
A Practical Alphabet-Partitioning Rank/Select
Data Structure?

Diego Arroyuelo1,2 and Erick Sepúlveda2

darroyue@inf.utfsm.cl, erick.sepulvedav@gmail.com

1 Millennium Institute for Foundational Research on Data (IMFD), Chile.
2 Department of Informatics, Universidad Técnica Federico Santa Maŕıa, Chile. Vicuña

Mackenna 3939, Santiago, Chile

Abstract. This paper proposes a practical implementation of an al-
phabet-partitioning compressed data structure, which represents a string
within compressed space and supports the fundamental operations rank
and select efficiently. We show experimental results that indicate that
our implementation outperforms the current realizations of the alphabet-
partitioning approach (which is one of the most efficient approaches in
practice). In particular, the time for operation select can be reduced by
about 80%, using only 11% more space than current alphabet-partitioning
schemes. We also show the impact of our data structure on several
applications, like the intersection of inverted lists (where improvements of
up to 60% are achieved, using only 2% of extra space), and the distributed-
computation processing of rank and select operations. As far as we know,
this is the first study about the support of rank/select operations on a
distributed-computing environment.

1 Introduction

Given a string s[1..n], over an alphabet Σ = {0, . . . , σ − 1}, operation s.rankc(i)
computes the number of occurrences of symbol c ∈ Σ in s[1..i]. Operation
s.selectc(j), on the other hand, yields the position of the j-th occurrence of
symbol c in s. Finally, operation s.access(i) yields symbol s[i].

These operations are fundamental for many applications [?], such as snippet
extraction in text databases [?], query processing in information retrieval [?,?],
cardinal trees, text search, and graph representation [?], among others.

Since the amount of data managed by these applications is usually large,
space-efficient data structures to support these operations are vital [?]. Succinct
data structures use space close to the information theory minimum, while sup-
porting operations efficiently. Compressed data structures, on the other hand,
take advantage of certain regularities in the data to further reduce the space
usage. These are the focus of this paper. In particular, we propose a surprisingly
simple and practical implementation of the alphabet-partition approach [?] for
compressing a string while supporting operations rank, select, and access. We

? Funded by the Millennium Institute for Foundational Research on Data (IMFD).

2 D. Arroyuelo and E. Sepúlveda

show that our data structure introduces interesting trade-offs for supporting
these operations. Also, we show how our data structure impacts several important
applications, and show proof-of-concept experiments on the distributed support
of rank and select. This is the first such study we are aware of.

2 Related Work

2.1 Succinct Data Structures for Bit Vectors

In this paper we will need to use a succinct data structure to represent bit vectors
B[1..n] with m 1 bits, and support operations rank and select. In particular, we
are interested in the SDarray data structure from Okanohara and Sadakane [?],
which uses m lg n

m + 2m+ o(m) bits of space, and supports select in O(1) time
(provided we replace the rank/select bit vector data structure on which SDarray

is based by a constant-time select data structure [?]). Operations rank and access
are supported in O

(
lg n

m

)
time.

2.2 Compressed Data Structures

A compressed data structure uses space proportional to some compression measure
of the data, e.g., the 0-th order empirical entropy of a string s[1..n] over an
alphabet of size σ, which is denoted by H0(s) and defined as:

H0(s) =
∑
c∈Σ

nc
n

lg
n

nc
, (1)

where nc is the number of occurrences of symbol c in s. The sum includes only
those symbols c that do occur in s, so that nc > 0. The value H0(s) ≤ lg σ is the
average number of bits needed to encode each string symbol, provided we encode
them using lg n

nc
bits.

2.3 Rank/Select Data Structures on Strings

Wavelet Trees A wavelet tree [?] (WT for short) is a succinct data structure
that supports rank and select operations, among many virtues [?]. The space
requirement is n lg σ + o(n lg σ) bits [?], while operations rank, select, and access
take O(lg σ) time. To achieve compressed space, the WT can be given the shape of
the Huffman tree, obtaining nH0(s) +o(nH0(s)) +O(n) bits of space. Operations
take O(lg n) worst-case, or O(1 +H0(s)) on average [?]. Alternatively, one can
use compressed bit vectors [?] to represent each WT node. The space usage is
nH0(s) + o(n lg σ) bits, and operations take O(lg σ) time.

