
Searching in Metric Spaces by Spatial Approximation �Gonzalo NavarroDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilegnavarro@dcc.uchile.clAbstractWe propose a new data structure to search in metric spaces. A metric space is formed bya collection of objects and a distance function de�ned among them, which satis�es the triangleinequality. The goal is, given a set of objects and a query, retrieve those objects close enoughto the query. The complexity measure is the number of distances computed to achieve thisgoal. Our data structure, called sa-tree (\spatial approximation tree"), is based on approachingspatially the searched objects, that is, getting closer and closer to them, rather than the classicaldivide-and-conquer approach of other data structures. We analyze our method and show that thenumber of distance evaluations to search among n objects is sublinear. We show experimentallythat the sa-tree is the best existing technique when the metric space is hard to search or thequery has low selectivity. These are the most important unsolved cases in real applications. Asa practical advantage, our data structure is one of the few that do not need to tune parameters,which makes it appealing for use by non-experts.1 IntroductionThe concept of \approximate" searching has applications in a vast number of �elds. Some examplesare non-traditional databases (where the concept of exact search is of no use and we search insteadfor similar objects, e.g. databases storing images, �ngerprints or audio clips); text retrieval (wherewe look for words and phrases in a text database allowing a small number of typographical orspelling errors, or we look for documents which are similar to a given query or document); machinelearning and classi�cation (where a new element must be classi�ed according to its closest existingelement); image quantization and compression (where only some vectors can be represented andthose that cannot must be coded as their closest representable point); computational biology (wherewe want to �nd a DNA or protein sequence in a database allowing some errors due to typicalvariations); function prediction (where we want to search the most similar behavior of a functionin the past so as to predict its probable future behavior); etc.All those applications have some common characteristics. There is a universe U of objects, anda nonnegative distance function d : U �U �! R+ de�ned among them. This distance satis�es the�This work has been supported in part by Fondecyt grant 1-000929.

three axioms that make the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangle inequality" and is valid for many reasonable similarityfunctions. The smaller the distance between two objects, the more \similar" they are. We havea �nite database S � U , which is a subset of the universe of objects and can be preprocessed (tobuild an index, for example). Later, given a new object from the universe (a query q), we mustretrieve all similar elements found in the database. There are two typical queries of this kind:Range query: Retrieve all elements within distance r to q. This is, fx 2 S ; d(x; q)� rg.Nearest neighbor query (k-NN): Retrieve the k closest elements to q in S. This is, retrieve aset A � S such that jAj = k and 8x 2 A; y 2 S � A; d(x; q)� d(y; q).The distance is considered expensive to compute. Hence, it is customary to de�ne the complexityof the search as the number of distance evaluations performed, disregarding other components suchas CPU time for side computations, and even I/O time. Given a database of jSj = n objects,queries can be trivially answered by performing n distance evaluations. The goal is to structurethe database such that we perform less distance evaluations.Note that in large databases the I/O cost is assumed to be the most important complexitymeasure, as CPU costs tend to be negligible compared to disk access costs. This may or may notbe the case in metric spaces. Some distance functions are so expensive to compute in terms of CPUtime (think, for example, of comparing two �ngerprints or two documents) that the overall searchtime, even for a large database that does not �t in main memory, is dominated by the number ofdistance evaluations performed rather than by the total number of disk pages read. So the axiomof considering only I/O costs may fail in this type of databases, depending on the relationshipbetween the cost to compute a distance and the cost to read an object from disk.A particular case of metric space searching is that of vector spaces, where the elements areD-dimensional points and their distance belongs to the Minkowski Lr family: Lr = (P1�i�D jxi �yijr)1=r. The best known special cases are r = 1 (Manhattan distance), r = 2 (Euclideandistance) and r = 1 (maximum distance). This last distance deserves an explicit formula:L1 = max1�i�D jxi � yij.There are e�ective methods to search on D-dimensional spaces, such as kd-trees [Ben79, Ben75]or R-trees [Gut84]. However, for roughly 20 dimensions or more those structures cease to workwell. We focus in this paper on general metric spaces, although the solutions are well suited alsofor D-dimensional spaces. It is interesting to notice that the concept of \dimensionality" is relatedto \easiness" or \hardness" for searching a D-dimensional space: higher dimensional spaces havea probability distribution of distances among elements whose histogram is more concentrated andwith larger mean. This makes the work of any similarity search algorithm more di�cult (this isdiscussed for example in [Yia93, Bri95, CM97, CNBYM01]). In the extreme case we have a spacewhere d(x; x) = 0 and 8y 6= x; d(x; y) = 1, where the query has to be exhaustively compared2

against every element in the set. We will extend this idea by saying that a general metric space is\harder" than other when its histogram of distances is more concentrated than the other.Figure 1 gives some intuition on why more concentrated histograms yield harder metric spaces.Let p be a database element and q a query. The triangle inequality implies that every elementx such that jd(q; p)� d(p; x)j > r cannot be at distance r or less from q, so we could discard x.However, in a concentrated histogram the distances between two random distances are closer tozero and hence the probability of discarding an element x is lower.
2r

d(p,q)

2r

d(p,q)

d(p,x) d(p,x)Figure 1: A atter (left) versus a more concentrated (right) histogram. The latter implies harderto search metric spaces because the triangle inequality permits discarding less elements (the nongrayed area).There are a number of methods to preprocess the set in order to reduce the number of distanceevaluations. Some are tailored to continuous and others to discrete distance functions. All thosestructures work on the basis of discarding elements using the triangle inequality.In this work we present a new data structure to answer similarity queries in metric spaces. Wecall it sa-tree, or \spatial approximation tree". It is based on a concept completely di�erent fromexisting methods, namely to approach the query spatially, getting closer and closer to it, instead ofthe generally used technique of partitioning the set of candidate elements. We start by presentingan ideal data structure that, as we prove, cannot be built, and then design a tradeo� which can bebuilt. We analyze the performance of the structure, showing that the number of distance evaluationsis o(n). We also experimentally compare our data structure against previous work, showing that itoutperforms all the other schemes for hard metric spaces (concentrated histograms) or hard queries(large radii, i.e., low selectivity).There are many interesting applications whose space is hard. Some examples are rankingdocuments for information retrieval or �nding similar words for spelling purposes. On the otherhand, one can argue that large radii may return too many results if one considers the particularcase of the end user of a database, so all the interesting cases are of very small selectivity. However,there are numerous applications that resort to metric space searching in their back end, where it isnecessary to retrieve a relatively large portion of the database. Even in data retrieval applications,the similarity criterion may be just a �rst step from where we obtain a large set of candidates whichare further �ltered with more complex criteria before delivering a small set of answers to the �naluser. This is indeed the ranking method of many existing systems for textual information retrieval3

[BYRN99].The sa-tree, unlike other data structures, does not have parameters to be tuned by the userof each application. This makes it very appealing as a general purpose data structure for metricsearching, since any non-expert seeking for a tool to solve his/her particular problem can use itas a black box tool, without the need of understanding the complications of an area he/she is notinterested in. Other data structures have many tuning parameters, hence requiring a big e�ortfrom the user in order to obtain an acceptable performance.This work is organized as follows. In Section 2 we cover the main previous work. In Section3 we present the ideal data structure and prove that it cannot be built. In Section 4 we proposethe simpli�ed structure. The structure is analyzed in Section 5. Section 6 shows experimentalresults verifying the analysis and comparing the structure against others. Incremental constructionis discussed in Section 7. We draw our conclusions in Section 8. A partial and less mature earlierversion of this work appeared in [Nav99].2 Previous WorkAlgorithms to search in general metric spaces can be divided in two large areas: pivot-based andclustering algorithms. (See [CNBYM01] for a more complete review.)Pivot-based algorithms. The idea is to use a set of k distinguished elements (\pivots") p1:::pk 2S and storing, for each database element x, its distance to the k pivots (d(x; p1):::d(x; pk)). Giventhe query q, its distance to the k pivots is computed (d(q; p1):::d(q; pk)). Now, if for some pivotpi it holds that jd(q; pi) � d(x; pi)j > r, then we know by the triangle inequality that d(q; x) > rand therefore do not need to explicitly evaluate d(x; p). All the other elements that cannot beeliminated using this rule are directly compared against the query.Algorithms such as aesa [Vid86], laesa [MOV94], spaghettis and variants [CMBY99, NN97],fq-trees and variants [BYCMW94], and fq-arrays [CMN01], are almost direct implementations ofthis idea, and di�er basically in their extra structure used to reduce the CPU cost of �nding thecandidate points, but not in the number of distance evaluations performed.There are a number of tree-like data structures that use this idea in a more indirect way: theyselect a pivot as the root of the tree and divide the space according to the distances to the root. Oneslice corresponds to each subtree (the number and width of the slices di�ers across the strategies).At each subtree, a new pivot is selected and so on. The search performs a backtrack on the treeusing the triangle inequality to prune subtrees, that is, if a is the tree root and b the root of achildren corresponding to d(a; b) 2 [x1; x2], then we can avoid entering in the subtree of b whenever[d(q; a) � r; d(q; a) + r] has no intersection with [x1; x2]. Data structures using this idea are thebk-tree and its variants [BK73, Sha77], metric trees [Uhl91b], tlaesa [MOC96], and vp-trees andvariants [Yia93, BO97, Yia00].Clustering algorithms. The second trend consists in dividing the space in zones as compact aspossible, normally recursively, and storing a representative point (\center") for each zone plus afew extra data that permits quickly discarding the zone at query time. Two criteria can be usedto delimit a zone. 4

