Multiple Approximate String Matching by
Counting

Gonzalo Navarro!?
! Dept. of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.
2 This work has been supported in part by Fondecyt Grants 1950622 and 1960881.

Abstract. We present a very simple and efficient algorithm for on-
line multiple approximate string matching. It uses a previously known
counting-based filter [9] that searches for a single pattern by quickly dis-
carding uninteresting parts of the text. Our multi-pattern algorithm is
based on the simulation of many parallel filters using bits of the com-
puter word. Our average complexity to search r patterns of length m is
O(rnlog m/log n), being n is the text size. We can search patterns of
different length, each one with a different number of errors. We show
experimentally that our algorithm is competitive with the fastest known
algorithms, being the fastest for a wide range of intermediate error ra-
tios. We give the first average-case analysis of the filtering efficiency of
the counting method, applicable also to [9].

1 Introduction

A number of important problems related to string processing lead to algorithms
for approximate string matching: text searching, pattern recognition, computa-
tional biology, audio processing, etc.

The edit distance between two strings a and b, ed(a, b), is defined as the minimum
number of edit operations that must be carried out to make them equal. The
allowed operations are insertion, deletion and replacement of characters in a or
b. The problem of approzimate string matching is defined as follows: given a text
of length n, and a pattern of length m, both being sequences over an alphabet
¥ of size o, find all segments (or “occurrences”) of text whose edit distance to
patternis at most k, where 0 < k < m. In typical text searching, n is large, m is
small (say, less than 30), & = k/m is small (say, less than 1/3), and ¢ is not very
small (at least 25). Tt is common to report only the endpoints of occurrences in
the text.

In the online version of the problem, the pattern can be preprocessed but the
text cannot. We are interested in online algorithms in this work. The classical
solution is O(mn) time and involves dynamic programming [13].

The different approaches to solve the problem efficiently can be divided in three
main areas:



— Those that use cleverly the geometric properties of the dynamic program-
ming matrix, e.g. [7, 11, 17, 5]. These algorithms normally achieve O(kn)
time complexity in the worst or the average case. An exception is [5],

which achieves O(kn/+/o) on average.

— Those that filter the text, quickly leaving out most of the text and verifying
only the areas that seem interesting, e.g. [16, 15, 14, 6, 4]. They achieve
sublinear expected time in many cases (e.g. O(knlog, m/m)) for small «.
However, they tend to be practical only for m not too small and low error
ratios. Some exceptions are [4, 9], which are O(n) for small o even when
m 1is small.

— Those that parallelize the computation of a classical algorithm in the bits
of computer words [21, 19, 22, 2/ 1]. We call w the number of bits in
the computer word, which is assumed to be ©(logn). These algorithms
normally obtain a factor of O(1/logn) over their classical counterparts.
An exception is [2, 1], which is O(n) for small patterns regardless of «,

and O(y/mk/logn n) for larger patterns and moderate «.

On the other hand, multi-pattern approximate search has only recently been
considered. The only previous approaches we are aware of are [12] and [3]. In
[12], hashing is used to handle thousands of patterns in parallel, although with
only one error. In [3], extensions of [2] and [4] are presented that improve [12]
for a moderate number of patterns, and can handle any number of errors.

In this work we extend a single-pattern approximate search algorithm to the case
of multiple patterns. The algorithm that we extend is a filter based on counting
matching positions [9]. The single-pattern filter is linear on average, and as any
filtration algorithm, is useful up to a certain « value. The strongest point of that
filter is its extreme simplicity. Despite that simplicity, it is among the fastest
ones 1n 1ts area of usefulness. Because of its simplicity, it can be parallelized in
bits of a computer word.

Our multi-pattern algorithm is also competitive with previous work, being the
fastest for intermediate error ratios. For r patterns and moderate «, it is
O(rnlogm/logn) time. We present the new algorithm, give the first average-
case analysis of its filtration efficiency (applicable also to [9]), and present ex-
perimental results for the single- and multi-pattern algorithms.

