
Multiple Approximate String Matching ?Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstract. We present two new algorithms for on-line multiple approx-imate string matching. These are extensions of previous algorithms thatsearch for a single pattern. The single-pattern version of the �rst one isbased on the simulation with bits of a non-deterministic �nite automa-ton built from the pattern and using the text as input. To search formultiple patterns, we superimpose their automata, using the result as a�lter. The second algorithm partitions the pattern in sub-patterns thatare searched with no errors, with a fast exact multipattern search algo-rithm. To handle multiple patterns, we search the sub-patterns of all ofthem together. The average running time achieved is in both cases O(n)for moderate error level, pattern length and number of patterns. Theyadapt (with higher costs) to the other cases. However, the algorithms dif-fer in speed and thresholds of usefulness. We analyze theoretically wheneach algorithm should be used, and show experimentally that they arefaster than previous solutions in a wide range of cases.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc. Given a text of length n and a pattern of length m (bothsequences over an alphabet � of size �), and a maximalnumber of errors allowed,k, we want to �nd all text positions where the pattern matches the text up to kerrors. Errors can be substituting, deleting or inserting a character. We use theterm \error ratio" to refer to � = k=m.The solutions to this problem di�er if the algorithm has to be on-line (i.e.the text is not known in advance) or o�-line (the text can be preprocessed).In this paper we are interested in the �rst case, where the classical dynamicprogramming solution for a single pattern is O(mn) running time [14].In the last years several algorithms have improved the classical one. Someachieve O(kn) cost by using the properties of the dynamic programming matrix[18, 8, 10, 19, 6]. Others �lter the text to quickly eliminate uninteresting parts[17, 16, 7, 13, 5], some of them being sublinear on average for moderate �.Yet other approaches use bit-parallelism [2] to reduce the number of operations? This work has been supported in part by FONDECYT grants 1950622 and 1960881.



[20, 22, 21, 4]. In [21] the search is modeled with a non-deterministic �niteautomaton, whose execution is simulated in parallel on machine words of w bits,achieving O(kmn=w) time. In [4], we simulate the same automaton in a di�erentway, achieving O(n) time for small patterns. This algorithm is shown to be thefastest in that case (see also [3]).The problem of approximately searching a set of patterns (i.e. the occurrencesof anyone of them) has been considered only recently. A trivial solution is to do rsearches, where r is the number of patterns. As far as we know, the only previousworks on this problem are [11] and [13]. The �rst approach uses hashing to searchmany patterns with one error, being e�cient even for one thousand patterns.The second one �lters the text by counting matching positions, keeping manycounters in a single computer word and updating them in a single operation.In this work, we present two new algorithms that are extensions of previousones to the case of multiple search. In Sections 2 and 3 we explain and extend [4].In Section 4 we do the same for [5]. In Section 5 and 6 we analyze our algorithmsand compare them against [11] and [13].Although [11] allows to search for many patterns, it is limited to only oneerror. We allow any number of errors, and improve [11] when the number ofpatterns is not very large (say, less than 60). We improve [13] except for inter-mediate error ratios. We also improve the trivial algorithm (i.e. one separatesearch per pattern) when the error ratio is moderate. The extension of [5] is thefastest for small error ratios, while that of [4] adapts better to more errors.2 Bit-Parallelism by DiagonalsIn this section we review the main points of the algorithm [4]. We refer the readerto the original article for more details.Consider the NFA for searching "this" with at most k = 2 errors shownin Figure 1 (for now disregard the \(+ x)"). Every row denotes the number oferrors seen. The �rst one 0, the second one 1, and so on. Every column repre-sents matching the pattern up to a given position. At each iteration, a new textcharacter is considered and the automaton changes its states. Horizontal arrowsrepresent matching a character (they can only be followed if the correspondingmatch occurs), vertical arrows represent inserting a character in the pattern,solid diagonal arrows represent replacing a character, and dashed diagonal ar-rows represent deleting a character of the pattern (they are empty transitions,since we delete the character from the pattern without advancing in the text).The loop at the initial state allows to consider any character as a potentialstarting point of a match. The automaton accepts a character (as the end of amatch) whenever a rightmost state is active. Initially, the active states at row i(i 2 0::k) are those at the columns from 0 to i, to represent the deletion of the�rst i characters of the pattern, referred here as pat[1::m].Many algorithms for approximate string matching consist fundamentally insimulating this automaton by rows or columns. The dependencies introducedby the diagonal empty transitions prevent the parallel computation of the new
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Fig. 1. An NFA for approximate string matching. Unlabeled transitions match anycharacter.values. In [4] we show that by simulating the automaton by diagonals, it ispossible to compute all values in parallel.Because of the empty transitions, once a state in a diagonal is active, allthe subsequent states in that diagonal become active too, so we can de�ne theminimum active row of each diagonal, Di (diagonals are numbered by lookingthe column they start at). The new values for Di (i 2 1::m� k) after we read anew text character c can be computed byD0i = min( Di + 1; Di+1 + 1; g(Di�1; c) )where g(Di; c) = min( fk + 1g [ f j = j � Di ^ pat[i+ j] == c g )We use bit-parallelism to represent the Di's in unary. With some pattern pre-processing, the parallel update is O(1) cost and very fast in practice. A centralpart of this preprocessing is the de�nition of an m bits long mask t[c], represent-ing match or mismatch against the pattern, for each character c. The resultingalgorithm is linear whenever the representation �ts in a computer word (i.e.(m� k)(k + 2) � w, where w is the number of bits in a computer word).Observe that the t[] table mechanism allows more sophisticated searching:at each position of the pattern, we can allow not a single character, but a classof characters, at no additional search cost. It su�ces to set t[c] to \match" atposition i for every c 2 pat[i]. For example, we can search in case-insensitive byallowing each position to match the upper-case and lower-case versions of theletter. We use this property to allow multiple patterns.



