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Abstract. Let U be a set of elements and d a distance function defined
among them. Let NNk(u) be the k elements in U−{u} having the small-
est distance to u. The k-nearest neighbor graph (knng) is a weighted
directed graph G(U, E) such that E = {(u, v), v ∈ NNk(u)}. Several
knng construction algorithms are known, but they are not suitable to
general metric spaces. We present a general methodology to construct
knngs that exploits several features of metric spaces. Experiments sug-
gest that it yields costs of the form c1n

1.27 distance computations for low
and medium dimensional spaces, and c2n

1.90 for high dimensional ones.

1 Introduction

Let U be a set of elements and d a distance function defined among them.
Let NNk(u) be the k elements in U − {u} having the smallest distance to u
according to the function d. The k-nearest neighbor graph (knng) is a weighted
directed graph G(U, E) connecting each element to its k-nearest neighbors, thus
E = {(u, v), v ∈ NNk(u)}. Building the knng is a direct generalization of the all-

nearest-neighbor (ann) problem, so ann corresponds to the 1nng construction
problem. knngs are central in many applications: cluster and outlier detection
[14, 4], VLSI design, spin glass and other physical process simulations [6], pattern
recognition [12], query or document recommendation systems [3], and others.

There are many knng construction algorithms which assume that nodes are
points in R

D and d is the Euclidean or some Lp Minkowski distance. However,
this is not the case in several knng applications. An example is collaborative
filters for Web searching, such as query or document recommendation systems,
where knngs are used to find clusters of similar queries, to later improve the
quality of the results shown to the final user by exploiting cluster properties [3].

To handle this problem one must resort to a more general model called metric

spaces. A metric space is a pair (X, d), where X is the universe of objects and d
is a distance function among them that satisfies the triangle inequality.

Another appealing problem in metric spaces is similarity searching [8]. Given
a finite metric database U ⊆ X, the goal is to build an index for U such that
later, given a query object q ∈ X, one can find elements of U close to q using as
few distance computations as possible. See [8] for a comprehensive survey.
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F, Mideplan, Chile; and CONACyT, Mexico.



We have already demonstrated knng searching capabilities in general metric
spaces [20], where we give knng-based search algorithms with practical applica-
bility in low-memory scenarios, or metric spaces of medium or high dimension-
ality. Hence, in this paper we focus on a metric knng construction methodology,
and propose two algorithms based on such methodology. According to our ex-
perimental results, they have costs of the form c1n

1.27 distance computations
for low and medium dimensionality spaces, and c2n

1.90 for high dimensionality
ones. Note that a naive construction requires O(n2) distance evaluations.

1.1 A summary of metric space searching

Given the universe of objects X, a metric space is a pair (X, d), where d : X×X →
R

+ is any distance function in X that is symmetric and satisfies the triangle
inequality. Some examples are (RD, Lp), the space of strings under the edit
distance, or the space of documents under the cosine distances.

The metric database is a finite set U ⊆ X, n = |U|. A similarity query is an
object q ∈ X, and allows two basic types: the Range query (q, r) retrieves all
objects u ∈ U such that d(u, q) ≤ r; and the k-Nearest neighbor query NNk(q)
retrieves the k objects in U closest to q according to the distance d. A NNk(q)
algorithm is called range-optimal [16] if it uses the same number of distance eval-
uations as the equivalent range query whose radius retrieves exactly k objects.
We call this radius covering radius.

An index I is a data structure built over U using some cells from the whole
U×U distance matrix. I permits solving the above queries without comparing q
with each element in U. There are two kinds of indices: pivot based and compact
partition based. Search algorithms use I and some distance evaluations to dis-
card – using the triangle inequality – as many objects as they can, to produce a
small candidate set C that could be relevant to q. Later, they exhaustively check
C by computing distances from q to each candidate to obtain the query result.

As the distance is considered expensive to compute, it is customary to use
the number of distance evaluations as the complexity measure both for index
construction and object retrieving. For instance, each computation of the cosine
distance takes 1.4 msecs in our machine (Pentium IV of 2 GHz). This is really
costly even compared with the operations introduced by the graph, such as the
shortest path computation using Dijkstra’s algorithm.

