

http://prisma.dcc.uchile.cl

http://siret.ms.mff.cuni.cz

Non-Metric Similarity Search Problems in Very Large Collections

Benjamin Bustos, University of Chile Tomáš Skopal, Charles University in Prague

Outline of the tutorial

Benjamin

- Introduction
- The non-metric case of similarity
- Case study 1 image retrieval
- Case study 2 time series retrieval

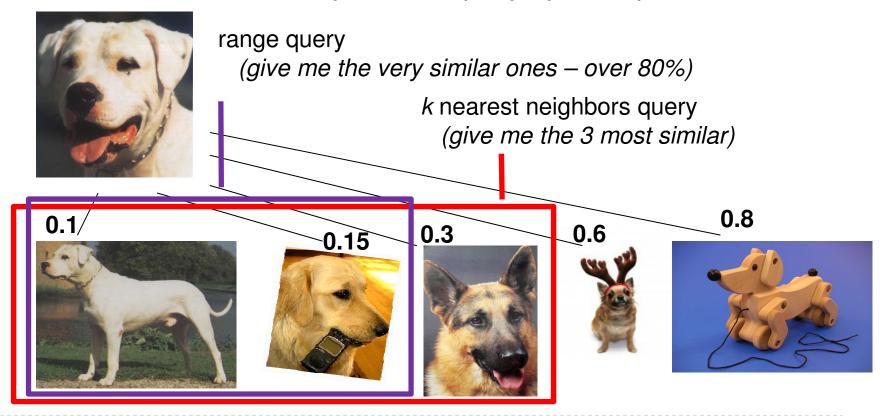
Tomáš

- Case study 3 protein retrieval
- Indexing non-metric spaces
- Challenges

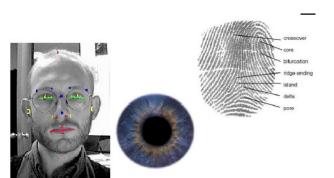
also see the survey [Skopal & Bustos, 2011]

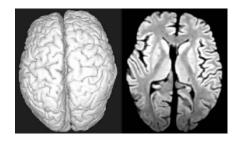
Similarity search

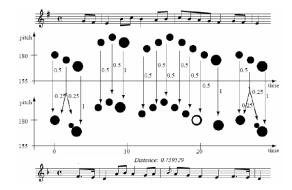
- Search for "similar objects" (subjective)
- Content-based similarity search: query by example:



- Application examples of similarity search
 - Multimedia retrieval
 - Scientific databases
 - Biometry
 - Pattern recognition
 - Manufacturing industry
 - Cultural heritage
 - Etc.







Metric similarity

- ▶ Dissimilarity function δ (the distance), universe **U**, database **S** \subset **U**, objects x,y,z \in **U**
- The higher $\delta(x,y)$, the more dissimilar objects x,y are

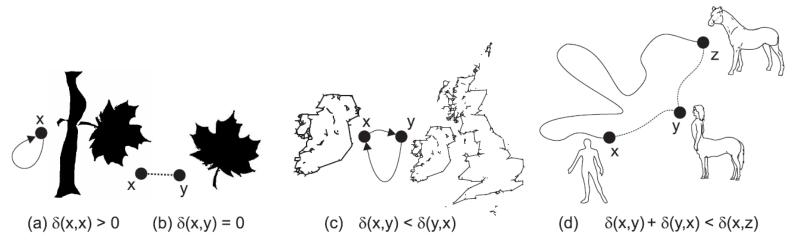
Topological properties

$$\begin{split} \delta(x,y) &= 0 \Leftrightarrow x = y & \text{identity} \\ \delta(x,y) &\geq 0 & \text{non-negativity} \\ \delta(x,y) &= \delta(y,x) & \text{symmetry} \\ \delta(x,y) + \delta(y,z) &\geq \delta(x,z) & \text{triangle inequality} \end{split}$$

Pros of metric approach

- Well-studied in mathematics (many known metrics)
- Postulates support common assumptions on similarity
- Allows efficient indexing and search (metric indexing)

- Cons of metric approach:
 - It may not correctly model the "human" notion of similarity



- Reflexivity and non-negativity:
 - □ single object could be viewed as self-dissimilar
 - □ two distinct object could be viewed as identical
- Symmetry comparison direction could be important
- Triangle inequality similarity is not transitive

- What is non-metric?
 - Generally: a distance function that does not satisfy some (or all) properties of a metric
- This could include:
 - Context-dependent similarity functions
 - Dynamic similarity functions
- For this tutorial: similarity functions that are "contextfree and static"
 - Similarity between two objects is constant whatever the context is, i.e., regardless of time, user, query, other objects in database, etc.