The �rst one is the Voronoi area, where we select a set of centers and put each other point insidethe zone of its closest center. The areas are limited by hyperplanes and the zones are analogous toVoronoi regions in vector spaces. Let fc1 : : : cmg be the set of centers. At query time we evaluate(d(q; c1); : : : ; d(q; cm)), choose the closest center c and discard every zone whose center ci satis�esd(q; ci) > d(q; c) + 2r, as its Voronoi area cannot have intersection with the query ball.The second criterion is the covering radius cr(ci), which is the maximum distance between ciand an element in its zone. If d(q; ci)� r > cr(ci), then there is no need to consider zone i.The techniques can be combined. Some using only hyperplanes are the gh-trees and variants[Uhl91b, NVZ92], and Voronoi trees [DN87, Nol89]. Some using only covering radii are the M-trees[CPZ97] and lists of clusters [CN00]. One using both criteria is the gna-tree [Bri95].To answer 1-NN queries, we simulate a range query with a radius that is initially r = 1, andreduce r as we �nd closer and closer elements to q. At the end, we have in r the distance to theclosest elements and have seen them all. Unlike a range query, we are now interested in quickly�nding close elements in order to reduce r as early as possible, so there are a number of heuristicsto achieve this. One of the most interesting is proposed in [Uhl91a] for metric trees, where thesubtrees are stored in a priority queue in a heuristically promising ordering. The traversal is moregeneral than a backtracking. Each time we process the most promising subtree, we may add itschildren to the priority queue. At some point we can preempt the search using a cuto� criteriongiven by the triangle inequality.k-NN queries are handled as a generalization of 1-NN queries. Instead of a closest element,a priority queue of the k closest elements known is maintained. The r value is now that of theelement among the k current candidates which is farthest from q. Each new candidate is insertedin the heap and may displace the farthest one out of the queue (hence reducing r for the rest ofthe algorithm). See also [HS99] for alternative ideas (albeit for vector spaces).Note that all the previous work aims at dividing the database, inheriting from the classicaldivide-and-conquer ideas of searching typical data (e.g. binary search trees). We propose in thispaper a new approach which is speci�c of spatial searching. Rather than dividing the set ofcandidates along the search, we try to start at some point in the space and get closer to the queryq, in the sense of �nding closer and closer elements to it.3 The Spatial Approximation ApproachWe concentrate in this section on 1-NN queries (at the end we will solve all types of queries).Instead of the known algorithms to solve proximity queries by dividing the set of candidates, wetry a di�erent approach here. In our model, we are always positioned at a given element of S andtry to get \spatially" closer to the query (i.e. move to another element which is closer to the querythan the current one). When this is no longer possible, we are positioned at the nearest elementto the query in the set.This approximation is performed only via \neighbors". Each element a 2 S has a set ofneighbors N(a), and we are allowed to move directly only to neighbors. The natural structure torepresent this restriction is a directed graph where the nodes are the elements of S and they havedirect edges to their neighbors. That is, there is an edge from a to b if it is possible to move from5

a to b in a single step. From now on we will speak of graph (or tree) nodes and database elements(or objects) indistinctly.Once such graph is suitably de�ned, the search process for a query q is simple: start positionedat a random node a and consider all its neighbors. If no neighbor is closer to q than a, then reporta as the closest element to q. Otherwise, select some neighbor b closer to q than a and move to b.We can choose b as the neighbor which is closest to q or as the �rst one we �nd closer than a.In order for that algorithm to work, the graph must contain enough edges. The simplest graphthat works is the complete graph, i.e. all pairs of nodes are neighbors. However, this impliesn distance evaluations just to check the neighbors of the last node! For this reason and also tominimize the space required by the structure, we prefer the graph which has the least possiblenumber of edges and still allows answering correctly all queries. This graph G = (S; f(a; b); a 2S; b 2 N(a)g) must enforce the following property:Condition 1: 8a 2 S, 8q 2 U , if 8b 2 N(a); d(q; a) � d(q; b), then 8b 2 S; d(q; a) � d(q; b).This means that, given any possible element q, if we cannot get closer to q from a going to itsneighbors, then it is because a is already the element closest to q in the whole set S. It is clearthat if G satis�es Condition 1 we can search by spatial approximation. We seek a minimal graphof that kind.This can be seen in another way: each a 2 S has a subset of U where it is the proper answer(i.e. the set of objects closer to a than to any other element of S). This is the exact analogous ofa \Voronoi region" for Euclidean spaces in computational geometry [Aur91]1. The answer to thequery q is the element a 2 S which owns the Voronoi region where q lies. We need, if a is not theanswer, to be able to move to another element closer to q. It is enough to connect each a 2 Swith all its \Voronoi neighbors" (i.e. elements of S whose Voronoi area share a border with thatof a), since if a is not the answer, then a Voronoi neighbor will be closer to q (this is exactly theCondition 1 just stated).Consider the hyperplane between a and b (i.e. which divides the area of points x closer to aor closer to b). Each element b we add as a neighbor of a will allow the search to move from ato b provided q is in b's side of the hyperplane. Therefore, if (and only if) we add all the Voronoineighbors to a, then the only zone where the query would not move away from a will be exactlythe area where a is the closest element.Therefore, in a vector space, the minimal graph we seek corresponds to the classical Delaunaytriangulation (a graph where the elements which are Voronoi neighbors are connected). The De-launay graph, generalized to arbitrary spaces, would be therefore the ideal answer in terms of spacecomplexity, and it should permit fast searching too. Figure 2 shows an example.Unfortunately, it is not possible to compute the Delaunay graph of a general metric space givenonly the set of distances among elements of S and no further indication of the structure of thespace. This is because, given the set of jSj2 distances, di�erent spaces will have di�erent graphs.Moreover, it is not possible to prove that a single edge from any node a to b is not in the Delaunaygraph, given only the distances. Therefore, the only superset of the Delaunay graph that worksfor an arbitrary metric space is the complete graph, and as explained this graph is useless. Thisoutrules the data structure for general applications. We formalize this notion as a theorem.1The proper name in a general metric space is \Dirichlet domain" [Bri95].6

p4

p2

p12
p3

p11
p10p6

p15

p5
p1

p8

q

p9

p14

p13

p7

Figure 2: An example of the search process with a Delaunay graph (solid edges) corresponding toa Voronoi partition (areas delimited by dashed lines). We start from p11 and reach p9, the nodeclosest to q, moving always to neighbors closer and closer to q.Theorem: Given the distances between pairs of elements in a �nite subset S of an unknownmetric space U , then for each a; b 2 S there exists a choice for U where a and b are connected inthe Delaunay graph of S.Proof: given the set of distances, we create a new element x 2 U such that d(a; x) = M + �,d(b; x) =M , and d(y; x) =M + 2� for every other y 2 S. This satis�es all the triangle inequalitiesprovided � � 1=2 miny;z2Sfd(y; z)g and M � 1=2 maxy;z2Sfd(y; z)g. Therefore, such an x mayexist in U . Now, given the query q = x and given that we are currently at element a, we have thatb is the element nearest to x and the only way to move to b without getting farther from q is adirect edge from a to b (see Figure 3). This argument can be repeated for any pair a; b 2 S.
a b

x y

Μ+ε
Μ

Μ+2ε

arc needed

nearest to x

Figure 3: Illustration of the theorem.7

4 The Spatial Approximation TreeWe make two crucial simpli�cations to the general idea so as to achieve a feasible solution. Theresulting simpli�cation answers only a reduced set of queries, namely 1-NN queries for q 2 S, whichis no more than exact searching. However, we show later (Section 4.2) how to combine the spatialapproximation approach with backtracking so as to answer any query q 2 U (not only q 2 S), forboth range queries and nearest neighbor queries.(1) We do not start traversing the graph from a random node but from a �xed one, and thereforethere is no need of all the Voronoi edges.(2) Our graph will only be able to answer correctly queries q 2 S, i.e. only elements alreadypresent in the database.4.1 Construction ProcessWe select a random element a 2 S to be the root of the tree. We then select a suitable set ofneighbors N(a) satisfying the following property:Condition 2: (given a; S) 8x 2 S, x 2 N(a), 8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set such that any neighbor is closer to a than to any otherneighbor. The \(" part of the de�nition guarantees that if we can get closer to any b 2 S then anelement in N(a) is closer to b than a, because we put as direct neighbors all those elements thatare not closer to another neighbor. The \)" part aims at obtaining as adding only the necessaryneighbors.Notice that the set N(a) is de�ned in terms of itself in a non-trivial way and that multiplesolutions �t the de�nition. For example, if a is far from b and c and these are close to each other,then both N(a) = fbg and N(a) = fcg satisfy the de�nition.Finding the smallest possible set N(a) seems to be a nontrivial combinatorial optimizationproblem, since by including an element we need to take out others (this happens between b andc in the example of the previous paragraph). However, simple heuristics that add more than theminimum possible neighbors work well. We begin with the initial node a and its \bag" holding allthe rest of S. We �rst sort the bag by distance to a. Then, we start adding nodes to N(a) (whichis initially empty). Each time we consider a new node b, we see if it is closer to some element ofN(a) than to a itself. If that is not the case, we add b to N(a).At this point we have a suitable set of neighbors. Note that Condition 2 is satis�ed thanksto the fact that we have considered the elements in order of increasing distance to a. The \("part of the Condition is clearly satis�ed because any element satisfying the clause on the right isinserted in N(a). The \)" part is more delicate. Let x 6= y 2 N(a). If y is closer to a than x theny was considered �rst. Our construction algorithm guarantees that if we inserted x in N(a) thend(x; a) < d(x; y). If, on the other hand, x is closer to a than y, then d(y; x) > d(y; a) � d(x; a)(that is, a neighbor cannot be removed by a new neighbor inserted later).We now must decide in which neighbor's bag we put the rest of the nodes. We put each nodenot in fag [N(a) in the bag of its closest element of N(a) (best-�t strategy). Observe that thisrequires a second pass once N(a) is fully determined.8

