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Abstract. Representing a static set of integers S, |S| = n from a fi-
nite universe U = [1..u] is a fundamental task in computer science. Our
concern is to represent S in small space while supporting the operations
of rank and select on S; if S is viewed as its characteristic vector, the
problem becomes that of representing a bit-vector, which is arguably the
most fundamental building block of succinct data structures.

Although there is an information-theoretic lower bound of B(n, u) =
lg
(
u
n

)
bits on the space needed to represent S, this applies to worst-case

(random) sets S, and sets found in practical applications are compress-
ible. We focus on the case where elements of S contain non-trivial runs
of consecutive elements, one that occurs in many practical situations.

Let Cn denote the class of
(
u
n

)
distinct sets of n elements over the universe

[1..u]. Let also Cng ⊂ Cn contain the sets whose n elements are arranged
in g ≤ n runs of `i ≥ 1 consecutive elements from U for i = 1, . . . , g, and
let Cng,r ⊂ Cng contain all sets that consist of g runs, such that r ≤ g of
them have at least 2 elements.

– We introduce new compressibility measures for sets, including:

• L1 = lg |Cng | = lg
(
u−n+1

g

)
+ lg

(
n−1
g−1

)
and

• L2 = lg |Cng,r| = lg
(
u−n+1

g

)
+ lg

(
n−g−1
r−1

)
+ lg

(
g
r

)
We show that L2 ≤ L1 ≤ B(n, u).

– We give data structures that use space close to bounds L1 and L2

and support rank and select in O(1) time.

– We provide additional measures involving entropy-coding run lengths
and gaps between items, data structures to support these measures,
and show experimentally that these approaches are promising for
real-world datasets.

1 Introduction

Given a static sorted set S = {x1, . . . , xn} of n elements from a finite universe
U = [1..u] ⊂ N, such that 1 ≤ x1 < · · · < xn ≤ u, we want to support the
following fundamental operations:

? Funded by the Millennium Institute for Foundational Research on Data (IMFD).
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– rank(S, x), which for x ∈ U , yields |{xi ∈ S, xi ≤ x}|, and
– select(S, k), which for k ∈ N, yields x ∈ S such that rank(S, x) = k.

If S is viewed as its characteristic bit vector (cbv for short) CS [1..u], such that
CS [i] = 1 iff i ∈ S, the problem becomes that of representing a bit vector
with operations rank1(CS , x), which yields the number of bits 1 in CS [1..x],
and select1(CS , k), that finds the position of the kth 1 bit in CS . These are
arguably the most fundamental building block of succinct data structures [28].
Also, they allow one to compute the fundamental operation predecessor(S, x) ≡
select(S, rank(S, x− 1)) (among others). We assume the transdichotomous word
RAM model with word size w = O(lg u) = Ω(lg n). Arithmetic, logic, and bitwise
operations, as well as accesses to w-bit memory cells, take constant time.

Succinct data structures use space close to the corresponding information-
theoretic lower bound while supporting operations efficiently. For instance, there
are

(
u
n

)
different subsets of U of size n. Hence, the information-theoretic lower

bound on the number of bits needed to represent any such sets is B(n, u) =⌈
lg
(
u
n

)⌉
bits. If n� u, B(n, u) ≈ n lg e+ n lg u

n −O(lg u) bits. Compressed data
structures, on the other hand, exploit regularities in specific instances of data to
go below the information-theoretic lower bound. The space usage of compressed
data structures on a specific instance is evaluated relative to some measure of
compressibility of that instance.

Starting with the seminal work of Jacobson [25], much effort has gone into
representing sets succinctly while supporting rank and select in O(1) time. Clark
and Munro [9, 10] were the first to achieve O(1) time rank and select, using
u+O(u/ lg lg u) bits of space. Raman et al. [36] achieved succinct space, B(n, u)+
O(u lg lg u/ lg u) bits, with O(1)-time operations. In order to capture the com-
pressibility of sets better, researchers have considered the empirical higher-order
entropy of CS , denoted by Hk(CS), which achieves good compression (beyond
B(n, u)). Several researchers, including Sadakane and Grossi [37] showed how to
achieve constant-time operations while using uHk(S)+O(u((k+1)+lg lg u)/ lg u)
bits. An important drawback is that for big universes (i.e., n� u), Hk(CS) de-
creases slowly as k grows. In addition, using small k it is not possible to capture
longer-range dependencies (e.g. for any (long) string x, Hk(x) ≈ Hk(xx)).

Another well-studied measure is GAP(S). If S = {x1, . . . , xn}, with x1 < . . . <
xn, then define g1 = x1 − 1 and, for i > 1, gi = xi − xi−1 − 1, and

GAP(S) =

n∑
i=1

{blg gic+ 1}.