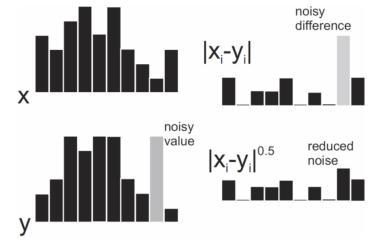
Motivation

Robustness

 A robust function is resistant to outliers (noise or deformed objects), that would otherwise distort the similarity distribution within a given set of objects

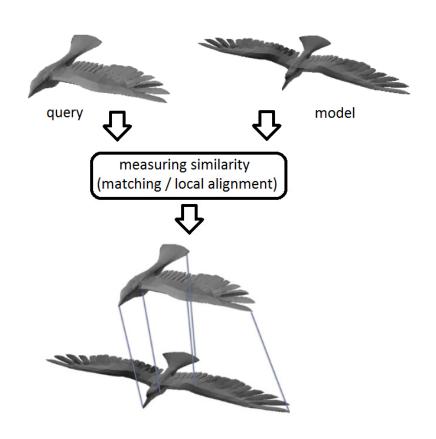
Having objects x and y and a robust function δ , an extreme change in a small part of x's descriptor should not imply an

extreme change of $\delta(x,y)$.



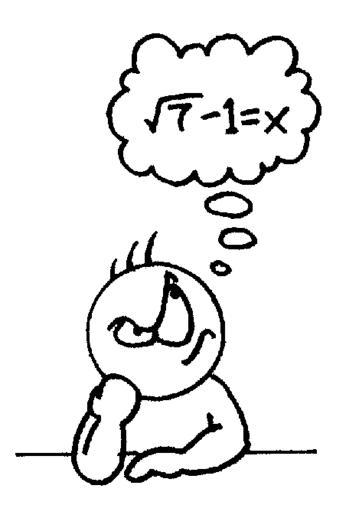
Motivation

- Locality
 - A locally sensitive function is able to ignore some portions of the compared objects
 - The locality is usually used to privilege similarity before dissimilarity, hence, we rather search for similar parts in two objects than for dissimilar parts



Motivation

- Comfort/freedom of modeling
 - The task of similarity search should serve just as a computer based tool in various professions
 - Domain experts should not be bothered by some "artificial" constraints (metric postulates)
 - Enforcement of metric may represent an unpleasant obstacle
 - Freedom of modeling
 - Complex heuristic algorithms
 - □ Black-box similarity



- Examples of general non-metric functions
 - ▶ Fractional Lp distances (p<1) ➤ Sequence alignment distance</p>

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p} \delta_{SAD}(x,y,i,j) = \min \begin{cases} c(x_i,y_j) + \delta_{SAD}(x,y,i+1,j+1) \\ c(-,y_j) + \delta_{SAD}(x,y,i,j+1) \\ c(x_i,-) + \delta_{SAD}(x,y,i+1,j) \end{cases}$$

Cosine similarity

$$s_{\cos}(x,y) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2 \cdot \sum_{i=1}^{d} y_i^2}}$$

