
Fast and Compact Web Graph Representations

FRANCISCO CLAUDE

fclaude@cs.uwaterloo.ca

David R. Cheriton School of Computer Science

University of Waterloo

and

GONZALO NAVARRO

gnavarro@dcc.uchile.cl

Department of Computer Science

University of Chile

Compressed graph representations, in particular for Web graphs, have become an attractive re-
search topic because of their applications in the manipulation of huge graphs in main memory.
The state of the art is well represented by the WebGraph project, where advantage is taken of
several particular properties of Web graphs to offer a tradeoff between space and access time.
In this paper we show that the same properties can be exploited with a different and elegant
technique that builds on grammar-based compression. In particular, we focus on Re-Pair and on
Ziv-Lempel compression which, although cannot reach the best compression ratios of WebGraph,

achieve much faster navigation of the graph when both are tuned to use the same space. More-
over, the technique adapts well to run on secondary memory and in distributed scenarios. As
a byproduct, we introduce an approximate Re-Pair version that works efficiently with severely
limited main memory.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and Networks; E.4 [Coding

and Information Theory]: Data compaction and compression

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Compression, Web Graph, Data Structures

Partially funded by Yahoo! Research project “Compact Data Structures” and Fondecyt Grant

1-080019. An earlier partial version of this work appeared in Proc. SPIRE 2007.
Author’s address: F. Claude, David R. Cheriton School of Computer Science, University of
Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L3G1.

Author’s address: G. Navarro, Department of Computer Science, University of Chile, Avenida
Blanco Encalada 2120, Tercer Piso, Santiago, Chile, C.P. 837-0459 Santiago.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 1529-3785/2009/0700-0001 $5.00

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009, Pages 1–0??.

2 · F. Claude and G. Navarro

1. INTRODUCTION

The Web can be modeled as a directed graph: Every page corresponds to a node
and every link between two pages is represented as a directed edge between the
corresponding nodes. This graph is used to gather information about the Web, for
example, to characterize its shape, prioritize crawling, discover communities, etc.
Many techniques of interest to obtain information from the Web structure are

essentially basic algorithms applied over the Web graph. One of the classical ref-
erences on this topic [Kleinberg et al. 1999] shows how the HITS algorithm to find
hubs and authorities on the Web [Kleinberg 1999] starts by selecting random pages
and finding the induced subgraphs, which are the pages that point to or are pointed
from the selected pages. Donato et al. [2006] show that several common Web min-
ing techniques used to discover the structure and evolution of the Web graph build
on classical graph algorithms such as depth-first search (DFS), breadth-first-search
(BFS), reachability, and weakly and strongly connected components. Saito et al.
[2007] present a technique for Web spam detection that boils down to algorithms for
finding strongly connected components, for clique enumeration, and for minimum
cuts. There are entire conferences devoted to graph algorithms for the Web (e.g.
WAW: Workshop on Algorithms and Models for the Web-Graph).

In order to efficiently support these algorithms and traversals, one needs to pro-
vide a data structure that retrieves the neighbors of a given node, or in the case
of Web crawls, the pages pointed from a given page. An important limitation
when processing this kind of graphs is their size. For example, according to World-
WideWebSize1, the graph of the Web indexed by Yahoo!, Google, Bing, and Ask,
is estimated to have at least 55 billion pages. Considering the typical number of
outlinks per page, this amounts to at least 1 trillion edges. A plain adjacency list
representation of this graph would need around 4 TB of memory space. Three kinds
of approaches have been tried to manage huge graph traversals:

—Represent the graph in external memory [Vitter 2006]: Using suitable memory
layouts, several graph traversal algorithms run I/O-optimally on disk. Under the
semi-external model (where the array of nodes stays in main memory and the
edges on disk), BFS/DFS take O(m/B) I/O operations when n < M , being n
the number of nodes, m the number of edges, B the size of a disk page, and M
the size of the main memory (B and M measured in number of memory words).
Since a disk access can be up to 106 times slower than a main memory access,
these algorithms will certainly perform much worse than the version in main
memory, even if I/O-optimal. Yet their advantage is that they can manage huge
graphs at low cost, since external memory is much cheaper than main memory.

—Using distributed systems [Badue et al. 2001; Tomasic and Garcia-Molina 1993]:
Distributing the information among many computers is a good solution to manage
huge amounts of data, in the aggregated main memory of all the machines. Still,
depending on the problem, the communication between the machines may pose
a significant latency, comparable to disk times in some cases.

—Compressed data structures [Navarro and Mäkinen 2007]: The aim is to represent
the data in compressed form while retaining the ability to answer the same queries

1http://www.worldwidewebsize.com

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 3

as their uncompressed counterpart. Even if those structures are several times
slower than their uncompressed version, they are still orders of magnitude faster
than operating the data on secondary memory.