This paper is organized as follows. In section 2 we explain our minor variation
of the single-pattern algorithm [9]. In section 3 we present our multi-pattern
algorithm. In section 4 we analyze both algorithms. In section 5 we show
experiments about the statistics of the problem and compare both algorithms
against previous ones. Finally, in section 6 we give our conclusions.



2 A Simple Counting Filter

In this section we describe a minor variation of [9] (also very close to [8]), which
is the basic single-pattern counting filter that our multi-pattern algorithm uses.
Our approach is somewhat simpler because we use a fixed-size instead of variable-
size text window (a possibility already noted in [18]).

We begin by proving a very simple lemma, which is a special case (¢ = 1) of
Lemma 7 of [10].

Lemma: If there are ¢ < j such that ed(text[i..j],pattern) < k, then fext[j —
m + 1..j] includes at least m — k characters of pattern.

Proof: Suppose the opposite. If j — 7 < m, then we observe that there are less
than m — k characters of pattern in text[i..j]. Hence, more than k characters
must be deleted from pattern to match the text. If j — i > m, we observe
that there are more than k characters in text[7..j] that are not in paitern, and
hence we must insert more than k characters in pattern to match the text. A
contradiction in both cases.

Note that in case of repeated characters in the pattern, they must be counted
as different occurrences. For example, if we search aaaa with one error in the
text, the last four letters of each occurrence must include at least three a’s.

The filter is based on the lemma. It passes over the text examining an m-letters
long window. It keeps track of how many characters of pattern are present in
the current text window (accounting for multiplicities too). If, at a given text
position j, m—k or more characters of pattern are in the window texzt[j—m+1..4],
the window area is verified with a classical algorithm (e.g. [17]). Verification is
of course necessary, since the characters of the text could be at different positions
in the pattern.

To avoid re-verification due to overlapping areas, we keep track of the last po-
sition verified and the state of the verification algorithm. If a new verification
requirement starts before the last verified position, we start the verification from
the last verified position, avoiding to re-verify the preceding area.

Observe that it is not necessary to verify the longer area text[j —m — k + 1..5]
(what would be the obvious area, since the occurrence can be of length up to
m + k). This is because the lemma holds also for the window at any position
inside an occurrence, so that the counter will reach m — k also m characters past
the beginning of the occurrence. A longer occurrence will keep triggering verifi-
cations while the window is inside the occurrence. This fact, together with our
mechanism to avoid re-verifications by keeping the current state of verification,
ensures that the occurrence will be caught.

We implement the filtering algorithm as follows: we build a table A where, for
each character ¢ € X| the number of times that ¢ appears in pattern is kept. We
also keep a counter of matching characters. To advance the window, we must
include the new character tezt[j+1] and exclude the last character, text[j—m+1].



To include the new character, we subtract one at the proper entry of A. If the
entry was greater than zero before the operation, it is because the character is in
pattern, so we increment the counter. To exclude the old character, we add one
at the proper entry of A. If the entry is greater than zero after the operation,
it 1s because the character was in pattern, so we decrement the counter. When
the counter reaches m — &k we verify the preceding area.

Throughout the algorithm, each entry of A indicates how many occurrences of
that character can still be taken as belonging to pattern. When it is negative, it
means that that number of characters must exit the window before we take new
characters. For example, if we run the pattern aloha over the text aaaaaaaa, it
will hold A[a] = —3, and the value of the counter will be 2.

Figure 1 shows the pseudocode of the algorithm. We use C notation. As it
can be seen, the algorithm is not only linear (excluding verifications), but the
number of operations per character is very small.