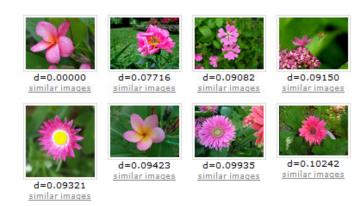
Earth Mover's distance

$$\delta_{EMD}(x,y) = \min \left\{ \sum_{i=1}^{d} \sum_{j=1}^{d} c_{ij} f_{ij} \right\}$$
subject to
$$f_{ij} \geq 0$$

$$\sum_{i=1}^{d} f_{ij} = y_j \ \forall j = 1, \dots, d$$

$$\sum_{j=1}^{d} f_{ij} = x_i \ \forall i = 1, \dots, d$$

▶ The problem: find similar images to a given one



Query specification: Text (metadata), Content-based,
 Sketch-based, combination

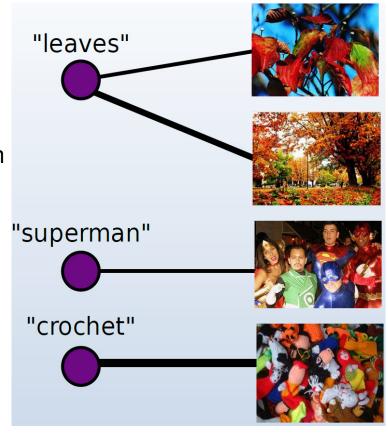
PRISMA Image Search: http://prisma.dcc.uchile.cl/ImageSearch/

- Image descriptors
 - High-level features: concepts
 - Metadata
 - □ Title, tags, etc.
 - Click information
 - □ Web-logs
 - □ Also carries semantic information

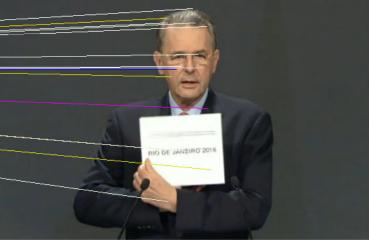
Title: She is a Lady

Description: Prissy, sun-lit. **Tags:** coker spaniel coker ... **Comments:** Prissy is beautiful....

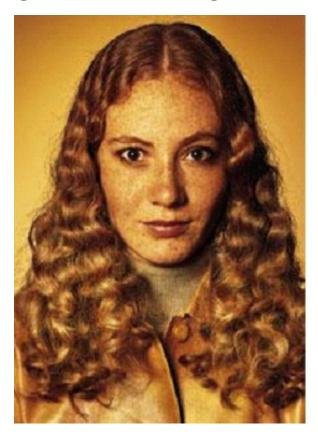
flickr



- Image descriptors
 - Low-level features: visual attributes
 - Color, texture, shape, edges
 - Global vs. local descriptors



- ▶ Big problem: semantic gap
 - Bridge between high and low features



(credit: Google)

- Non-metric functions for image retrieval
 - χ², Kullback-Leibler (KLD), Jeffrey divergence (JD)

$$\delta_{\chi^2}(x,y) = \sum_{i=1}^d \frac{x_i - m(i)}{m(i)}$$
 $m(i) = \frac{x_i + y_i}{2}$

$$\delta_{KLD}(x,y) = \sum_{i=1}^{d} x_i \cdot \log\left(\frac{x_i}{y_i}\right)$$

$$\delta_{JD}(x,y) = \sum_{i=1}^{d} x_i \cdot \log\left(\frac{x_i}{\frac{x_i + y_i}{2}}\right) + y_i \cdot \log\left(\frac{y_i}{\frac{x_i + y_i}{2}}\right)$$

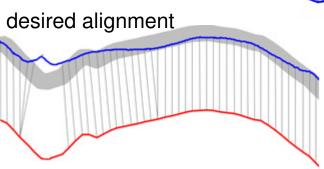
Better suited for image retrieval and classification than metric distances

- Non-metric functions for image retrieval
 - Dynamic Partial Function [Goh et al., 2002]

$$\delta_{DPF}(x,y) = \left(\sum_{c_i \in \Delta_m} |x_i - y_i|^p\right)^{1/p}, \ p \ge 1$$

- \triangleright Δ_m : set of m smallest coordinate differences
- Better for image classification than Euclidean distance
- Fractional Lp distances
 - Robust for image matching and retrieval
- Jeffrey divergence
 - Better than Euclidean distance for retrieval of tomographies

- The problem
 - Time series = ordered set of values
 - Given a set of time series, find similar ones
 - Find the optimal alignment
- ▶ L_p distance could be used, but: L_p "alignment"
 - Scaling/different dimensionality
 - Shift in time
 - Missing values
 - Outliers desired
 - Locality