Many authors agree that the proximity query cost worsens quickly as the
intrinsic dimensionality of the space grows. This is known as the curse of di-

mensionality. Although there is not and accepted criterion to define the intrinsic
dimensionality in a metric space, a general agreement is that spaces with low
variance and large mean in their distance histograms have a large intrinsic di-
mension.

1.2 Related work on knng construction

The naive approach to construct knngs uses n(n−1)
2 = O(n2) distance compu-

tations and O(kn) memory. For each u ∈ U we compute the distance to all the
others, selecting the k lowest-distance objects. However, there are alternatives to



speed up the procedure. The proximity properties of the Voronoi diagram [2] or
its dual, the Delaunay triangulation, allow solving the problem more efficiently.
The ann problem can be optimally solved in O(n log n) time in the plane [13] and
in R

D for any fixed D [9, 22], but the constant depends exponentially on D. In
R

D, knngs can be built in O(nk log n) time [22] and even in O(kn+n log n) time
[5, 6, 11]. Approximation algorithms have also been proposed [1]. However, these
alternatives, except the naive one, are unsuitable for metric spaces, as they use
coordinate information that is not necessarily available in general metric spaces.

Clarkson states the first generalization of ann to metric spaces [10], where the
problem is solved using randomization in O(n log2n log2 Γ (U)) expected time,
where Γ (U) is the distance ratio between the farthest and closest pairs of points
in U. The author argues that in practice Γ (U) = nO(1), in which case the ap-
proach is O(n log4 n) time. However, the analysis needs a sphere packing bound
in the metric space. Otherwise the cost must be multiplied by “sphere volumes”,
that are also exponential on the dimensionality. Moreover, the algorithm needs
Ω(n2) space for high dimensions, which is too much for practical applications.

In [15], another technique for general metric spaces is given. It solves n range
queries of decreasing radius by using a pivot-based index. As it is well known,
the performance of pivot-based algorithms worsens quickly as the dimension of
the space grows, limiting the applicability of this technique. Our pivot based
algorithm (Section 2.4) can be seen as an improvement over this technique.

Recently, Karger and Ruhl present the metric skip list [18], an index that uses
O(n log n) space and can be constructed with O(n log n) distance computations.
The index answers NN1(q) queries using O(log n) distance evaluations with high
probability. Later, Krauthgamer and Lee introduce navigating nets [19], another
index that can be constructed also with O(n log n) distance computations, yet
using O(n) space, and which gives an (1 + ǫ)-approximation algorithm to solve
NN1(q) queries in time O(log n)+(1/ǫ)O(1). Both of them could serve to solve the
ann problem with O(n log n) distance computations but not to build knngs. In
addition, the hidden constants are exponential on the intrinsic dimension, which
makes these approaches useful only in low dimensional metric spaces.

2 Our methodology

We are interested in practical knng construction algorithms for general metric
spaces. This problem is equivalent to solve n NNk(u) queries for all u ∈ U. Thus,
a straightforward solution has two stages: the first is to build some known metric
index I [8], and the second is to use I to solve the n queries. However, this basic
scheme can be improved if we take into account these observations:

– We are solving queries for all the elements in U, not for general objects in X.
If we solve the n queries jointly we can share costs through the whole process.
For instance, we can avoid some calculations by using the symmetry of d.

– We can upper bound some distances by computing shortest paths over the
knng under construction, maybe avoiding their actual computation. So, we
can use the very knng in stepwise refinements to improve the second stage.



2.1 The ingredients of the recipe

The main data structure. Along all the algorithm, we use the Neighbor Heap

Array (NHA) to store the knng under construction. NHA can be regarded as
the union of priority queues NHAu, of size k, for all u ∈ U. At any point in
the process NHAu will contain the k elements closest to u known up to then,
and their distances to u. Formally, NHAu = {(xi1 , d(u, xi1)), . . . , (xik

, d(u, xik
))}

sorted by decreasing d(u, xij
) (ij is the j-th neighbor identifier).