CountFilter (text,n,pat,m,k)
{ /* preprocessing */
for (c€X) Alc]=0;
for (1 =0;: < m;i++) Alpat[s]]++;
count = —(m — k);
/* searching */
for (j=0;3 < m;j++) /* £ill the initial window */
if (Aftext[j++]]—— > 0) count++;
while (3 <n) /* move the window #*/
{ if (count > 0) { verify text[j —m..; — 1] with dynamic programming }
if (++4Aftext[j —m]] > 0) count——;
if (Aftext[j++]]—— > 0) count++;
}
}

Fig.1. The code of the single-pattern algorithm.

3 Our Multi-pattern Search Algorithm

To search r patterns in the same text, we use bit-parallelism to keep all the
counters in a single machine word. We must do that for the A table and for
count.

The values of the entries of A lie in the range —m..m, so we need exactly 1 +
[logo(m + 1)] bits to store them. This is also enough for count, since it is in
the range —(m — k)..k. Hence, if we call w the number of bits in the computer
word, we can pack

L + flogj(m + 1)1J

patterns of length m in a single search. If the patterns have different lengths,
this limit holds for the longest one. If we have more patterns, we must divide



the set in subsets of at most this size and search each subset separately. For
example, in a 32-bit architecture we can handle in a single word up to 8 patterns
of length 7, or 6 of length 15, or 5 of length 31, or 4 of length 127, etc. We focus
our attention on a single subset now.

The algorithm simulates the simple one as follows. We have a table MA that
packs all the A tables. Each entry of MA is divided in bit areas of the appropriate
length. In the area of the machine word corresponding to each pattern, we store
its normal A[] value minus 1, and set to 1 the most significant bit of the area.
If we have to add or subtract 1, we can easily do it in parallel without causing
overflow from an area to the next. Moreover, the corresponding A[] value is not
positive if and only if the most significant bit of the area is zero.

We have a parallel counter M count, where the areas are aligned with MA. Tt
is initialized by setting to 1 the most significant bit of each area and then sub-
tracting m — k at each one. We can add or subtract one in parallel without
causing overflow. Moreover, the window must be verified for a pattern whenever
the most significant bit of its area reaches 1. The condition can be checked in
parallel, although each verification is sequential. Note that this allows to have
different £ values for each pattern. It is also possible to have different m values,
but the performance of the algorithm may be degraded if they are very different,
because we have to use the longest text window for all the patterns.

Observe that the counters that we want to increment or decrement correspond
exactly to the MA areas that have a 1 in their most significant bit. This allows an
obvious bit mask-shift-add mechanism to perform this operation also in parallel.

Figure 2 shows the pseudocode of the parallel algorithm. As it can be seen, the
algorithm 1s now more complex but the number of operations per character is
still very low.

4 Analysis

We analyze the space requirements and time complexity of the algorithms for
single and multiple patterns.

The space requirement of all the algorithms is O(o). The preprocessing cost is
O(o+m) for the simple algorithm and O(o+rm) for the multi-pattern algorithm.

If the number of verifications is negligible, each pass of the algorithms is O(n).
That means that the simple algorithm is O(n). In the case of multiple patterns,
only O(w/ log m) patterns can be packed in a single search, so the cost to search r
patterns is O(rnlogm/logn) (taking w = O(log n) as usual in the RAM model).

In the worst case all the text positions are verified, and the algorithms take the
same as dynamic programming, i.e. O(mn) the simple one and O(rmn) the
multi-pattern one. This is because we avoid re-verifying a text position, even in
the case of overlapping verification requirements.

The difficult part of the analysis is the maximum error ratio « that the filtra-



CountFilter (text,n,pati r,mi.r,k1. )

{ /* preprocessing */
m = max{m,,s € 1..r};
€= [log, m[;

for (c € %) MA[c]= (019"
for (s=0;s < r;s++)
for (1 =0;i < ms;i++) MA[pat:[i]] + = 105U+,
high = (109)";
ones = (OZI)T;
Mcount = (IOZ —(m—k)) x ones;

