## RDF and Inconsistency

Claudio Gutierrez, Carlos Hurtado

Center for Web Research

Computer Science Department Universidad de Chile

www.ciw.cl

Contents

- The context
- RDF formal model
- RDFS and OWL
- Consistency issues

#### The context

#### Semantic Web

- Give semantics to the information on the Web
- Make information on the Web machine-processable
- Database point of view:
- Give structure to the information on the Web
- Build tools to process such data
- Deal with natural inconsistency of such data

#### A reflection

of a universal framework for the management of knowledge. [...] not attract much interest." logic. [...] But in academic logic, these practical Leibnizian tasks do Leibniz would be probably enthusiastic about this new arena of "[The Web] gives a completely new perspective to Leibniz's project

LNCS 2000. W. Thomas, in Dagstuhl Anniversary Conference, August 2000,

### RDF: ask Google...

sex 184.000.000 hits

java 32.900.000 hits

xml 19.200.000 hits

rdf 2.250.000 hits

inconsistency 662.000 hits

inconsistency + rdf 2.460 hits

6

#### Our focus

•

reasoning, proofs, etc.

OWL

RDF Schema

RDF

codification, transport, etc.

:

### RDF, RDFS and OWL

between them. These data model can be represented in XML RDF: basic data model for objects (resources) and relations

RDFS: a vocabulary for describing properties and classes of RDF

relations, cardinality, equality, etc.) OWL: more vocabulary for describing properties and classes (e.g.

## RDF: a moving target...

- Resource Description Framework (RDF) Model and Syntax Specification, Lassila O., Swick R. Eds.
- RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D., Guha R.V. Eds.
- RDF Semantics, P. Hayes, Ed.
- RDF/XML Syntax Specification (Revised), Beckett D. Ed.
- Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. Eds
- OWL Web Ontology Language 1.0 Reference, Dean M., McGuinness D.L., Patel-Schneider P.F., Stein L.A. Eds Connolly D., van Harmelen F., Hendler J., Horrocks I.,

### RDF Formal Model

U = infinite set of Uri references

 $B = \{b_j : j \in N\} \text{ (Blank nodes)}$ 

L = infinite set of literals

#### Definition

-  $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$  is called an RDF triple.

- An RDF graph is a set of RDF triples.

RDF and Inconsistency

## RDF Formal Model (cont.)

- A mapping is a function  $\mu: \text{UBL} \to \text{UBL}$  preserving urirefs and
- (called instance of G) -  $\mu(G)$  is the set of all  $(\mu(s), \mu(p), \mu(o))$  such that  $(s, p, o) \in G$
- renaming its blank nodes consistently. -  $G_1 \cong G_2$  (isomorphic, "equal") iff  $G_2$  is obtained from  $G_1$  by
- $G_2'\cong G_2 \text{ and } blank(G_2')\cap blank(G_1)=\emptyset.$ - The merge of two graphs  $G_1, G_2$  is defined as  $G_1 \cup G'_2$ , where

## RDF Formal Model (cont.)

 $G_1 \models G_2$ ) if and only if an instance of  $G_2$  is a subgraph of  $G_1$ . Theorem cf. RDF Semantics, Interpolation Lemma]  $G_1 \models G_2$  iff there is a mapping  $\mu$  such that  $\mu(G_2) \leq G_1$ . Let  $G_1, G_2$  be RDF graphs. Then  $G_1$  entails  $G_2$  (denoted

### RDF: flexible model

#### • Descriptions:

(John, loves, Maria)

### • Structured properties:

(Maria, address, Y)
(Y, street, Goethe St. )
(Y, city, Trier )

#### Reification:

(X, type, statement)

(X, subject, John)

(X, predicate, loves)

(X, object, Maria)

(X, TruthValue, false)

# RDF: expressiveness/complexity

- Expresiveness: fragment  $\exists$ ,  $\land$ , stat(X, Y, Z),  $c_1, c_2, \ldots$  of first
- Complexity: Deduction for RDF is NP-complete (Proof: codify subgraph isomorphism problem).

### RDF: alt. formalization

view: Embedd RDF in F-logic (Yang, Kifer). Some differences with W3C

- Not same notion of deduction (although can simulate W3C notion):  $G_1 \models G_2$  iff  $G_2$  is isomorphic to a subgraph of  $G_1$
- Reification: statements are given identifiers (versus references to the components of a statement).

## Vocabulary: RDF Schema

#### A. Classes:

rdfs:Resource

rdfs:Literal

rdf:XMLLiteral

rdfs:Class

rdf:Property

rdfs:Datatype

rdf:Statement

rdf:Bag

rdf:Seq

rdf:Alt

rdfs:Container

rdfs:ContainerMembershipProperty

rdf:List

## Vocabulary: RDF Schema

#### B. Properties:

rdf:type The subject is an instance of a class.

rdfs:subClassOf The subject is a subclass of a class.

rdfs:domain A domain of the subject property. rdfs:subPropertyOf The subject is a subproperty of a property.

rdfs:range A range of the subject property.

rdfs:label A human-readable name for the subject.

rdfs:comment A description of the subject resource.

rdf:first The first item in the subject RDF list rdfs:member A member of the subject container

rdf:rest The rest of the subject RDF list after the first item.