For each u ∈ U, we initialize NHAu = {(⊥,∞), . . . , (⊥,∞)}, |NHAu| = k.
Let curCRu = d(u, xi1) be the current covering radius of u, that is, the distance
from u towards its current farthest neighbor candidate in NHAu.

In the first stage, every distance computed to build the index I populates
NHA. In the second, we refine NHA with the following distance computations.
We must ensure that |NHAu| = k upon successive additions. Hence, if we find
some object v such that d(u, v) < curCRu, before adding (v, d(u, v)) to NHAu we
extract the farthest candidate from NHAu. This progressively reduces curCRu

from ∞ to the real covering radius. At the end, NHA stores the knng of U.

Using NHA as a graph. Once we calculate duv = d(u, v), if duv ≥ curCRu we
discard v as a candidate for NHAu. Also, due to the triangle inequality we can
discard all objects w such that d(v, w) ≤ duv − curCRu. Unfortunately, we do
not necessarily have stored d(v, w). However, we can upper bound d(v, w) with
the sum of edge weights traversed in the shortest paths over NHA from v to all
w ∈ U, dNHA(v, w). So, if duv ≥ curCRu, we also discard all objects w such that
dNHA(v, w) ≤ duv − curCRu.

d is symmetric. Every time a distance duv = d(u, v) is computed, we check
both duv < curCRu for adding (v, duv) to NHAu, and duv < curCRv for adding
(u, duv) to NHAv. This can both reduce curCRv, and cheapen the future query
for v, even when we are solving neighbors for another object.

U is fixed. Assume we are solving query NNk(u), we have to check some already
solved object v, and curCRu ≤ curCRv. Then, if u /∈ NNk(v) ⇒ d(u, v) ≥
curCRv, so v /∈ NNk(u). Otherwise, if u ∈ NNk(v), then we already computed
d(u, v). Then, in those cases we avoid to compute d(u, v). Fig. 1(a) illustrates.

Check Order Heap (COH). We create the priority queue COH = {(u, curCRu),
u ∈ U} to complete NNk(u) queries in increasing curCRu order, because a small
radius query has larger discriminative power and produces candidates that are
closer to the query u. This reduces the CPU time and – as d is symmetric –
could increase the chance of improving candidate sets in NHA for other objects
v. This, in turn, could reduce curCRv and change the position of v in COH .

The recipe. We split the process into two stages. The first is to build I to
preindex the objects. The second is to use I and all the ingredients to solve the
NNk(u) queries for all u ∈ U. Fig. 1(b) depicts the methodology.

For practical reasons, we allow that our algorithms use at most O(n(log n+k))
memory both to index U and to store the knng under construction.
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(a) U is fixed.

KNN (Integer k, ObjectSet U)
Stage 1: Initialize NHA and construct the index I
1. For each u ∈ U Do NHAu ← {(⊥,∞), . . . , (⊥,∞)} // k pairs
2. Create I, all computed distances populate symmetrically NHA
Stage 2: Complete the NNk(u) for all u ∈ U

3. COH ← {(u, curCRu), u ∈ U}
4. For each (u, curCRu) ∈ COH , in increasing curCRu order Do

5. Create the candidate set C according to I // exclude NHAu

6. While C 6= ∅ Do

7. c← extract a candidate from C
8. If “U is fixed” does not apply for u and c Then

9. duc ← d(u, c), try to insert c into NHAu

10. try to insert u into NHAc, update c in COH (symmetry)
11. use NHA as a graph and I to discard objects from C
12. Return NHA as a graph

(b) Sketch of the methodology.

Fig. 1. In 1(a), assume we are solving u, v is already solved, and curCRu ≤ curCRv. On
the top, if u /∈ NNk(v) ⇒ d(u, v) ≥ curCRv ≥ curCRu. On the bottom, if u ∈ NNk(v),
we already computed d(u, v). Then, in those cases we avoid computing d(u, v). In
Fig. 1(b), we sketch the methodology.

2.2 The resulting algorithms

Based on our methodology, we propose two knng construction algorithms fo-
cused on decreasing the total number of distance computations. They are:

1. Recursive partition based algorithm: In the first stage, we build a preindex
by performing a recursive partitioning of the space. In the second stage, we
complete the NNk(u) queries using the order induced by the partitioning.