We are done now with a, and process recursively all its neighbors, each one with the elements ofits bag. Note that the resulting structure is not a graph but a tree, which can be searched for anyq 2 S by spatial approximation for nearest neighbor queries. The mechanism consists in comparingq against fag [N(a). If a is closest to q, then a is the answer, otherwise we continue the search bythe subtree of the closest element to q in N(a).The reason why this works is that, at search time, we repeat exactly what happened with qduring the construction process (i.e. we enter into the subtree of the neighbor closest to q), untilwe reach q. This is because q is present in the tree, i.e., we are doing an exact search.Finally, we save some comparisons at search time by storing at each node a its covering radius,i.e. the maximum distance R(a) between a and any element in the subtree rooted at a. The wayto use this information is made clear in Section 4.2.Figure 4 depicts the construction process.BuildTree(Node a, Set of nodes S)1. N (a) ; /* neighbors of a */2. R(a) 0 /* covering radius */3. Sort S by distance to a (closer �rst)4. For v 2 S Do5. R(a) max(R(a); d(v; a))6. If 8b 2 N (a); d(v; a) < d(v; b) Then N (a) N (a) [fvg7. For b 2 N (a) Do S(b) ; /* subtrees */8. For v 2 S � N (a) Do9. Let c 2 N (a) be the one minimizing d(v; c)10. S(c) S(c) [fvg11. For b 2 N (a) Do BuildTree(b, S(b)) /* build subtrees */Figure 4: Algorithm to build the sa-tree. It is �rstly invoked as BuildTree(a,S � fag) where ais a random element of the set S. Note that, except for the �rst level of the recursion, we alreadyknow all the distances d(v; a) for every v 2 S and hence do not need to recompute them. Similarly,some of the d(v; c) at line 9 are already known from line 6. The information stored by the datastructure is the root a and the N() and R() values of all the nodes.4.2 Range SearchingOf course it is of little interest to search only for elements q 2 S. The tree we have described can,however, be used as a device to solve queries of any type for any q 2 U . We start with range querieswith radius r.The key observation is that, even if q 62 S, the answers to the query are elements q0 2 S. Sowe use the tree to pretend that we are searching an element q0 2 S. We do not know q0, but sinced(q; q0) � r, we can obtain from q some distance information regarding q0: by the triangle inequalityit holds that for any x 2 U , d(x; q)� r � d(x; q0) � d(x; q) + r.9

When we knew the q we were searching for, we went directly to the neighbor of a closest to q.Now, we are searching for the unknown q0 and are not certain of which is the neighbor of a closestto q0. Hence, we have to explore several possible neighbors. Some neighbors, fortunately, can bededuced to be irrelevant, as q0 cannot have chosen them at construction time if it holds d(q; q0) � r.Instead of just going to the closest neighbor, we �rst determine the closest neighbor c of q amongfag [N(a). So, for any b in fag [N(a), we know that d(c; q) � d(b; q). However, as explained,it is possible that d(c; q0) � d(b; q0) and therefore we will not �nd q0 by entering only the tree ofc. Instead, we must enter into all the neighbors b 2 N(a) such that d(q; b) � d(q; c) + 2r. This isbecause the virtual element q0 we are searching for can di�er from q by at most r at any distanceevaluation, so it could have been inserted inside such b nodes. In other words, a neighbor b suchthat d(q; b)> d(q; c) + 2r satis�es d(q0; b) � d(q; b)� r > d(q; c) + r � d(q0; c), so q0 could not havebeen inserted in the subtree of b. In any other case, we are not sure and must enter the subtree ofb. A di�erent way to regard this process is to lower bound the distance between q and any nodex in the subtree of b. By the triangle inequality we have d(x; q) � d(x; c)� d(q; c) and d(x; q) �d(q; b) � d(x; b). Summing up both inequalities and keeping in mind that d(x; b) � d(x; c) andd(q; c) � d(q; b), we obtain 2d(x; q) � (d(q; b) � d(q; c)) + (d(x; c) � d(x; b)) � d(q; b) � d(q; c).Therefore d(x; q) � (d(q; b)� d(q; c))=2. If the latter term is larger than r, we can safely discardevery x in the subtree of b. The condition is therefore (d(q; b)�d(q; c))=2> r, or d(q; b) > d(q; c)+2r.The process guarantees that we compare q against every node that cannot be proved to be faraway enough from q. Hence, by reporting every node q0 that was compared against q and for whichd(q; q0) � r holds, we are sure to report every relevant element.As can be seen, what was originally conceived as a search by spatial approximation along asingle path is combined now with backtracking, so that we search by a number of paths. This isthe price of not being able to build a true spatial approximation graph. Figure 5 illustrates thesearch process.The search algorithm can be improved a bit further. When we search for an element q 2 S(that is, an exact search for a tree node), we follow a single path from the root to q. At any nodea0 in this path, we choose the closet to q among fa0g [N(a0). Therefore, if the search is currentlyat tree node a, we have that q is closer to a than to any ancestor a0 of a and also any neighbor ofa0. Hence, if we call A(a) the set of ancestors of a (including a), we have that, at search time, wecan avoid entering any element x 2 N(a) such thatd(q; x) > 2r +minfd(q; c); c 2 fa0g [N(a0); a0 2 A(a)gbecause we can show using the triangle inequality that no q0 with d(q; q0) � r can be stored insidex. This condition is a stricter version of the original condition d(q; x) > 2r + minfd(q; c); c 2fag [N(a)g.We use this observation as follows. At any node b of the search we keep track of the minimumdistance mind to q seen up to now across this path, including neighbors. We enter only neighborsthat are not farther than mind+ 2r from q.Finally, the covering radius R(a) is used to further reduce the search cost. We never enter intoa subtree rooted at a where d(q; a) > R(a) + r, since this implies d(q0; a) > R(a) for any q0 suchthat d(q; q0) � r. The de�nition of R(a) implies that q0 cannot belong to the subtree of a. Figure 6depicts the algorithm. 10

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10

Figure 5: An example of the search process, starting from p11 (tree root). Only p9 is in the result,but all the bold edges are traversed.4.3 Nearest Neighbor SearchingWe can also perform nearest neighbor searching by simulating a range search where the searchradius is reduced as we get more and more information. To solve 1-NN queries, we start searchingwith r = 1, and reduce r each time a new comparison is performed that gives a distance smallerthan r. We �nally report the closest element seen along all the search. For k-NN queries we storeall the time a priority queue with the k closest elements to q we have seen up to now. The radiusr is the distance between q and its farthest candidate in the queue (1 if we still have less than kcandidates). Each time a new candidate appears we insert it into the queue, which may displaceanother element and hence reduce r. At the end, the queue contains the k closest elements to q(recall Section 2).In a normal range search with �xed r, the order in which we backtrack in the tree is unimportant.This is not the case now, as we would like to quickly �nd elements close to q so as to reduce r early.A general idea proposed in [Uhl91a] can be adapted to our data structure. We have a priorityqueue of subtrees, most promising �rst. Initially, we insert the sa-tree root in the data structure.Iteratively, we extract the most promising subtree root, process it, and insert all the roots of itssubtrees in the queue. This is repeated until the queue becomes empty or its most promisingsubtree root can be discarded (i.e., its \promise value" is bad enough).The most elegant measure of how promising is a subtree is a lower bound to the distance betweenq and any element in the subtree. Once this lower bound exceeds r we can stop the whole process.We have indeed two possible lower bounds:1. Since we �nd the closest neighbor c and then enter into any other neighbor b such thatd(q; b) � d(q; c) � 2r, we have that we would not have entered the subtree rooted at b if(d(q; b) � d(q; c))=2 � r did not hold. In fact, this c is taken over the neighbors of any11

RangeSearch(Node a, Query q, Radius r, Distance mind)1. If d(a; q) � R(a) + r Then2. If d(a; q) � r Then Report a3. mind min fmindg [fd(q; c); c 2 N (a)g4. For b 2 N (a) Do5. If d(b; q) � mind+ 2r Then RangeSearch(b,q,r,mind)Figure 6: Algorithm to search q with radius r in a sa-tree. It is �rstly invoked asRangeSearch(a,q,r,d(a; q)), where a is the root of the tree. Notice that in the recursive invoca-tions d(a; q) is already computed.ancestor.2. By the lower bound to the distance between q and an element in the subtree we have d(q; b)�R(b) � r.Since r is reduced along the search, a node b may seem useful at the moment it is inserted in thepriority queue and useless later, when it is extracted from the queue to be processed. So we storetogether with b the maximumof the three lower bounds, and use this maximum to sort the subtreesin the priority queue, smaller �rst. As we extract subtrees from the queue, we check whether theirvalue exceeds r, in which case we stop the whole process as all the remaining subtrees are knownto contain irrelevant elements. Note that we need to keep track of mind = m separately. Finally,note that children nodes inherit the lower bound of their parents.Figure 7 depicts the algorithm.5 AnalysisWe analyze now our sa-tree structure. Our analysis is simpli�ed in many aspects, for instanceit assumes that the distance distribution of nodes that go into a subtree is the same as in theglobal space. We also do not take into account that we sort the bag before selecting neighbors (theresults are pessimistic in this sense, since it looks as if we had more neighbors). As seen in theexperiments however, the �tting with reality is very good. This analysis is done for a continuousdistance function, although adapting it to the discrete case is immediate.Our results can be summarized as follows. The sa-tree needs linear space O(n), reasonableconstruction time O(n log2 n= log logn) and sublinear search timeO(n1��(1= log logn)) in hard spacesand O(n�) (0 < � < 1) in easy spaces.5.1 Construction Cost and Tree ShapeLet us consider �rst the construction process. We select a random node as the root and determinewhich others are going to be neighbors. Imagine that a is the selected as root and b is an already12

