piled hook with the contents and address of the instruction
at the join point. The cost these extra operations is, how-
ever, minimal. Note, though, that a distinct hook is created
for each access (reference or update, depending on the point-
cut) to the variable, and thus the instrumentation cost must
be multiplied by the number of such accesses.

Deweaving essentially inverses the process of weaving. Each
of the operations involved is equally or less expensive than
its weaving counterparts. For example, unloading the as-
pect with dlclose requires only 119 ps. Thus, the cost of

deweaving is lower than the cost of weaving.

A single hook is installed atomically from the viewpoint
of the host program, and so the application need not be
stopped in this case. Nevertheless, the power of aspects
comes from the ability to make changes throughout the pro-
gram. When multiple hooks or multiple aspects are needed,
the administrator may need to stop the host process during
weaving, if there is the possibility of incorrect interactions
within incompletely installed code. Nevertheless, even in
this case, the process need only be stopped during the up-
dating of the host process code with jump instructions. The
more time-consuming loading of aspects and construction of
the hooks can proceed in parallel with host process execu-
tion.

The cost of weaving an aspect should be compared to
the retransmission timeout [27] in TCP. Typical values on
a BSD implementation of TCP vary between 0.5 and 1 sec-
ond [1]. It has been argued that the timeout should not be
lower than 250ms [1]. This suggests that yDyner is efficient
enough to enable dynamic adaptation of web caches.

empty :[
int trivial() :[
{
return continue_trivial();
}

Figure 5: A null aspect.

To assess the overhead of calling a function adapted by
an aspect, we consider a function trivial that immediately
returns and the trivial aspect empty shown in Figure 5 that
simply calls back to this function. We compare the cost of
calling trivial, when this function is not declared to be
hookable, with the cost of calling trivial when it is de-
clared to be hookable and has the aspect empty woven into
its definition. We find that with the advice woven, invok-
ing trivial costs 9.5 times as much as calling the function
without the advice. In general, however, the cost of invoking
advice varies with the complexity of the pointcut. Similar
experiments have been performed for Java-based dynamic
aspect systems and meta object systems. Table 6 summa-
rizes the overhead of invoking dynamically woven advice as
compared to a normal function call for several such systems
(Iguanal [29], MetaXa [22], Prose [28], and Guarana [24]).

Tool Ratio
puDyner 9.5
IguanaJ (MOP) 24
MetaXa (MOP) 28

Prose (AOP) 40
Guarana (MOP) 70

Figure 6: Ratio between aspect invocation and or-
dinary call

The overall effect of the overhead of calling an aspect on
the performance of an application depends on how often the



aspect is invoked. We again test the quicksort implemen-
taion of Appendix A, with partition declared as hookable.
In sorting an array of 10 million random integers, the trivial
aspect of Figure 7 adds an overhead of less than 10% (8%
in many cases) as compared to the original implementation
of quicksort (using neither the aspect nor any hookable
annotations).

empty :[
int * partition(int * p, int * r) :[
{
return continue_partition(p,r);
}

Figure 7: Benchmarking aspect.

5. RELATED WORK

pDyner is related to systems that allow modification of
binary code, and to other aspect systems.

Several tools allow the rewriting of an executable after
compilation and, in some cases, after linking. While this
approach is relatively common in Java [5, 10, 13, 20, 32], it
is relatively rare on native executables [3, 23, 30]. Eel [23]
and Eth [30] can aggressively restructure the program, and
can thus improve its performance. They cannot, however,
modify a running executable and they offer APIs that are
close to assembly language.

One tool that does allow dynamic instrumentation of a
running native program. is Dyninst [3], which is based on
the Unix debugging API (ptrace). This API is architec-
tured in terms of the interaction between two processes, the
process being debugged and the debugger. Dyninst instanti-
ates the host process as the process being debugged and the
process injecting new code as the debugger. This approach
has high cost because ptrace requires the process being de-
bugged and the debugger to synchronize on each written
instruction. An instrumentation analogous to the weaving
of the null aspect of Figure 5 requires 1.2s using Dyninst.
Moreover, although the API is close to the C language, it
seems difficult to trigger an advice execution on an access to
a variable with Dyninst: the translation from the variable
identifier to effective address is left to the user.

Cowan et al. [11] present an approach to dynamically load-
ing and unloading new implementations of existing opera-
tions into running programs. Here the goal is to improve
performance based on transitory invariants, rather than to
add new functionality. They address the problem of incor-
rect interactions with outdated and incompletely installed
code by using locks to ensure that no thread is executing
relevant code during the replacement process. When there is
indeed no process currently executing code that is scheduled
to be replaced, they report an overhead of a few hundred cy-
cles on a HP 9000 series 800 G70 (9000/887) dual-processor
server. We are currently investigating efficient approaches
to address this issue in the setting of uDyner.

Aspect] [21], targeted toward Java, is the de-facto lingua
franca of all aspect systems. It offers a rich set of point-
cut operators, but provides only weaving at compile time.
AspectC [7] and AspectC++ [31] extend C and C++, re-
spectively, with aspects. These systems also provide only
static weaving. Douence et al. [15, 16] propose a formal
model to define the semantics of aspect systems. We plan
to try to merge the pDyner aspect model with this model,
to take advantage of the ability to formally prove properties
of the interactions between a collection of aspects.

To the best of our knowledge, no current aspect system
provides all of the features of pDyner. In particular, most
existing aspect systems provide only static, rather than dy-
namic, weaving.

6. CONCLUSION

Given the high proportion of HTTP traffic in the Internet,
caching of documents is an important technique to reduce la-
tency, bandwidth consumption, and server load. Augment-
ing a Web cache with a prefetching policy further improves
its effectiveness. Nevertheless, there is no single prefetch-
ing policy that is best for all situations; good performance
requires using a prefetching policy targeted to characteris-
tics of the Web server and of the client. Thus, a Web cache
should be extensible and provide the ability to load and un-
load new policies at run time.

In this paper, we have presented a new approach to imple-
menting prefetching policies in an existing Web cache. We
have shown that prefetching crosscuts the structure of a Web
cache, and that it can thus appropriately be implemented as
a collection of aspects. To address the need to install new
policies in response to changing conditions, we have devel-
oped an architecture allowing the weaving and deweaving of
aspects in an executing program. Qur approach is based on
the C language, which is typically used in the implementa-
tion of Web caches. Weaving and deweaving of an aspect
have a relatively low cost, which is within the delay toler-
ated by TCP/IP retransmission mechanisms.

Our initial experiments with pDyner have shown that the
system provides both good performance and a useful degree
of expressiveness. In the short term, we are planning to use
pDyner to implement a prefetching policy such as Interac-
tive Prefetching (see Section 2.3) in Squid. In this context,
we will investigate how a Web cache can be extended to itself
download and deploy new prefetching policies. More gener-
ally, we are investigating whether these ideas can be used as
a basis for a more general framework for constructing adapt-
able applications with critical performance and continuous
service requirements such as operating systems.
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APPENDI X

A.

ANNOTED QUICKSORT.C

inline void swap(int *i, int #*j) {
int temp;
temp = *i;

*i = *j;
*j = temp;
}
int #partition(int #*p, int *r) {
int x, *i, *j;
X = *p;
i=p-1;
j=r+1;
while(1) {

}
}

do { i++; } while(*i > x);
do { j—-; } while(xj < x);
if (i < 3)

swap(i, j);
else

return j ;

void sort(int *p, int *r) {
int *q;
if (p < 1) {

g=partition(p,r);

10

}

}

sort(p,q-1);
sort(q+l,r);