The approach by Ferragina et al. [?], which is based on multiary WTs,
supports the operations in O(1 + lg σ

lg lgn) worst-case time, and the space usage

is nH0(S) + o(n lg σ) bits. Later, Golynski et al. [?] improved the (lower-order
term of the) space usage to nH0(s) + o(n) bits. Notice that if σ = O(polylog(n)),
these solutions allow one to compute the operations in O(1) time.

A Practical Alphabet-Partitioning Rank/Select Data Structure 3

Reducing to Permutations Golynski et al. [?] introduce an approach that
is more effective than the previous ones for larger alphabets. Their solution
requires n(lg σ + o(lg σ)) bits of space, supporting operation rank in O(lg lg σ)
time, whereas operations select and access are supported in O(1) time (among
other trade-offs, see the original paper for details). Later, Grossi et al. [?] achieve
higher-order compression, that is nHk(s) + o(n lg σ) bits. Operations rank and
select are supported in O(lg lg σ), whereas access is supported in O(1) time.

Alphabet Partitioning We are particularly interested in this paper in the
alphabet-partitioning approach [?]. Given an alphabet Σ = {0, . . . , σ − 1}, the
aim of alphabet partitioning is to divide Σ into p subalphabets Σ0, Σ1, . . . , Σp−1,

such that
⋃p−1
i=0 Σi = Σ, and Σi ∩Σj = ∅ for all i 6= j.

The Mapping from Alphabet to Subalphabet. The data structure [?] consists
of an alphabet mapping m[1..σ] such that m[i] = j iff i has been mapped to
subalphabet Σj . Within Σj , symbols are re-enumerated from 0 to |Σj | − 1 as
follows: if there are k symbols smaller than i that have been mapped to Σj , then
i is encoded as k in Σj . Formally, k = m.rankj(i). Let nj = |{i, m[s[i]] = j}| be
the number of symbols of string s that have been mapped to subalphabet Σj . A
way of defining the partitioning (which is called sparse [?]) is:

m[α] =

⌈
lg

(
n

nα

)
lg n

⌉
, (2)

where symbol α ∈ Σ occurs nα times in s. Notice that m[α] ≤ dlg2 ne.

The Subalphabet Strings. For each subalphabet Σ`, we store the subsequence
s`[1..n`], with the symbols of the original string s that have been mapped to
subalphabet Σ`.

The Mapping from String Symbols to Subalphabets. In order to retain the original
string, we store a sequence t[1..n], which maps every symbol s[i] into the corre-
sponding subalphabet. That is, t[i] = m[s[i]]. If ` = t[i], then the corresponding
symbol s[i] has been mapped to subalphabet Σ`, and has been stored at position
t.rank`(i) in s`. Also, symbol s[i] in Σ corresponds to symbol m.rank`(s[i]) in Σ`.
Thus, we have s`[t.rank`(i)] = m.rank`(s[i]).

Notice that t has alphabet of size p. Also, there are n0 occurrences of symbol
0 in t, n1 occurrences of symbol 1, and so on. Hence, we define:

H0(t) =

p−1∑
i=0

ni
n

lg
n

ni
. (3)

Computing the Operations. One can compute the desired operations as follows,
assuming that m, t, and the sequences s` have been represented using appro-
priate rank/select data structures (details about this later). For α ∈ Σ, let
` = m.access(α) and c = m.rank`(α). Hence,

s.rankα(i) ≡ s`.rankc(t.rank`(i)),

4 D. Arroyuelo and E. Sepúlveda

and
s.selectα(j) ≡ t.select`(s`.selectc(j)).

If we now define ` = t[i], then we have

s.access(i) ≡ m.select`(s`.access(t.rank`(i))).

Space Usage and Operation Times. Barbay et al. [?] have shown that nH0(t) +∑p−1
i=0 n` lg σ` ≤ nH0(s)+o(n). This means that if we use a zero-order compressed

rank/select data structure for t, and then represent every s` even in uncompressed
form, we obtain zero-order compression for the input string s. Recall that p ≤
dlg2 ne, hence the alphabets of t and m are poly-logarithmic. Thus, a multi-ary
wavelet tree [?] is used for t and m, obtaining O(1) time for rank, select, and access.