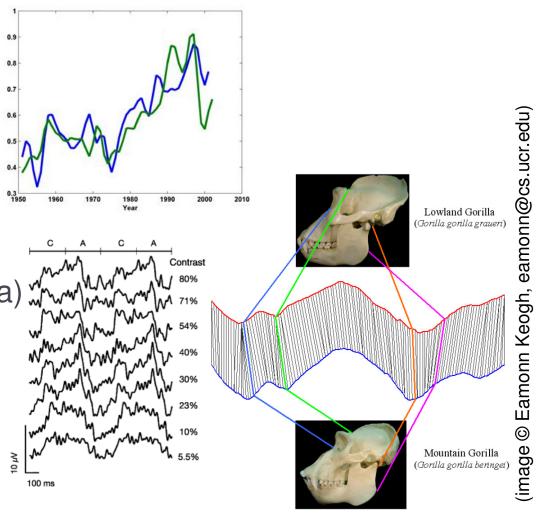


ICDE 2011, Hannover, Germany

desired alignment

Applications

- Financial analysis (e.g., stock prices)
- Medicine (e.g.,ECG, EEG)
- Scientific data
 (e.g., seismological analysis, climate data)
- Shape retrieval
- Many others...

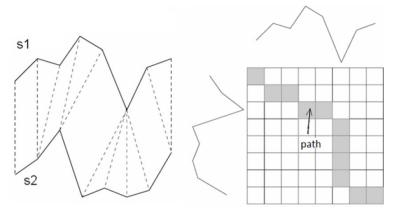


- Dynamic Time Warping (DTW) [Berndt and Clifford, 1994]
 - Sequences s₁, s₂

 - Matrix cell M_{i,i} is partial distance d(s₁, s₂)
 - Warping path $W = \{w_1, ..., w_t\}$, max $\{m, n\}$ \leq t \leq m + n -1, is a set of cells from M that are contiguous
 - \rightarrow W₁= M_{1,1}, W_t= M_{m,n} (boundary condition)
 - if $w_k = M_{a,b}$ and $w_{k-1} = M_{a',b'}$, then
 - \Box a $-a' \le 1$ b—b' ≤ 1 (continuity)
 - \Box a −a' ≥ 0 b−b' ≥ 0 (monotonicity)
 - DTW = L₂ distance on optimally aligned sequences (optimal warping path)
 - non-metric distance

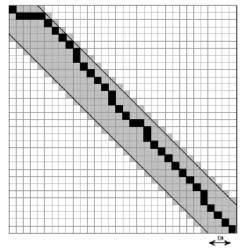
Sequences s₁, s₂

$$m \times n \text{ matrix M, where m} = |s_1|, n = |s_2| \qquad \delta_{DTW}(x, y) = \min_{W} \left\{ \sqrt{\sum_{k=1}^{t} w_k} \right\}$$
Matrix cell M, is partial distance d(s, s)

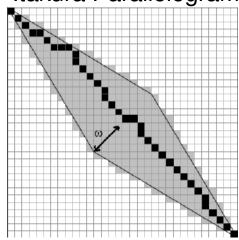


- Dynamic Time Warping (DTW)
 - Exponentially many warping paths, but can be computed in O(mn)*O(ground distance) time by dynamic programming
 - Constrained versions of DTW
 - Avoiding pathological paths
 - \Box A range parameter ω
 - \square By ω = 0, m=n, d(x,y) = |x-y| we get the Euclidean distance (just the diagonal warping path allowed)
 - ▶ DTW reduced complexity to $O((m+n)\omega)$
 - Sakoe-Chiba band warping paths are only allowed near the diagonal
 - Itakura Parallelogram "time warping" in the middle of sequences is allowed, but not at the ends