Although GAP(S) is not an achievable measure4, GAP(S) exploits variation in
the gaps between elements. It can be seen that GAP(S) < B(n, u), and GAP(S)
approaches B(n, u) only when gi = u

n (for i = 1, . . . , n). Gupta et al. [23] showed
how to represent S in GAP(S) + O(n lg u

n/poly lg (n)) ≤ B(n, u)(1 + o(1)) bits
while supporting rank and select quickly (albeit not in constant time).

4 For example, if we choose every element in U to be in S with probability 0.5, then
GAP(S) ∼ 0.81u, less than the Shannon lower bound for S.
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In this paper we focus on applications where set elements are clustered, form-
ing runs of successive elements. Some applications are interval intersection in
computational biology [34], web-graph compression [3, 4], IR and query process-
ing in reordered databases [26, 2], valid-time joins in temporal databases [39, 16,
13, 5], ancestor checking in trees [6, 7], data structures for set intersection [8],
and bit vectors of wavelet trees [22, 14] of the Burrows-Wheeler transform of
highly-repetitive texts [27, 24, 15]. Although GAP(S) addresses this kind of non-
uniform distribution, in the presence of runs, run-length encoding (RLE) [18]
is more appropriate. Here, a set S with cbv CS [1..u] = 0z11l10z21l2 · · ·0zg1lg is
represented through the sequences 〈z1, . . . , zg〉 and 〈l1, . . . , lg〉 of 2g lengths of
the alternating 0/1-runs in CS (assume wlog that CS begins with 0 and ends
with 1). Then:

RLE(S) =

g∑
i=1

{blg (zi − 1)c+ 1}+

g∑
i=1

{blg (li − 1)c+ 1}.

It holds that if n < u/2, RLE(S) < B(n, u) + n + O(1) [14]. Note that RLE(S)
is also not an achievable measure, but handles sets S that contain runs better
than GAP(S)—a set S with cbv 0u−n1n has GAP(S) = Θ(n+ lg u) but RLE(S) =
Θ(lg n+ lg u).

In practice, GAP(S), RLE(S) and Hk each perform well on specific data sets
S. In the important case when S is a posting list in an inverted index, a recent
breakthrough [30] showed that so-called partitioned Elias-Fano (PEF) indices are
very effective in compressing sets and can support select in O(1) time. However,
we are not aware of any compressibility measure associated with these indices,
and it appears rank cannot be supported in constant time.

Since we wish not only to compress sets, but also to support operations on
them, the overall space usage (including any space needed to support operations)
is important. Firstly, since predecessor queries can be answered using rank and
select, any lower bound for the former applies also to the joint use of the latter
operations. Pǎtraşcu and Thorup [33] showed that if we use Θ(s lg u) bits of
space, the time to answer predecessor queries is given by:

PT(u, n, a) = Θ(min { lgn
lg lg u , lg

lg (u/n)
a , lg lg u

a / lg
a lg lg u

a

lgn , lg lg u
a / lg

lg lg u
a

lg lg n
a

}),

where a = lg s lg u
n . It follows from this that even if we are allowed to use

O(poly n) words of space, constant-time operations are possible only for rel-
atively small universes, i.e. u = O(n · poly lg(n)), or for very small sets, i.e.
n = (lg u)O(1). Fortunately, the first case, which is our main focus, is also very
commonly seen in applications.

A more refined analysis looks at the redundancy of a data structure, which
is the space used by a data structure over and above the corresponding space
bound for representing the set itself. Pǎtraşcu [32] improved on earlier work [19,
21] and showed the following:

Theorem 1 ([32]). For any c > 0, a set S can be represented using B(n, u) +
O(u/ lgc (u/c))+O(u3/4poly lg(u)) bits and support rank and select in O(c) time.
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We will use Theorem 1 only when c = O(1). For the parameter values of interest,
namely u = O(n · poly lg(n)) and c = O(1), the redundancy of Theorem 1 was
shown to be optimal by Pǎtraşcu and Viola [31]. In the so-called systematic
model, [20] gave matching upper and lower bounds on redundancy.

Contributions. Our contributions are as follows. Firstly, in Sections 2 and 3, we
give a surprisingly simple adaptive approach that stores S in potentially better
than B(n, u) space, while still supporting constant-time rank/select. This is based
on the intuition that within the class Cn of

(
u
n

)
distinct sets of n elements from U ,

there are sets that can be represented more succinctly than others. For instance,
in a extreme case where the elements form a single interval [i..i+ n− 1] of size
n, why would one use lg

(
u
n

)
bits to describe this set? The smallest set element

i and the set size n are enough to represent such a set.
Let class Cng ⊂ Cn contain the sets whose elements are arranged in g ≤ n

runs of li ≥ 1 successive elements from U , for i = 1, . . . , g. Also, let Cng,r ⊂ Cng be
a further refinement of class Cng , which contains all sets that consist of g runs,
such that r ≤ g of them have at least 2 elements.