The space usage is nH0(t) + o(n) bits for t, and O
(
n lg lgn

lgn

)
H0(s) = o(n)H0(s)

bits for m. For s`, if we use Golynski et al. data structure [?] we obtain a space

usage of n` lg σ` +O
(
n` lg σ`

lg lg lgn

)
bits per partition, and support operation select in

O(1) time for s`, whereas rank and access are supported in O(lg lg σ) time for s`.
Overall, the space is nH0(s)+o(n)(H0(s)+1) bits, operation select is supported

in O(1) time, whereas operations rank and access on the input string s are
supported in O(lg lg σ) time (see [?] for details and further trade-offs).

Practical Considerations. In practice, the sparse partitioning defined in Equation
(2) is replaced by an scheme such that for any α ∈ Σ, m[α] = blg r(α)c. Here
r(α) denotes the ranking of symbol α according to its frequency (that is, the
most-frequent symbol has ranking 1, and the least-frequent one has ranking σ).
Thus, the first partition contains only one symbol (the most-frequent one), the
second partition contains two symbols, the third contains four symbols, and so
on. Hence, there are p = blg σc partitions. This approach is called dense [?].
Another practical consideration is to have a parameter `min for dense, such that
the top-2`min symbols in the ranking are represented directly in t. That is, they
are not represented in any partition. Notice that the original dense partitioning
can be achieved by setting `min = 1.

3 A Practical Alphabet-Partitioning Rank/Select Data
Structure

The alphabet-partitioning approach was originally devised to speed-up decom-
pression [?]. Barbay et al. [?] showed that alphabet partitioning is also effective
for supporting operations rank and select on strings, being also one of the most
competitive approaches in practice. Next we introduce an alternative implemen-
tation of alphabet partitioning, which is able to trade operation-access efficiency
for rank/select efficiency.

The main idea is as follows: in the original proposal, mapping t (introduced in
Section 2.3) is represented with a multiary wavelet tree [?], supporting rank, select,
and access in O(1) time, since t has alphabet of size O(polylog(n)). However,

A Practical Alphabet-Partitioning Rank/Select Data Structure 5

as far as we know, there is no efficient implementation of multiary wavelet
trees in practice. Indeed, Barbay et al. [?] use a WT in their experiments,
whereas the sdsl library [?] uses a Huffman-shaped WT by default for t. We
propose an implementation of the alphabet-partitioning approach that is faster
in practice: rather than having a global mapping t, we distribute the workload
among partitions. This shall allow us to use a simpler and faster approach (for
instance, a single bit vector per partition) that replaces t.

3.1 Data Structure Definition

Our scheme consists of the mapping m and the subalphabets subsequences s` for
each partition `, just as originally defined in Section 2.3. In our case, however,
we disregard mapping t, and replace it by a bit vector B`[1..n] per partition `
of the original alphabet. We set B`[i] = 1 iff s[i] ∈ Σ` (or, equivalently, it holds
that m.access(s[i]) = `). Notice that Bj has nj 1s.

Given a symbol α ∈ Σ mapped to subalphabet ` = m.access(α), let c =
m.rank`(α) be its representation in Σ`. Hence, we define:

s.rankα(i) ≡ s`.rankc(B`.rank1(i)).

Also,

s.selectα(j) ≡ B`.select1(s`.selectc(j)).

Unfortunately, operation s.access(i) cannot be supported efficiently by our
approach: since we do not know symbol s[i], we do not know the partition j such
that Bj [i] = 1. The alternative is to check every partition, until for a given ` it
holds that B`[i] = 1. Once this partition ` has been determined, we compute

s.access(i) ≡ m.select`(s`.access(B`.rank1(i))).

Although in general our implementation does not support access efficiently,
there are still relevant applications where this operation is not needed, such
as computing the intersection of inverted lists [?,?,?], or computing the term
positions for phrase searching and positional ranking functions [?].