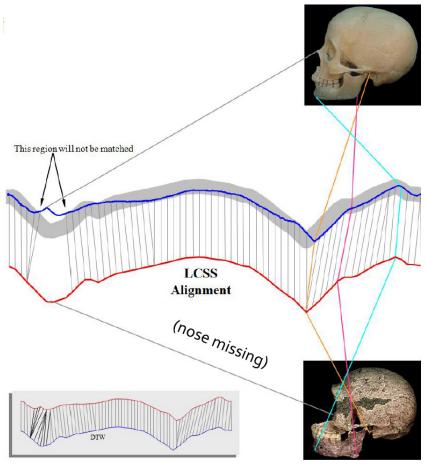
Sakoe-Chiba band



Itakura Parallelogram



- Longest Common Subsequence (LCS)
 - x is subsequence of y if there is a strictly increasing sequence of indices such that there is a match between symbols in x and y (not necessarily adjacent)
 - z is a common subsequence of x and y if it is a subsequence of both x and y
 - The longest common subsequence (LCS) is the maximum length common subsequence of x and y
 - non-metric (also similarity)

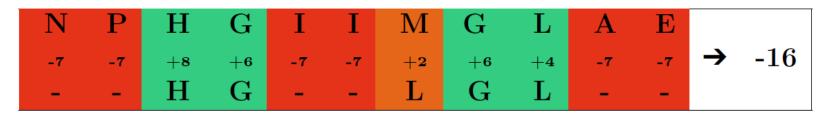


- ▶ Similar proteins → similar biological function
 - Many applications, like protein function/structure prediction (leading to, e.g., drug discovery)
- Protein sequences (primary structure)
 - Strings over 20-letter alphabet, i.e., symbolic chains of amino acids (AA)
 - Biologically augmented string similarity
 - Well-established model
- Protein structures (tertiary structure)
 - 3D geometry (polyline + local chemical properties)
 - Biologically augmented shape similarity
 - Closer to function than sequence, harder to synthesize

- Protein sequences
- String similarity (like edit distance) enhanced by scoring matrices (e.g., PAM, BLOSUM)
 - Score between two letters models the probability of mutating one amino acid into the other
- Needleman-Wunch (NW)
 - Global alignment a nonmetric measure if scoring matrix is nonmetric and/or sequences are of different lengths
 - Usually used for solving subtasks (e.g., when sequences are split into q-grams which are then indexed/searched)
- Smith-Waterman (SW)
 - Local alignment (nonmetric), more applicable than global alignment
 - ▶ BLAST approximate SW + an access method in one algorithm
 - Used for, e.g., function discovery, phylogenetic analysis, etc.

Example

Global alignment (Needlemann-Wunch)



Local alignment (Smith-Waterman)

ICDE 2011, Hannover, Germany

Protein structure

- Structure is more correlated to biological function than sequence (but harder to obtain)
- Similarity two-step optimization process
 - 1) Alignment of structures based on local properties/features
 - Shape properties (torsion angles between AAs, density of AAs, curvature, surface area)
 - Physico-chemical properties (hydrophobicity, AA volume)
 - Aggregation measure on top of the alignmentRMSD, TM-score
- Existing top algorithms for function assessment
 - ▶ DDPIn+iTM, PPM, Vorometric, TM-align, CE

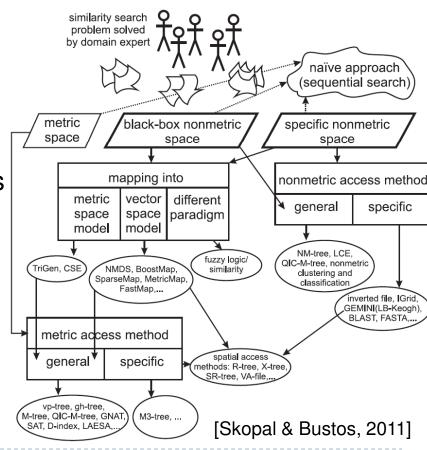
[Hoksza & Galgonek, 2010]



ICDE 2011, Hannover, Germany

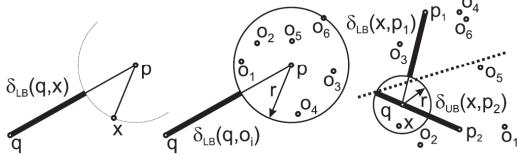
Indexing non-metric spaces – framework

- Need to search efficiently (fast query processing)
 - Access methods / indexes for similarity search
- Framework
 - Metric case similarity
 - MAM (metric access methods)
 - Useful for mapping approaches
 - General non-metric similarity
 - General NAM (nonmetric AM)
 - Black-box distance only
 - Specific non-metric similarity
 - Specific NAM
 - Additional knowledge needed