In this paper we focus on the latter approach. We aim at representing graphs
in highly compressed form, so as to manage huge instances in main memory. We
show that, for example, a 5-billion-edge crawl can be efficiently handled within a
main memory of 2 GB (whereas a plain representation would require 22 GB). For
larger graphs, where compression is not sufficient to fit them in RAM, compressed
data representations have the potential of improving the other two approaches as
well. For secondary memory data structures, if one reduces the space required by
the data on disk, and keeps locality of access, the net effect is a reduction of m in
the O(m/B) time formula, due to reduced seek and transfer time. For distributed
computing, compressed data structures may allow using fewer computers to do the
same task, and reducing network traffic as well. Therefore, research in compressed
data structures to handle Web graphs is useful regardless of the approach.
As far as we know, the best space/time tradeoffs to compress Web graphs such

that they can be navigated in compressed form are those of Boldi, Santini, and
Vigna [Boldi and Vigna 2004a; Boldi et al. 2009]. They exploit several well-known
regularities of Web graphs, such as their skewed in- and out-degree distributions,
repetitiveness in the sets of outgoing links, and locality in the references, so as to
offer an excellent tradeoff between compression ratio and time to access the list of
neighbors of a node. For this sake they resort to several mechanisms such as node
reordering, differential encoding, compact interval representations and references
to similar adjacency lists. They developed and maintain a so-called WebGraph
framework. It is associated to the site http://webgraph.dsi.unimi.it, which by
itself witnesses the level of maturity and sophistication that this research area has
reached.
In this paper we present a new way of taking advantage of the regularities that

arise in Web graphs. Instead of different ad-hoc techniques, we use a uniform and
elegant technique called Re-Pair [Larsson and Moffat 2000] to compress the adja-
cency lists. Re-Pair recursilvey finds pairs of repeated symbols across all the lists
and condenses them into a new “nonterminal” symbol, which has to be expanded
later when extracting the list. As the original linear-time Re-Pair compression re-
quires much main memory (2 to 5 integers per edge), we develop an approximate
version that adapts to the available space and can smoothly work on secondary
memory thanks to its sequential access pattern. This method can be of indepen-
dent interest for compressing huge sequences of any kind.
Our experimental results over different Web crawls show that, although our meth-

ods cannot reach the best compression ratios currently achieved within WebGraph,
our traversal is 1.5–2 times faster when we leave the WebGraph representations use
as much memory as we need. Compared to a plain graph representation, ours is
shown to be up to 13 times smaller, which largely increases the chance to fit very
large graphs in main memory. For larger graphs, as explained, our technique allows
reducing seek times. For example, based on our compression results, we extrapo-
late that the trillion-edge whole-indexed-Web estimation could be accessed up to
10 times faster on disk, requiring just 20 to 45 GB (in RAM) for the nodes and 350

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

4 · F. Claude and G. Navarro

GB (on disk) for the edges, in the semi-external memory model. This amount of
RAM is becoming feasible on commodity servers.
From a more general perspective, we advocate for using grammar-based com-

pression techniques to compress Web graphs. These compressors find repeated
subsequences and replace them by new (so-called nonterminal) symbols. We also
show that other grammar-based compressors can be used instead of Re-Pair, as long
as they are able of efficiently extracting snippets from a sequence and of handling
large alphabets. In particular, we modify the Ziv-Lempel variant called LZ78 [Ziv
and Lempel 1978] in order to achieve random access. LZ78 does not compress as
much as our Re-Pair variants, yet it is slightly faster to extract snippets. Both
methods can be seen as approximations to the smallest grammar generating the
graph. Finding such smallest grammar is NP-hard [Rytter 2003; Charikar et al.
2005]. Existing approximations [Rytter 2003; Sakamoto 2005] require much space
at compression time, which makes them infeasible for our application.

A conference version of this paper appeared in 2007 [Claude and Navarro 2007].
Since then, other approaches have been proposed that can be regarded as advocating
for grammar-based compression. Buehrer and Chellapilla [2008] introduced the idea
of “mining virtual nodes”. Translated into our terminology, their idea is to find
groups of (not necessarily consecutive) nodes that appear in several adjacency lists,
replacing them by a new symbol representing a virtual node, and iterating. By
identifying virtual nodes with nonterminals in our grammars, we have that their
approach can be seen also as grammar-based compression (especially because order
is not important within adjacency lists, and thus putting together the symbols to
replace is valid). Their techniques to mine virtual nodes can be regarded, in this
framework, as yet another heuristic trying to solve the smallest grammar problem.
We show that simple Re-Pair is competitive with this promising line of research.
The source code for a representative subset of the variants proposed in this paper

can be downloaded from http://webgraphs.recoded.cl/, we also include some
examples and further documentation.

2. RELATED WORK

The related work is divided into two parts. The first covers graph representations,
starting with a short survey for general graphs and then focusing on Web graphs.
The second part is related to compressed data structures. We focus mainly on
rank and select queries over sequences, introducing at the same time the notion of
entropy for sequences.