Besides, many applications need operation access to obtain not just a single
symbol, but a snippet s[i..i + L − 1] —e.g., snippet-generation tasks [?,?]. In
this case, one needs operation access to obtain not just a single symbol, but a
snippet s[i..i+L− 1] of L consecutive symbols in s. Let us call s.snippet(i, L) the
corresponding operation. Rather than using operation access L times to obtain
the desired symbols, we define Algorithm 1. The idea is that for each partition
j = 0, . . . , p−1, we obtain the symbols contained in s[i..i+L−1] that correspond
to this partition. Line 4 of the algorithm computes the number of symbols to be
extracted from this partition. Operation select on Bj is used to determine the
position of each symbol within the snippet, as it can be seen in Line 7.

6 D. Arroyuelo and E. Sepúlveda

Algorithm 1: snippet(i, L)

1: Let S[1..l] be an array of symbols in Σ.
2: for j = 0 to p− 1 do
3: cur ← Bj .rank1(i− 1)
4: count← Bj .rank1(i+ L− 1)− cur
5: for k = 1 to count do
6: cur ← cur + 1
7: S[Bj .select(cur)− i+ 1]← m.selectj(sj .access(cur))
8: end for
9: end for

10: return S

3.2 Analysis of Space Usage and Query Time

If we use the SDarray representation of Okanohara and Sadakane [?] to represent

the bit vectors B`, their total space usage is
∑p−1
i=0 (ni lg n

ni
+ 2ni + o(ni)). Notice

that
∑p−1
i=0 ni lg n

ni
= nH0(t), according to Equations (1) and (3). Also, we have

that 2
∑p−1
i=0 ni = 2n. Finally, for

∑p−1
i=0 o(ni) we have that each term in the sum

is actually O(ni/ lg ni) [?]. In the worst case, we have that every partition has
ni = n/p symbols. Hence, ni/ lg ni = n/(p lg n

p), which for p partitions yields

a total space of O(n/ lg n
p) bits. This is o(n) since lg n

p ∈ w(1). In our case,

p ≤ lg2 n, hence
∑p−1
i=0 o(ni) ∈ o(n).

Summarizing, bit vectors B` require n(H0(t) + 2 + o(1)) bits of space. This is
2 extra bits per symbol when compared to mapping t from Barbay et al.’s original
approach [?]. The whole data structure uses nH0(s) + 2n+ o(n)(H0(s) + 1) bits.

Regarding operation times, s.select can be supported in O(1) time (by using
the SDarray from Section 2.1). Operation s.rank can be supported in O(lg n)
worst-case time: if ni = O(

√
n), operation Bi.rank takes O(lg n

ni
) = O(lg n) time.

Algorithm snippet takes O(
∑p−1
i=0 lg n

ni
+ L lg lg σ) time. The sum

∑p−1
i=0 lg n

ni
is

maximized when ni = n/p = n/ lg2 n. Hence,
∑p−1
i=0 lg n

ni
= O(lg2 n · lg lg n), thus

the total time for snippet is O(lg2 n · lg lg n + L lg lg σ) = O((L + lg2 n) lg lg n).
As a comparison, using operation access to extract the snippet would yield time
O(pL) = O(L lg2 n). When L = Θ(lg lg n), both approaches are asymptotically
similar. However, as soon as L = ω(lg lg n), the time for algorithm snippet is
O((ω(lg lg n) + lg2 n) lg lg n), versus O(ω(lg lg n) · lg2 n) of operation access. Thus,
for sufficiently long snippets, operation snippet is faster than using access.

Regarding construction time, bit vectors Bi can be constructed in linear
time: we traverse string s from left to right; for each symbol s[j], determine its
partition i and push-back the corresponding symbol in si, and position j into
an extendible array [?]. Afterwards, the SDarray for Bi is constructed from this
array. Extendible arrays can be implemented to obtain good performance in
practice [?], so this imposes no restrictions to our approach.

A Practical Alphabet-Partitioning Rank/Select Data Structure 7

4 Experimental Results and Applications

4.1 Experimental Setup

We implemented our data structure following the sdsl library [?]. Our source
codes were compiled using g++ with flags -std=c++11 and -O3. Our source code
can be downloaded from https://github.com/ericksepulveda/asap. We run
our experiments on an HP Proliant server running an Intel(R) Xeon(R) CPU
E5-2630 at 2.30GHz, with 6 cores, 15 MB of cache, and 48 GB of RAM.