2. Pivot based algorithm: In the preindexing stage, we build the pivot index.
Later, we complete the NNk(u) queries by performing range-optimal queries.

The experiments confirm that these algorithms are efficient. For instance, in
the string space, the pivot-based algorithm requires CPU time of the empirical
form ctn

1.85, and cdn
1.26 in distance computations. In the high-dimensional doc-

ument space, the recursive partition-based algorithm requires empirically cn1.955

both in distance computations and CPU time.

2.3 Recursive partition based algorithm

This algorithm is based on using a preindex slightly different to the Bisector

Tree (BST ) [17]. We call our modified BST the Division Control Tree (DCT ),
which is a binary tree representing the shape of the partitioning. The DCT node
structure is {p, l, r, pr}, which represents the parent, left and right children, and
partition radius of the node, respectively. The partition radius is the distance
from the node towards the farthest node of its partition. (With respect to the
BST structure, we have added the pointer p to easily navigate trough the tree.)



For simplicity we use the same name for the node and for its representative
in the DCT . Then, given a node u ∈ U, up, ul, and ur, refer to nodes that are
the parent, left child, and right child of u in the DCT , respectively, and also to
their representative nodes in U. Finally, upr refers to the partition radius of u.

In this algorithm, we use O(kn) space to store the NHA and O(n) to store
the DCT . The remaining memory is used as a cache of computed distances,
CD, whose size is limited to O(n log n). Thus, every time we need to compute a
distance, we check if it is present in CD, in which case we return the stored value.
Note that the CD ⊂ U

2 × R
+ can also be seen as graph of all stored distances.

The criterion to insert distances into CD depends on the stage (see later). Once
we complete the NNk(u), we remove its adjacency list from CD.

First stage: construction of DCT . We partition the space recursively to
construct the DCT , and populate symmetrically NHA and CD with all the
computed distances. The DCT is built as follows. Given the node root and
the set S, we choose children objects l and r from S. Then, we generate two
subsets: Sl, objects nearest to l, and Sr, objects nearest to r. Finally, we compute
both partition radii. The recursion follows with (l, Sl) and (r, Sr), finishing when
|S| < 2. Once we finish the division, leaves in the DCT have partition radii 0.
The DCT root is fictitious, having no equivalent in U, and partition radius ∞.

Since the DCT has n nodes, its expected height is 2 lnn (the DCT construc-
tion is statistically identical to populating a binary search tree). For each DCT
level, each node computes two distances towards the splitting nodes, which ac-
counts for 2n distances per level. So, we expect to compute 4n lnn distances in
the partitioning. As we store 2 edges per distance, we need to store 8n lnn in
CD. Hence, we fix the maximum space of CD as 8n lnn = O(n log n).

Solving NNk(u) queries with DCT . The construction of DCT ensures that
every node has already computed distances to all of its ancestors, its ancestor’s
siblings, and its parent descent. Then, to finish the NNk(u) query, it is enough to
check whether there are relevant objects in all the descendants of u’s ancestors’
siblings. This corresponds to white nodes and subtrees in Fig. 2(a).

Nevertheless, the DCT allows us to avoid some work. Assume we are checking
whether v is relevant to u, and the balls (u, curCRu) and (v, vpr) do not intersect
each other, then we discard v and its partition. Otherwise, we recursively check
children vl and vr. Fig. 2(b) illustrates this.

Hence, in the candidate set C, it suffices to manage the set of ancestors’
siblings, and if it is not possible to discard the whole sibling’s partition we add
its children into C. Since it is more likely to discard small partitions, we process
C in order of increasing radius. This agrees with the intuition that the partition
radius of u’s parent’s sibling is likely the smallest of C, and that some of its
descendants could be relevant to u.