/* searching */

J=0;
while (3 < m) /* £ill the initial window #*/
{ ¢ =text[j++];
Mcount + = (MA[c] >> £) & ones;
MA[c] — = ones;
}
while (3 <n) /* move the window */
{ if (Mcount & high)! =0 then /* verify the area */

verify text[j — m..j — 1] with dynamic programming
(for each pattern whose high Mcount bit is 1)
c = text[y — m];

MA[c] + = ones;

Mcount — = (MA[c] >> £) & ones;
c = text[y];

Mcount + = (MA[c] >> £) & ones;
MA[c] — = ones;

Fig.2. The code of our multiple-pattern algorithm. The exponentiation of bits means
repetition, e.g. 0°1 = 0001.



tion scheme can tolerate while keeping the number of verifications low. If the
probability of verifying is O(1/m?) the algorithm keeps linear on average. If it
exceeds 1/m, it becomes completely ineffective. This is because the verifications
cost O(m?), and hence this is the point where the algorithm becomes O(mn), the
same as plain dynamic programming. We call that point the “limit of usability”,
and say that the algorithm is “useful” before that limit.

We derive in the Appendix a pessimistic bound for the limit of linearity and
usability, namely o < e=™/7 (Eq. (2)). The analysis shows that, as m grows,
we can tolerate smaller error ratios. This is experimentally verified in the next
section.

5 Experiments

We first show experiments about the maximum allowable error ratio for the
filter (i.e. up to where it is better than plain dynamic programming). Later, we
compare both algorithms against others.

5.1 Maximum Error Ratio

We experimentally find out which is the limit of usability of the algorithm for
different types of texts, and use least squares to find a formula which is very
accurate for the range of values we are interested in practice, i.e. m < 100 and
20 < o < 60. That type of formula was selected among a number of classes we
tried, since it gave us the best results. Tt is close in spirit to Eq. (2) (recall that
that equation is pessimistic).

The experiments were carried out as follows. For every o in the set {20, 30...60}
and every m in {4..100}, we generated a random text of 1 Mb, and repeated 100
times the experiment of generating a random pattern and verifying which was
the maximum error (k) up to where the number of verifications triggered was
less than 1/m times the size of the text.

Separately for each value of o, we used least squares for the model ay,x = ab™,
which gave us the best results. Later, once a different value of a and b was
obtained for each o, we used the models @ = co? and b = 1 — fo?. The result is

the formula
omax = 0.11 ¢%*3(1 — 0.032/5°37)™

for which we obtained an average squared error near 0.0004 (its square root
being 0.02).

We also performed the test on English lower-case text, selecting the patterns ran-
domly from the same text at the beginning of non-stopwords, to mimic classical
information retrieval queries.

The experimental results are shown in Figure 3. The smooth curves are those
obtained with least squares. The theoretical pessimistic approximations found



in the Appendix are totally below the experimental curves, but have the same
shape of those of least squares. Therefore, they are less exact for very small or
very large m. In the first case this is because the analysis works with probabilities
of the form O(1/m), which allows larger errors for small m. In the second case
it is because the pessimistic part of the model refers to letters that appear many
times in the text window of length m, which is more noticeable for large m (when
it is more probable to repeat letters).

a 0.6
0.5
0.4
0.3

0.2

0.1

0.0 T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100

Fig.3. Experimental maximum level of usefulness of our algorithm. The lowest line is
for English lowercase text. The rest of non-smooth lines are for o = 20, 30...60 (from
lower to higher). The smooth lines are our approximation.

5.2 Comparison with Other Algorithms

In this section we experimentally compare the algorithms against the fastest
previous algorithms we are aware of. We leave aside a number of algorithms that
were not competitive in our experiments, at least for the range of parameters we
used.

We tested random patterns against 1 Mb of random text on a Sun SparcStation
4 running Solaris 2.3, with 32 Mb of RAM. We use w = 32 and ¢ = 30 (typical
case in text searching). We also tested on 1 Mb of lower-case English literary
text, where the patterns were randomly selected from the same text, at the
beginning of non-stopwords. Since the algorithms work on main memory, we
measure user times. Each data point was obtained by averaging over 10 trials.

