
Distributed Generation of Su�x Arrays:a Quicksort-Based ApproachJo~ao Paulo Kitajima13 Gonzalo Navarro24Berthier A. Ribeiro-Neto15 Nivio Ziviani161 Dept. of Computer Science, Federal University of Minas Gerais, Brazil.2 Dept. of Computer Science, University of Chile, Chile.3 This author has been partially supported by CNPq Project 300815/94-8.4 This author has been partially supported by Fondef grant 96-1064 (Chile).5 This author has been partially supported by CNPq Project 300188/95-1.6 This author has been partially supported by CNPq Project 520916/94-8 andProject Ritos/Cyted.Abstract. An algorithm for the distributed computation of su�x ar-rays for large texts is presented. The parallelism model is that of aset of sequential tasks which execute in parallel and exchange messagesbetween each other. The underlying architecture is that of a high-bandwidth network of processors. In such a network, a remote mem-ory access has a transfer time similar to the transfer time of magneticdisks (with no seek cost) which allows to use the aggregate memorydistributed over the various processors as a giant cache for disks. Ouralgorithm takes advantage of this architectural feature to implement aquicksort-based distributed sorting procedure for building the su�x ar-ray. We show that such algorithm has computation complexity given byO(r log(n=r)+n=r log r log n) in the worst case and O(n=r log n) on av-erage and communication complexity given by O(n=r log2 r) in the worstcase and O(n=r log r) on average, where n is the text size and r is thenumber of processors. This is considerably faster than the best knownsequential algorithm for building su�x arrays which has time complex-ity given by O(n2=m) where m is the size of the main memory. In theworst case this algorithm is the best among the parallel algorithms weare aware of. Furthermore, our algorithm scales up nicer in the worstcase than the others.1 IntroductionWe present a new algorithm for distributed parallel generation of large su�xarrays in the context of a high bandwidth network of processors. The motivationis three-fold. First, the high cost of the best known sequential algorithm forsu�x array generation leads naturally to the exploration of parallel algorithmsfor solving the problem. Second, the use of a set of processors (for example,connected by a fast switch like ATM) as a parallel machine is an attractivealternative nowadays [1]. Third, the �nal index can be left distributed to reducethe query time overhead. The distributed algorithm we propose is based on a

parallel quicksort [7, 13]. We show that, among previous work, our algorithm isthe fastest and the one that scales best, in the worst case.The problem of generating su�x arrays is equivalent to sorting a set ofunbounded-length and overlapping strings. Because of those unique featuresand because our parallelism model is not a classical one, the problem cannotbe solved directly with a classical parallel sorting algorithm (we review relatedwork in Section 3).The proposed algorithm is based on the recursive parallel quicksort approach,where a suitable pivot is found for the whole distributed set of su�xes andthe partition phase redistributes the pointers of the su�x array so that eachprocessor has only su�xes smaller or larger than the pivot. A generalizationof the parallel quicksort was presented in [12], whose central idea is as follows.Consider the global sorted su�x array which results of the sorting task. If webreak this array in n=r similarly-sized portions, we can think that each processorholds exactly one such slice at the end. Thus, the idea is to quickly deliver toeach processor the index pointers corresponding to its slice. In summary, thegeneralized parallel quicksort presented in [12] works with r-percentiles obtainedin one step, instead of the binary recursive approach based on one pivot usedhere. It is also worth to mention a previous parallel mergesort based algorithmpresented in [9], which is slower than the algorithm presented here on bothaverage and worst cases.1.1 Su�x ArraysTo reduce the cost of searching in textual databases, specialized indexing struc-tures are adopted. The most popular of these are inverted lists. Inverted listsare useful because their search strategy is based on the vocabulary (the set ofdistinct words in the text) which is usually much smaller than the text and thus,�ts in main memory. For each word, the list of all its occurrences (positions) inthe text is stored. Those lists are large and take space which is 30% to 100% ofthe text size.Su�x arrays [10] or pat arrays [4, 5] are more sophisticated indexing struc-tures with similar space overhead. Their main drawback is their costly construc-tion and maintenance procedures. However, su�x arrays are superior to invertedlists for searching phrases or complex queries such as regular expressions [5, 10].In this model, the entire text is viewed as one very long string. In this string,each position k is associated to a semi-in�nite string or su�x, which initiatesat position k in the text and extends to the right as far as needed to make itunique. Retrieving the \occurrences" of the user-provided patterns is equivalentto �nding the positions of the su�xes that start with the given pattern.A su�x array is a linear structure composed of pointers (here called indexpointers) to every su�x in the text (since the user normally bases his queriesupon words and phrases, it is customary to index only word beginnings). Theseindex pointers are sorted according to a lexicographical ordering of their respec-tive su�xes and each index pointer can be viewed simply as the o�set (countedfrom the beginning of the text) of its corresponding su�x in the text.