3 Superimposed AutomataSuppose we have to search r patterns P1; :::; Pr. We are interested in the occur-rences of any one of them, with at most k errors. We can extend the previousbit-parallelism approach by building the automaton for each one, and then \su-perimpose" all the automata.Assume that all patterns have the same length (otherwise, truncate them tothe shortest one). Hence, all the automata have the same structure, di�eringonly in the labels of the horizontal arrows.The superimposition is de�ned as follows: we build the t[] table for eachpattern, and then take the bitwise-or of all the tables. The resulting t[] tablematches at position i with the i-th character of any pattern. We then build theautomaton as before using this table.The resulting automaton accepts a text position if it ends an occurrence ofa much more relaxed pattern, namelyfP1[1]; :::; Pr[1]g fP1[2]; :::; Pr[2]g ::: fP1[m]; :::; Pr[m]gfor example, if the search is for "this" and "wait", the string "whit" is acceptedwith zero errors. See Figure 1, this time paying attention to the two characterspresent at each horizontal transition.For a moderate number of patterns, the �lter is strict enough at the samecost of a single search. Each occurrence reported by the automaton has to beveri�ed for all the involved patterns (we use [19] for this step).If the number of patterns is so large that the �lter does not work well, wepartition the set of patterns into groups of r0 patterns each, build the automatonof each group and perform dr=r0e independent searches. The cost of this search isO(r=r0 n), where r0 is small enough to make the number of veri�cations negligi-ble. This r0 always exists, since for r0 = 1 we have a single pattern per automatonand no veri�cation is needed.If the length of the patterns does not allow to put their automata in singlecomputer words (i.e. (m � k)(k + 2) > w), we partition the problem. We adaptthe two partitioning techniques de�ned in [4].3.1 Pattern PartitioningThe following lemma proved in [4] suggests a way to partition a large pattern.Lemma: If segm = Text[a::b] matches pat with k errors, and pat = p1:::pj(a concatenation of sub-patterns), then segm includes a segment that matchesat least one of the pi's, with bk=jc errors.Thus, we can reduce the size of the problem if we divide the pattern in jparts, provided we search all the sub-patterns with bk=jc errors. Each match ofa sub-pattern must be veri�ed to determine if it is in fact a complete match.To perform the partition, we pick the smallest j such that the problem �tsin a single computer word (i.e. (dm=je � bk=jc)(bk=jc + 2) � w). We dividethe pattern in j subpatterns as evenly as possible. The limit of this method is



reached for j = k+1, since in that case we search with zero errors. The resultingalgorithm is qualitatively di�erent and is described later.Once we partition all the patterns, we are left with jr subpatterns to besearched with bk=jc errors. We simply group them as if they were independentpatterns to search with the general method. The only di�erence is that we haveto verify the complete patterns when we �nd a possible occurrence. To avoidverifying all the patterns at each match, we try as much as possible to includesubpatterns of the same patterns in the groups.3.2 Automaton PartitioningIf the automaton does not �t in a single word, we can partition it using a numberof machine words for the simulation.The idea is as follows: once the (large) automata have been superimposed,we partition the automaton into a matrix of subautomata, each one �tting ina computer word. Those subautomata behave di�erently than the simple one,since they must propagate bits to their neighbors.Once the automaton is partitioned, we run it over the text updating itssubautomata. Observe, however, that it is not necessary to update all the sub-automata. In the same spirit as [19], we work only on \active" diagonals.The technique of grouping in case of a very relaxed �lter is used here too.We use the heuristic of sorting the patterns and packing neighbors in the samegroup, trying to have the same �rst characters.4 Exact Partitioning Extended to Multiple PatternsWe �rst brie
y review the algorithm [5] (studied more in detail in [4, 3]). Werefer the reader to the original articles for details.A particular case of the lemma of Section 3.1 shows that if a pattern matchesa text position with k errors, and we split the pattern in k + 1 pieces, then atleast one of the pieces must be present with no errors in each occurrence (thisis a folklore property which has been used several times [21, 12, 9]). Searchingwith zero errors leads to a completely di�erent technique.Since there are e�cient algorithms to search for a set of patterns exactly, wepartition the pattern in k+1 pieces (of similar length), and apply a multipatternexact search for the pieces. Each occurrence of a piece is veri�ed to check if itinvolves a complete match. If there are no too many veri�cations, this algorithmis extremely fast.From the many algorithms for multipattern search, an extension of Boyer-Moore-Horspool-Sunday (BMHS) [15] gave the best results. We build a trie withthe sub-patterns. At each text position we search the text that follows into thetrie, until a leaf is found (match) or there is no path to follow (mismatch). Thejump to the next text position is precomputed as the minimum of the jumpsallowed in each sub-pattern by the BMHS algorithm.