– We introduce new compressibility measures for sets:
• L1 = lg |Cng | = lg

(
u−n+1

g

)
+ lg

(
n−1
g−1
)

and

• L2 = lg |Cng,r| = lg
(
u−n+1

g

)
+ lg

(
n−g−1
r−1

)
+ lg

(
g
r

)
We show that L2 ≤ L1 ≤ B(n, u).

– We give data structures that use space close to bounds L1 and L2, namely
lg
(
u
g

)
+lg

(
n
g

)
+o(u) ≈ L1+o(u) bits of space and lg

(
u
g

)
+lg

(
n
r

)
+lg

(
g
r

)
+o(u) ≈

L2 + o(u) bits of space, and support rank and select in O(1) time.

Next, in Section 4, we revisit GAP(S) and RLE(S) measures in the following
sense. The GAP(S) and RLE(S) measures encode a gap/run of length x using
1 + blg xc bits respectively. By Shannon’s theorem, coding x using 1 + blg xc bits
is tailoring the code length to a particular, and fixed, distribution of gap/run
lengths5. We therefore propose two new measures of compressibility: we encode
gap sizes and run lengths using their empirical zeroth-order entropy. That is,
we treat the sequence of runs as a string of length 2g from the alphabet [1..n],
and encode each run using the Shannon optimal number of bits based upon the
number of times this run length is seen (and analogously for gaps). On any set
S, such approaches should outperform RLE(S) and GAP(S). For example, given
a set S with CS = 0412004120 · · ·04120, RLE(S) is far inferior to H0-coding the
runs, which would use only one bit for encoding each run. We introduce two new
measures of compressibility, Hrun

0 (S) and Hgap
0 (S), to address this. We give data

structures that support rank/select in O(1) time using space close to Hgap
0 (S),

and select on both S and its complement in O(1) time using space close to
Hrun

0 (S). In this section, we also give additional compressibility measures.
Finally, in Section 5, we show experimentally that these approaches are

promising for real-world datasets.

5 Since GAP(S) and RLE(S) are not achievable, this statement is imprecise.
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2 Adaptive Succinctness

We prove adaptive lower bounds for space needed to represent a set S.
Given a set S = {x1, . . . , xn} ⊆ U of n elements 1 ≤ x1 < · · · < xn ≤

u, a maximal run of successive elements G ⊆ S contains |G| ≥ 1 elements
xi, xi + 1, . . . , xi + |G|−1, such that xi−1 6∈ S and xi + |G| 6∈ S. Let G1, . . . , Gg

be the partition of S = {x1, . . . , xn} into maximal runs of successive elements,
such that ∀x ∈ Gi,∀y ∈ Gj , x < y ⇔ i < j. Let us assume that r ≤ g of these
Gi are of size |Gi| ≥ 2.

Let Cn denote the class of sets of n elements from U . Notice that |Cn| =
(
u
n

)
.

We define class Cng ⊂ Cn, a refinement of Cn containing sets whose n elements are
arranged in g ≤ n maximal runs of successive elements. Notice that

⋃n
g=1 Cng =

Cn. Let class Cng,r ⊂ Cng be a further refinement consisting of all sets such that
r ≤ g out of the g maximal runs have size ≥ 2. It holds that

⋃g
r=1 Cng,r = Cng .

The cbv CS of set S ∈ Cng,r consists of g 0-runs of lengths z1, . . . , zg such that
z1 = min {G1}− 1, and zi = min {Gi}−max {Gi−1}− 1, and g 1-runs of length
li = |Gi|, for i = 1, . . . , g. We call solitary the elements in a run of size 1. Let
o1 = lj1 − 1, . . . , or = ljr − 1, for j1 < · · · < jr, denote the sorted sequence of
lengths (−1) of the r runs of length lji ≥ 2.

We show that within Cn, there are sets that can be represented more suc-
cinctly than others, depending on which subclass they belong to. Less bit are
needed to represent S if S ∈ Cng or, moreover, S ∈ Cng,r. This is because the num-

ber of different such sets is smaller than
(
u
n

)
, so distinguishing them is easier.

For instance, for u = 6 and n = 3 there are
(
6
3

)
= 20 different sets, yet if g = 3,

the number of sets is only 4 ({1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}). We formalize
this fact next:

Theorem 2. There are |Cng | =
(
n−1
g−1
)(

u−n+1
g

)
different sets whose n elements

from U can be partitioned into g maximal runs of successive elements.

Hence, we have:

Corollary 1. L1 = lg |Cng | = lg
(
u−n+1

g

)
+lg

(
n−1
g−1
)

bits are necessary to represent
any set S ∈ Cng .

Next, we determine |Cng,r|.