To �nd the user patterns, binary search is performed on the array at O(logn)cost (where n is the text size). The construction of a su�x array is simplyan indirect sort of the index pointers. The di�cult part is to do this sortinge�ciently when large texts are involved (i.e., gigabytes of text). Large texts donot �t in main memory and an external sort procedure has to be used. Thebest known sequential procedure for generating large su�x arrays takes timeO(n2=m logm) where n is the text size and m is the size of the main memory [5].1.2 Distributed Parallel ComputersParallel machines with distributed memory (multicomputers or message pass-ing parallel computers) are a good cost-performance tradeo�. The emergentfast switching technology has allowed the dissemination of high-speed networksof processors at relatively low cost. The underlying high-speed network couldbe, for instance, an ATM network running at a guaranteed rate of hundreds ofmegabits per second. In an ATM network, all processors are connected to a cen-tral ATM switch which runs internally at a rate much higher than the externalrate. Any pair of processing nodes can communicate simultaneously at the guar-anteed rate without contention and broadcasting can be done e�ciently. Otherpossible implementations are the IBM SP based on the High Performance Switch(HPS), or a Myrinet switch cluster. Our idea is to use the aggregate distributedmemory of the parallel machine to hold the text. Accessing remote memoriestakes time similar to that of transferring data from a local disk, although withno seek costs [9].2 PreliminariesOur parallelism model is that of a parallel machine with distributed memory.Assume that we have a number r of processors, each one storing b text positions,composing a total distributed text of size n = rb. Our �nal su�x array will alsobe distributed, and a query solved with only O(logn) remote accesses. Weassume that the parallelism is coarse-grained, with a few processors, each onewith a large main memory. Typical values are r in the tenths or hundreds andb in the millions.The fact that sorting is indirect poses the following problem when workingwith distributed memory. A processor which receives a su�x array cell (sent byanother processor) is not able to directly compare this cell because it has no localaccess to the su�x pointed to by the cell (such su�x is stored in the originalprocessor). Performing a communication to get (part of) this su�x from theoriginal processor each time a comparison is to be done is expensive. To dealwith this problem we use a technique called pruned su�xes. Each time a su�xarray cell is sent to a processor, the �rst ` characters of the corresponding su�x(which we call a pruned su�x) are also sent together. This allows the remoteprocessor to perform comparisons locally if they can be decided looking at the�rst ` characters only. Otherwise, the remote processor requests more characters

to the processor owning the text su�x cell7. We try to select ` large enough toensure that most comparisons can be decided without extra communication andsmall enough to avoid very expensive exchanges and high memory requirements.We de�ne now what we understand by a \worst-on-average-text" (wat) caseanalysis. If we consider a pathological text such as "a a a a a a ...", theclassical su�x array building algorithm will not be able to handle it well. Thisis because each comparison among two positions in the text will need to reach theend of the text to be decided, thus costing O(n). Since we �nd such worst-casetexts unrealistic, our analysis deal with average random or natural languagetext. In such text the comparisons among random positions take O(1) time(because the probability of having to look at more than i characters is 1=�i forsome � > 1). Also, the number of index points (e.g., words) at each processor(and hence the size of its su�x array) is roughly the same. A wat-case analysisis therefore a worst-case analysis on average text. We perform wat-case andaverage-case analysis.3 Related WorkFor the PRAM model, there are several studies on parallel sorting. For instance,J�aj�a et al. [8] describe two optimal-work parallel algorithms for sorting a list ofstrings over an arbitrary alphabet. Apostolico et al. [2] build the su�x tree of atext of n characters using n processors in O(logn) time, in the CRCW PRAMmodel. Retrieval of strings in both cases is performed directly. In a su�x array,strings are pointed to and the pointers are the ones which are sorted. If adistributed memory is used, such indirection makes the sorting problem morecomplex and requires a more careful algorithm design.The parallelism model we adopt is that of parallel machines with distributedmemory. In such context, di�erent approaches for sorting can be employed. Forinstance, Quinn [13] presents a quicksort for a hypercube architecture. Thatalgorithm does not take into account the variable size and overlapping in theelements to be sorted, as in our problem. Furthermore, the behavior of the com-munication network in Quinn's work is di�erent (processors are not equidistant)from the one we adopt here.4 The Quicksort-Based Distributed AlgorithmOur algorithm also utilizes the aggregate memory as a giant cache for disks.Unlike mergesort, the hardest work occurs at the point of higher parallelism. Italso improves over the generalized quicksort, because the partitioning is binaryand therefore bad biased cases are handled better.Our algorithm starts by determining the beginning of each su�x in the text(i.e., the beginning of each word) and by generating the corresponding index7As we will see, in some cases this is not necessary and one might assume that thesu�xes are equal if the comparison cannot be locally decided.