We used a 3.0 GB prefix of the Wikipedia (dump from August 2016). We
removed the XML tags, leaving just the text. The text has 8,468,328 distinct words.
We represent every word using a 32-bit unsigned integer, resulting in 1.9 GB of
space. The zero-order empirical entropy of this string is 12.45 bits.

We tested sparse and dense partitioning, the latter with parameter `min = 1
(i.e., the original dense partitioning), and `min = lg lg σ = lg 23 (which corre-
sponds to the partitioning scheme currently implemented in sdsl). The number
of partitions generated is 476 for sparse, 24 for dense `min = 1, and 46 for
dense `min = lg 23.

4.2 Experimental Results for Basic Operations

For operations rank and select, we tested two alternatives for choosing the symbols
on which to base the queries:

Random Symbols: 30,000 alphabet symbols generated uniformly at random.
Query-log Symbols: we use the query log from the TREC 2007 Million Query

Track 3. We removed stopwords, and used only the words that exist in the
alphabet. Overall we obtained 29,711 words (not necessarily unique).

For rank operation, we generate uniformly at random the positions where the
query is issued. For select, we search for the j-th occurrence of a given symbol,
with j generated at random (we are sure that there are at least j occurrences of
the queried symbol). For operation access, we generate text positions at random.

Figures 1 and 2 show the experimental results for operations rank and select,
comparing with the most efficient approaches from the sdsl. We name ASAP
our approach, after agile and succinct alphabet partitioning. We show several
combinations for mapping m and sequences s`, as well as several ways to carry
out the alphabet partitioning. For instance, the label ASAP gmr-wm (D 23)
corresponds to the scheme using Golynski et al. data structure [?] (gmr wt<> in
sdsl) for s`, a wavelet matrix for mapping m, and dense `min = lg 23 partitioning.
Label ASAP gmr-wm (D) is the same approach as before, this time using the
original dense partitioning. The sparse partitioning is indicated with “(S)” in
the labels. Bit vectors B` are implemented using sd vector<> from sdsl, which
corresponds to the SDArray data structure [?]. We show only the most competitive
combinations. The original alphabet partitioning scheme is labeled AP in the

3 https://trec.nist.gov/data/million.query07.html

8 D. Arroyuelo and E. Sepúlveda

plots. We used the default scheme from sdsl, which implements mappings t and
m using Huffman-shaped WTs, and the sequences s` using wavelet matrices. The
alphabet partitioning used is dense `min = lg 23. This was the most competitive
combination for AP in our tests.

 0

 2

 4

 6

 8

 10

 12

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation rank - Random Queries

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation rank - Query Log

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

Fig. 1. Experimental results for rank. The x axis starts at H0(s) = 12.45 bits.

As it can be seen, ASAP yields interesting trade-offs. In particular, for select on
random symbols, alternative ASAP gmr-wm (D 23) uses 1.11 times the space of AP,
and reduces the average time per select by 79.50% (from 9.37 to 1.92 microseconds
per select). For query-log symbols, we obtain similar results. However, in this case
there is another interesting alternative: ASAP wm-ap (S) uses only 1.01 times
the space of AP, and reduces the average select time by 38.80%. For rank queries
we improve query time between 4.78% (ASAP wm-wm (S)) to 17.34% (ASAP
gmr-wm (D 23)). In this case the improvements are smaller compared to select.
This is because operation rank on bit vectors sd vector<> is not as efficient as

A Practical Alphabet-Partitioning Rank/Select Data Structure 9

 0

 5

 10

 15

 20

 25

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation select - Random Queries

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

 0

 5

 10

 15

 20

 25

 30

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation select - Query Log

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

Fig. 2. Experimental results for select. The x axis starts at H0(s) = 12.45 bits.

10 D. Arroyuelo and E. Sepúlveda

select [?]. Overall, ASAP gmr-wm (D 23) improves ASAP by 79.50% for operation
select, and 17.34% for operation rank, using 1.11 times the space of ASAP.

Figure 3 shows experimental results for operation access. As expected, we
cannot compete with the original AP scheme. However, we are still faster than
RRR WT, and competitive with GMR [?] (yet using much less space).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation access

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

Fig. 3. Experimental results for access. The x axis starts at H0(s) = 12.45 bits.