Indexing non-metric spaces – MAM

- The metric case (for completeness & mapping approaches)
 - Black-box metric distance δ needed
- Metric access methods (MAM), or metric indexes
 - Idea: pivot-based lower-bounding



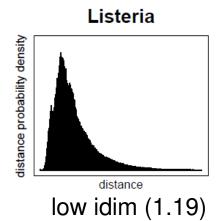
- Different implementations/designs [Zezula et al, 2005]
 - Dynamic/static database, serial/parallel/distributed platform, main/secondary memory, exact/approximate search
 - Index = set/hierarchy of metric regions, filtering
- Examples: M-tree family, pivot tables,
 vp-tree, GNAT, SAT, M-index, D-file, etc.

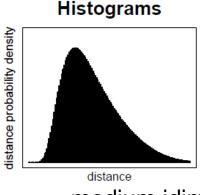
Indexing non-metric spaces

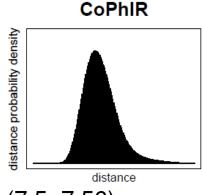
- MAM & intrinsic dimensionality
- The metric postulates alone are not a guarantee of efficient indexing
- The structure of distance distribution indicates the indexability of the database
 - Intrinsic dimensionality ρ(S,δ) (idim) an indexability indicator [Chávez et al., 2001]

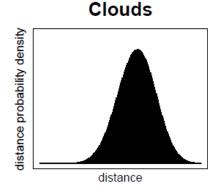
$$\rho(\mathbb{S}, \delta) = \frac{\mu^2}{2\sigma^2}$$

(μ and σ^2 are the mean and the variance of the distance distribution in **S** under δ)









medium idim (7.5, 7.56)

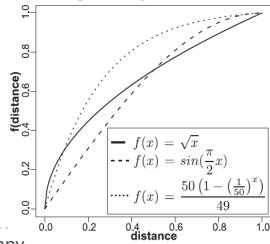
high idim (11.6)

Indexing non-metric spaces – mapping

- How to index non-metric spaces?
- Let's simplify the problem, turn them into metric ones!
- Mapping into an L_p space
 - Pros:
 "Easy" target space (cheap L_D distance, mostly Euclidean)
 - Cons:
 Approximate, static, computationally expensive mapping
- Variants of mappings into vector spaces
 - Assuming metric distance
 - FastMap, MetricMap, SparseMap, BoostMap
 - Allowing also nonmetric distance
 - Non-metric multidimensional scaling (NMDS) concept
 - Query-sensitive embedding (non-metric extension of BoostMap)

Indexing non-metric spaces - mapping

- Alternative mapping concept:
 - Do not transform whole space (the database $S + \delta$), but only the distance function δ , leaving S unchanged
 - Suppose semimetric distance δ (metric not satisfying triangle ineq.)
- How to turn semimetric δ into a metric?
 - ▶ Consider increasing function f, such that f(0)=0, and modification $f(\delta)$
 - i.e., f preserves the similarity ordering wrt any query
 - **Concave f increases the amount of triangle inequality in \delta**
 - ► However, concave f also increases the intrinsic dimensionality of (\mathbf{S} , f(δ)), when compared to (\mathbf{S} , δ)
- Hence, let's find a function f that is:
 - Concave enough to turn δ into metric,
 - yet keeping idim as low as possible



ICDE 2011, Hannover, Germany

Indexing non-metric spaces – mapping

TriGen algorithm [Skopal, 2007]

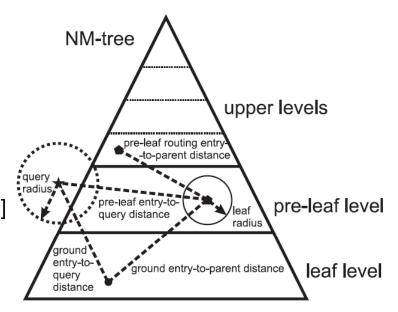
- "Metrization" of δ into $f(\delta)$
- Uses T-bases set of modifying functions f, additionally parameterizable by a concavity/ convexity weight w



