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Abstract. An important aspect of exploratory search over graph data
is to understand what paths connect a given pair of nodes. Since the
resulting paths can be manifold, various works propose ranking paths
likely to be of interest to a user; these methods often rely on enumer-
ating all such paths (up to a fixed length or number) before ranking is
applied. In this paper, we instead propose applying a shortest path search
on weighted versions of the graph in order to directly compute the most
relevant path(s) between two nodes without fixed-length bounds, further
obviating the need to enumerate irrelevant paths. We investigate weight-
ings based on node degree, PageRank and edge frequency, contrasting the
paths produced by these schemes over the Wikidata graph and discussing
performance issues. Finally we conduct a user study over Wikidata where
evaluators assess the quality of the paths produced; though inter-rater
consensus on which paths are of most interest is low, we achieve statis-
tically significant results to suggest that users find the weighted shortest
paths more interesting than the baseline shortest paths without weights.

1 Introduction

Though a wealth of data has been published as Linked Data using the Semantic
Web standards, we still lack techniques and tools by which non-expert users can
interact with graph-structured data [20]. A characteristic feature of interacting
with such graphs is the ability to query the connectivity of nodes through paths
of arbitrary length. Along these lines, a number of proposals have been made to
empower users to find such paths satisfying certain conditions, such as shortest
paths, or simple paths that do not revisit a node (or edge), or to find pairs of
nodes connected by paths satisfying regular expressions [2]. However, in RDF
graphs, many shortest paths will pass through nodes of high-degree (e.g., a coun-
try, a type) and thus may be of little interest; on the other hand, in exploratory
search scenarios, users may not have specific path expressions in mind, but may
simply wish to find noteworthy paths between two nodes of interest.

Hence further work has been conducted on ranking simple paths' — paths not
repeating a node — that exist between the query nodes according to a variety of
metrics and methods [1,3-5,7,8,19,23,27-29]. A key limitation of such approaches
is that they often require enumerating all simple paths between the query nodes
prior to ranking. Given that there is a potentially factorial number of simple
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paths? — where even counting such paths between two nodes is known to be
#P-complete [26] — a pragmatic threshold must be applied to either the number
of paths or the length of paths considered; even with these thresholds, a large
number of irrelevant paths may still need to be considered.

In this paper, we thus propose to reformulate the problem of ranking simple
paths to that of computing shortest paths in a weighted RDF graph;® our core
hypothesis is that we can design a weighting scheme for an RDF graph such that
the shortest paths in the weighted version of the graph are of more interest to
the user than in the non-weighted version (note that the weights only optionally
form part of the output: the hypothesis considers “plain” paths being output).

The benefit of such a weighting scheme can be seen from two perspectives.
First, with respect to ranking paths, simple paths of relevance to the user can be
directly computed using well-known shortest path algorithms without having to
explicitly enumerate a potentially exponential number of paths, and without a
priori bounds on the length or number of paths considered. Second, with respect
to shortest paths, a potentially factorial number of shortest paths can still exist
between two nodes, where standard shortest path algorithms either return the
first such path found, or return all shortest paths; a weighting scheme as we
propose could thus be used to “break ties”, providing a more granular notion of
(weighted) shortest path than considering path length alone.

In Figure 1, we provide a motivating example taken from the Wikidata knowl-
edge graph [30]; note that for readability we present the example with node
identifiers based on English labels (e.g., : film, :director) rather than Wikidata
identifiers (e.g., :Q11424, :P57). Let us consider a user that wishes to find con-
nections between the two theatrical movies :Blade_Runner and :Top_Gun. First
we observe that paths should traverse edges in either direction; for example, we
consider both :director and :directed™, returning the direction traversed in
the output. Second, we consider simple paths that do not visit the same node
twice since, otherwise, we would have potentially infinite paths with redundancy
(e.g., jumping back and forth between the Scott brothers an arbitrary num-
ber of times). Thereafter, we can identify six simple paths: one stating that
both movies are instance of :film, one stating that their country of origin is
the :United_States_of_America, and four indicating that they were directed by
brothers (two paths for each direction of the :sibling relation and its inverse).
Though the paths between the query nodes through :United_States_of _America
or :film have the shortest length, we argue that the longer path through the
Scott brothers is more likely to be of interest to a user.