NN-Search(Tree a, Query q, Neighbors wanted k)1. Q f(a;max(0; d(q; a)�R(a)); d(q; a))g /* promising subtrees */2. A ; /* best answer so far */3. r 14. While Q is not empty Do5. (b; t;m) element in Q with smallest t , Q Q� f(b; t;m)g6. If t > r Then Return the answer A /* global stopping criterion */7. A A [f(b; d(q; b))g8. If jAj = k + 1 Then9. (c;maxd) element in A with largest maxd , A A� f(c;maxd)g10. If jAj = k Then11. (c;maxd) element in A with largest maxd , r maxd12. m min fmg [fd(c; q); c 2 N (b)g13. For v 2 N (b) Do14. Q Q [(v;max(t;m=2; d(q; v)�R(v));m)15. Return the answer AFigure 7: Algorithm to search the k nearest neighbors of q in a sa-tree. A is a priority queue of pairs(node,distance) sorted by increasing distance. Q is a priority queue of triples (node,lbound,mind)sorted by increasing lbound.present neighbor. The probability that a given node c is closer to a than to b is simply 1=2 becausethe situation is symmetric: if we draw a hyperplane at the same distance from a and b, then c canequally lie at either side of the hyperplane.If j neighbors are already present, the probability that we add another neighbor is that of beingcloser to a than to any neighbor. If we assume that all the hyperplanes are independent, then thisprobability is 1=2j. This is a simpli�cation for several reasons. First, the neighbors are chosen froma's side of the hyperplane, never from the side of the hyperplane of another neighbor (which is thesame to say that neighbors are closer to a than to each other). Second, in easy spaces (e.g. lowdimensional vector spaces) it is not possible to set up too many di�erent hyperplanes because thespace becomes �lled.Since each attempt to obtain the (j + 1)-th neighbor has a probability of success of 1=2j, wehave a hypergeometric process with mean 2j . The total number of attempts to obtain N neighborsis a sum of hypergeometric variables with means 20, 21, and so on. Since the mean commutes withthe sum, the average number of attempts necessary to obtain N neighbors is PN�1j=0 2j = 2N � 1.Inverting, we have that with n elements (i.e. attempts) we obtain on average log2(n+1) neighbors.This is a lower bound because we are taking the inverse of the average instead of the average of theinverse, and the inverse function is concave down. It is possible, although tedious (Appendix A),to prove that in fact the average number of neighbors isN(n) = �(logn)13

under our simpli�cations stated above. The constant is between 1.00 and 1.35. Recall also thatthere is a constant part that should be especially relevant in easy spaces. However, for our analysis�(logn) su�ces.This allows determining some parameters of our index. For instance, since on average �(n= logn)elements go into each subtree, the average depth of a leaf in the tree isH(n) = 1 +H � nlogn� = �� lognlog logn�which is obtained by unrolling (see Appendix B).The construction cost is as follows (in terms of distance evaluations). The bag of n elements iscompared against the root node. �(logn) elements are selected as neighbors and then all the otherelements are compared against the neighbors and are inserted into one bag. Then, all neighborsare recursively built.B(n) = n logn+ log(n)B � nlogn� = � n log2 nlog logn!which is solved in detail in Appendix B.The space needed by the index (number of links) is O(n) because it is a tree.5.2 Query TimeWe analyze the search time now. Since we enter into many neighbors, we must determine whichis the amount of backtracking performed. Let D0; : : : ; Dj random variables corresponding to thedistances D0 = d(a; q) and Di = d(vi; q), where vi is the i-th neighbor of q. Let us call f(x) theprobability density function of X = Di�min(D0; : : : ; Dj), for any Di corresponding to a neighbor.It is clear that f(x) > 0 only when x � 0. We also call F (y) = R y0 f(y)dy its cumulative distribution.Now, we will enter into neighbor i whenever X = Di �min(D0; : : : ; Dj) � 2r. The probabilityof such a fact is F (2r).There are �(logn) neighbors, and we enter into each one with the same probability. The sizeof the set inside a neighbor is �(n= logn). Hence if we call T (n) the search cost with n elements,then the following recurrence holdsT (n) = logn + logn F (2r)T � nlogn�which can be solved by unrolling (see details in Appendix B) to getT (n) = � �nF (2r)loglog n n� = ��n1� log(1=F (2r))log log n � = � �n1��(1= log logn)�This shows the sublinearity with respect to n. On the other hand, as the search radius increasesor the hardness increases, F (2r) becomes closer to 1 and the cost becomes closer to linear.On the other hand, note that when the space is easy (e.g. vector spaces with dimension smallerthan O(logn)), N(n) is closer to a constant because there cannot be too many neighbors. In thiscase the analysis yields T (n) = O(n�) for constant 0 < � < 1. We prefer, however, to stick to themore conservative complexity. 14

6 Experimental ResultsWe have tested our sa-tree and previous work on a synthetic set of random points in aD-dimensionalspace: every coordinate was chosen uniformly and independently in [0; 1). However, we have notused the fact that the space has coordinates, treating the points as abstract objects in an unknownmetric space. This choice allows us to control the exact dimensionality (di�culty) we are workingwith, which is not so easy if the space is a general metric space or the points come from a realsituation (where, despite that they are immersed in a D-dimensional space, their real dimensioncan be lower). Our tests use the Euclidean distance (L2) and four di�erent dimensions: 5, 10, 15and 20. For each dimension, we generated 10 incremental groups of data sets, from n = 10; 000 ton = 100; 000 elements. Later, when comparing our data structure against others, we show somereal metric spaces too.The results were averaged over 100 index constructions (recall that the construction algorithmis randomized) and 100 queries run over each index. Hence, each data point about the structureitself or its construction is an average over 100 iterations, while each data point about query costsis an average over 10,000 iterations.6.1 Construction Cost and Tree ShapeOur �rst experiment aims at measuring the construction cost of the sa-tree, as well as the shapeof the resulting tree. Figure 8 shows how the cost grows as n increases. We show the number ofevaluations per element, which according to the analysis is O(log2 n= log logn). A least squaresestimation shows an excellent �tting with this analysis (better for low dimensions, as in higherdimension there is more variance), with an accompanying constant factor that seems to dependlinearly on the dimension.
40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Database size n (x 1,000)

Construction cost per element

Dim = 5
Dim = 10
Dim = 15
Dim = 20 Dim Approximation Error5 1:126 ln(n)2ln lnn 0.00710 1:569 ln(n)2ln lnn 0.00815 2:155 ln(n)2ln lnn 0.02520 2:722 ln(n)2ln lnn 0.049Figure 8: Construction cost, measured in number of distance evaluations per element. The costgrows with n and with the dimension of the database. On the right, the formula obtained by leastsquares and the relative error. 15

We consider now the arity of the tree root. The analytical prediction, O(logn), �ts again verywell with the experiments. Using a model of the form a+ b lnn we obtain relative errors below 1%.The constant b seems to grow exponentially with the dimension. The results are shown in Figure 9.
5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

A
rit

y

Database size n (x 1,000)

Arity of the tree root

Dim = 5
Dim = 10
Dim = 15
Dim = 20 Dim Approximation Error5 3:892+ 0:327 lnn 0.00210 2:126+ 1:154 lnn 0.00515 �8:965 + 2:481 lnn 0.00720 �16:971+ 4:194 lnn 0.009Figure 9: Arity of the tree root. It grows with n and with the dimension of the database. On theright, the formula obtained by least squares and the relative error.Let us now focus on the average leaf depth of the trees. The analysis predicts O(logn= log logn).Again, we have obtained a very good approximation, with relative error well below 1%, with themodel a+ b lnn= ln lnn. This time the constant b decreases with the dimension. Figure 10 showsthe results.