Second stage: Completing the queries. As CD can be seen as a graph, we
use NHA ∪ CD to upper bound distances: when d(u, v) ≥ curCRu, we discard
objects w such that their shortest path dNHA∪CD(v, w) ≤ d(u, v) − curCRu. We
do this by adding them to C marked as EXTRACTED.
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Fig. 2. Using the DCT to solve NNk(q) queries. In 2(a), u has been compared with all
black nodes and all the descent of its parent. To finish the query, we just process white
nodes and subtrees. In 2(b), as d(u, v) ≤ curCRu + vpr the partition of v intersects the
ball (u, curCRu), so we recursively check children vl and vr. As vr’s partition does not
intersect the ball (u, curCRu), we discard vr and its partition. However, we continue
the checking on vl’s partition as it intersects the ball (u, curCRu).

In this stage, if we have available space in CD, we cache all the computed dis-
tances small enough so as to get into their respective queues in NHA, since these
distances can be used in future symmetric queries. Note that adding distances
to CD without considering the space limitation could increase its size beyond
control, as it is shown by the following average case analysis. With probability
n−k

n
, a random distance is greater than the k-th shortest one (thus, not stored),

and with probability k
n

it is lower, then it is stored in CD using one cell. The base
case uses k cells for the first distances. Then, the recurrence for the average case
of edge insertions for each NHAu is: T (n, k) = T (n− 1, k) + k

n
, T (k, k) = k. We

obtain T (n, k) = k(Hn −Hk + 1) = O(k log n
k
). As we have n priority queues, if

we do not consider the limitation, we could use O(nk log n
k
) memory cells, which

can be an unpractical memory requirement.

Finally, we combine all of these ideas to complete the NNk(u) queries for all
nodes in U. We begin by creating the priority queue COH . Then, for each node
u picked from COH we do the following. We add the edges of NHAu to CDu,
where CDu refers to the adjacency list of u in CD. (Due to the size limitation it
is likely that some of the u’s current neighbors do not belong CDu.) Then, we
compute shortest paths from all u’s ancestors discarding as many objects as we
can. Then, we finish the query NNk(u), and finally delete CDu.

To finish the query NNk(u), we start adding all u’s ancestors to C. Later, we
take objects c from C in increasing cpr order, and process c according one of the
following rules:

1. If c was already marked as EXTRACTED, we add its children {cl, cr} to C;

2. If “U is fixed” applies for c and u, and d(u, c) /∈ CD, we add {cl, cr} to C; or

3. If we have d(u, c) stored in CD, we retrieve it, else we compute it and use “d
is symmetric”. Then, if d(u, c) < curCRu + cpr, we have region intersection,
so we add {cl, cr} to C. Next, we use NHA ∪ CD as a graph computing
shortest paths from c to discard as many object as we can.



2.4 Pivot-based algorithm

Pivot-based algorithms have good performance in low dimensional spaces, but
worsen quickly as the dimension grows. However, our methodology compensates
this failure in medium and high dimensions. In this algorithm we use O(kn)
space in NHA and O(n log n) space to store the pivot index.

First stage: construction of the pivot index. We select at random a set of
pivots P = {p1, . . . , p|P|} ⊆ U, and store a table of |P|n distances d(pj , u), j ∈
{1, . . . , |P|}, u ∈ U. We give the same space in bytes to the table as that of the
cache of distances and the division control tree of the recursive based algorithm.
Then, in our implementation we use |P| = 12 lnn + 2.5 = O(log n).

Solving NNk(u) queries with the pivot table. To perform a range-optimal
query for u we use C as an array to store maximum lower bounds of distances from
u to other objects. Because of the triangle inequality, for each v ∈ U and p ∈ P ,
|d(v, p)−d(u, p)| is a lower bound of d(u, v). Let Cv = maxp∈P{|d(v, p)−d(u, p)|}.
So, we can discard non-relevant objects v such that Cv ≥ curCRu.

Then, we store C values in a priority queue SortC = {(v, Cv), v ∈ U − (P ∪
NHAu ∪ {u})}. For each object v picked from SortC by ascending Cv, we check
if Cv < curCRu. In such case, when “U is fixed” applies for u and v we avoid the
distance computation and process the next node, else we compute the distance
duv = d(u, v). So, if duv < curCRu we add v to NHAu (this could reduce
curCRu). Also, using “ d is symmetric” we can refine NHAv and consequently
update v in COH . Finally, we use NHA as a graph computing shortest path from
v to extract from SortC as many object as we can. Each NNk(u) query finishes
when we reach a node v such that Cv ≥ curCRu, or SortC gets empty.