4.3 Application 1: Snippet Extraction

We study next the snippet extraction task, common in text search engines [?,?].
In our experiments we tested with L = 100 (see Figure 4). As it can be seen,
we are able to reduce the time per symbol considerably (approximately by 75%)
when compared with operation access, making our approach more competitive
for snippet extraction. It is important to note that operation Bj .select in line
7 of Algorithm 1 is implemented using the select operation provided by the
sd vector<> implementation. A more efficient approach in practice would be to
have an iterator that allows one to obtain the desired 1 bits in segment [i..i+L−1]
of the bit vectors, without repeatedly using operation select. This iterator is still
not provided by the sdsl library and would not be effective for sd vector<>, it
could be a good idea for another kind of bit vectors.

4.4 Application 2: Intersection of Inverted Lists

Another relevant application of rank/select data structures is that of intersect-
ing inverted lists. A previous work [?] has shown that one can carry out the
intersection of inverted lists by representing the document collection (seen as
a single string) with a rank/select data structure. Figure 5 shows experimental
results for intersecting inverted lists. We implemented the variant of intersection
algorithm tested by Barbay et al. [?]. As it can be seen, ASAP yields important
improvements in this application: using only 2% extra space, ASAP wm-wm (S) is

A Practical Alphabet-Partitioning Rank/Select Data Structure 11

 0

 2

 4

 6

 8

 10

 12

 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
cs

/o
pe

ra
tio

n)

Bits per symbol

Operation snippet - 100 symbols

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
RRR WT

WM
ASAP gmr-wm (D 23)

ASAP gmr-wm (D)
ASAP wm-ap (S)

ASAP wm-huff_int (D 23)
ASAP wm-wm (S)

Fig. 4. Experimental results for extracting snippets of length L = 100. The x axis
starts at H0(s) = 12.45 bits.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 15 20 25 30 35 40 45 50

A
vg

 ti
m

e
ta

ke
n

in
 m

s

Bits per symbol

Intersection

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
WM

ASAP gmr-wm (D 23)
ASAP gmr-wm (D)

ASAP wm-ap (S)
ASAP wm-huff_int (D 23)

ASAP wm-wm (S)

Fig. 5. Experimental results for inverted list intersection. Times are in milliseconds.
The x axis starts at H0(s) = 12.45 bits.

12 D. Arroyuelo and E. Sepúlveda

able to reduce the intersection time of AP by 60.67%. This is a promising result:
our query time (of around 16 milliseconds per query) is competitive with that of
inverted indexes for BM25 query processing in IR (around 12 milliseconds per
query is the usual time reported in the literature [?,?]). There are, also, faster and
smaller compression approaches for inverted indexes for the case of re-enumerated
document collections [?], like the highly efficient Partitioned Elias-Fano (PEF)
[?] . In this particular case, 16 milliseconds per query is not competitive with
PEF. Neither is the space usage. However, it is worth to remind that within the
space of the H0-compressed text, we are also implicitly storing the inverted index.
This can be used not only to extract snippets, but also to look for positional
information, substituting positional inverted indexes (or full inversions) [?], all
within the same space. This would make our data structure more competitive.

4.5 Application 3: Distributed Computation of rank and select

The partitions generated by the alphabet partitioning approach are amenable
for the distributed computation of batches of rank and select operations. In a
distributed query processing system, a specialized node is in charge of receiving
the query requests (this is called the broker), and then distributes the computation
among the computation nodes (or simply processors). We study how to support
the fast computation of batches of rank and select queries using the original AP
approach and our proposal (ASAP).

A simple approach for operation rank would be to partition the input string
into equal-size chunks, and let each processor deal with one chunk. To support
the distributed computation of rank, the processor storing the ith chunk, from
the left, also stores the rank of each symbol up to chunk i− 1. The space needed
to store these ranks is O(σ lg n) bits per processor, which is impractical for big
alphabets (as the ones we are testing in this paper). Also, this works only for
operation rank, yet not for select. Next, we consider more efficient approaches in
general.

A Distributed Query-Processing System Based on AP. The subalphabet sequences
s` are distributed among the computation nodes, hence we have p processors in
the system. We also have a specialized broker, storing mappings m and t. This
is a drawback of this approach, as these mappings become a bottleneck for the
distributed computation.