While many works propose to first enumerate all paths and thereafter rank
them to try find the most interesting ones, we rather propose to apply a weighting
to the graph in an off-line phase and then compute the shortest paths in the
weighted graph on-line. For example, one could imagine that high weights are
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Fig. 1. Sample sub-graph from Wikidata involving two theatrical films; for readability,
we use node identifiers based on labels; query nodes are dashed

assigned to high-centrality nodes such as :film and to frequent edges such as
:instance_of; however, care needs to be taken since a naive weighting scheme
will lead to long paths through nodes representing relatively obscure entities: the
most specific or “improbable” paths are not always best. Furthermore, in other
cases, paths of interest may pass through high-centrality nodes, particularly if
the edge label is selective (e.g., :head_of _state). Hence designing an appropriate
weighting scheme requires balancing potentially numerous factors [8].

In this paper, we thus investigate methods by which we can compute simple
paths that exist between two input nodes in a directed edge-labelled graph (such
as an RDF graph) that are likely to be of relevance to a user. We reduce the
ranking problem to that of weighting the nodes and edges of the graph prior
to applying a shortest-path algorithm. We evaluate various weighting schemes
over the Wikidata graph, comparing the paths that they produce and their
performance at various scales, further conducting a user study where evaluators
assess the weighted shortest paths given by the various weighting schemes.

Outline: The following section presents related works while Section 3 introduces
preliminaries. Section 4 presents our weighting schemes and implementation.
Turning to evaluation, Section 5 compares statistics for the paths generated by
each scheme over Wikidata, while Section 6 presents the results of a user study.
Section 7 concludes and discusses future work.

2 Related Work

Perhaps the most prominent way to traverse paths in RDF graphs is through
the property paths feature of the SPARQL query standard, which allows users
to find pairs of nodes connected by paths that conform to a specified regular
expression; such features are common amongst query languages designed for
graphs [2]. The focus of such works is on finding pairs of nodes connected by
input-constrained paths rather than finding paths connecting two input nodes.

On the other hand, a number of works have proposed methods to find paths
between nodes in RDF graphs. RELFINDER [14,15,21] finds paths between two
nodes indexed by a SPARQL endpoint by issuing a sequence of queries looking for



successively longer paths; while this approach has the benefit of being portable
across endpoints, the types of paths that can be found are limited by the use of
SPARQL (which cannot return paths) and no ranking is applied.

Recognising that the number of paths between two nodes can exceed the
user’s capacity to comprehend, a wide variety of works have been proposed to
rank paths — called semantic associations, semantic relationships, complex rela-
tionships, etc. — between nodes. A seminal work is SEMRANK [3], which proposed
a customisable information-theoretic measure to rank paths between nodes pos-
sibly restricted to match keywords. Thereafter, a variety of works have been
proposed along similar lines, including approaches based on semantic metrics
and graph measures [1, 23], inference rules [19], personalisation [28], Bayesian
networks [27], ant-colony optimisation [29], informativeness [24], learning-to-
rank [4,5,7], external rating schemes [16], and so forth; many such methods
were recently summarised and evaluated by Cheng et al. [8]. Rather than rank-
ing paths, other works have proposed methods to summarise the paths that ex-
ist between two nodes, where RELCLUS [31] applies hierarchical clustering and
ExpLASs [9] applies faceted clusters over paths. All such approaches typically
require enumerating the paths between two entities before applying a ranking
or clustering step; given that the number of paths is potentially factorial in
the number of nodes, these approaches often consider simple paths with a fixed
length threshold [ or a fixed number of paths k, or some combination thereof.

Other approaches have looked at various problems and applications relating
to computing shortest paths for RDF graphs (e.g, [11-13,17,22]), but to the
best of our knowledge, the only works considering shortest paths over weighted
RDF graphs are those of Cedefio et al. [6], who deal with application-specific
weights such as confidence values;* Rusu et al. [25], whose focus is on computing
similarity for ontological concepts; and Hulpug et al. [18], whose focus is on
computing the relatedness of nodes for entity disambiguation purposes. Thus,
to the best of our knowledge, we are the first work to investigate weighting
schemes for RDF graphs such that the resulting weighted shortest paths are of
more interest to users than those computed over the unweighted graph.