Second stage: Completing the queries. Since pivots p ∈ P compute dis-
tances towards all objects, once we compute the table, they have already solved
their k-nearest neighbors. So, we only have to complete n − |P| range-optimal
queries for objects u ∈ U − P . Notice that because of the symmetry of d, these
objects already have candidates in their respective queues in NHA.

3 Experimental results

We have tested our algorithms on synthetic and real-world metric spaces. The
first synthetic set is formed by 65,536 points uniformly distributed in the met-
ric space ([0, 1]D, L2) (the unitary real D-dimensional cube with Euclidean dis-
tance). This space allows us to measure the effect of the space dimension D on our
algorithms. The second set is formed by 65,536 points in a 20-dimensional space
with Gaussian distribution forming 256 clusters randomly placed in ([0, 1]20, L2).
We consider three standard deviations to make more crisp or more fuzzy clus-
ters (σ = 0.1, 0.2, 0.3). Of course, we have not used the fact that vectors have
coordinates, but have treated them as abstract objects.

The first real-world set is the string metric space under the edit distance,
a discrete function that measures the minimum number of character insertions,



deletions and replacements needed to make the strings equal. We index a ran-
dom subset of 65,536 words taken from an English dictionary. The second set
is the document space under the cosine distance, a function that measures the
angle between two documents when they are represented as vectors in a high-
dimensional vector model. We index a random subset of 1,215 English documents
taken from the TREC-3 collection.

Experiments were run on an Intel Pentium IV of 2 GHz and 512 MB of RAM.
We measure distance evaluations and CPU time. For shortness we have called
the basic knng construction algorithm KNNb, the recursive partition based
algorithm KNNrp, and the pivot based algorithm KNNpiv. We are not aware
of any published knng practical implementation for general metric spaces.

We summarize our experimental results in Fig. 3, where we show distance
computations per element, and Table 1 for the least square fittings computed
with R [21]. The dependence on k turns out to be so mild that we neglect k in
the fittings, thus, costs have the form cnα. Even though in Table 1 we explicit
the constant c, from now on, we only refer to the exponent α.

Figs. 3(a), 3(b) and 3(c) show experimental results for R
D. Fig. 3(c) shows

that, as D grows, the performance of our algorithms degrade, phenomenon
known as the curse of dimensionality. For instance, for D = 4, KNNpiv uses
cn1.10 distance evaluations, but for D = 24, it is cn1.96 distance evaluations. No-
tice that a metric space with dimensionality D > 20 is considered as intractable
[8]. Fig. 3(a) shows that for all dimensions our algorithms are subquadratic in
distance evaluations, instead of KNNb which is always cn2. For low and medium
dimensions (D ≤ 16) ours have better performance than KNNb, being KNNpiv
the best of ours. Moreover, for lower dimensions (D ≤ 8) ours are only slightly
superlinear. Fig. 3(b) shows a sublinear dependence on k for all dimensions,
however, KNNpiv is more sensitive to k than KNNrp. Also, the dependence on
k diminishes as long as D grows, although it is always monotonically increasing
on k. Finally, it is shown that for k ≤ 4, our algorithms behave better than
KNNb, even in high dimensional spaces (KNNpiv in D = 20).

Figs. 3(e) and 3(f) show results in Gaussian space. For crisp clusters (σ = 0.1)
the performance of our algorithms improves significantly, even for high values of
k. It is interesting to note that for k ≤ 8 our algorithms are more efficient than
KNNb for the three variances. Again, KNNpiv has the best performance.

Figs. 3(g) and 3(h) show results for strings. The plots show that both KNNrp
and KNNpiv are subquadratic for all k ∈ [2, 128]. For instance, for n = 65, 536,
KNNrp costs 28%, and KNNpiv just 8%, of KNNb to build the 32nng.

Finally, Fig. 3(d) shows that our methodology save lots of work in the high-
dimensional document space. For instance, for n = 1, 215, KNNrp costs 63%,
and KNNpiv costs 67%, of KNNb to build the 8nng. These two last results
show that our methodology is also practical in real-world situations.