pointers. Once this is done, the pointers are sorted lexicographically by thesu�xes they point to (i.e. the local su�x arrays are built). This task is done inparallel for each of the r blocks of text. Since computation of the whole su�xarray requires moving index pointers among processors without losing sight ofthe su�xes they point to, index pointers are computed relative to the wholetext.The processors then engage in a recursive process which has three parts: (1)�nd a suitable pivot for the whole distributed set of su�xes; (2) partition thearray: redistribute the pointers so that each processor has only su�xes smalleror larger than the pivot (keep local arrays sorted), and (3) continue the processseparately inside each group of processors.This recursion ends when a partition is completely inside a local processor.Since all the time the su�xes at each processor are sorted up to pruning, theprocess is completed with (4): a �nal sorting of equal pruned su�xes inside eachprocessor.We now describe the algorithm more in detail. Let E(i) be the set of indexpointers stored in the processor i. Further, let p be a reference to an indexpointer and let S(p) be the pruned su�x pointed to by p.4.1 Finding a PivotThe goal of this stage is to �nd a su�x which is reasonably close to the medianof the whole set, at a low cost. To achieve this, all processors(a) take the middle element m(i) of their local su�x array;(b) broadcast that (pruned) median m(i);(c) knowing all the other medians, do m = medianfm(1); :::;m(r)g;(d) binary search the median of medians m in their su�x array,therefore partitioning their index pointers in two sets L(i) and R(i):L(i) = fp 2 E(i) j S(p) � mg; R(i) = fp 2 E(i) j S(p) > mg (1)(e) broadcast the sizes jL(i)j and jR(i)j of the computed partitions.Observe that in part (e) a pruned su�x which is found to be equal to the(pruned) pivot m is put at the left partition. This works well and avoids at allrequesting full su�xes to other processors. However, as the algorithm progresses,this pivoting process can worsen the randomness of the partition. Such e�ecttends to get worse at the �nal stages of the sorting process.We proved in [12] that this median of medians is very close to the exactmedian, and we show in Section 6 that this is the case in practice, even usingpruned su�xes. Notice that it is possible to �nd the exact pruned medianby using the O(r log b) process described in [12]. However this would add acomplication to the algorithm and does not change the complexities, as we seelater.

4.2 Redistributing PointersThe processors engage in a redistribution process in which they exchange indexpointers until each processor contains all of its index pointers in either L or R,where L =[L(i); R =[R(i) (2)We say that the processor becomes homogeneous when this happens. Therecan be left at most one processor whose index pointers lie in both L and R (we ex-plain later how this is accomplished). This processor is called non-homogeneous.The process of redistributing index pointers is carried out in a number ofsteps which are completely planned inside each processor (simulating comple-tion times for exchanges) and later followed independently. To accomplish suche�ect, the processors are paired in a �xed fashion (for instance, pair the proces-sor (2i) with the processor (2i+ 1) for all i). Each pair manages to exchange aminimum number of index pointers such that one of them is left homogeneous.The homogeneous processor in each pair is left outside of the redistributionprocess. The remaining half processors engage in a new redistribution processin which the processor (4i) or (4i + 1) is paired with the processor (4i + 2)or (4i + 3) (depending on which one is still non-homogeneous). Notice that,since all processors have the information needed to predict the redistributionprocess, they know which processor to pair with at each iteration, and no syn-chronization messages have to be exchanged. This ends when there is only onenon-homogeneous processor.Let us focus in the task of making one of the processors in a pair homo-geneous. Consider the pair composed of processors Pa and Pb. By comparingits su�xes with the computed median m, the processor Pa separates its indexpointers according to the internal partition (La; Ra). Analogously, the processorPb separates its index pointers according to the internal partition (Lb; Rb). LetjLaj, jRaj, jLbj, and jRbj be the number of index pointers in each of these par-titions. Without loss of generality, let min(jLaj; jRaj; jLbj; jRbj) = jLaj. Then,processor Pa can make himself homogeneous by sending all the index pointers inits partition La to processor Pb while retrieving (from processor Pb) jLaj indexpointers of partition Rb. After this exchange, processor Pa is left with all itsindex pointers belonging to R (and thus, homogeneous) while processor Pb isleft with a partition (LbSLa; R0b), where R0b � Rb and jR0bj = jRbj � jLaj. Theother cases are analogous. See Figure 1.Notice that instead of pairing the processors in an arbitrary fashion, weshould try to pair processors Pa and Pb such that jLaj is as close as possible tojRbj, therefore minimizing the amount to transfer and the number of redistrib-ution steps on average (since it is more probable that both processors are lefthomogeneous or close to). An easy way to do this is to sort the processors bytheir jLaj value and then pair the �rst and last processors, the second and thenext-to-last, and so on. This needs not exchange of synchronization messages,because all processors have the necessary information to plan the same exchangesequence.