3 Preliminaries
We now present preliminaries relating to RDF graphs, paths and weights.

RDF graphs: Given pairwise disjoint sets of IRIs (I), literals (L) and blank nodes
(B), an RDF triple (s,p,0) is an element of IUB x I x IUB UL, where s is the
subject, p predicate and o object. A set of RDF triples G is called an RDF graph,
owing to the fact that one can view each triple as a directed labelled edge s LN o,
and hence an RDF graph can be viewed as a directed edge-labelled graph [2].
Letting 75(G) = {s | Ip,0: (s,p,0) € G} denote the set of all subjects of G, and
letting 7 (G) and 7, (G) likewise denote respectively the set of all predicates and

4 Their evaluation considers manually specified weights.



objects of G, we call m4(G) U mo(G) the set of nodes (aka. vertices) of G, and
7p(G) the set of edge labels (aka. properties) of G. Finally, we denote by G* the
completion of G by inverse edges such that G* := GU{(o,p~,s) | (s,p,0) € G},
where p~ & m:(G) is a surrogate edge label used to denote the inverse of p.

Paths: Given an RDF graph G, we call a sequence vgpy . .. Up_1Pn¥, such that
(vi_1,pi,v;) € GT for 1 <i < n a path from vy to v, in G; we call n the length
of the path.” We call a path where v; # v; holds for 1 < i < j < n a simple
path. We call a path from v to v’ a shortest path if no other path exists from
v to v' with smaller length; all shortest paths are simple. Since we can trivially
convert any path from v to v’ to a unique path from v’ to v by reversing the
path and inverting all edge labels, we will often not distinguish the source and
target nodes, instead simply referring to the paths between two nodes.

Weights: For a graph G, let V := m3(G)Uno(G) denote its nodes and P := 7, (G)
its edge labels. We define a weighted RDF graph as a triple (G, wy,wp), where
wy : V= R>g and wp : P — R>( denote weighting functions on the nodes and
edge labels of G respectively; note that for G*, we will assume wp to be defined
such that wp(p) = wp(p™), and that in this current work, we do not consider
negative weights. Thereafter, given a weighted RDF graph (G, wy,wp), we define
the weight of a path vop; ... v,_1Prv, from G to be the sum of the weights of all
intermediate nodes and edge labels: X7~ wy (v;) +X7_wp(p)). A weighted path
is a shortest path between two nodes if there does not exist another path between
the nodes with lower weight. Note that if we define wy (v) = 1 and wp(p) = 1
for all v € V and p € P, shortest paths by weight and length coincide.

Dijkstra’s algorithm: To find the shortest paths in a graph, we utilise Dijkstra’s
algorithm [10]; for reasons of space, here we summarise the algorithm. From a
given source node s, the algorithm traverses the graph, updating the distance
from s to each node it visits. The closest unvisited node u is always the next
to be visited, at which point the distance from w to s (d(s,u)) is known to
be minimal. When node u is visited, the distance of all neighbouring unvisited
nodes (§(s,u’)) is updated if the distance is lower than that found previously
(0(s,u)+d(u,u") < d(s,u’)). The algorithm thus visits all nodes once, computing
the shortest distance from the source node to all nodes in the graph. When a
target node t is provided as input, the search can terminate when the target
node is next to be visited; thereafter, the actual path can be constructed by
backtracking through the next adjacent node closest to s. Given a weighted
RDF graph, we can compute the distance §(v,v’) between two neighbouring
vertices as the sum of the lowest-weighted edge connecting them and the weight
of v'. Given a source and target node, efficient implementations of Dijkstra’s
algorithm using optimal priority queues (to decide the next node to visit) can
find a (weighted) shortest path in O(|G| + |V| - log|V|) time® in the worst case.

® A sequence vopv1 such that (vo,p,v1) € G7 is also considered a path of length 1.
5 By |S| we denote the cardinality of the set S



4 Weighted Shortest Paths

The main goal of this work is to investigate weighting schemes for RDF graphs
such that the shortest paths by weight between two nodes are deemed to be
of more interest to users than shortest paths by length. Such a scheme would
then allow us to compute paths of interest to a user in a best-first manner using
shortest path algorithms without having to enumerate all simple paths or having
to implement a priori bounds on the length or number of paths considered.