5

6

7

8

9

10

11

12

13

14

10 20 30 40 50 60 70 80 90 100

D
ep

th

Database size n (x 1,000)

Average depth of a leaf

Dim = 5
Dim = 10
Dim = 15
Dim = 20

Dim Approximation Error5 �17:857 + 6:630 lnnln lnn 0.00610 �2:283 + 2:058 lnnln lnn 0.00315 �0:082 + 1:319 lnnln lnn 0.00320 1:136 + 0:934 lnnln lnn 0.002Figure 10: Average leaf depth in the tree. It grows with n and decreases with the dimension of thedatabase. On the right, the formula obtained by least squares and the relative error.The results show that our analysis is quite accurate, despite the simpli�cations made. Wehave been able to predict how the tree behaves as a function of the database size n. However,16

the experiments give additional information on an aspect that we could not capture analytically,namely the behavior of the trees as the dimension of the set grows. As the experiments show, thetrees get fatter and shorter for higher dimensions, and consequently they are harder to build.This phenomenon is interesting because it shows how the sa-tree adapts itself to the dimensionof the data without need of external tuning, a feature that very few data structures posess. Otherarticles, such as that of gna-trees [Bri95], suggest to use a larger arity for higher dimensions and toreduce the arity in lower levels of the tree, but all this occurs naturally in sa-trees.6.2 Querying CostWe consider now the cost of searching the index. We have tried both range and nearest neighborsearching. For range searching, we have selected manually the radii that recover 0.01%, 0.1% and1% of the set. For nearest neighbor searching, we have directly requested to retrieve that numberof elements. As our algorithm for nearest neighbor searching is a range search algorithm thatadjusts the radius as it gets more and more information on the set, we expect that nearest neighborsearching takes more time than range searching in order to retrieve the same amount of elements.How close is the time with respect to range searching gives us an idea of how good is the heuristic.Figure 11 shows the results, in terms of percentage of the set traversed for a query. Severalobservations are in order. First, note that the sublinearity is clear. Moreover, our analysis holdswith extreme accuracy using the model an1�b= ln lnn (the relative error is always below 1%). Second,the results worsen fast as the dimension or the search radius grows, which is reected in a reductionof the constant b. Third, note that the nearest neighbor search algorithm is quite close to thecorresponding range search.6.3 Comparison against OthersFinally, we compare our sa-trees against other data structures. This time we �x n = 100; 000 andshow how the results change with the dimension. We also show the case of real-world metric spaces.There are too many proposals to compare them all, so we have selected a small set of goodrepresentatives. Some structures do behave better than our sa-tree, but at the expense of imprac-tical amounts of memory (e.g. aesa [Vid86] needs O(n2) space) or construction time (e.g. aesa[Vid86] and the list of clusters [CN00] need O(n2) construction time). To make a fair comparisonwe consider the amount of memory or construction time required. The structures chosen are:Pivot(s): is a generic pivoting algorithm, where we limit the amount of space permitted to s timesthat of our sa-tree.The speci�c algorithm consists of executing the �rst k steps of aesa, i.e. choosing a pivotp from the remaining set of elements and discarding every candidate element x such thatjd(q; x)� d(q; p)j > r. This is better than �xing the k pivots in advance as done by manypivoting algorithms, because it is well known that better results are obtained by choosing thepivots from the remaining set. Some tree schemes permit adapting the pivot to the remainingset, at the cost of not using all the information given by their distances. So in fact we aresimulating an algorithm which has the best of both worlds: we assume that we need only the17

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 1,000)

Query cost in dimension = 5

0.01% range
0.1% range

1% range
0.01% NN
0.1% NN

1% NN

20
25
30
35
40
45
50
55
60
65
70
75

10 20 30 40 50 60 70 80 90 100
P

er
ce

nt
ag

e
of

 d
at

ab
as

e
ex

am
in

ed

Database size n (x 1,000)

Query cost in dimension = 10

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 1,000)

Query cost in dimension = 15

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 1,000)

Query cost in dimension = 20

Dimension range 0.01% range 0.1% range 1%5 5:911n1�0:938=ln lnn (.007) 8:479n1�0:939=ln lnn (.008) 6:413n1�0:760=ln lnn (.005)10 9:582n1�0:776=ln lnn (.003) 6:831n1�0:622=ln lnn (.004) 3:759n1�0:398=ln lnn (.004)15 3:828n1�0:399=ln lnn (.003) 2:437n1�0:251=ln lnn (.002) 1:501n1�0:109=ln lnn (.001)20 1:668n1�0:140=ln lnn (.002) 1:275n1�0:064=ln lnn (.001) 1:062n1�0:015=ln lnn (.000)Figure 11: Percentage of the set traversed when searching using the sa-tree. Each plot considers adi�erent dimension, showing range and nearest neighbor queries that retrieve 0.01%, 0.1% and 1%of the database. On the bottom, least squares estimations for the range queries, with the relativeerror in parenthesis. 18

space for k �xed pivots, that we can use all the information they yield, and that we are ableto choose those pivots at query time and yet have all the d(pi; x) precomputed.A compact implementation of our data structure needs: for every object, a leaf/nonleaf bitplus an object identi�er (17 bits are enough for 100,000 elements); for every internal node, acovering radius (32 bits, both considering a oating point number or the number of bits todistinguish among n2=2 distances when n = 100; 00), a pointer to the �rst child (17 bits) andthe number of children (5 bits is more than enough, both analytically and in our experiments).This permits a breath-�rst representation of the sa-tree on an array. In our experiments, thereare at most 6 leaves per internal node (this also matches analytical predictions), so in totalwe need about 27n bits.On the other hand, we need 32 bits to represent a distance, so the minimal space for k pivotsis 32k bits. Hence, Pivot(s) is equivalent to using k = s pivots.Clusters(t): is the scheme proposed in [CN00]. This structure takes linear space and it is shown tobehave better than sa-trees in hard spaces. However, for this to happen it is necessary to paya quadratic construction cost, which is unrealistic even compared to our (already expensive)construction cost.The data structure consists of a list of balls ofm elements. The �rst ball is formed by a centerc1 and the m� 1 elements closest to c1. Those m elements are not considered when buildingthe rest of the list. For the second ball another center is chosen and the ball contains them� 1 elements closest it, and so on. At search time every center ci is compared against q insequence. Its ball is discarded if d(q; ci) � r > cr(ci), otherwise it is exhaustively searched.We can stop traversing the list of centers if d(q; ci) + r � cr(ci). The construction cost needsn2=(2m) distance evaluations and the optimum m is constant. For a fair comparison, theparameter t will indicate how many times was the construction cost of the list of clusterssuperior to that of the sa-tree. Given our constructions costs, this implies cluster sizes m of817=t, 582=t, 415=t and 322=t for dimensions 5, 10, 15 and 20, respectively.Gna-tree: is a simpli�cation of the structure proposed in [Bri95]. A set of m centers is selectedat random and the rest are sent to the subtree of their closest center. The subtrees are builtrecursively. At search time the query is compared against the m centers and enters into theclosest, c, and into those whose Voronoi region have intersection with the query ball (i.e.d(q; ci) � d(q; c) + 2r). Covering radii are used as well to increase pruning. This structureuses linear space and a construction time close to ours, so we do not put a parameter on it.Rather, we choose manually the best m for each case, which turns out to be 4 for 5 and 10dimensions and 16 for 15 and 20 dimensions. Our experiments with the full-edged structureproposed in [Bri95] show that our simpli�cation is indistinguishable in performance.Figure 12 shows a comparison between sa-trees and the idealized pivoting algorithms. As it canbe seen, the sa-tree tolerates better harder spaces or larger radii. A pivoting index using four timesthe amount of memory as the sa-tree is faster only for 5 dimensions and a radius that retrievesless than 0.1% of the database. As the hardness or the search radius grow, pivoting algorithmsneed more and more memory in order to compete. In hard spaces or large search radii, pivoting19

algorithms cannot compete even when they take 64 times the amount of memory required bysa-trees.
0

5

10

15

20

25

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 5

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1
P

er
ce

nt
ag

e
of

 d
at

ab
as

e
ex

am
in

ed
Percentage of database retrieved

Query cost for n=100,000 and dimension 10

20

30

40

50

60

70

80

90

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 15

82

84

86

88

90

92

94

96

98

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 20

sa-tree
pivots(4)
pivots(8)

pivots(16)
pivots(32)
pivots(64)Figure 12: Comparison between the cost of range searching using the sa-tree and an idealizedpivoting algorithm. We show each dimension separately and the cost for growing radius (i.e.queries that retrieve 0.01%, 0.1% and 1% of the database).Figure 13 shows a comparison between sa-trees and clustering algorithms. These algorithmstolerate better harder spaces and large search radii, with a growth rate similar to that of sa-trees.Our structure is better than gna-trees for more than 10 dimensions. Lists of clusters, on the otherhand, need more and more times the construction time of sa-trees to beat them as the hardnessor the search radii grow: 2 times in 5 dimensions, 4 times in 10 dimensions, 4 to 8 times in 15dimensions and 8 times in 20 dimensions.Finally, we show a couple of real life metric spaces. The �rst one is a dictionary of 86,061 Spanishwords under the edit (or Levenshtein) distance, de�ned as the number of character insertions,deletions and substitutions needed to convert one string into the other. This distance is discreteand has many applications in text retrieval, signal processing and computational biology [Nav01].20

0

5

10

15

20

25

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 5

10

20

30

40

50

60

70

80

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 10

40

50

60

70

80

90

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 15

75

80

85

90

95

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 20

sa-tree
gna-tree

clusters(1)
clusters(2)
clusters(4)
clusters(8)Figure 13: Comparison between the cost of range searching using the sa-tree and other clusteringalgorithms. We show each dimension separately and the cost for growing radius (i.e. queries thatretrieve 0.01%, 0.1% and 1% of the database).