Observe that we can easily add more patterns to this scheme. Suppose wehave to search for r patterns P1; :::; Pr. We cut each one into k + 1 pieces andsearch in parallel for all the r(k+1) pieces. When a piece is found in the text, weuse a classical algorithm to verify its pattern in the candidate area (this time wenormally know which pattern to verify). As in the previous case, this constitutesa good �lter if the number of patterns and errors is not too high. Unlike theprevious case, grouping is of no use here, since there are no more matches in theunion of patterns than the sum of the individual matches.5 AnalysisWe are interested in the restrictions that � and rmust satisfy for each mechanismto be e�cient in �ltering most of the unrelevant part of the text. We are alsointerested in the complexity of the algorithms, especially in when they are linearon average and when they are useful (i.e. better than r sequential searches).5.1 Superimposed AutomataSuppose that we search r patterns. As explained before, we can partition theset in groups of r0 patterns each, and search each group separately (with its r0automata superimposed). The size of the groups should be as large as possible,but small enough for the veri�cations to be not signi�cant. We analyze which isthe optimal value for r0 and which is the complexity of the search.In [4] we prove that the probability of a given text position matching a ran-dom pattern with error ratio � is O(am), where a = 1=(�1���2�(1� �)2(1��)).It is also proven that a < 1 whenever � < 1� e=p�.In this formula, 1=� stands for the probability of a character crossing ahorizontal edge of the automaton (i.e. the probability of two characters beingequal). To extend this result, we note that we have r0 characters on each edgenow, so the above mentioned probability is 1� (1�1=�)r0 , which is smaller thanr0=�. We use this upper bound as a pessimistic approximation (which stands forthe case of all the r0 characters being di�erent, and is tight for r0 << �).The algorithm is linear on average whenever the total cost of veri�cationsis O(1) per character. Since each veri�cation costs O(m2) per pattern in thesuperimposed group, we pay O(r0m2) to verify the whole group. Thus, we wantthe probability of a veri�cation to be O(1=(r0m2)), which happens for a < 1.To decide which is the optimal size of the groups, we state that the total costof veri�cations must be at most one per character, since if it is larger we wouldprefer to make two separate searches with much less veri�cations. Hence, our r0satis�es am = 1=(r0m2), i.e.r0 = ��m�k�2k(1 � �)2(m�k)m2 � 1m�k+1which our algorithm uses to determine the correct grouping.



For m not too small, we can simplify and bound the above result tor0 = �� 2�1�� (1� �)2�1 + O� logmm �� � �(1 � �)2e2 �1 + O� logmm ��where the last step is valid because 1 � � �1�� � e�1 for 0 � � � 1.Since we partition in sets small enough to make the veri�cations not signi�-cant, the cost is simply O(r=r0 n), i.e. e2rn=(�(1� �)2) = O(rn=�).Observe that this means a linear algorithm for r = O(�) (taking the errorratio as a constant), and that for � > 1 � e=p�, the cost is O(rn), not betterthan the trivial solution (i.e. r0 = 1 and hence no superimposition occurs).Pattern Partitioning We have now jr patterns to search with bk=jc errors.The error level is the same for subproblems (recall that the subpatterns areof length m=j). Since we group as many subpatterns of the same pattern aspossible, we have that if our sets have size r0, they have sub-patterns of at most1 + dr0=je distinct patterns. Therefore, the cost of a veri�cation is O(m2r0=j)and our equation to de�ne r0 is am=j = j=(r0m2), i.e.r0 = �(j=m2)j�m�k�2k(1� �)2(m�k)� 1m�k+jTo approximate this value we expand j, whose formula is obtained in [4].We rephrase it as j = (m � k)d, with d = d(�;w) = �1 +q1 + w�1���=w =O(1=pw). The order is valid because 1 � � � e=p� (past this point the ver-i�cations are too many even with no superimposition). We then have r0 =(d=m) dd+1 � 1d+1� 2�(1��)(d+1) (1� �) d+2d+1 , and the total cost is O(jr=r0 n), i.e.d 1d+1m 2d+1d+1 rn� 1d+1� 2�(1��)(d+1) (1� �) 1d+1 = dm rn�� 2�1�� (1� �) �1 + O� 1pw�� = O� m�pw rn�which is linear for r = O(�pw=m) (the order is valid for constant �), and isuseful when the total cost is less than rn, i.e. dm < �� 2�1�� (1��). This conditionthat can be pessimistically bounded by � � 1� e2m=(�pw).Automaton Partitioning The analysis for this case is similar to the simpleone, except because each step of the large automaton takes time proportional tothe total number of subautomata. In [4] we show that this number is O(k(m �k)=w). Therefore, the cost formula ise2(1� �)2� k(m � k)w rn = e2m2��w(1� �) rn = O�m2�w rn�which is linear in n for r = O(�w=m2), and useful for � � �w=((em)2 + �w).