Single Patterns We compare the counting filter against: Ukkonen [17], Chang-
Lampe [5], Sutinen-Tarhio [14], Baeza-Yates/Perleberg [4], Wu-Manber [21], Wu-
Manber-Myers [22], Agrep [20], and Baeza-Yates/Navarro [2].



In all cases the code is from the authors, except Ukkonen (code is ours and in
fact it is used as our verification engine), Baeza-Yates/Perleberg (code is ours)
and Wu-Manber (code is from Alden Wright [19]). The codes have been used
with the parameters suggested by the authors to achieve optimal behavior, and
we verified that that was the case. The code for the counting filter is that of
Figure 1.

Figures 4 and 5 (upper part) show the results (for random and English text,
respectively). Although we show results only for m = 20, similar results were
obtained for m = 10 and 30.

It can be seen that in the area of usefulness the algorithm is very fast, being
competitive with the best known algorithms. It is even the fastest in a small
area of moderate error ratio. We observe that the point where the algorithm is
the fastest is close to its maximum level of usability (which can be noted because
it worsens immediately after that point, or by looking at the values in Figure 3).
The reason for this is that the filter, though simple and fast, inspects all text
characters and therefore is not faster than the best sublinear filters. However,
it is more tolerant to errors and therefore it is the best one between the point
where the other filters stop working up to where it also stops working because
of the error level.

Multiple Patterns There are few previous algorithms for multiple approxi-
mate matching. We compare ours against all them: Muth-Manber [12] (which
is defined only for k¥ = 1) and Baeza-Yates/Navarro [3] (which proposes 3 algo-
rithms: “exact partitioning” (EP), and “superimposed automata” with two vari-
ants, namely “pattern partitioning” (PP) and “automaton partitioning” (AP)).

Figures 4 and 5 (lower part) show some comparisons (for random and English
text, respectively). Although we show only the case m = 20, similar results were
obtained for m = 10 and m = 30.

We first compare all the algorithms for ¥ = 1 (so that Muth-Manber can be
included), to show that our algorithm is better than Muth-Manber for » up to
10. However, Baeza-Yates/Navarro (EP) is the fastest algorithm in this area.

We then compare all the algorithms for more errors (hence excluding Muth-
Manber), for fixed k& (kK = 7 on random text and & = 4 on English text, i.e.
moderate error level) and for fixed » = 15. As it can be seen, our algorithm
is the best one for a moderate number of errors (i.e. in the last plot, from the
point where Baeza-Yates/Navarro (EP) is eliminated for its many verifications
to where the same happens to our algorithm). In the multi-pattern case, the
area where our algorithm is the fastest one is wider than in the single pattern
case.



—o— Ukkonen

— Chang-Lampe

—— Sutinen-Tarhio

— — Baeza-Yates/Perleberg
—— Wu-Manber

---- Wu-Manber-Myers

—+ Baeza-Yates/Navarro
—o— Agrep

— Counting

T
18

16 - — — Muth-Manber

14 —x— Baeza-Yates/Navarro (EP)
12 7 —6— Baeza-Yates/Navarro (PP)
107 —— Baeza-Yates/Navarro (AP)

8 —

— Ours

6 —

4 —

2 -3 r=15

k
0 T T T T T T T 1

Fig.4. Times in seconds for different variations of the simple (upper part) and multiple
(lower part) search problem. The plots are for m = 20 and random text with o = 30.



—o— Ukkonen

— Chang-Lampe

—— Sutinen-Tarhio

— — Baeza-Yates/Perleberg
—— Wu-Manber

---- Wu-Manber-Myers

—+ Baeza-Yates/Navarro
—o— Agrep

— Counting

T
18

16 - — — Muth-Manber

14 —x— Baeza-Yates/Navarro (EP)
12 7 —6— Baeza-Yates/Navarro (PP)
107 —— Baeza-Yates/Navarro (AP)

8 —

— Ours

6 —

4

2 — r=15

k
0 T T T T T T T 1

Fig.5. Times in seconds for different variations of the simple (upper part) and multiple
(lower part) search problem. The plots are for m = 20 and English text.