As discussed previously, a wide variety of metrics and approaches have been
defined for ranking enumerated simple paths that we can adapt for weighting
schemes [1,3-5,7,8,19,23,27-29]. These were recently summarised and evalu-
ated by Cheng et al. [8], who mention five data-centric features that may help
determine the relevance of a path to a user: length (size): the length of the path;
frequency: the number of other nodes that the same edge connects to the same
node; centrality: where the importance of nodes on the path is considered; in-
formativeness: where a path is considered more informative if it is less probable;
specificness: which, given an ontology, prefers more specific edge-labels (lower
in the sub-property hierarchy) to more general ones; and homogeneity, which
considers whether or not nodes and edges in the path are of the same type.

While our approach will offer various computational benefits and does not
require fixed thresholds, since we consider weighted shortest graphs, we are more
limited in terms of the ranking functions we can express. More specifically, to-
wards defining such a weighting scheme for an RDF graph G, we are left to
instantiate the functions wy : V' — R>¢ and wp : P — Ry( introduced previ-
ously for weighting the nodes and edge-labels of the graph. Under our framework,
we consider sums of weights on individual nodes/edges, which (currently) rules
out adopting measures such as homogeneity that consider the diversity of all
edges/nodes. Furthermore, we note that there is some redundancy in the above
measures, where for example frequency, informativeness and specificness offer
different versions of the same underlying principle: how common is a given edge/-
path. With these considerations, we propose the following weighting schemes.

Length (L): We consider as a baseline a weighting scheme where wy : V — {1}
and wp : P — {1}, setting the weights of all edges and nodes to a fixed constant.
This configuration thus produces a shortest path according to length and is
equivalent to not considering any weights (on nodes or edges).

Centrality (D,P): In order to weight nodes, we consider two measures of cen-
trality mentioned by Cheng et al. [8]: degree centrality (D), and PageRank (P,
aka. Eigenvector centrality). Under degree centrality, the weight of each node
is given simply as its (undirected) degree. In order to compute the PageRank
centrality of nodes, we consider each triple in the RDF graph G to be a directed
edge s — o and compute PageRank over the resulting graph; thereafter, the
weight of each node is given as its PageRank score. Referring back to Figure 1,
we would expect nodes such as :film and :United_States_of_America to have
high centrality in a real-world graph with more such triples.



:country_of_citizenship :country_of_citizenship

_______ .

| :Barack_Obama! (:United,States,ofAmerica) ; :Donald-Trump !

___________

:head_of_government :head_of_government

Fig. 2. Sample from Wikidata involving two citizens/presidents of the United States;
for readability, we use node identifiers based on labels; query nodes are dashed

Edge-Label Frequency (E): If we consider Figure 2, where we see four possible
paths between the query nodes, we can see that edge labels — and not just nodes
— can play a considerable role when we consider which paths are likely to be
of interest to a user; in this case, while :country_of_citizenship is a relatively
common property, :head_of_government is, in contrast, relatively rare. Along
these lines, we consider an edge weighting based on the frequency of the edge
label; more specifically, given an RDF graph G and an edge label p € 7 (G), we
define the frequency edge weight as follows: wp(p) := |{(s,0) : (s,p,0) € G}|.
This measure generally relates to frequency, informativeness, and specificness,
though not being directly equivalent to any such measure.

Hybrid: The above schemes may be complementary, dealing respectively with
path length, node weights and edge weights. For example, if we consider node
centrality alone, the paths produced may tend to be very long, visiting various
relatively obscure nodes; furthermore, in Figure 2, we would not be able to dis-
tinguish common/uncommon edges to a high-centrality node. Hence we propose
a number of hybrid schemes. The first weighting scheme combines the centrality-
based node weights and length. We first linearly normalise both wy functions to
produce scores in the interval [0,1] such that the maximum value is 1 and the
minimum value is 0. Then to combine these weights with length, we propose to
sum the respective weights; in other words, we add 1 to the weights of the nor-
malised wy such that the interval of values produced is [1, 2], giving rise to two
hybrid ranking schemes: DL and PL.” While this change appears subtle at first
glance, as we will see later in our experiments, this shifting of the range has a
major effect: for example, for centrality scores in a [0, 1] range, visiting one high
centrality node may have the same cost as visiting thousands of low centrality
nodes, whereas when normalised to a [1, 2] range, visiting a high-centrality node
has a cost of visiting at most two low-centrality nodes. Finally we likewise nor-
malise wg into a [1,2] interval for the same reasons, producing the final hybrid
schemes that combine length, node and edge-weights: DEL and PEL.