�����������
�����������
�����������

�����������
�����������
�����������

��
��
��
��

����������
����������
����������
����������

�����
�����
�����

�����
�����
�����

��������
��������
��������

��������
��������
��������

������
������
������

������
������
������

�����
�����
�����

�����
�����
������
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

P

P

RL

R

P

P

a

L R

L R
bb

b

a b b

b b

b

aFig. 1. Illustration of the exchange process. Processor Pa is made homogeneous sinceit owns the smaller partition. This partition is exchanged for a similarly sized portionof Pb.Once a processor receives a portion of another su�x array, it merges thenew portion with the one it already had. This ensures that the su�xes arelexicographically sorted inside each processor all the time. This is of coursetrue only up to pruning, since equal pruned su�xes are stored in any order.However, those pruned su�xes coming from the same processor are known tobe originally in the correct order, and therefore this merging process does notmodify the ordering between equal su�xes of the same processor.4.3 Recursive StepThis redistribution of index pointers splits the processors in two groups: thosewhose index pointers belong to L and those whose index pointers belong to R.The two groups of processors proceed independently and apply the algorithmrecursively.The non-homogeneous processor could potentially slow down the process,since it has to act in two (parallel) groups. Although it does not a�ect thetotal complexity (since a processor belongs at most to two groups), it can a�ectthe constants. To alleviate the problem, we can mark it so that in the nextredistribution process it is made homogeneous in the �rst exchange iteration. Itmay take longer, but the processor is free for the rest of the iterations.The recursion ends whenever an L or R set of index pointers lies entirely inthe local array of a processor. In this case, all that remains to be done is to sortL or R locally.4.4 Final Local SortingThroughout the process, the su�xes at each processor are sorted up to prun-ing. Moreover, we guarantee that equal pruned su�xes coming from the sameprocessor are correctly sorted already. We must, therefore, correctly sort allequal pruned su�xes coming from di�erent processors. To decide those compar-isons, more characters of the su�xes must be requested to the remote processorsowning the su�xes. The number of such remote accesses depends on the textand on the size of the pruned su�xes. Refer to Section 6 for further details.

Therefore, this step proceeds as follows, for each processor: the su�x ar-ray is sequentially traversed. Each time a sequence of equal pruned su�xesis found, they are put in r queues, one per originating processor. Inside eachqueue, the original order of the su�xes is respected. Then, the �rst heads of allqueues are collected and arranged into a heap data structure (each comparisoninvolves requesting remotely more su�x characters). Once the head of the heapis removed, it is replaced by the next element of the appropriate queue, untilwe sort all elements. With this ad-hoc heapsort we make only the necessarycomparisons.5 Analysis5.1 WAT CaseWe consider the cost T (r) of our distributed algorithm described in Section 4.Since the size of the problem is reduced at each recursion step, the number ofprocessors in the newly generated L and R groups decreases. We consider thecost of a recursive step with r processors initially. The �nal cost of the recursionis that of solving the subproblems it generates. Note also that there is an initialpart outside the recursion, namely the initial local sorting.The initial cost of sorting locally the su�x arrays is O(b log b) I, since it isdone in parallel at each processor.Apart from this, the cost T (r) of our algorithm for r processors is as follows:1. Costs for �nding the pivot (costs are parallel for all processors i):(a) selecting the middle element m(i) is O(1) I;(b) broadcasting the median m(i) is O(r) C;(c) computation of the median m is O(r) I;(d) searching m in the local su�x to determine L(i) and R(i) is O(log b) I;(e) broadcasting the sizes jL(i)j and jR(i)j is O(r) C.2. Cost of redistributing index pointers in subproblems L and R is as follows.There are at most log r steps because at least half of the processors is madehomogeneous at each redistribution step. Since at most b index pointersare exchanged in each step (because min(jLaj; jRaj; jLbj; jRbj) � b=2), thetotal cost is O(b log r)(I + C) (we also count the factor I because ofthe merging between the old and new pointers).3. Cost for the recursive calls (processing of groups L and R) depends on theworst-case partition. Let rL be the number of processors in group L andrR be the number of processors in R.We show that r=4 � rL � 3r=4 in the worst case: observe that the esti-mated median m is larger than r=2 local medians, each one in turn largerthan b=2 elements of the corresponding processor. Hence, m is larger thann=4 elements which implies that rL is larger than r=4. The proof for theupper bound is analogous.