Theorem 3. There are |Cng,r| =
(
n−g−1
r−1

)(
g
r

)(
u−n+1

g

)
different sets whose n el-

ements from U can be partitioned into g maximal runs of successive elements,
such that r ≤ g of these groups have at least 2 elements.

Corollary 2. L2 = lg |Cng,r| = lg
(
u−n+1

g

)
+ lg

(
n−g−1
r−1

)
+ lg

(
g
r

)
bits are necessary

to represent any set S ∈ Cng,r.

3 Adaptive Succinct rank/select Data Structures

Given set S ∈ Cng,r, let us define its essential sets:
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1. P̂ = {p1, . . . , pg} ⊆ S such that pi = min {Gi}, for i = 1, . . . , g. This set has
universe u. We call each element pi a pioneer ;

2. L̂ = {l1, . . . , lg}, such that lj =
∑j

i=1 |Gi|. The corresponding characteristic

bit vector is CL̂ = 0|G1|−110|G2|−11 · · ·0|Gg|−11 of length (universe of L̂) n
and g 1s. These are the unary encodings of |Gi|s.

3. Ĝ = {y1, . . . , yg} such that yj =
∑j

i=1 zi, for j = 1, . . . , g. The corresponding
characteristic bit vector is CĜ = 0z1−110z2−11 · · ·0zg−11, of length (universe

of Ĝ)
∑g

i=1 zi = u− n (i.e., the number of 0s in CS), and it has g 1s. These
are the unary encodings of values zi.

4. R̂ = {q1, . . . , qr} such that qj =
∑j

i=1 oi, for j = 1, . . . , r. The corresponding
characteristic bit vector is CR̂ = 0o1−110o2−11 · · ·0or−11, of length (universe

of R̂) n− g, and r 1s. These are the unary encodings of values oi.
5. V̂ = {v1, . . . , vr} such that |Gvi | > 1, for i = 1, . . . , r. The corresponding

characteristic bit vector CV̂ [1..g] has length g and r 1s. It holds that CV̂ [i] =
1 iff the run Gi of the ith pioneer has |Gi| > 1.

A set S can be unambiguously described with the following combinations of
essential sets: (Scheme 1) Sets P̂ and L̂; (Scheme 2) Sets P̂ , R̂, and V̂ ; (Scheme
3) Sets Ĝ, R̂, and V̂ ; and (Scheme 4) Sets Ĝ and L̂. Notice that, for instance, the
Elias-Fano encoding of sets Ĝ and L̂ (Scheme 4) yields space close to L1. The
Elias-Fano encoding of Scheme 3, alternatively, yields space close to L2. In what
follows, we build on above schemes to obtain adaptive succinct data structures.

3.1 Using Space Close to L1

Given a set S ∈ Cng , consider the interval [pi..pi+1), for 1 ≤ i < g, between two
consecutive pioneers. This is the locus of pioneer pi [12]: all rank(S, x) queries
within this interval (i.e., pi ≤ x < pi+1) have similar answer, obtainable from pi
and |Gi| (similarly for select). We use Scheme 1 above, which builds on sets P̂
and L̂. Building on Scheme 4 would use space closer to L1, however it does not
allow (seemingly) for constant-time rank/select.

Operation rank(S, x). Notice that ∀x such that pi ≤ x < pi + |Gi|, rank(S, x) ≡
rank(S, pi) + x− pi; otherwise, if pi + |Gi| ≤ x < pi+1, rank(S, x) ≡ rank(S, pi) +
|Gi| − 1. So, we show how to compute pi, rank(S, pi), and |Gi| from sets P̂ and
L̂. Let i = rank(P̂ , x) be the number of pioneers that are smaller (or equal)
than x, then pi = select(P̂ , i). Hence, rank(S, pi) ≡ select(L̂, i − 1) + 1, since

select(L̂, i− 1) =
∑i−1

j=1 |Gj |. Finally, |Gi| = select(L̂, i)− select(L̂, i− 1).

Operation select(S, k). Assume that for the element xk we are looking for, it
holds that pi ≤ xk < pi+1. Then, select(S, k) ≡ pi + k − rank(S, pi). This time,
i = rank(L̂, k) + [k 6∈ L̂] 6, and pi = select(p̂, i). Finally, as explained above for
operation rank, rank(S, pi) ≡ select(L̂, i− 1) + 1.

We represent P̂ and L̂ using Theorem 1. This uses lg
(
u
g

)
+lg

(
n
g

)
+O(u/ lgc u)

bits, for any constant c ≥ 1, and supports rank and select in O(1) time.

6 [k 6∈ L̂] is Iverson brackets notation, which equals 1 iff k 6∈ L̂ is true, 0 otherwise.
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Theorem 4. There exists a data structure that represents any set S ∈ Cng of n

elements from universe U , using lg
(
u
g

)
+lg

(
n
g

)
+O(u/ lgc u) bits, for any constant

c ≥ 1, while supporting operations rank and select in O(1) time.