21

The particular case of a dictionary is of interest in spelling applications.The second metric space is that of documents under the cosine similarity measure [BYRN99].We took the 25,960 documents of the fr (Federal Register) collection of trec-3 [Har95]. Wetook the vocabulary of each document (considering letters and digits and mapping them to lowercase) and created for each document a vector where each vocabulary word is a coordinate. If thevocabulary word ti appears fij times in document dj and it appears in ni documents out of a totalof N , then the value of document dj at the coordinate ti is fij ln(N=ni). The distance is the anglebetween the vectors, i.e., the inverse cosine of the dot product between the two normalized vectors.This distance is largely used in Information Retrieval applications, and it is quite expensive tocompute.In the space of words under the edit distance, 5 bits su�ce to store a distance, and hence thespace taken by the sa-tree is equivalent to that of 5 pivots. The gna-tree gives its best results witharity 6. A list of clusters of equivalent construction cost uses clusters of size 594, as the sa-treeneeded 72.43 comparisons per element. We show the results of searching with radii 1 to 4, whichretrieved 0.00354%, 0.0300%, 0.258% and 1.515% of the set, respectively.In the space of documents under the cosine similarity, the distance is a real number and hencewe assume that the space taken by the sa-tree is equivalent to that of one pivot. The gna-tree givesits best results with arity 4 (in fact, the arity makes little di�erence). A list of clusters of equivalentconstruction cost uses clusters of size 109, as the sa-tree needed 118.63 comparisons per element.We show the results of searching with radii retrieving 1 to 16 elements apart from the query itself.Each distance evaluation involves reading about 400 Kb from disk, so it is really expensive. Forthis reason we contented ourselves with building the indexes only once, and querying it 100 times.Moreover, this space has very high dimension.Figure 14 shows the results. In the space of words, the sa-tree outperforms the gna-tree. Apivoting algorithm needs 8 times more space to beat sa-trees when the search radius becomes large(3 or 4). Lists of clusters need to pay 4 times the construction cost of sa-trees in order to achievebetter e�ciency.In the space of documents, pivots (even using 64 of them) and gna-trees perform poorly. Theonly competitor for the sa-tree is the list of clusters. When retrieving very few elements, they need8 times more construction time to beat sa-trees.As it can be seen, sa-trees provide a good tradeo� between e�ciency and space/constructioncost. It is necessary to pay much more space or construction time to beat them when the space ishard or the search radius is large. These are the most important unresolved cases in practice.7 Incremental ConstructionThe sa-tree is a structure whose construction algorithm needs to know all the elements of S inadvance. In particular, it is di�cult to add new elements under the best-�t strategy once the treeis already built. Each time a new element is inserted, we must go down the tree by the closestneighbor until the new element must become a neighbor of the current node a. All the subtreerooted at a must be rebuilt from scratch, since some nodes that went into another neighbor couldprefer now to get into the new neighbor.We have studied several alternatives that permit an e�cient incremental construction, that is,22

0

10

20

30

40

50

60

70

80

1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search radius

Query cost for n=86,061 words under Levenshtein distance

sa-tree
pivots(2)
pivots(4)
pivots(8)

pivots(16)

0

10

20

30

40

50

60

70

80

90

1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search radius

Query cost for n=86,061 words under Levenshtein distance

sa-tree
gna-tree

clusters(1)
clusters(2)
clusters(4)

82

84

86

88

90

92

94

96

98

100

0 5 10 15 20 25

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of elements retrieved

Query cost for n=25,960 documents under cosine distance

sa-tree
gna-tree

pivots(64)
clusters(1)
clusters(2)
clusters(4)
clusters(8)Figure 14: Comparison between the cost of range searching using the sa-tree and other algorithms.On top the space of words (left for pivoting algorithms and right for clustering algorithms). Onthe bottom, the space of documents.

23

by successive insertions [NR01]. We present below those that have worked better. We show someexperimental results that make it clear that a dynamic sa-tree is feasible. Moreover, we have foundthat their performance may even be better than the standard structure in some cases. A deepanalysis of these facts is our current focus [Rey01].7.1 TimestampingWe keep a timestamp of the insertion time of each element. When inserting a new element, we addit as a neighbor at the appropriate point but omit rebuilding the tree. This makes constructioncost by successive insertions very close to that of a static construction.Let us consider that neighbors are added at the end of the list, so by reading them left to rightwe have increasing insertion times. It also holds that the parent is always older than its children.At search time, we consider the neighbors fv1; : : : ; vkg of a in order. We perform the mini-mization (mind in Figure 6) as we traverse the neighbors. That is, we enter into the subtree of v1whenever d(q; v1) � d(q; a)+2r; into the subtree of v2 whenever d(q; v2) � min(d(q; a); d(q; v1))+2r;and in general into the subtree of vi whenever d(q; vi) � min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r.This works because between the insertion of vi and vi+j new elements may have appeared thatpreferred vi just because vi+j was not yet a neighbor, so we may miss an element if we do not enterinto vi because of the existence of vi+j .Up to now we do not really need timestamps but just to keep the neighbors sorted by insertiontime. Yet a more sophisticated scheme is to e�ectively use the timestamps to reduce the workdone inside older neighbors. Say that vi cannot be discarded by an older sibling or by the parent,that is d(q; vi) � min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. So we have to enter into vi even ifd(q; vi) > d(q; vi+j)+2r for some younger sibling vi+j . However, only the elements with timestampolder than that of vi+j should be considered when searching inside vi. Younger elements have seenvi+j and they cannot be interesting for the search if they are inside vi. As parent nodes are olderthan their descendants, as soon as we �nd a node inside the subtree of vi with timestamp largerthan that of vi+j we can stop the search in that branch, because its subtree is even younger. Sofor every vi such that d(q; vi) � min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r, we compute the oldesttimestamp t among the set fvi+j ; d(q; vi) > d(q; vi+j) + 2rg, and stop the search inside vi at nodeswhose timestamp is newer than t.Let us now consider nearest neighbor searching. An equivalent view of the above restrictionfocuses on the maximum allowed radius instead of maximum allowed timestamp, as follows. Letvi be as above and y be a child of vi. Node y must be considered if every sibling vi+j of visuch that d(q; vi) > d(q; vi+j) + 2r is newer than y. Which is the same, y must be considered ifry = max(d(q; vi)� d(q; vi+j))=2 � r, where the maximization is done over those vi+j older than y.Hence, ry is a lower bound on r.Assume that we are currently processing node vi and insert its children y in the priority queue(Figure 7). We compute ry as before and include it as a new lower bound on r (recall that we havealready four lower bounds, Section 4.3). 24

7.2 Inserting at the FringeAnother alternative is as follows. We can relax Condition 2 (Section 4.1), whose main goal is toguarantee that if q is closer to a than to any neighbor in N(a) then we can stop the search atthat point. The idea is that, at search time, instead of �nding the closest c among fag [N(a) andentering into any b 2 N(a) such that d(q; b)� d(q; c) + 2r, we exclude the subtree root a from theminimization. Hence, we always continue to the leaves by the closest neighbor and by others closeenough.This seems to make the search time slightly worse, but the cost is marginal. The bene�t is thatwe are not forced anymore to put a new inserted element x as a neighbor of a, even when Condition2 would require it. That is, at insertion time, even if x is closer to a than to any element in N(a),we have the choice of not putting it as a neighbor of a but inserting it into its closest neighbor ofN(a). At search time we will reach x because the search and insertion processes are similar.This freedom opens a number of new possibilities that deserve a much deeper study, but animmediate consequence is that we can insert always at the leaves of the tree. Hence, the treeis read-only in its top part and it changes only in the fringe. However, we have to permit thereconstruction of small subtrees so as to avoid that the tree becomes almost a linked list. So wepermit inserting x as a neighbor when the size of the subtree to rebuild is small enough. This leadsto a tradeo� between insertion cost and quality of the tree at search time.Note that this scheme could be of interest for mapping the sa-tree to disk, as we can de�ne thesize of the subtree as that of a disk page, so reorganizations of the tree occur only inside one (leaf)disk page. Once a disk page ceases to be a leaf, it becomes read-only. (This may have interestalso for concurrent access to the data structure.) Furthermore, we can control the arity of thenodes, which can also be of use to have a regular structure at the internal nodes: note that we canarti�cially increase the arity of the tree by adding as neighbors elements that could be inserted intoanother neighbor. The exact tradeo� between few versus many neighbors is not totally understoodyet, so having the choice of adding or not adding an element as a neighbor permits studying theoptimality of the structure.7.3 Experimental ResultsWe have performed some additional tests to show the practical performance of the alternativesdiscussed for incremental construction of the sa-tree. The experimental setup follows that of Sec-tion 6. We have chosen three of the metric spaces: 100,000 random vectors in dimension 15 underEuclidean distance, 86,061 strings under edit distance and 1,263 documents under cosine similarity.For each of these, we have measured the static and incremental construction cost, as well as thesearch performance of the structures built. This is by no means an exhaustive study but a set oftests to demonstrate the feasibility of the incremental construction.In the tests that follow, \static" refers to the static construction as explained in the main bodyof the paper, \timestamping" to the timestamping technique, and \fringe(t)" to the mechanismof inserting at the fringe, on subtrees of size tn or less (where n is the size of the �nal set, e.g.Fringe(0.10%) on the vectors space rebuilds trees under 100 nodes). The dynamic versions buildthe tree by successive insertions.Figure 15 compares the construction and search times. As can be seen, the dynamic versions are25

quite competitive. Timestamping costs a bit more at construction and search time (the di�erenceis more signi�cant for strings). Fringe(t) may cost even less than the static version at constructiontime, if t is small enough. As t grows its construction time quickly doubles that of the staticversion, although the bene�t at search time of a more costly construction is barely noticeable. It isinteresting that the fringe method can behave even better than the static method at search time.The reason is that in this case the tree is forced to be of smaller arity, which is advantageous foreasier metric spaces or queries with smaller radii. This shows that, although the sa-tree adaptsautomatically to the dimension of the set, it does not necessarily �nd the best choice of arity (whichis impossible because the best arity depends on the search radius). So the fringe method permitsan optimization that is not possible in the static version.Note that, in the case of documents, timestamping costs much less than the static method. Thesame happens to fringe(t), but this may be because since the n value here is about 1=4 of the otherspaces, rebuilding a subtree of the same percentage implies in practice rebuilding smaller subtrees.We have tried with fringe(0.3) but the construction cost went up to 1,800 evaluations per element.All their performances at search time, however, are slightly worse than the static version (even forfringe(0.4)).8 ConclusionsWe have presented a new data structure, the sa-tree, to search in metric spaces. Our idea is toapproach the query spatially rather than by dividing the set of candidates as in other approaches.We �rst show that the ideal structure for spatial approximation cannot be built and then proposea structure which provides a reasonable trade-o� by combining spatial approximation with back-tracking. We show analytically that the number of distance evaluations at search time is o(n), andpresent experimental evidence showing that our structure outperforms all the others on hard spaces(i.e. with concentrated histogram of distances) or hard queries (i.e. those of large search radii).These are the unsolved cases in proximity searching.Some issues for future work follow.� We have made some heuristic decisions in order to �nd a data structure that can be built inreasonable time, e.g. selecting the root at random or using a simple heuristic to select a setof neighbors N(a). It may be possible to �nd better solutions that improve the search time.� The sa-tree outperforms the other structures on when the search problem is more di�cultbut is inferior to others when the problem is easier. Moreover, it cannot trade space for querytime as pivoting schemes do. This enables the possibility of designing hybrid schemes that getthe best of both cases. A simple twist is to store the distance of each node to its k ancestorsin the tree, so as to use them as pivots to prune the search space. This does not require moredistance evaluations at construction or at query time, but it increases the index space by kndistances. We are already pursuing this line.� It is interesting to try to reduce the backtracking, although our attempts up to now havefailed. One choice is to de�ne a tolerance radius R and insert each element into its closestneighbor and any other that di�ers from it by at most R. The backtracking can now be done26