User interface: We have implemented a system called WISP: Weighted Shortest
Paths. Given an RDF graph, the system creates an in-memory index where nodes

" Of course one could consider parameterised hybrid schemes, such as normalising into
a [a,a + 1] range (o > 0), where as « increases, more weight is put on length. We
consider this out of scope but would be interesting to investigate in future.



are identified with integers and point to their neighbours with a labelled edge,
allowing graph traversals in both edge directions; node and edge-label weights
(computed offline) are stored as an in-memory dictionary. Given two query nodes,
Dijsktra’s algorithm is then used to find a (weighted) shortest path, returning
the first such path found. To facilitate user interaction, we implement auto-
complete suggestions that map prefix queries (e.g., chi) to node identifiers (e.g.,
:Chile/wd:Q298). The final user-interface — implemented in Javascript (Node.js,
React.js and viz.js) — then allows users to search for a source and target node,
offering optional features to set the weighting used for the Dijkstra search. The
resulting path(s) are then displayed diagrammatically to the user.®

5 Statistical Comparison

We now present the results of some experiments of applying our weighted short-
est path methods to the Wikidata graph [30]. Wikidata is a collaboratively-edited
knowledge base where data relevant to Wikipedia can be curated and managed
by human editors. We select Wikidata for our experiments as it is a large graph
and — being edited by thousands of users, as well as covering a broad domain
of interest — exhibits a high degree of diversity in terms of the types of nodes
and edges described, the nature of the relations expressed, and so forth. Thus
Wikidata’s size poses a non-trivial test of the scalability of our method, while
its diversity poses a challenge to the generality of our weightings.
The questions we wish to address with this initial study are as follows:
— How is performance affected by scale and weighting scheme?
— How do the paths produced by different weighting schemes differ?

Data: We perform experiments over the “truthy” version of Wikidata from the
2017-06-07 dump; the truthy version does not include qualifiers or references
and selects preferred values for properties (e.g., including only the most re-
cent population for a city). For performance experiments, we define sub-graphs
of Wikidata at varying scales: observing that numeric Qz IDs are defined in
chronological order, where the earliest nodes (often important entities such as
countries, prominent persons, etc.) have lower numeric IDs, we set limits on
of 1,600,000, 3,200,000, 6,400,000, 12,800,000. Thereafter, we select all triples
(s,p,0) such that both s and o have Qz IDs below the limit for z. We apply no
limit on property Qy IDs and we do not consider edges involving literals or blank
nodes. Since IDs are not “dense” in Wikidata, where entities may be removed,
applying a limit of 1,600,000 may not result in precisely that number of nodes
in the resulting graph. Table 1 presents the number of nodes and edges in each
sub-graph used, where the FULL dataset represents the full graph.

Machine: The machine used for all experiments has 2x Intel Xeon Quad Core
E5-2609 V3 CPUs (@1.9GHz), 32GB of RAM, and 2x 2TB Seagate 7200 RPM
32MB Cache SATA hard-disks in a RAID-1 configuration.

8 A demo is available at http://wisp.dcc.uchile.cl over a Wikidata sub-graph of 1.2
million nodes; we do not use the full graph for performance reasons discussed later.



Table 1. Wikidata (sub-)graphs used for experiments; FULL indicates the full dataset

Dataset 1.6 M 3.2M 6.4 M 12.8M FULL

Nodes 1,227,382 2,507,582 5,303,322 10,343,129 25,081,334
Edges 6,603,412 12,160,436 22,008,446 36,404,534 89,878,092

Queries: To generate our first set of queries (Qy), from each dataset, we ran-
domly select 100 pairs of entities. Since pairs selected from larger datasets may
not appear in smaller datasets, we also generate a second set common to all
graphs (Qs): we randomly select 100 pairs of entities with ID less than 100,000.

Configurations: We selected L (baseline), D, DL, DEL, P, PL and PEL for testing.
Each configuration returns the first shortest path found.