- Uses T-error the proportion of non-triangle triplets
 - ightharpoonup Distance triplets sampled on S using $f(\delta)$
- Given a set of T-bases, δ and a sample of the database **S**, the algorithm finds the optimal **f** (T-base with w)
 - \triangleright f is a candidate if T-error is below a user-defined threshold θ
 - Among the candidates the one is chosen for which idim is minimal

Indexing non-metric spaces – general NAM

- NM-tree nonmetric M-tree
 - M-tree combined with TriGen algorithm
 - Allows to set the retrieval error vs. performance trade-off at query time
- ► The NM-tree idea [Skopal & Lokoč, 2008]
 - Using TriGen, find modifiers f_i for several
 T-error thresholds (including zero T-error)



- Build M-tree using the zero T-error modified distance (i.e., full metric)
- At query time, the T-error tolerance is a parameter
 - Each required distance value stored in M-tree is inversely modified from the metric one back to the original semimetric distance,
 - then it is re-modified using a different modifier (appropriate to the query parameter)
- Additional requirement on T-bases inverse symmetry, i.e., f(f(x,w),-w) = x

- The general techniques do not use any specific information
 - just black-box distance and a sample of the database is provided
- It is always better to use a specific solution (if developed), based on an internal knowledge, as:
 - Structure of the universe U (vector, string, set?)
 - The formula of δ (closed form available?)
 - Cardinality of the distance domain (discrete/continuous?)
 - Data/distance distribution in S (uniform/skewed?)
 - Typical query (e.g., sparse/dense vector?)
- Typically not reusable in other domains
 - Hence, hard to find a NAM specific to our setup

Example – LB_Keogh for constrained DTW
 [Keogh et al, 2006]

 Lower-bounding distance, metric and cheap to compute O(n)

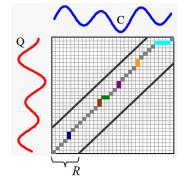
▶ Envelope W=(DTW_U, DTW_L) created for a time series S

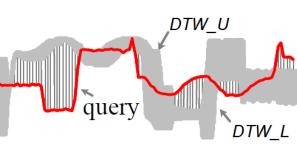
 $DTW_U_i = max(S_{i-R} : S_{i+R}),$

 $DTW_L_i = min(S_{i-R} : S_{i+R}),$

R is the thickness of Sakoe-Chiba band

$$LB _Keogh_{DTW}\left(Q,W\right) = \sqrt{\sum_{i=1}^{n} \begin{cases} \left(q_{i} - DTW _U_{i}\right)^{2} & \text{if } q_{i} > DTW _U_{i} \\ \left(q_{i} - DTW _L_{i}\right)^{2} & \text{if } q_{i} < DTW _L_{i} \\ 0 & \text{otherwise} \end{cases}}$$





(images © Eamonn Keogh, eamonn@cs.ucr.edu)

- Example LB_Keogh for constrained DTW
- Basic approach filter & refine search
 - Sequential search under LB_Keogh
 - 2) Check remaining candidates by DTW
- Extended approach wedges
 - = descriptors of multiple series
 - Wedge W = (U, L), $U_i = max(C_{1i}, ..., C_{ki}), L_i = min(C_{1i}, ..., C_{ki})$
 - W = k-dimensional rectangle, let's index it by, e.g., R-tree
 - For constrained DTW, W must be inflated as for single time series, i.e.,

$$\begin{aligned} & DTW_U_i = max(W_{i-R} : W_{i+R}), \\ & DTW \ L_i = min(W_{i-R} : W_{i+R}) \end{aligned}$$

(image © Eamonn Keogh, eamonn@cs.ucr.edu)

- Example inverted file and cosine similarity
- Used as an implementation of range query in vector model of information retrieval
 - documents d_i, terms t_i
 - term-by-document matrixweights of terms in documents

- Only efficient for cosine similarity (or inner product) and sparse query vector
 - CosSim = (normed) sum of weightmultiplications