Hence, there are at most log4=3 r levels in the recursion in the worst case.The number of processors in the larger partition is at most 3=4r (thesmaller partition works in parallel and does not a�ect completion times).Therefore, T (3=4r) must be added to T (r).4. Cost of sorting the index pointers locally. In the worst case the su�xes areall equal and the same number originated at each processor. In this casethe heapsort is O(b log r)(I + C). Note that this r is the original one,independent of the recursion (we call it r0). Notice also that this worstcase analysis does not improve signi�cantly if instead of a long run of equalpruned su�xes there are many short runs (except when the runs are soshort that log r becomes very pessimistic).The complexity of the total execution time is given by the recurrenceT (1) = O(b log b) I+O(b log r0)(I +C) = O(b logn) I+O(b log r0)CT (r) = O(r + b log r) I+O(r + b log r) C + T (3=4 r)which gives T (r) = O(r + b log r logn) I+ O(r + b log2 r) Cwhere we can assume r < b to obtain T (r) = O(b log r logn) I + O(b log2 r) C.The communication complexity is better than all previous work.This part of the complexity is the most important in practice (as the remoteaccesses cost much more than CPU operations). Hence, we concentrate in com-munication costs. The exact constants for the main part of the cost are givenby b log2 r log4=3 r.If we replace the estimated median algorithm by the one given in [12] thatobtains the exact median, we have a cost of O(r log b) instead of O(r + log b)in Step (1). As a compensation, the partition is exact and therefore there areexactly r=2 processors on each side. Redoing the analysis for this case we getT (r) = O(r log b+ b log r logn) I+ O(r log b+ b log2 r) Cwhich is the same as before when we consider r < b. However, the constantsof the main part of the cost improve, namely the communication cost becomesb log22 r.We consider scalability now. If we double n and r, the new cost T (2n; 2r)becomes T (2n; 2r) = T (n; r)� 1 + r + b(1 + log4=3 r + log2 n)r + b log4=3 r log2 n I+ r= ln(2) + b(2 log2 r + 1)r + b log2 r log4=3 r C! = 1 + o(1)which as long as r < b isT (2n; 2r) = T (n; r)�1 + O� 1log r� (I + C)�

(the ideal scalability condition is T (2n; 2r) = T (n; r)). While our algorithm doesnot scale ideally, it does scale much better than previous algorithms (whose scal-ing factor is 2 in the wat case). Further, as the number of processors increase,the additional computational time (given by the fraction 1= log r) drops consid-erably. For instance, if the number of processors doubles from 256 to 512 theexecution time goes up by a factor of 25% (instead of also doubling).5.2 Average CaseWe show in this section that the algorithmworks almost optimally in the averagecase. The most involved part of the proof is to show that, for large n, theestimated median is almost the exact median. We have proved it in [12] (i.e.the local median is o� the global median by a factor of O(n�1=2)). The proofis obtained by considering only one processor, as a process where the globalmedian is estimated by sampling b elements out of n. When the median of r socomputed medians is used, the estimation is even better. Therefore, the distancebetween the real median and the middle of the local array is O(pb=r).Once we prove that, we have that each redistribution session exchanges al-most all the data in a single step (since jLaj � jLbj � jRaj � jRbj), beingthe remaining steps so small (in terms of communication amounts) that can beignored. The �rst iteration exchanges O(b) elements, and the rest exchange por-tions of the array of size O(pb=r). Therefore, the cost of the O(log r) exchangesis O(b+pb=r log2 r) = O(b). It is also possible to perform the merges betweenold and new arrays at the same cost.Moreover, since the partition is almost perfect, jLj � jRj, and the nextsubproblems are almost half the size of the original one, the logarithm previouslyin base 4=3 is now base 2 and the network is used all the time. To see this,observe that instead of adding T (3=4 r) to T (r), we add T ((b=2+pb=r) r=b) =T (r=2 +pr=b) = T (r=2 + o(1)), which makes the �nal cost b log2=(1+o(1)) r =b log2 r (1 + o(1)). Therefore, the average time cost of our algorithm isT (r) = O(r + b logn) I + O(r + b log r) C = O(b logn) I + O(b log r) C(the simpli�cation being valid for r < b). The scalability factor for communica-tion becomes 1 + (r + b)=(r + b log2 r), i.e. of the same order but about a halfof that of the wat case, while for CPU costs it is 1 + O(1= logn). Despite thisimprovement, the algorithm [12] has better average complexity.The non-homogeneous processor does not add too much to the cost, since ithas � b=2 elements in each partition, and hence exchanges � b=4 on each group.This takes the same as exchanging b=2, which is the normal case in the otherprocessors.The �nal sorting can be cheaper on average than O(b log r). However, thisanalysis is much more di�cult and highly dependent on the nature of the textand the length of the pruned su�xes. We can make it cheaper by using longerpruned su�xes (and pay more communication cost) or vice versa. Moreover, thebig-O analysis does not change because there are already other O(b log r) costsinvolved. We leave this point for the experiments that follow.