Performance by weights: In Figure 3, we present box-plots of response times for
finding a shortest path over the full graph with the selected weighting schemes
and Q7. We can see that the averages and medians are above 27 seconds in all
cases, and that the baseline shortest path algorithm is the fastest. The slowest
weighting scheme (DEL) is almost twice as slow, taking almost a minute, on aver-
age, for each query. Investigating further, for the baseline L scheme, 12.3 million
nodes (49% of all nodes) are visited, on average, to answer a query pair; on the
other hand, when vertex weights are considered, more nodes are visited, where,
for example, P visits 15.2 million nodes (61%), on average.

Performance by scale: The previous experiments suggest that finding shortest
paths is a costly process, where a large number of nodes in the graph need to be
visited and where the query times may thus exceed a minute in some cases for
the full graph. We are thus interested to see how scale affects the performance.
In Figure 4, we present the response times for Qs; for reasons of space, we
present results for DEL — the slowest strategy in the previous results — though
other strategies followed a similar pattern. We highlight that as the size of each
dataset doubles, the mean response times likewise roughly double; an exception
is for the FULL dataset, which although more than double the size of the 12.8 M
dataset, sees an increase of only ~1.2x in mean query times, where the average
ratio of nodes visited drops from 29% to 23%. Note that we selected Q5 since we
wish to compare different scales for the same set of queries; we also ran Q7 at
all scales for DEL, where the mean times for 6.4 M, 12.8 M and FULL increase to
13.5 s, 34.0 s, and 53.7 s, respectively: nodes randomly sampled from the larger
graphs generate longer paths requiring more nodes to be visited.

Comparing weighted shortest paths: Next we look to see if different weighting
schemes do in fact generate different paths. In Figure 5, we provide a heat-map
that indicates for each pair of weighting schemes the percentage of the 100 Q;
paths generated over the FULL dataset that coincide with another weighting
scheme. In terms of the pairs of schemes producing the most similar results, we



120 120

100 |- 100 |-

60 -

Time [s]
(]
[ T}
Time [s]

20 |- 2|
0 I | I I I | I o= % % !
L D DL DEL P PL  PEL 1.6 3.2 6.4 12.8 25.6
Weighting Scheme Dataset

Fig. 3. Response times for Q1 comparing Fig. 4. Response times for Q> comparing
different weights over the FULL graph different scales with DEL weights

30

PEL

PL

20

DEL

Length

DL 10 -

SEEIES:

| |
L D DL DEL P PL PEL
Weighting Scheme

Fig. 5. Comparison of paths produced by Fig. 6. Path lengths of different weighting
different weights for Q1 over FULL schemes for for @, over FULL

see that DEL and PEL produce the same paths for 83% of the queries, with PL
and DL coinciding for 71% of queries; however D and P have much lower overlap:
13%. To help explain this observation, in Figure 6 we present an overview of
the lengths of paths produced by each scheme; notably D and P produce much
longer paths on average since their weights are less affected by length, where
longer paths are naturally much less likely to coincide. On the other hand, even
though all *L measures tend to have short paths, we note that all weighted
graphs tend to vary in their results from the baseline L (particularly D and P,
which produce much longer paths). Finally, we observe a notable difference in
DL and DEL (56% overlap) and between PL and PEL (54% overlap), suggesting
that the introduction of edge weights significantly affects the paths computed.



6 User Study

In the previous section we discussed results on the performance of the path
computation at different scales and for different weighting schemes; we also pre-
sented a statistical analysis of the differences between the paths produced by
such schemes, noting that most schemes vary considerably, particularly from
the baseline where only the length of the path is considered. In this section, we
present a user study whose goal is to address our main research question:

— Do users prefer shortest paths in weighted versions of the graph (D*, pP*)

versus shortest paths by length only (L)?

Although a number of related datasets have been proposed for evaluating
paths and entity relatedness (e.g., by Cheng et al. [8] and Talavera et al. [16]),
these datasets do not provide a complete ranking of all paths between query
nodes, which would of course be unfeasible given the number of potential simple
paths between the nodes; for example, Cheng et al. [8] define a rather complex
sequence of steps to reduce the number of paths; thereafter, to ease the burden on
users, they adopt a pair-wise rating scheme where users are asked to choose which
of two paths they prefer. Hence it was unclear how we could use such a dataset
since our weighted shortest path framework only produces one path, which may
not “hit” the partial/pairwise gold standard. Furthermore, the lengths of paths
in existing datasets are bounded, whereas in our approach, per Figure 6, the D
and P schemes can, in some cases, produce paths in excess of length 20. In the
end, we decided to pursue a more direct strategy: ask users to score the paths
produced by different weighting schemes for the same query pairs.