Method Metric spaceVectors Strings Docs.Static 120.35 72.43 118.63Timestamp 120.50 90.15 72.81Fringe(0.05%) 101.21 69.70 49.44Fringe(0.10%) 157.76 95.36 68.053Fringe(0.20%) 252.15 131.45 104.91
50

55

60

65

70

75

80

85

90

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 15

static
timestamp

fringe(0.05%)
fringe(0.10%)
fringe(0.20%)

10

20

30

40

50

60

70

80

1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search radius

Query cost for n=86,061 words under Levenshtein distance

static
timestamp

fringe(0.05%)
fringe(0.10%)
fringe(0.20%)

86

88

90

92

94

96

98

0 2 4 6 8 10 12 14 16 18

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Number of elements retrieved

Query cost for n=25,960 documents under cosine distance

Static
Timestamp

Fringe(0.05)
Fringe(0.10)
Fringe(0.20)Figure 15: Comparison between the static and dynamic versions. At the top left, constructiontimes in number of distance computations per element. The other plots refer to search times, inpercentage of the database examined.

27

with tolerance 2(r � R). The structure is now a DAG (directed acyclic graph), not a tree,and its construction is much more complicated. In particular, our attempts lead to a (large)set of (small) DAGs rather than to a single DAG, and the search complexity on this set isnot promising. A single DAG should work much better.� We have presented solutions that permit dynamic insertions at low cost without degradingthe performance, and in some cases even improving it. However, still more work is necessaryto fully understand them. Some choices have even open the door to optimize the structure bychoosing whether or not to add a neighbor. On the other hand, deletions have to be handledin order to have a fully dynamic data structure. This is our main focus at the moment[Rey01].� Secondary memory issues have not been considered yet. A simple solution is to try to storewhole subtrees in disk pages so as to minimize the number of pages read at search time. Thishas an interesting relationship with the technique of inserting at the fringe (Section 7.2), notonly because the top of the tree may be read-only and the reorganizations be restricted tothe leaf pages, but also because we can control the maximum arity of the tree so as to makethe neighbors �t in a disk page. Our project [Rey01] aims at a fully dynamic structure thatcan be e�ciently handled in secondary memory.� It would be interesting to build approximate or probabilistic algorithms based on this struc-ture, as they have proved to be of great interest in extremely di�cult metric spaces usingother data structures that typically work well only on easier spaces [CN01]. We are alsopursuing this line.� Our data structure was born in the quest for a more powerful structure, which we could calla spatial approximation graph. Such a directed graph would permit us to reach any elementfrom any other by always the distance among them. Although we have proved that sucha structure cannot be built, other simpli�ed structures, di�erent from the sa-tree, could becreated based on the spatial approximation approach.AcknowledgementsWe are indebted to Gisli Hjaltason for �nding tricky mistakes and proposing improvements in thesearch algorithms. We also wish to thank Nora Reyes for providing the code of the dynamic versionsof the sa-tree.References[Aur91] F. Aurenhammer. Voronoi diagrams { a survey of a fundamental geometric datastructure. ACM Computing Surveys, 23(3):345{405, 1991.[Ben75] J. Bentley. Multidimensional binary search trees used for associative searching. Com-munications of the ACM, 18(9):509{517, 1975.28

[Ben79] J. Bentley. Multidimensional binary search trees in database applications. IEEETransactions on Software Engineering, 5(4):333{340, 1979.[BK73] W. Burkhard and R. Keller. Some approaches to best-match �le searching. Commu-nications of the ACM, 16(4):230{236, 1973.[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metricspaces. In Proc. ACM Conference on Management of Data (SIGMOD'97), pages357{368, 1997. Sigmod Record 26(2).[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. of the 21st Conferenceon Very Large Databases (VLDB'95), pages 574{584, 1995.[BYCMW94] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queries trees. In Proc. 5th Conference on Combinatorial Pattern Matching (CPM'94),LNCS 807, pages 198{212, 1994.[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley,1999.[CM97] E. Ch�avez and J. Marroqu��n. Proximity queries in metric spaces. In Proc. 4thSouth American Workshop on String Processing (WSP'97), pages 21{36. CarletonUniversity Press, 1997.[CMBY99] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithmfor similarity queries in metric spaces. In Proc. 6th South American Symposiumon String Processing and Information Retrieval (SPIRE'99), pages 38{46. IEEE CSPress, 1999.[CMN01] E. Ch�avez, J. Marroqu��n, and G. Navarro. Fixed queries array: A fast and eco-nomical data structure for proximity searching. Multimedia Tools and Applications,14(2):113{135, 2001. Kluwer.[CN00] E. Ch�avez and G. Navarro. An e�ective clustering algorithm to index high dimen-sional metric spaces. In Proc. 7th South American Symposium on String Processingand Information Retrieval (SPIRE'00), pages 75{86. IEEE CS Press, 2000.[CN01] E. Ch�avez and G. Navarro. A probabilistic spell for the curse of dimensionality.In Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX'01),pages 147{160, LNCS 2153, 2001.[CNBYM01] E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Searching in metricspaces. ACM Computing Surveys, 2001. To appear.[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an e�cient access method for similaritysearch in metric spaces. In Proc. of the 23rd Conference on Very Large Databases(VLDB'97), pages 426{435, 1997.29

[DN87] F. Dehne and H. Nolteimer. Voronoi trees and clustering problems. InformationSystems, 12(2):171{175, 1987. Pergamon Journals.[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACMConference on Management of Data (SIGMOD'84), pages 47{57, 1984.[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. ThirdText REtrieval Conference (TREC-3), pages 1{19, 1995. NIST Special Publication500-207.[HS99] G. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transac-tions on Database Systems, 24(2):265{318, 1999.[MOC96] L. Mic�o, J. Oncina, and R. Carrasco. A fast branch and bound nearest neighborclassi�er in metric spaces. Pattern Recognition Letters, 17:731{739, 1996.[MOV94] L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approx-imating and eliminating search (aesa) with linear preprocessing-time and memoryrequirements. Pattern Recognition Letters, 15:9{17, 1994.[Nav99] G. Navarro. Searching in metric spaces by spatial approximation. In Proc. 6th SouthAmerican Symposium on String Processing and Information Retrieval (SPIRE'99),pages 141{148. IEEE CS Press, 1999.[Nav01] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys33(1):31{88, 2001.[NN97] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimen-sions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9):989{1003, 1997.[Nol89] H. Nolteimer. Voronoi trees and applications. In Proc. International Workshop onDiscrete Algorithms and Complexity, pages 69{74, 1989.[NR01] G. Navarro and N. Reyes. Dynamic spatial approximation trees. In Proc. XXIConference of the Chilean Computer Science Society (SCCC'01), 2001. To appear.IEEE CS Press.[NVZ92] H. Nolteimer, K. Verbarg, and C. Zirkelbach. Monotonous Bisector� Trees { a toolfor e�cient partitioning of complex schenes of geometric objects. In Data Structuresand E�cient Algorithms, LNCS 594, pages 186{203, 1992.[Rey01] N. Reyes. Dynamic data structures for searching metric spaces. MSc. Thesis, Univ.Nac. de San Luis, Argentina, 2001. In progress. G. Navarro, advisor.[Sha77] M. Shapiro. The choice of reference points in best-match �le searching. Communi-cations of the ACM, 20(5):339{343, 1977.30