6 Experimental ResultsAlthough we have not implemented yet the parallel algorithm here presented,we performed a preliminary analysis of its behavior taking into account somereal texts (Wall Street Journal extracts from the TIPSTER collection [6]). Westudy the critical aspects of the behavior of the algorithm.6.1 Pruned Su�xesOne phenomenon of interest is the e�ect of pruned su�xes in the algorithm.Su�xes are pruned at ` characters in order to reduce interprocessor communica-tion of processes asking remote su�xes for local comparison. Pruning inuencesthe whole algorithm because, after the �rst step of recursion, pointers may pointto remote su�xes. We evaluate here the implications of pruning on interprocesscommunication.We begin by considering the last local sorting. We implemented an externalmerge of r queues using a heap. We obtain the fraction of comparisons thatgenerated remote accesses for more characters of the su�xes (these correspondindeed to a tie between pruned su�xes). In Table 1 we present average andstandard deviation (stdev) for di�erent block sizes and ` values, considering aninput �le of 10 megabytes.In turn, each tie implies two to four remote accesses (depending on just oneor both are remote pruned su�xes). This is because there is a request and ananswer for each su�x retrieved. However, su�xes already brought from a remoteprocessor can be bu�ered locally in order to solve eventual posterior ties, withno need to ask them again remotely.We also counted the number of messages really exchanged among processors,if this local bu�ering is used. Let ties be the total number of ties occurring on agiven processor. In the same table we present, in the sixth column, the fractionof the messages exchanged when compared with the worst case (that is, 4� ties).This gives a measure of the e�ectiveness of the local bu�ering scheme.We present also the maximum number of messages sent in each case (i.e.,the number of messages of the most communicant processor) normalized in per-centage to the number of total su�xes on the corresponding processor. Sinceall processors work in parallel, this is related to the global completion time forStep 4 of the algorithm.Finally, we estimate the time in seconds to transfer this maximum numberusing the model of [11] for smaller messages (see Section 6.3: � = 47 and� = 0:0254) and considering a message of 8 bytes to request (su�x pointerplus processor address) and 54 to answer (processor address plus 50 bytes of thesu�x).The results show that a pruned su�x of 30 characters is already a good trade-o� (< 5% remote requests in almost all cases). We observe that the variationbetween the percentage of ties among processors is rather high. As a matter offact, the larger the pruned su�x, the larger the variation of the percentage of

T P ` % ties stdev messages / stdev max mess. / estimated4 � ties # su�x time (s)10 Mb 8 10 27.84% 9.25% 20.53% 5.31% 2.50% 8.2810 Mb 8 20 7.51% 29.20% 28.00% 15.93% 0.88% 2.9010 Mb 8 30 4.10% 35.23% 26.50% 15.89% 0.44% 1.4610 Mb 8 40 2.54% 37.14% 28.61% 15.10% 0.29% 0.9410 Mb 16 10 24.74% 19.78% 13.13% 16.30% 2.97% 4.9110 Mb 16 20 6.55% 51.49% 20.76% 46.92% 1.29% 2.1210 Mb 16 30 3.67% 62.17% 20.23% 51.16% 0.66% 1.0910 Mb 16 40 2.22% 76.54% 22.47% 43.79% 0.49% 0.80Table 1. Amount of exchanged messages due to pruning (stdev is a percentageover the average). T is the text size and P the number of processors.ties. For example, for ` equal to 10 and 8 processors, we obtained a standard de-viation of 9.25% over the average. For ` equal to 40, this percentage increases to37.14%. This means that larger pruned su�xes imply few ties (and few remoteaccesses), but more text is stocked locally and text characteristics (distributionof words and phrase composition) start to inuence the occurrence of identicalsu�xes. For example, \Wall Street Journal" (19 characters) occur frequently inthe text database we use. The processor containing su�xes starting with "W"may ask more remote su�xes than other processors.Another interesting point is compression. To reduce communication overheadwhen exchanging su�x arrays, we use a compression scheme based on similarityof pruned su�xes. Since the processor that sends a slice will send all the prunedsu�xes in ascending order, most su�xes will share a common pre�x with theirneighbors. This can be used to reduce the amount of communication. Thistechnique has been previously applied to compress su�x array indices [3], andworks as follows: the �rst pruned su�x is sent complete. The next ones arecoded in two parts: the length of the pre�x shared with the previous prunedsu�x; and the remaining characters. For example, to send "core", "court"and "custom", we sent "core", (2,"urt") and (1,"ustom").Compression rates (i.e. compressed size divided by uncompressed size) aver-ages and standard deviation are presented in Table 2. With an ` of 30 characters,a 25% of reduction is achieved. As expected for lower `, compression may reducethe size of the pruned su�xes to almost the half of the size. However, as pre-sented in Table 1, a small ` implies more communication during the local sortof pointers. We also verify that compression rates are also sensible to the textsize. The larger this size, the better the compression, due to the higher degree ofsimilarity between contiguous su�xes in the sorted array. Note that we measurecompression rates in the �rst exchange. This should improve in further stepsof the recursion, since the su�xes become more and more sorted and thereforelonger pre�xes are shared among contiguous su�xes.