6 Conclusions

We presented a new algorithm for multiple approximate string matching. Our
algorithm is the fastest one for intermediate error ratios and can search patterns
with different lengths and number of errors. Up to a given error ratio, it is linear
on average and very fast in practice. It performs a few operations per inspected
character. Its tolerance to errors is more than enough for most text searching
applications. The algorithm is based on a bit-parallel simulation of a previous
filter based on counting matching positions [9].

We analyze and experimentally show which is the maximum error ratio up to
where the algorithms filtrate efficiently, giving the first average-case analysis
for the counting filter. We experimentally compare both algorithms against the
fastest we are aware of. In their area of usefulness, they are competitive with the
best ones. Moreover, the algorithms are the fastest for a range of intermediate
error values (this range is wider for our multi-pattern version). This is due to
the fact that, although the algorithms are not faster than the best filters, their
tolerance to errors is higher.

Acknowledgments

We thank Ricardo Baeza-Yates for his support and numerous useful comments to
improve this work. Thanks also to Erkki Sutinen, who gave us useful references
to related works, and Jorma Tarhio for an early version of [9]. Finally, we thank
an anonymous referee for its comments and references.

References

1. R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching.
In Proc. WSP’96, pages 47-63, 1996. ftp://ftp.dcc.uchile.cl/pub/users/-
gnavarro/wsp96.2.ps.gz.

2. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-
ing. In Proc. CPM’96, pages 1-23, 1996. ftp://ftp.dcc.uchile.cl/pub/users/-
gnavarro/cpm96.ps.gz.

3. R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In
Proc. WADS’97, pages 174-184, Halifax, Nova Scotia, Canada, 1997. ftp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/wads97.ps.gz.

4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-
ing. In Proc. CPM’92, pages 185-192, 1992. LNCS 644.

5. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate
string matching algorithms. In Proc. CPM’92, pages 172-181, 1992. LNCS 644.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

W. Chang and T. Marr. Approximate string matching and local similarity. In
Proc. CPM’94, pages 259-273, 1994. LNCS 807.

7. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. of Computing, 19(6):989-999, 1990.

. R. Grossi and F. Luccio. Simple and efficient string matching with & mismatches.

IPL, 33(3):113-120, Nov. 1989.

P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string match-
ing algorithms. Software Practice and Ezperience, 26(12):1439-1458, 1996.

P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. MFCS’91, pages 240-248, 1991. LNCS 520.

G. Landau and U. Vishkin. Fast string matching with k differences. J. of Computer
Systems Science, 37:63-78, 1988.

R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM’96,
pages 75-86, 1996.

P. Sellers. The theory and computation of evolutionary distances: pattern recog-
nition. J. of Algorithms, 1:359-373, 1980.

E. Sutinen and J. Tarhio. On using g-gram locations in approximate string match-
ing. In Proc. ESA’95,1995. LNCS 979.

T. Takaoka. Approximate pattern matching with samples. In Proc. ISAAC’94,
pages 234-242, 1994. LNCS 834.

J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string matching.
In Proc. SWAT’ 90, pages 348-359, 1990. LNCS 447.

E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132-137,
1985.

E. Ukkonen. Approximate string matching with ¢g-grams and maximal matches.
Theoretical Computer Science, 1:191-211, 1992.

A. Wright. Approximate string matching using within-word parallelism. Software
Practice and Ezperience, 24(4):337-362, Apr. 1994.

S. Wu and U. Manber. Agrep — a fast approximate pattern-matching tool. In
Proc. USENIX, pages 153-162, 1992.

S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83-91,
Oct. 1992.

S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.