All of these conclusions are confirmed in Table 1. We remark that in some
practical conditions (vectors in [0, 1]D with D ≤ 8 and k ≤ 32 and Gaussian vec-
tors with σ = 0.01 and k ≤ 8), KNNpiv also has better performance than KNNb
in CPU time. This is important since the Euclidean distance is very cheap to
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(c) In R
D, dependence on D.
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(d) In Document space, dependence on k.
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(e) In Gaussian space, dependence on n.
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Gauss space: Distance evaluations per element vs k, n = 65536

(f) In Gaussian space, dependence on k.
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(g) In String space, dependence on n.
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Fig. 3. Distance evaluations per node during knng construction. Fig. 3(b)/3(f) follows
the legend of Fig. 3(a)/3(e).



Space KNNrp KNNrp KNNpiv KNNpiv
Dist. evals. CPU time Dist. evals. CPU time

[0, 1]4 10.0n1.32 0.311n2.24 56.1n1.09 0.787n2.01

[0, 1]8 32.8n1.38 0.642n2.11 168n1.06 15.5n1.69

[0, 1]12 15.1n1.59 1.71n2.03 116n1.27 20.1n1.79

[0, 1]16 5.06n1.77 0.732n2.14 12.1n1.64 6.87n1.97

[0, 1]20 2.32n1.88 0.546n2.18 2.48n1.87 2.77n2.10

[0, 1]24 1.34n1.96 0.656n2.16 1.23n1.96 1.29n2.16

[0, 1]D 0.455e0.19Dn1.65 0.571e0.01Dn2.14 0.685e0.23Dn1.48 0.858e0.11Dn2.15

Gaussian σ = 0.1 74.7n1.33 1.13n2.07 1260n0.91 63.5n1.63

Gaussian σ = 0.2 7.82n1.71 1.13n2.09 16.3n1.60 8.70n1.94

Gaussian σ = 0.3 2.97n1.85 0.620n2.17 3.86n1.81 3.78n2.06

String 21.4n1.54 1.09n2.09 99.9n1.26 10.8n1.85

Document 0.425n1.95 193n1.96 0.840n1.86 364n1.87

Table 1. KNNrp and KNNpiv least square fittings for distance evaluations and CPU
time for all the metric spaces. CPU time measured in microseconds.

compute. Also, notice that when merging the fittings to consider the exponential
effect on D, KNNrp and KNNpiv turn out to be clearly subquadratic.

Note that in the metric space context, superquadratic CPU time in side com-
putations is not as important as a subquadratic number of computed distances.
In fact, in the document space, KNNrp and KNNpiv perform better in CPU
time that KNNb, showing that in practice the leading complexity (computing
distances) is several orders of magnitude larger than other side computations
such as traversing pointers or scanning the pivot table.

4 Conclusions

We have presented a general methodology to construct the k-nearest neighbor
graph (knng) in general metric spaces. Based on our methodology we give two
algorithms. The first is based on a recursive partitioning of the space (KNNrp),
and the second on the classic pivot technique (KNNpiv). Our methodology con-
siders two stages: the first indexes the space, and the second completes the knng

using the index and some metric and graph optimizations.
Experimental results confirm the practical efficiency of our approach in vec-

torial metric spaces of wide dimensional spectrum (D ≤ 20), and real-world
metric spaces. For instance, in the string space, our algorithms achieve empir-
ical CPU time of the form ctn

1.85, and cdn
1.26 in distance computations; and

in the high-dimensional document space, they reach empirical cn1.87 both in
distance computations and CPU time. In low dimensional metric spaces, our
algorithms behave even better. KNNpiv is in general better than KNNrp for
small and moderate k values, yet KNNrp is less sensitive to larger k values or
higher dimensional spaces.

Future work involves developing another knng constructing algorithm based
on the list of clusters [7] so that we can also obtain good performance in higher di-
mensional metric spaces. We are also researching how to enhance the data struc-
ture to allow dynamic insertions/deletions in reasonable time, so as to maintain
an up-to-date set of k-nearest neighbors for each element in the database.
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