text size # proc. ` mean stdevcompression rate compression rate10 Mb 8 10 56.06% 4.26%10 Mb 8 20 65.99% 4.41%10 Mb 8 30 73.46% 3.93%10 Mb 8 40 78.19% 3.40%10 Mb 16 10 59.17% 6.90%10 Mb 16 20 69.05% 6.54%10 Mb 16 30 75.90% 5.85%10 Mb 16 40 80.23% 5.11%Table 2. Percentage of compression (average and percentage of stdev over theaverage).6.2 Estimated MediansWe have generated the su�x arrays and the corresponding �le of sorted su�xesfor two extracts of the Wall Street Journal [6]. These two extracts have 32and 100 megabytes. We partitioned these �les in 8 and 16 blocks, and used` = 30. Then, we obtained the medians of the blocks (m(i)) and computed m,the median of the medians. Next we compared:{ m with the real median of the whole extract (called D1);{ m with each local m(i) (called D2(i)).We present the distance (in percentage) from the real median. If it is theexact median, the percentage is 0%. If it corresponds to the �rst or last elementof the local su�x array, the deviation is of 100%. The results for the maximumdeviations are presented in Table 3.100Mb-8P 100Mb-16P 32Mb-4P 32Mb-8P 32Mb-16PD1 0.42% 0.35% 0.11% 0.16% 0.06%max (D2(i)) 1.49% 0.98% 0.29% 0.75% 1.51%Table 3. Deviation among real and estimated medians. Text sizes of 32 and100 megabytes and number of processors of 4, 8, and 16.According to the numbers presented in Table 3, the text presents a charac-teristic of auto-similarity, that is, the text blocks on each processor have similarmedians, which are in turn similar to the exact global median. Approximatemedians (those considering the median of medians, that is, m) are taken onpruned su�xes. Therefore, even using pruned su�xes with a reasonable `, weobtain good approximations (< 2%).

We did not go on with the partitioning process, but we also estimated whatwould happen in the last steps of the recursion process. In these last levels, thecompared su�xes are much more similar and the median approximation is basedon few samples (but on a smaller text space). For this approximation, we tookthe global sorted su�x �le called GS. We divided GS in 8 and 16 blocks (GSi,where 1 < i < 8 or 1 < i < 16) and took the two �rst blocks GS1 and GS2(for example, comprising su�xes starting with "A" until "C"). Next we tookeach su�x of these two initial blocks and chose randomly a processor to hold it(keeping the lexicographical order - since GS has sorted su�xes). Finally, wetook the median on each processor and compared with the real median (the lastsu�x of GS1 or the �rst of GS2). Results are presented in the Table 4 for a 100megabytes �le. �le size 100 Mb 100 Mbblock size fraction 1=8 1=16distance block 1 0.06% 0.10%distance block 2 0.07% 0.10%Table 4. Deviation among real and estimated medians in part of the last stepof the recursion. Simulation is used.The estimated medians on pruned su�xes are very close to the real median.This shows that the estimation is even better in the last steps of the recursion,even considering the e�ects of pruning. It is important to remark that in bothcases (Tables 3 and 4) the approximations are very good for ` = 30 and di�erentnumber of processors. This is expected considering that the number of samplesis proportionally the same when compared to the size of the text being sam-pled: e.g., for 16 processors, we sample 16 medians for the whole text. With 2processors in the last step, we sample 2 medians, but from a text 8 times smaller.6.3 Partition ExchangeWe know that if the partitions are exact (i.e., m is always identical to the realmedian of the (sub)set), the partition (L or R) exchanges are performed in onestep and without interference among pairs (using a no contention switch). Ingeneral, communication in parallel machines can be modeled by a linear equa-tion [11]: tcom = �+ �spwhere tcom is the total communication time, � is the time spent to startup theline and other eventual overheads (e.g., packing), � is the time to send a bytethrough the communication link, and sp is the partition size in bytes. If thepartitions are exactly equal in size, all the partition exchanges are done in oneturn. For the examples of Section 6.2 (texts of 32 and 100 megabytes; 4, 8, and