Queries: In the previous experiments we used randomly selected pairs of nodes;
we deemed this set unsuitable for a user study since they referred to obscure
entities, making it difficult for users to judge paths between them. Instead we
manually created two sets of queries: the first set contains 10 pairs of entities of
the same type, while the second set contains 10 pairs of entities of different types.
We keep the number of pairs low to be able to generate numerous evaluations
for the same pairs across different strategies. The nodes were chosen to reflect
well-known entities that evaluators would likely be aware of such that they could
better judge the generated paths. Importantly, the two query sets were selected
before any paths were generated to avoid biasing the selection.

Scoring: To facilitate the evaluation of the paths, we created a version of the
system that would display paths generated by all weighting schemes for a given
query on one page. Instructions to users were minimal: they were asked to eval-
uate the path on a Likert scale with seven levels indicating how interesting the
path was as an explanation for how the two entities were connected, scoring
each generated path from 1 (worst), to 7 (best); other than that, scoring was
left to the user’s discretion. Displaying all paths for one query on the same page
allowed users to consider paths produced by the other schemes when making
their evaluation. The evaluators were 10 students from a Semantic Web course.
To avoid long response times (see Figure 4), we used the 1.6 M dataset.
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Fig. 7. Best and worst evaluated paths with multiple responses on a [1,7] scale

Evaluations: In total, 81 query evaluations were recorded, of which 79 were
complete (2 incomplete evaluations were discarded). In total, we thus gathered
an average of ~4 evaluations for each query pair, totalling 79 x 7 = 553 scores
for paths on a scale of 1-7. As an example, in Figure 7 we present the best
(:Saturn,:HMS_Titanic) and worst (:Lionel_Messi,:Stephen_Curry) evaluated
paths for which we received multiple evaluations.

Inter-rater agreement: Given that we use an ordinal scale for evaluations, we
apply a correlation measure to assess inter-rater agreement: specifically we use
Kendall’s 7-b measure.” For each query pair, we measured the 7-b correlation be-
tween each distinct pair of evaluations across strategies, and then took the mean
for each query; then taking the mean over all queries, the result was a macro-
averaged correlation of 7 = 0.201, indicating positive but slight agreement. We
believe this low correlation to be due to two main factors: (1) the subjective na-
ture of the evaluation, where rather than providing specific instructions on how
to rate paths (which may bias towards one strategy or another), we left users
to decide their own criteria for rating; (2) we did not verify beforehand that
interesting paths did indeed exist for the query entities, and so it may be the
case that there is no clear “better” paths in some cases. To address this point,
we consider two query sets for our results: the set of ALL queries as previously
described; and a set of CONCORDANT queries, intended to represent queries for
which there was inter-rater consensus, defined as query pairs with multiple eval-
uations and a positive (7-b) correlation; the latter sub-set contains 8 query pairs,
with 7 = 0.552 and a total of 27 x 7 = 189 scores for individual paths.

Comparing evaluations of weighted shortest paths: In Figure 8, we present a
high-level comparison of the mean evaluations of ALL queries and the subset of
CONCORDANT queries for different weighting schemes. We present these results
considering (1) queries involving entities of the same type, (2) queries involving
entities of different types, (3) the combination of both. As a general trend, we see
that the paths tended to have mean evaluations tending towards the (neutral)
middle of the Likert scale. Furthermore, we see that the mean evaluations in the

9 Kendall’s 7-b is a non-parametric rank coefficient measuring correlation between two
lists of values in a range of [—1, 1], where —1 indicates perfect inverse correlation, 0
no correlation, and 1 perfect correlation.
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Fig. 8. Mean evaluations for each weighting scheme for the set of all queries and con-
cordant queries; the table to the right of each plot indicates significance levels (paired
Student t-test, 2-tailed, n = 79 for ALL, n = 28 for CONCORDANT) for the difference
of the mean between the baseline (L) and the given weighting scheme for all queries,
where statistically significant results (o = 0.05) are marked with “*’