3.2 Using Space Close to L2

We use sets P̂ , V̂ , and the following variant of set R̂: R̂′ = {q′1, . . . , q′r} such that

q′j =
∑j

i=1 (oi + select(V̂ , i)− select(V̂ , i− 1)). This set has universe [1..n], and
has r elements. To understand how this set works, let us see at its characteristic
bit vector CR̂′ [1..n]. It has r 1s, each corresponding to a run Gi. Each such 1 is
preceded by |Gi| − 1 0s. Consider runs Gi and Gi+l, for i, l ≥ 1, such that runs
Gi+1, . . . , Gi+l−1 are each of size 1 (i.e., they correspond to solitary elements in
S). Then, in CR̂′ there are l − 1 + |Gi| − 1 0s between the 1s corresponding to
Gi and Gi+l.

Operation rank(S, x). Let us assume that pi ≤ x < pi+1, for pi ∈ P̂ . First,
consider the case where |Gi| = 1. That is, pi is a solitary pioneer. Notice that
rank(S, x) ≡ rank(S, pi−l)+ |Gi−l|−1+ l, for l ≥ 1, such that pi−l is the greatest
pioneer smaller than pi such that |Gi−l| > 1 (assume pi−l = 0 if there is none).
Let i = rank(P̂ , x), and pi = select(P̂ , i). Then, l = i − select(V̂ , rank(V̂ , i)).
Hence, rank(S, pi−l) + |Gi−l| − 1 ≡ select(R̂′, rank(V̂ , i)), and we are done. Oth-
erwise, |Gi| > 1, so we must distinguish two cases: (1) pi ≤ x < pi + |Gi|,
in whose case rank(S, x) ≡ rank(S, pi) + x − pi; or (2) pi + |Gi| ≤ x, hence
rank(S, x) ≡ rank(S, pi)+|Gi|−1.Notice that rank(S, pi) ≡ rank(S, pi−l)+|Gi−l|−
1 + l, which has been already computed. Finally, |Gi| ≡ select(R̂′, rank(V̂ , i)) −
select(R̂′, rank(V̂ , i)− 1)− l.

Operation select(S, k). We must determine whether xk is a solitary element or
lies within a run of successive elements of length > 1. Let us regard runs Gv

and Gi, both of size > 1, such that there is no other run of size > 1 between
them, and pv + |Gv| − 1 < xk ≤ pi + |Gi| − 1. Here, j = rank(R̂′, k) − [k ∈ R̂′]
and v = select(V̂ , j). The number of solitary pioneers between runs Gv and Gi

is l = select(V̂ , j + 1) − select(V̂ , j) − 1. Let s = select(R̂′, j) be the rank up to
position pv + |Gv|−1 (i.e., up to the last element in Gv). Notice that if k−s ≤ l,
xk is the (k − s)th pioneer after Gv Otherwise, if k − s > l, xk lies within Gi.

We represent sets P̂ , V̂ , and R̂′ using Theorem 1 and obtain:

Theorem 5. There exists a data structure that represents any set S ∈ Cng,r of

n elements from universe U , using lg
(
u
g

)
+ lg

(
n
r

)
+ lg

(
g
r

)
+ O(u/ lgc u) bits, for

any constant c ≥ 1, while supporting operations rank and select in O(1) time.

4 Further Squeezing rank/select Data Structures

In this section, we study the extent to which a static rank/select data structure
can be squeezed, while still supporting operations efficiently. Let tr denote the
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time complexity of operation rank, and ts that of select. Since predecessor(S, x)
can be reduced to select(S, rank(S, x−1)), Pǎtraşcu and Thorup’s [33] predecessor
lower bound is also a lower bound for tr + ts. It is natural, then, to compare
with this lower bound to see how the time deteriorates as we squeeze.

4.1 GAP(S)

Gupta et al. [23] introduce a data structure using GAP(S) + O(n lg u
n/ lg n) +

O(n lg lg u
n ) bits of space. Originally, Andersson and Thorup’s predecessor data

structure [1] is used as building block (using O(n lg u
n/ lg n) bits of space), yet it

can be easily modified to use Pǎtraşcu and Thorup’s data structure [33]; to get
the same space usage, we set a = lg (lg u/ lg2 n). Operation select is supported
in O(lg lg n) time, and rank in PT(u, n, lg (lg u/ lg2 n)) + O(lg lg n) time.

4.2 RLE(S)

We now consider RLE(S), and begin by noting that RLE(S) = GAP(Ĝ) + GAP(L̂).

Property 1. For any set S ∈ Cng it holds that RLE(S) ≤ lg
(
u−n+1

g

)
+ lg

(
n
g

)
.