Appendix: Probability of Verifying

We find an upper bound for the probability of triggering a verification, and use
it to derive a safe limit for a to make verification costs negligible. We consider
constant « and varying m (the results are therefore a limit on «). We then
extend the results to the other cases.

The upper bound is obtained by using a pessimistic model which is simpler than
reality. We assume that every time a letter in the text window matches the
pattern, it is counted regardless of how many times it appeared in the window.
Therefore, if we search aloha with 1 error in the text window aaaaa the verifi-
cation will be triggered because there are 5 letters in the pattern (where in fact
our counter will not trigger a verification because it counts only 2 a’s).

Consider a given letter in the text window. The probability of that letter being
counted is that of appearing in the pattern. This is the same as being equal to
some letter of the pattern. The probability of not being equal to a given letter is
(1—1/0). The probability of being in the pattern is therefore p = 1—(1—-1/0)™.
In our simplified model, each pattern letter is counted independently of the rest.
Therefore the number X of letters in the text window that matched the pattern
is the sum of m (window length) random variables that take the value 1 with
probability p, and zero otherwise. This has a Binomial distribution B(m, p).

Our question is therefore when the probability P(X > m — k) is O(1/m?) (so
that the algorithm is linear) or when it is O(1/m) (so that it is useful). In the
proof we use O(1/m?), since as we see shortly the result is the same for any
polynomial in 1/m.

We first analyze the case where the mean of the distribution is below m — k| i.e.
mp < m — k. This is the same as the condition o« < 1 — p.

We begin by showing that, if X has a binomial distribution B(m,p) and j >
mp, then P(X > j) = O(P(X = j)), i.e. the first term of the summation of
probabilities dominates the rest once we passed the mean of the distribution. If
we call p, = P(X = r), we have

P(X>j) = ijp _ i(f:)pr(l_p)m_,«

and we observe that

Pryl (m—7)p PR B

o GD(-p) S D) <!

where the inequalities come from the fact that » > mp. C = mp/(mp+ 1) is a
constant which acts as a fixed upper bound for all p,14/p, which is independent
of r and smaller than 1. Therefore, the terms of the summation decrease at
least by a multiplicative constant, what makes their sum a constant proportion



of the first summand, i.e. Dp;, where the constant D) is bounded above by
D=1/(1-0C).

Therefore, it suffices to prove that P(X = m — k) = O(1/m?). By using the
Stirling approximation to the factorial we have

m m—k

P(X=m—k) = (Tg)pm"“(l -p)f = mkk}(?m _(kl);_pk) O(v/m)

which can be rewritten as

(pl‘“(l—p)“)m O(/)

a®(l —a)l—=

It is clear that the above formula is O(1/m) or O(1/m?) whenever the base of
the exponential is < 1. This is

pl—oz(l _p)a < Oza(l _ a)l—oz (1)
To determine when the above condition is valid, we define the function

flz) = 2%(1 —x)t°

which reaches its maximum at # = «. This shows that Eq. (1) holds everywhere,
and therefore the probability of matching is O(1/m?) in this case, i.e. whenever
a<l—rp.

On the other hand, if the median of the distribution is beyond m — &, then
just the term of the summation corresponding to the median » = mp is (using
Stirling again)

which is not O(1/m).
Therefore, we arrive to the conclusion that the filter is linear and useful whenever

a<l—p= (u%)mze—m/a (1+0(1/0)) 2)

and 1s not useful otherwise.

We have considered the case of constant o = k/m. Obviously, the filter is linear
for k = o(m) and is not useful for ¥k = m — o(m). The unexplored area is
k = mp — o(m). Tt is easy to see that the filter is not useful in this case, by
considering P(X = mp + ¢€) with ¢ = o(m), and using Stirling. The resulting
condition is 1 — ¢2/(m?p(1 — p)) = O(m~1/?), which does not hold for any
€ = o(m).

This article was processed using the ¥ TEX 2¢ macro package with CUP_CS class