## Vocabulary: RDF Schema

#### Properties (cont.):

rdf:object The object of the subject RDF statement rdfs:isDefinedBy The definition of the subject resource rdf:predicate The predicate of the subject RDF statement. rdf:subject The subject of the subject RDF statement rdf:value Idiomatic property used for structured values rdfs:seeAlso Further information about the subject resource

# Ontology Web Language (OWL)

- -(In)Equality: equivalentClass, equivalentProperty, sameIndividualAs, differentFrom, allDifferent
- Property Charact.: inverseOf, TransitiveProperty, InverseFunctionalProperty SymmetricProperty, FunctionalProperty,
- Prop. Type Restrictions: all Values From, some Values From
- Restricted Cardinality: minCardinality, maxCardinality, cardinality
- Header Information: imports, priorVersion, backwardCompatibleWith, incompatibleWith
- -Class intersection: intersectionOf
- Datatypes

### RDF and Inconsistency

- RDF gives a semantic layer to the web (base to reasoning)
- avoid axioms and predefined vocabulary) - General design philosophy: as simple as possible (in particular,
- Challenge: tackle logical inconsistencies of information on the

### RDF and Inconsistency

Logical inconsistencies in RDF specifications?

- Answer 1: No, there is no negation.
- Answer 2: No. But in any reasonable extension, yes.
- Answer 3: Yes and no (inconsistent...)

### Issue I: conjunction

- Inconsistency needs negation + conjunction
- There are (at least) two kinds of conjunction on the Web:
- two statements inside a page
- two statements in different pages
- Example:
- In Amazon, Neruda's "20 Love Poems" has two different ISBN: Inconsistency
- same book. Disagreement Amazon and "Cheap Books" have different ISBN for the

#### Issue I (cont.)

- Two concepts:
- same source) - Inconsistency (two contradictory statements made in the
- contradictory.) - Disagreement (two statements that -forgetting its source- are
- Two related concepts in RDF
- graph
- merge of graphs
- Logical counterpart: two kinds of conjunctions:  $\land$ ,  $\land$ (compare: "The SW needs two kinds of negation" G. Wagner)

## Issue II: what is to be done?

#### Classical:

- Facts: inconsistency is an exception

- Goal: Avoid inconsistency

- Idea: Use adequate logic and/or makeup you KB

- Procedure: implement the algorithms

#### • Web setting:

- Facts: consistency is an exception

- Goal: Work in the presence of inconsistencies

- Idea: Build ontologies to deal with conceptual tools (logics, KB makeup, preferences, etc.)

- Procedure: search for the "right" mechanism for particular

### Issue II: example

- Leo Bertossi's Page is trustable
- Leo Bertossi's Page is not trustable
- favorite method (ontology) - Look in Yellow Pages of anti-inconsistency tools and choose your
- Run hubs and authorities alg. on certain pages
- Use catalog of trustable people
- Do not use this info in further reasoning
- Use preferences

## Issue III: Adding constraints

- General philosophy of RDF: avoid axioms that constraint the meaning of its vocabulary.
- Not true in OWL, for example:
- FunctionalProperty and InverseFunctionalProperty
- sameIndividualAs and differentFrom
- Use standard machinery to deal with inconsistency in OWL: Inconsistency and Description Logics

### Issue IV: References

## Reification, "published subjects"

- Sources of RDF data on the Web: Web pages, Data sources (dynamic Web pages)
- RDF statements must be somewhere located
- u? or "uri u states triple (s, p, o)"? - Is it reasonable to have a predicate "triple (s, p, o) belongs to uri
- Several levels of statements, paradoxes

# Issue IV: Example: a "paradox"

Reification of a triple (a, b, c) by reference:

 $(X, \mathtt{type}, \mathtt{statement})$ 

 $(X,\mathtt{subject},a)$ 

 $(X, \mathtt{predicate}, b)$ 

 $(X, \mathtt{object}, c)$ 

#### A "paradox":

 $(X, \mathtt{type}, \mathtt{statement})$ 

 $(X, \mathtt{truthValue}, \mathtt{false})$ 

 $(X,\mathtt{subject},X)$ 

 $(X, \mathtt{predicate}, \mathtt{truthValue})$ 

 $(X, \mathtt{object}, \mathtt{false})$ 

# Issue V: RDF graphs as databases

Idea: RDF Graph = database

- RDF graph = standard relational table
- Key difference: presence of blank nodes
- Database: set of RDF graphs (Warning!)

minimal constraints at the data level. But, if we view RDF graphs a databases, it is natural to add

### Issue V: Example

Constraints for Reification. Need axioms like:

 $\mathtt{stat}(a,b,c)\Leftrightarrow \\ \mathtt{stat}(X,\mathtt{subject},a) \\ \mathtt{stat}(X,\mathtt{predicate},b) \\ \mathtt{stat}(X,\mathtt{object},c)$ 

plus functional dependencies like:

 $X \to Y \text{ for stat}(X, \text{subject}, Y), \text{ etc.}$ 

What to do if we find two subjects for a statement?

Database issue; not (yet) deductive issue

### Issue VI: Aggregation

- Aggregation as source of inconsistencies on the Web
- torms of processing available RDF info - Not only issue of lost pages, non-accesible sites, but different
- Not easy to define aggregation (even at elementary levels) in RDF. "aggregate relations" instead of aggregate functions?
- count the number of Joe brothers brothers, but no name is specified. There is no consistent way to - Example: Joe belongs to the class of people having exactly 3
- (Ex. from Fikes, Hayes, Horrock, DQL)

The End

Ideas, comments, pointers, very welcomed

Thanks for your time!