Since RLE(S) = GAP(Ĝ) + GAP(L̂), the proof is immediate. Set Ĝ has g elements
over universe of size u− n, it holds that GAP(Ĝ) ≤ lg

(
u−n
g

)
≤ lg

(
u−n+1

g

)
. Simi-

larly, GAP(L̂) ≤ lg
(
n
g

)
.

Theorem 6. There exists a data structure that represents any set S ∈ Cng over
the universe U , using RLE(S) + O(g lg u

g / lg g) + O(g lg lg u
g ) bits of space, and

supporting operation select in PT(u−n, g, lg lg u−n
lg2 g

) time, whereas operation rank

is supported in PT(u− n, g, lg lg u−n
lg2 g

) + O((lg lg g)2) time.

This is achieved by using the data structure from Section 4.1 on sets Ĝ and L̂.

4.3 H0 coding of gaps and runs

In this section, we first describe our new measures of compressing sets based on
H0 coding the gaps or runs (called Hgap

0 (S) and Hrun
0 (S)). We then describe the

main result of this section: a data structure that supports rank and select on a
set S in constant time while using close to Hgap

0 (S) space. We then obtain as
a corollary a representation of S using close to Hrun

0 (S) space, but supporting
only select on S and U \ S. Finally, we relate these measures to Theorem 3.

Definition 1. Let S = {x1, . . . , xn}, with 1 < x1 < . . . < xn = u. Define g1 =

x1− 1 and, for i > 1, gi = xi−xi−1. Let G(S) = {hm(h1)
1 , h

m(h2)
2 , . . . , h

m(ht)
t } be

the multiset of values in the sequence 〈g1, . . . , gn〉, where m(hi) is the multiplicity
of hi in the sequence of gaps. Then:

nHgap
0 (S) = lg

(
n

m(h1),m(h2), . . . ,m(ht)

)
.

Letting L̂ and Ĝ be as defined at the start of Section 3, we define:

Hrun
0 (S) = Hgap

0 (L̂) +Hgap
0 (Ĝ).
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Remark. Note that Hgap
0 (S) is (almost) an achievable measure: we can apply

arithmetic coding to the sequence of gaps, which would take Hgap
0 (S) bits. How-

ever, we would also need to output the model of the arithmetic coder, which can
be G(S) itself, stored in t(lg u+ lg n) bits, specifying which runs are present and
their multiplicities. Since t = O(

√
u), this is not excessive for many applications.

Similar remarks apply to Hrun
0 (S). Observe that |L̂| = |Ĝ| = g, so we would aim

to compress S to gHrun
0 (S) bits.

Hgap
0 (S). In this section we show the following:

Theorem 7. Given a set S ⊆ [1..u], |S| = n, we can represent it to support
rank and select in O(1) time using nHgap

0 (S) + O(n) + o(u) bits.

Proof. Let the elements of S be {xi}ni=1, sequence of gaps be {gi}ni=1, and the

multiset of gaps be G(S) = {hm(hi)
i }ti=1. We first note that the result is achieved

trivially if n = O(u/ lg u): we represent S as the bit-string 0g1−11 . . .0gn−11,
which is of length u and has n 1s. If stored using Theorem 1, this bit-string
will use u

B lg u
nB + O( u

B ) + u
(lg u)O(1) = O(u lg lg u/ lg u) = o(u) bits and rank and

select operations can be supported in O(1) time, which proves the theorem. We
therefore henceforth assume that n ≥ cu/ lg u for some sufficiently large c ≥ 1.

We begin by converting S to a new set S′ with n′ ≤ n + u/B = O(n)
numbers from U , for some integer parameter B = Θ((lg n/ lg lg n)2), by setting
S′ = S ∪ {iB|1 ≤ i ≤ u/B}. Let the elements, the sequence of gaps, and the

multiset of gaps of S′ be {x′i}n
′

i=1, {g′i}n
′

i=1, and G(S′) = {h′m
′(h′

i)
i }t′i=1. We now

show that Hgap
0 (S′) is close to Hgap

0 (S), using the following [11, Theorem 17.3.3]:

Theorem 8. Let p and q be two probability mass functions on a set T such that

||p− q||1 =
∑

x∈T |p(x)− q(x)| ≤ 1
2 . Then |H(p)−H(q)| ≤ ||p− q||1 lg |T |

||p−q||1 .