CONCORDANT set tend to be slightly lower than the ALL set, which suggests
slightly more agreement on which paths are bad (per Figure 7). Returning to
our main research question, the baseline without weights (L) had the worst mean
evaluations in all results; to the right of Figure 8, we present the significance of
the difference of the mean for each weighting scheme to the baseline, where for
ALL we see that the mean evaluations of D, DEL, P, PL and PEL are significantly
different (o = 0.05) from the baseline; only the mean evaluation of the DL paths
was not significantly different from that of L where, in Figure 5, we observed
that DL has the most similar paths to L. For the CONCORDANT set, though fewer
evaluations are available (n = 27) significant results were still achieved for D,
DEL, and PL.'? In summary, though the hybrid weighting schemes we propose do
not show any clear benefit to those based solely on node centrality, the results

10" An interesting case is P, which achieved the second-highest mean, but did not reach
significance: analysing the result further, P had a much lower Pearson correlation
with L than other configurations, leading to the higher p-value.



show that users preferred weighted shortest paths over the unweighted baseline,
with the results being significant in many cases.

Materials and Demo: We make code, queries, performance results, ratings, etc.,
available at https://github.com/GTartari/Weighted-Shortest-Paths. A demo
over a subset of Wikidata (1.6 M) is available at http://wisp.dcc.uchile.cl/.

7 Conclusions

In this paper, we proposed to apply weightings to RDF graphs such that the
weighted shortest paths produced are of more interest to the user than shortest
paths based on length alone. The goal of such an approach is to enable the
application of best-first search algorithms — such as Dijkstra’s algorithm — to
directly find and output the paths of most interest, avoiding fixed bounds. We
then proposed a number of weighting schemes for RDF graphs based on path
length, node centrality, and edge-label frequency, as well as combinations thereof.

With an efficient implementation based on Dijkstra’s algorithm layered on
top of in-memory graph traversal indexes, we showed that the approach can
scale to the full Wikidata graph (25 million nodes, 90 million edges); however,
response times increase linearly with scale, where queries on the full dataset
(which must visit 12.3-14.5 million nodes) can take in the order of a minute; on
the other hand, for a sub-graph of 1.2 million nodes and 6.6 million edges, queries
can be executed in the order of 2-4 seconds. We further noted that the proposed
weighting schemes can increase mean response times, requiring more nodes to be
visited. We also observed that most weighting schemes produce largely disjoint
results, though we found large overlap between the DL—PL and DEL—PEL schemes.

Finally, we presented a user study over Wikidata designed to address the main
research question: are the weighted shortest paths of more interest to a typical
user than the baseline shortest paths considering only length? We found that the
user scoring of paths in general exhibited a low, positive inter-rater correlation,
implying that the task of scoring paths is, in general, highly subjective; however,
there was a positive consensus for a subset of the chosen queries. Thereafter we
found that all weighting schemes outperformed the baseline in this evaluation,
and that the results were significant (oo = 0.05) in most cases. This contributes
evidence to validate our main hypothesis that appropriate weighting schemes
can improve the perceived relevance of shortest paths for users.

Future work: There are many important directions left to be explored. A lim-
itation of our current work is the performance over large graphs: while we see
it as a positive to be able to scale to the full Wikidata graph, response times
in the order of a minute would preclude interactive response times and test the
patience of users; we believe that the best way to tackle this issue is with ap-
proximations, or perhaps using an appropriate heuristic with A*-search. Another
limitation is that our methods currently only produce one path, though adapta-
tions of Dijkstra-style algorithms do exists for top-k paths, including in an RDF
setting [12,13,17]; such techniques can be adapted to weighted graphs.


https://github.com/GTartari/Weighted-Shortest-Paths
http://wisp.dcc.uchile.cl/

Another area for improvement is with respect to evaluation: trying to evaluate
which paths are of interest to users is challenging given the subjective nature of
the task and the number of possible paths to choose from, precluding the creation
of a reliable and complete gold standard [8]. This remains an open problem. On
the other hand, while our current evaluation deals with paths between entities of
general interest in the Wikidata graph, it would be interesting to explore domain-
specific use-cases and graphs, such as coauthorship paths, protein sequencing,
etc.; a main issue here would be to find domain experts capable of providing a
meaningful evaluation of the paths suggested over specialist datasets.
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