16 processors; and ` = 30), we present in Table 5 the estimated time of the �rstpartition exchange of the recursion. We use the parameters of a typical IBM SPparallel machine: � = 390�s, � = 0:115�s=byte [11]8. It is important to remarkthat one partition is composed of integers and the pruned su�xes. For Table 5,we estimated the communication time without using a compression scheme.100Mb 100Mb 32Mb 32Mb 32Mb8P 16P 4P 8P 16Pestimated time 5.06 2.54 3.68 1.85 0.93Table 5. Estimated communication time in seconds of partitions for the �rstiteration of the recursion. Non-homogeneous processors are not considered.Using the measures of Section 6.2, we can estimate the communication timeloss due to unequal partitions. However, due to the regularity of the partitions,the remaining bytes to make processors homogeneous are not representative.For example, we take the 32 megabytes text and make a simulation of parti-tion exchange, considering di�erent sizes of partitions (we consider, for each,communication turn, the largest message exchanged and 8 processors):1. for the above case, the �rst communication is of 469; 011 � 34 bytes. Thiswill consume around 1.83 seconds (1,834.22 milliseconds). Half of theprocessors are made homogeneous;2. next, we check the number of bytes to be exchanged to make more onefourth processors homogeneous. We have then to communicate 112 � 34bytes, corresponding to 0.83 milliseconds, i.e., 0.05% of the previous time;3. �nally, 12 � 34 bytes are sent to make one processor homogeneous andother non-homogeneous with 100�34 more bytes than the other processors.This last exchange consumes 0.44 milliseconds, i.e, 0.02% of the partitionexchange original time.7 Conclusions and Future WorkWe have discussed a quicksort-based distributed algorithm for the generation ofsu�x arrays for large texts. The algorithm is executed on processors connectedthrough a high-bandwidth network. We have shown how to deal with the par-ticular aspects of su�x arrays, namely the unbounded size and overlapping ofthe elements. We analyzed the average and worst case complexity of our algo-rithm considering a text of size n and the presence of r processors. Such analysis8The IBM SP has di�erent linear communication models for di�erent sizes of mes-sages. The � and � of Section 6.1 correspond to small messages (< 4 kilobytes). Theparameters used here correspond to larger messages (> 32 kilobytes).

proves that the algorithm has the best communication complexity and scalingfactor in the wat case. A comparative table follows.Algorithm Complexity Scaling Factor (1 + :::)wat Average wat AverageMergesort n (I + C) n (I + C) I + C I + C[9]Generalized b log n I b log n I 1= log n I 1= log n IQuicksort [12] + n C + b C + CQuicksort b log r log n I b log n I 1= log r (I + C) 1= log n I+(present work) + b log2 r C + b log r C 1= log r CWe are currently working on the implementation of the quicksort based algo-rithm in order to have real experimental times instead of simulations. We alsoplan to repeat the experiments with larger texts for the �nal version.References1. T. Anderson, D. Culler, and D. Patterson. A case for NOW (Network of Worksta-tions). IEEE Micro, 15(1):54{64, February 1995.2. A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin. Parallelconstruction of a su�x tree with applications. Algorithmica, 3:347{365, 1988.3. E. Barbosa and N. Ziviani. From partial to full inverted lists for text searching.In R. Baeza-Yates and U. Manber, editors, Proc. of the Second South AmericanWorkshop on String Processing (WSP'95), pages 1{10, April 1995.4. G. Gonnet. PAT 3.1: An E�cient Text Searching System { User's Manual. Centreof the New Oxford English Dictionary, University of Waterloo, Canada, 1987.5. G. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT treesand pat arrays. In Information Retrieval { Data Structures & Algorithms, pages66{82. Prentice-Hall, 1992.6. D. Harman. Overview of the third text retrieval conference. In Proceedings ofthe Third Text Retrieval Conference - TREC-3, pages 1-19. National Instituteof Standards and Technology. NIST Special Publication 500-225, Gaithersburg,Maryland, 1995.7. J. J�aj�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.8. J. J�aj�a, K. W. Ryu, and U. Vishkin. Sorting strings and constructing digital searchtrees in parallel. Theoretical Computer Science, 154(2):225{245, 1996.9. J. P. Kitajima, B. Ribeiro, and N. Ziviani. Network and memory analysis indistributed parallel generation of pat arrays. In 14th Brazilian Symposium onComputer Architecture, pages 192{202, Recife, August 1996.10. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches.SIAM Journal on Computing, 22, 1993.

11. J. Miguel, A. Arruabarrena, R. Beivide, and J. A. Gregorio. Assessing the perfor-mance of the new IBM SP2 communication subsystem. IEEE Parallel & Distrib-uted Technology, 4(4):12{22, Winter 1996.12. G. Navarro, J. P. Kitajima, B. Ribeiro, and N. Ziviani. Distributed generation ofsu�x arrays. In A. Apostolico and J. Hein, editors, Proc. of the Eighth Symposiumon Combinatorial Pattern Matching (CPM97), Springer-Verlag Lecture Notes inComputer Science v. 1264, pages 102-115, �Arhus, Denmark, June 1997.13. M. J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, secondedition, 1994.

This article was processed using the LATEX2" macro package with CUP CS class