Let T be the underlying set of the multiset G(S)∪ G(S′). For any integer x ∈ T
let p(x) = m(x)/n and q(x) = m′(x)/n′; m(x) = 0 if x 6∈ G(S), and and
similarly m′(x). It is easy to see that ||p− q||1 = O(u/(nB)), since at most u/B
gaps in S are changed during the conversion, and n = Θ(n′). Since we assume
n ≥ cu/ lg u for any constant c, we can ensure that ||p − q||1 ≤ 1/2. Noting
that ||p − q||1 = Ω(1/n) (unless p = q, in which case the RHS of Theorem 8

equals 0 as well), we see that lg |T |
||p−q||1 = O(lg n|T |) = O(lg u). It follows that

|Hgap
0 (S) − Hgap

0 (S′)| = O(u lg u
nB ) and hence that |nHgap

0 (S) − n′Hgap
0 (S′)| =

O(u lg u
B ) = O(u (lg lg u)2

lg u ) = o(u).
The data structure comprises two parts: first, we divide the bit-string rep-

resenting S into blocks of B consecutive bits (the i-th block corresponds to the
interval [(i − 1)B + 1..iB]). Next, we create a bit-string O which encodes, for
each block, the count of the number of elements of S that lie in each block,
written in unary. O will have u/B 0s and n 1s. If stored using Theorem 1, O
will use u

B lg u
nB + O( u

B ) + u
(lg u)O(1) = O(u lg lg u/ lg u) = o(u) bits and support

rank and select operations on both 0 and 1 in O(1) time. It is easy to see (details
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omitted) how to reduce rank/select operations on S to rank/select operations on
individual blocks using O.

We now describe the representation of an individual block. Each block is
encoded independently; by Jensen’s inequality, if the gaps in each block are
encoded using H0 bits, the total space usage of all block encodings is Hgap

0 (S′).
We also need to store the arithmetic coding model for each block, which requires
O(σ lgB) bits, where σ = O(

√
B) is the number of distinct integers in a block.

The overhead of the models in each block is therefore O(u
√
B lgB
B ) = O(u (lg lg u)2

lg u )

bits. We now fix B = (c lg u/ lg lg u)2 for sufficiently small constant c, and make
the following observations that allow all operations in a block to be performed
in O(1) time using table lookup (details omitted): (i) all integers in a block are
O(lg lg u) bits long (ii) if we group the integers in a block with into sub-blocks
of c lg u/ lg lg u bits, we can ensure that the H0 code of a sub-block is no more
than c′ lg u bits long for some c′ < 1 (iii) the encoding of the arithmetic coding
model for each block also fits into c′ lg n bits (this is important since to decode
the encoding of a sub-block, we must also use the arithmetic coding model as
an argument to the table lookup). ut

Hrun
0 (S). Given a set S ⊆ U , let L̂ and Ĝ be defined as in Section 3. Applying

Theorem 7 to L̂ and Ĝ and using [35, Theorem 1(c)], we obtain:

Corollary 3. Given a set S ⊆ U = [1..u] such that |S| = n and |L̂| = g, S can
be represented in gHrun

0 (S) + O(g) + o(u) bits and support select on S and on
U \ S in O(1) time.

Discussion. Theorem 7 and Corollary 3 refine the results from Section 4.1 and
Theorem 6 in terms of the space bound. In Section 3.2, we described Scheme 4,
which comprises the sets P̂ , V̂ , and R̂′. An alternative view of Scheme 1 from
Section 3.1, and how it leads to Scheme 4 and then towards Hrun

0 (S) is as follows.
Scheme 1 identifies the start positions of the runs of 1s using P̂ , then encodes
their lengths using L̂; each run is encoded using lg(n/g) + O(1) bits, i.e., each
run of 1s is encoded using a number of bits equal to the log of the average run
length. This is clearly non-optimal if the distribution of the lengths of the runs
is non-uniform, which can happen in many situations (for example, in a random
bit-string, run-lengths are geometrically distributed). Scheme 4 improves upon
Scheme 1 by encoding runs of length 1 using the Shannon optimal number of
bits, based upon the number of times run length 1 length is seen. Choosing to
focus on runs of length 1 can be non-optimal: e.g. in a set where the runs were of
length 1, 2, 2, . . . , 2, Scheme 4 would offer no improvement over Scheme 1. The
next step, that we consider experimentally, is to modify Scheme 4 to encode
L̂ adaptively using Theorem 7. Such a modification should give superior com-
pression to Scheme 4, while supporting O(1)-time rank/select. Finally, Hrun

0 (S)
is the logical conclusion, replacing the “non-adaptive” encoding of P̂ with an
adaptive encoding of Ĝ.
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4.4 HYB(S)

Next, we study the following compression measure.

Definition 2. Given set S ∈ Cng,r, we define the entropy measure:

HYB(S) =

g∑
i=1

{blg (zi − 1)c+ 1}+

r∑
i=1

{blg (oi − 1)c+ 1}

= GAP(Ĝ) + GAP(R̂).

Similar to Property 1, we have:

Property 2. For any set S ∈ Cng,r it holds that HYB(S) ≤ lg
(
u−n+1

g

)
+ lg

(
n−g
r

)
.