[Uhl91a] J. Uhlmann. Implementing metric trees to satisfy general proximity/similarityqueries. Manuscript, 1991.[Uhl91b] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. In-formation Processing Letters, 40:175{179, 1991.[Vid86] E. Vidal. An algorithm for �nding nearest neighbors in (approximately) constantaverage time. Pattern Recognition Letters, 4:145{157, 1986.[Yia93] P. Yianilos. Data structures and algorithms for nearest neighbor search in gen-eral metric spaces. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms(SODA'93), pages 311{321, 1993.[Yia00] P. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor search.In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA'00), 2000.A Average Number of NeighborsWe show in this appendix that the average number of neighbors (tree children) of a node, givenn candidates, is �(logn). Given the insertion process, if we have already k neighbors, then theprobability that a new candidate becomes a new neighbor is ak, for some 0 < a < 1 (we use 1=2kin the body of the paper but this is a simpli�cation, so we prefer to be more general here). Hence,if we call Pn;k the average number of new neighbors that are added from n candidates given thatthere are already k neighbors, the following recurrence holds:Pn+1;k = ak(1 + Pn;k+1) + (1� ak)Pn;k ; P0;k = 0 (1)and we are interested in obtaining Pn;0.It is possible to solve this recurrence exactly by using generating functions, more preciselyPk(z) =Pn�0 Pn;kzn. The result isPn;k = 1 + nXi=1 nXk=1 ak(k+1)=2 Xr1+:::+rk=n�k n � kr1; : : : ; rk! kYj=1(1� aj)rjwhich is quite di�cult to grasp.We take a di�erent approach. From the simpli�ed analysis in the paper, we suspect thatPn;0 = �(logn), and therefore try to prove it by induction on n. The problem is to guess a formulafor the general case Pn;k, which is especially di�cult because it has to be decreasing on k andP0;k = 0 must hold. After some attempts, we arrive atPn;k � c ln(n+ 1)�min(k; d ln(n+ 1))for positive c and d. This satis�es the base case n = 0 for all k. Now, we replace in Recurrence (1)the Pn;� values by our bound and try to obtain the same bound for Pn+1;�. We have to proveak(1 + c ln(n+ 1)�min(k+ 1; d ln(n+ 1))) + (1� ak)(c ln(n+ 1)�min(k; d ln(n+ 1)))� c ln(n+ 2)�min(k; d ln(n+ 2))which must be split in four cases: 31

1. k � d ln(n+ 1)� 1. In this case we have to proveak(1 + c ln(n+ 1)� (k + 1)) + (1� ak)(c ln(n+ 1)� k) � c ln(n+ 2)� kwhich simpli�es to c ln(n+ 1) � c ln(n+ 2), always true.2. d ln(n+ 1)� 1 � k � d ln(n+ 1). In this case we have to proveak(1 + c ln(n+ 1)� d ln(n+ 1)) + (1� ak)(c ln(n+ 1)� k) � c ln(n+ 2)� kwhich simpli�es to ak + c ln(n+ 1)� ak(d ln(n+ 1)� k) � c ln(n+ 2)Now, since k � d ln(n+1)� 1 we have ak � ad ln(n+1)�1 = (n+1)d ln a=a (because 0 < a < 1).Also, the expression d ln(n+ 1)� k is positive. So we can pessimistically try to prove1a (n+ 1)d ln a � c (ln(n+ 2)� ln(n+ 1))and since ln(x) = R x1 dz=z, we have that ln(n + 2) � ln(n + 1) = R n+2n+1 dz=z, which can beproven to lie between 1=(n + 2) and 1=(n + 1) by a simple geometric argument. Hence, wepessimistically try to prove 1a(n+ 1)d ln a � cn+ 2which is true providedd � 1ln(1=a) ln(n+ 2)ln(n+ 1) + 1ln(n+ 1) �1� ln cln(1=a)� (2)3. d ln(n+ 1) � k � d ln(n+ 2). In this case we have to proveak(1 + c ln(n+ 1)� d ln(n+ 1)) + (1� ak)(c ln(n+ 1)� d ln(n+ 1)) � c ln(n+ 2)� kwhich simpli�es to ak + c ln(n+ 1)� d ln(n+ 1) � c ln(n+ 2)� kand we pessimistically replace ak by ad ln(n+1) = (n+ 1)d lna, as well as k by d ln(n + 2). Weare left with(n+ 1)d lna + d(ln(n+ 2)� ln(n+ 1)) � c(ln(n+ 2)� ln(n+ 1))which can again be pessimistically simpli�ed to(n+ 1)d lna + dn+ 1 � cn + 2from where we obtain a condition on c:c � n+ 2n+ 1 d + (n+ 2)(n+ 1)d lna (3)32

4. k � d ln(n+ 2). In this case we have to proveak(1+c ln(n+1)�d ln(n+1))+(1�ak)(c ln(n+1)�d ln(n+1)) � c ln(n+2)�d ln(n+2)which is simpli�ed toak + c ln(n+ 1)� d ln(n+ 1) � c ln(n + 2)� d ln(n+ 2)which is very similar to the previous case. Making the same pessimistic simpli�cations wearrive to c � (n+2)1+d lna+d(n+2)=(n+1) which is a bit less stringent than Eq. (3) (recallthat d lna < 0).We have succeeded to prove the hypothesis, and we analyze now the resulting conditions ob-tained for c and d. A pessimistic bound in Eq. (2) is to assume c � 1 and setd = 1 + log1=a(n+ 2)ln(n+ 1)and by replacing this into Eq. (3) we get the surprisingly simple conditionc = n+ 2n+ 1 d + aBy replacing this c value into our initial hypothesis we getPn;0 � c ln(n+ 1) = n+ 2n+ 1 (1 + log1=a(n+ 2)) + a ln(n+ 1) = O(logn)which is asymptotically (a+ 1= ln(1=a)) lnn. If a = 1=2 this is 1:35 log2 n.We have to prove now that Pn;0 =
(logn). This time we need a lower bounding formula. Theway we found is as follows: we prove thatPn;k � if �k � log1=a n + 1c � then c ln(n+ 1) else dkwhich satis�es Pn;0 � c ln(n+1) provided c � 1. The proof by induction is split in three cases now:1. k + 1 � log1=a((n+ 1)=c). In this case we have to proveak(1 + c ln(n+ 1)) + (1� ak)c ln(n+ 1) � c ln(n+ 2)which, using the same techniques as before, can be pessimistically simpli�ed toak � cn+ 1which is true given the condition of Case 1.33

2. log1=a((n+ 1)=c)� 1 � k � log1=a((n+ 1)=c). In this case we need to proveak(1 + d(k + 1)) + (1� ak)c ln(n+ 1) � c ln(n+ 2)which can be pessimistically simpli�ed toak(1 + d(k + 1))� akc ln(n+ 1) � cn + 1and, given that under this case we have c=(n+ 1) � ak � c=(a(n+1)), can be pessimisticallyfurther simpli�ed to d(k+ 1) � c ln(n+ 1)aand using again that k � log1=a((n+ 1)=c)� 1, we arrive at a condition on dd � c ln(n+ 1) ln(1=a)a ln((n+ 1)=c) (4)3. k � log1=a((n+ 1)=c). In this case we have to proveak(1 + d(k + 1)) + (1� ak)dk � dkwhich is immediate.We analyze now the conditions on c and d. We had c � 1 initially, so we set c = 1 as thebest lower bound. From Eq. (4), we obtain d = ln(1=a)=a. Hence, we have been able to provePn;0 � ln(n+ 1), and therefore Pn;0 = �(logn).B Recurrences of the Form f(n) = g(f(n= log n))We show �rst that the solution to the recurrence H(n) = 1+H(n= logn) is �(logn= log logn). Forexactness, let us state the recurrenceH(n) = 1 +H � ndlogc ne�and H(c) = 0. Let us call N = n the initial n value and assume for simplicity that N = cK . In theinterval N=c < n � N we have dlogc ne = K. Hence, in this range the recurrence isH(n) = 1 +H(n=K) = i+H(n=Ki)and this is true until it holds n=Ki = N=c, or i = logK c. HenceH(N) = logK c+H(N=c)now we repeat the argument in the area N=c2 < n � N=c, where dlogc ne = K � 1 to obtainH(N) = logK c+ logK�1 c+H(N=c2) = ln c � KXi=2 1ln i = ln c Z K2 dxlnx +O(1)34

where for the last term we unrolled the recurrence. Finally,Z K2 dxlnx = KlnK +O� Kln2K�(easy to get with any mathematical package) shows thatH(N) = K= logcK + O(1) = logcN= logc logc n + O(1)Since we proved it for in�nitely many values of N and the function does not grow fast enoughbetween a pair of those values, it follows H(n) = �(logn= log logn).The solution for B(n) = n logn+ logn B(n= logn) follows the same steps. This time we arrivetoB(N) = KcK logK c+(K�1)cK logK�1 c+c2H(N=c2) = N ln c KXi=2 iln i = N ln c Z K2 x dxlnx +O(1)where Z K2 x dxln x = K22 lnK + O K2ln2K!(again with the help of a mathematical package) shows that B(N) = NK2=(2 logcK) + O(1) =N log2c N=(2 logc logc n) + O(1). Hence B(n) = �(n log2 n= log logn).Finally, the most complicated recurrence is T (n) = logn + F (2r) logn T (n= logn). Let uscall x = F (2r) to abbreviate. With the same assumptions of the previous cases we have that forN=c < n � NT (n) = K + xKT (n=K) = K (xK)i � 1xK � 1 + (xK)iT (n=Ki) = �(cxlogK c) + cxlogK cT (N=c)now considering the next area N=c2 < n � N=c we haveT (N) = �(cxlogK c) + �(c2xlogK c+logK�1 c) + c2xlogK c+logK�1 cT (N=c2)so by unrolling we get T (N) = � K�1Xi=1 cixln cPKj=K�i+1 1ln j!Given our previous results,KXj=K�i+1 1ln j = Z KK�i dxln x +O(1) = KlnK � K � iln(K � i) + O(1)so T (N) = � K�1Xi=1 cix Klogc K� K�ilogc(K�i)! = � cKx Klogc K K�1Xi=1 1cix ilogc i !and since the last summation is clearly O(1), we getT (N) = ��cKx Klogc K� = ��Nx logc Nlogc logc N � = ��N1� logc(1=F (2r))logc logc N �hence T (n) = �(n1��(1= log logn)). 35