A Distributed Query-Processing System Based on ASAP. In this case, the subal-
phabet sequences s` and the bit vectors B` are distributed among the computation
nodes. Unlike AP, now each computation node acts as a broker: we only need to
replicate mapping m on them. The overall space usage is O(pσ lg lg p) if we use an
uncompressed WT for m. This is only O(σ lg lg p) = o(n)H0(s) bits per processor
[?]. In this simple way, we avoid having a specialized broker, but distribute the
broker task among the computation nodes. This avoids bottlenecks at the broker,
and can make the system more fault tolerant.

A Practical Alphabet-Partitioning Rank/Select Data Structure 13

Queries arrive at a computation node, which uses mapping m to distribute
it to the corresponding computation node. For operation s.access(i), we carry
out a broadcast operation, in order to determine for which processor `, B`[i] = 1;
this is the one that must answer the query. For extracting snippets, on the other
hand, we also broadcast the operation to all processors, which collaborate to
construct the desired snippet using the symbols stored at each partition.

Comparison. The main drawback of the scheme based on AP is that it needs a
specialized broker for m and t. Thus, the computation on these mappings is not
distributed, lowering the performance of the system. The scheme based on ASAP,
on the other hand, allows a better distribution: we only need to replicate mapping
m in each processor, with a small space penalty in practice. To achieve a similar
distribution with AP, we would need to replicate m and t in each processor,
increasing the space usage considerably (mainly because of t). Thus, given a
fixed amount of main memory for the system, the scheme based on ASAP would
be likely able to represent a bigger string than AP. Table 1 shows experimental
results on a simulation of these schemes. We only consider computation time,
disregarding communication time. As it can be seen, ASAP uses the distributed

Table 1. Experimental results for the distributed computation of operations on a string.
Times are in microseconds per operation, on average (for extracting snippets, it is
microseconds per symbol). For rank and select, the symbols used are from our query log.
Scheme ASAP implements the sequences s` using wavelet matrices, whereas mapping
m is implemented using a Huffman-shaped WT. The partitioning is dense `min = lg 23.
The number of partitions (i.e., computation nodes in the distributed system) is 46.

Operation
ASAP AP

AP/ASAP
Time Speedup Time Speedup

rank 0,373 8.03 1.310 1.91 3.51
select 0.706 8.41 2.970 2.55 4.21
access 1.390 8.11 2.130 1.45 1.53
snippet 0.466 6.96 0.939 1.25 2.02

system in a better way. The average time per operation for rank and select are
reduced by about 71% and 76%, respectively, when compared with AP. For
extracting snippets, the time per symbol is reduced by about 50%. Although
the speedup for 46 nodes might seem not too impressive (around 7–8), it is
important to note that our experiments are just a proof of concept. For instance,
the symbols could be distributed in such a way that the load balance is improved.

5 Conclusions

Our alphabet-partitioning rank/select data structure offers interesting trade-offs
in practice. Using slightly more space than the original alphabet-partitioning

14 D. Arroyuelo and E. Sepúlveda

data structure from [?], we are able to reduce the time for operation select by
about 80%. The performance for rank can be improved between 4% and 17%.
For the inverted-list intersection problem, we showed improvements of about
60% for query processing time, using only 2% extra space when compared to
the original alphabet-partitioning data structure. This makes this kind of data
structures more attractive for this relevant application in information retrieval
tasks. We also studied how the alphabet-partitioning data structures can be used
for the distributed computation of batches of rank, select, access, and snippet
operations. As far as we know, this is the first study about the support of
these operation on a distributed-computing environment. In our experiments,
we obtained speedups from 6.96 to 8.41, for 46 processors. This compared
to 1.25–2.55 for the original alphabet-partitioning data structure. Our results
were obtained simulating the distributed computation, hence considering only
computation time (and disregarding communication time). The good performance
observed in the experiments allows us to think about a real distributed-computing
implementation. This is left for future work, as well as a more in-depth study that
includes aspects like load balance and total communication time, among others.
As another interesting future work, it would be interesting to study how our data
structure behaves with different alphabet sizes, as well as how it compares with
approaches like the one used by Gog et al. [?].