Property 3. Given set S ∈ Cng,r, HYB(S) ≤ min {GAP(S), RLE(S)}.

Proof omited for lack of space.

Theorem 9. There exists a data structure that represents any set S ∈ Cng,r over

the universe U , using HYB(S)(1 + o(1)) + O(g lg u−n
g / lg g) + O(r lg n−g

r / lg r) +

lg
(
g
r

)
bits. Operations rank and select are supported in PT(u−n, g

lg2 g
, lg lg u−n

lg2 g
)+

O((lg lg g)2) worst-case time.

4.5 HỸB(S)

Next, we use gap compression on sets P̂ and L̂ to obtain space smaller than
GAP(S) in some cases, with query time that equals that of Section 4.1 (and
hence improving Theorems 6 and 9).

Definition 3. Given a set S ∈ Cng,r with pioneers P̂ = {p1, . . . , pg} ⊆ S and

1-run lengths L̂ = {l1, . . . , lg}, we define the following compression measure:

HỸB(S) =

g∑
i=1

{blg (pi − pi−1 − 1)c+ 1}+

r∑
i=1

{blg (li − 1)c+ 1}

= GAP(P̂ ) + GAP(L̂).

We can prove:

Lemma 1. Given a set S ∈ Cng,r, it holds that HỸB(S) ≤ lg
(
u
g

)
+ lg

(
n
g

)
.

Theorem 10. There exists a data structure that represents any set S ∈ Cng,r
over the universe U , using HỸB(S)(1+o(1))+o(g lg u

g ) bits of space, and supports

operation select in O(lg lg g) time, and rank in PT(u, g, lg lg u
lg2 g

) + O(lg lg g) time.

Proof. Use the data structure from Section 4.1 to represent sets P̂ and L̂, and
use the O(1)-time support for rank and select described in Section 3.1. ut
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5 Experimental Results

We show preliminary experiments on the space usage of the compressed ap-
proaches proposed in this paper. We use the URL-sorted GOV2 inverted index
[38] as input, as this document order tends to generate runs in the posting lists.
The universe size is 25,138,630 (this is the number of documents in the collec-
tion). We consider posting lists of size at least 100,000. We average the total
space of each approach over 5,055,078,461 total postings. Table 1 shows the av-
erage number of bits per element for different state-of-the-art rank/select data
structures (upper table) and different compression measures (bottom).

Table 1. Average number of bits per element for different rank/select data structures
(on top) and compression measures (bottom), for URL-sorted GOV2 posting lists.

sd vector rrr<127> rrr<63> rrr<31> rrr<15> PEF L1 d.s. L2 d.s.

7.29 4.53 6.28 9.4 14.78 2.8 4.62 4.14

L1 L2 GAP(S) RLE(S) HYB(S) HỸB(S) nHgap
0 (S) gHrun

0 (S)

3.65 3.43 3.14 2.77 2.81 3.29 2.77 2.46

We considered the most efficient data structures from the sdsl library [17]:
Elias-Fano sd vector [29], Raman et al. [36] rrr data structure (using blocks
of size 15, 31, 63, and 127). We also compared with the (very space-efficient)
partitioned Elias-Fano approach [30] (PEF in the table). We used sd vector to
represent the sets that comprise the L1 and L2 data structures. The space for
these data structures is reported at the top of Table 1.

In the bottom of Table 1, we report on compression measures applied to the
above dataset (without making any allowance for space needed to support rank or
select). Note that, as defined, the compression measures GAP(S), RLE(S), HYB(S),
and HỸB(S) are not realizable. To make a fair comparison with a realizable com-
pression measure, we assume that gaps/runs are encoded using Elias-δ coding,
i.e. our reported GAP(S) equals GAP(S) =

∑n
i=1 blg gic+ 2blg(blg gic+ 1)c+ 1,

and similarly for RLE(S). Also, HYB(S) includes space for the Elias-Fano repre-
sentation of V̂ (which uses space slightly more than lg

(
g
r

)
bits). As it can be

seen, the results are promising in practice.

6 Conclusion and Open Problems

We have presented new measures of the compressibility of sets that are suitable
when the elements of the sets are clustered in runs. In addition, when the sets are
relatively dense (i.e. n = u/(lg u)O(1)) we present data structures whose space
usage is close to these measures, but which support rank and select operations
in O(1) time. Our preliminary experimental results show that our approaches
yield space-efficient set representations.
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There are a number of open directions that could be pursued. For example,
we believe that an analogue of Theorem 7 for RLE(S) is well within reach. Other
interesting directions would be to close the gap between the space bounds L1

and L2 and their corresponding data structures. Finally, the data structure of
Theorem 7 is unlikely to be practical; finding a practical variant with small
redundancy is another interesting question.
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