CosSim(
$$d_{j}$$
, q) =
$$\frac{\vec{d}_{j} \cdot \vec{q}}{|\vec{d}_{j}| \cdot |\vec{q}|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^{2} \cdot \sum_{i=1}^{t} w_{iq}^{2}}}$$

- Example inverted file and cosine similarity
- Efficient query processing
 - Visit only lists of terms having nonzero weights in query
 - Early termination provided when lists sorted wrt the weights

- Cannot apply to Euclidean distance (!)
 - zero + nonzero weight = nonzero (all lists must be visited)

Indexing non-metric spaces

- Overview
 of methods
 for efficient
 non-metric
 search
- References to the sections of [Skopal & Bustos, 2011]

	${ m Method}$	specialized/ general	approximate/ exact search	static/dynamic database	main-memory/ persistent	other characteristics	details in section
general NAMs mapping	Sequential scan	Gen.	Exact	Dynamic	Both	Requires no index	n/a
	CSE	Gen.	Exact	Static	Main-mem.	Requires $O(n^2)$	4.5.2
	TriGen	Gen.	Approx.	Static	Main-mem.	space Simplifies the prob- lem to metric case	4.5.3
	Embeddings into	Gen.	Approx.	Static	Main-mem.	Simplifies the prob-	4.5.4
	vector spaces Fuzzy logic	Gen.	Approx.	Static	Main-mem.	lem to L_p space Provides transitive inequality, not im- plemented yet	4.5.5
	NM-tree	Gen.	Approx.	Dynamic	Persistent	Based on M-tree, uses TriGen	4.6.1
	QIC-M-Tree	Gen.	Exact	Dynamic	Persistent	Based on M-tree, requires user-defined metric lower bound	4.6.2
	LCE	Gen.	Approx.	Static	Main-mem.	distance Exact only for database objects	4.6.3
	Classification	Gen.	Approx.	Static	Main-mem.	Requires cluster analysis, limited scalability	4.6.4
	Combinatorial approach	Gen.	Approx.	Static	Main-mem.	No implementation yet, only for NN search. Exact for large enough D .	4.6.5
specific NAMs	Inverted file	Spec.	Exact	Dynamic	Persistent	Cosine measure	4.7.2
	IGrid	Spec.	Exact	Static	Main-mem.	Specific L_p -like distance	4.7.3
	$\operatorname{GEMINI}(\operatorname{LB-Keogh})$	Spec.	Exact	Both	Main-mem.	Uses lower bound distances	4.7.4
	FASTA/BLAST	Spec.	Approx.	Dynamic	Main-mem.	Approximate align- ment	4.7.5

Challenges to the future

scalability

mostly sequential scan nowadays, but the databases grow and get more complex, hence, indexing would be necessary

indexability

- how to measure indexability of nonmetric spaces?
- implementation specificity
 - specific vs. general NAMs
- efficiency vs. effectiveness
 - slower exact vs. faster approximate search
- extensibility
 - there exist other related aggregation/scoring (non-metric) concepts, to which non-metric indexing could contribute

Thank you for your attention!

... questions?

References

- T. Skopal, B. Bustos, On Nonmetric Similarity Search Problems in Complex Domains, to appear in ACM Computing Surveys, 2011

 http://siret.ms.mff.cuni.cz/skopal/pub/nmsurvey.pdf
- D. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. AAAI Workshop On Knowledge Discovery in Databases, 1994
- ► E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric spaces, ACM Computing Surveys, 33(3), 2001
- K.-S. Goh, B. Li, and E. Chang. DynDex: A dynamic and non-metric space indexer.
 10th ACM International Conference on Multimedia, 2002
- D. Hoksza, J. Galgonek, Alignment-Based Extension to DDPIn Feature Extraction, International Journal of Computational Bioscience, Acta Press, 2010
- ▶ E. Keogh, L. Wei, X. Xi, S. Lee and M. Vlachos (2006) LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures. VLDB 2006
- T. Skopal, Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces, ACM Transactions on Database Systems, 32(4), 2007
- T. Skopal, J. Lokoč, NM-tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces, DEXA 2008, LNCS 5181, Springer
- P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric Space Approach, volume 32 of Advances in Database Systems. Springer, 2005