5.2 Exact PartitioningIn [4] we analyze this algorithm as follows. Except for veri�cations, the searchtime is linear (e.g. by using an Aho-Corasick machine [1] although, as mentionedbefore, we use an algorithm which is faster in practice). Hence, we are interestedin the cases where there are few veri�cations.Since we cut the pattern in k + 1 pieces, they are of length bm=(k + 1)cand dm=(k + 1)e. On average, half of the subpatterns have each length. Theprobability of each piece matching is 1=�bm=(k+1)c (the case 1=�dm=(k+1)e isexponentially smaller than this one, so we disregard it). Ignoring equal pieces,the probability of any piece matching is (k + 1)=(2�bm=(k+1)c).We can easily extend that analysis to the case of multiple search, since wehave now r(k+1) pieces of the same length. Hence, the probability of verifying isr(k+1)=(2�b mk+1 c). This must be O(1=m2) (i.e. the cost of one veri�cation, sincein this algorithm we know which pattern to verify) to ensure that veri�cationsdo not a�ect on average the linearity of the search. This happens pessimisticallyfor � � 1=(3 log�m+ log� r) (although roundo�s must be observed in practice).The method is better than r sequential searches for � � 1=3 log�m.6 Experimental Results2We experimentally study our algorithms and compare them against previouswork. We tested with 1 Mb of random text (� = 30) and lower-case English text.The patterns were randomly generated in the �rst case and randomly selectedfrom the the same text (at the start of non-stopwords) in the second case. Weuse a Sun SparcStation 4 running Solaris 2.4, with 32 Mb of RAM, and w = 32.Each data point was obtained by averaging the Unix's user time over 10 trials.We �rst show the degree of parallelism achieved by our di�erent algorithms,in terms of the ratio between the parallel version and r applications of the samesingle-pattern algorithm. Figure 2 shows the behavior in terms of r, and Figure3 in terms of k. We observe that for low error ratio the parallel versions take0.3 to 0.6 of their sequential versions, and that exact partitioning works betterfor more patterns, while the others quickly stabilize. On the other hand, onlyautomaton partitioning works well for a moderate number of errors, while theother two quickly become worse than their single-pattern counterparts. We triedother m and r values with very similar results (omitted here for lack of space).We compare now our algorithms against Muth-Manber [11] and Navarro [13].Figure 4 shows a comparison for k = 1 and varying r. Exact partitioning is thebest for a moderate number of patterns (i.e. near 60 patterns, except for thebad case of short English patterns). For more patterns, Muth-Manber is better.Pattern and automaton partitioning are better than Muth-Manber for a smallnumber of patterns (10-15) and better than Navarro on random text.Figure 5 shows a comparison (excluding Muth-Manber because k > 1) for�xed r and varying k. Exact partitioning is the fastest algorithm for low error2 We thank Robert Muth and Udi Manber for their implementation of [11].
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� � � � �� � � � �� � � �1 51 2 3 4 501503691215 k � � �� � �� �1 41 2 3 401503691215 kNavarro � Exact partition � Pattern partition � Autom. partitionFig. 5. Times in seconds for m = 10 and r = 15. The left plot is for random text(� = 30), the right plot for English text.since having the same character at the same position in two patterns im-proves the �ltering mechanism.{ We used simple heuristics to group subpatterns in superimposed automata.These can be improved to maximize common letters too.{ We are free to partition each pattern in k+1 pieces as we like in exact parti-tioning. This is used to minimize the expected number of veri�cations whenthe letters of the alphabet do not have the same probability of occurrence(e.g. in English text). We have an O(m3) dynamic programming algorithm toselect the best partition. The same can be done in superimposed automata.
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