2.1 Graph Representations

Let us consider graphs G = (V,E), where V is the set of vertices and E is the set
of edges. We call n = |V | and m = |E| in this paper. Standard graph represen-
tations such as the incidence matrix and the adjacency list require n(n− 1)/2 and
n log(2m)+ 2m log n bits2, respectively, for undirected graphs. For directed graphs
the numbers are n2 and n logm+m log n, respectively. We call the neighbors of a
node v ∈ V , those u ∈ V such that (v, u) ∈ E, which in our application correspond
to the Web pages pointed by v.

2In this paper logarithms are in base 2.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 5

The first compressed data structure for graphs we know of [Jacobson 1989] re-
quires O(gn) bits of space for a g-page graph (here a “page” is a subgraph whose
nodes can be written in a linear layout so that its edges do not cross) . The t
neighbors of a node can be retrieved in O(g+ t log n) time. The main idea is to rep-
resent the nested edges using parentheses, and the operations are supported using
succinct data structures that permit navigating a sequence of balanced parentheses.
The retrieval time was later improved to O(g + t) by using improved parentheses
representations [Munro and Raman 1997], and also the constant term of the space
complexity was improved [Chuang et al. 1998]. The representation also permits
finding the degree (number of neighbors) of a node, as well as testing whether two
nodes are connected or not, in O(g) time.
Those techniques based on number of pages, as well as many others for planar

and geometric graphs we are omitting, are unlikely to perform well on more general
graphs, in particular to Web graphs. A more powerful concept that applies to this
type of graph is that of graph separators. Although the separator concept has been
used a few times [Deo and Litow 1998; He et al. 2000; Chakrabarti et al. 2004] (yet
not supporting access to the compressed graph), the best results are achieved in
recent work [Blandford et al. 2003; Blandford 2006]. Their idea is to find graph
components that can be disconnected from the rest by removing a small number
of edges. Then, the nodes within each component can be renumbered to achieve
smaller node identifiers, and only a few external edges must be represented.

Blandford [2006] applies the separator technique to design a compressed data
structure that gives constant access time per delivered neighbor. The technique
is carefully implemented and experimented on several graphs. In particular, on a
graph of 1 million (1M) nodes and 5M edges from the Google programming contest3,
the data structures require 13–16 bits per edge (bpe; this is the total bits divided
by the number of edges), and work faster than a plain uncompressed representation
using arrays for the adjacency lists. It is not clear how these results would scale
to larger graphs, as much of their improvement relies on smart caching, and this
effect should vanish with real Web graphs.
There is also some work specifically aimed at compression of Web graphs [Broder

et al. 2000; Adler and Mitzenmacher 2001; Suel and Yuan 2001; Boldi and Vigna
2004a; Boldi et al. 2009]. Several properties of Web graphs have been identified
and exploited to achieve compression:

Skewed distribution:. The in- and out-degrees of the nodes distribute according
to a power law, that is, the fraction of pages having i links is 1/iθ for some parameter
θ > 0. Different experiments give rather consistent values of θ = 2.1 for incoming
and θ = 2.72 for outgoing links [Aiello et al. 2000; Broder et al. 2000].

Locality of reference:. Most of the links from a site point within the site. This
motivates the use of lexicographical URL order to list the pages, so that outgoing
links go to nodes whose position is close to that of the current node [Bharat et al.
1998]. Gap encoding techniques are then used to encode the differences among
consecutive target node positions.

Similarity of adjacency lists:. Nodes tend to share many outgoing links with some

3www.google.com/programming-contest, not available anymore.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

6 · F. Claude and G. Navarro

other nodes [Kumar et al. 1999; Boldi and Vigna 2004a]. This permits compressing
them by a reference to the similar list plus a list of edits.

Suel and Yuan [2001] partition the adjacency lists considering popularity of the
nodes, and use different coding methods for each partition. A more hierarchical
view of the nodes is exploited by Raghavan and Garcia-Molina [2003]. Different
authors [Adler and Mitzenmacher 2001; Randall et al. 2001] take explicit advantage
of the similarity property. A page with similar outgoing links is identified with some
heuristic, and then the current page is expressed as a reference to the similar page
plus some edit information to encode the deletions and insertions needed to obtain
the current page from the referenced one. Boldi and Vigna [2004a] built on previous
work [Adler and Mitzenmacher 2001; Randall et al. 2001] and further engineered the
compression to exploit the properties above. They have continued improving their
scheme within the WebGraph framework, and currently display the best tradeoffs
between space usage and access time [Boldi et al. 2008; 2009].

Experimental figures are not easy to compare, but they give a reasonable idea
of the practical performances. Over a graph with 115M nodes and 1.47 billion
(1.47G) edges from the Internet Archive, Suel and Yuan [2001] require 17.83 bpe.
Randall et al. [2001], over a graph of 61M nodes and 1G edges, achieve 5.07 bpe
for the graph. Adler and Mitzenmacher [2001] achieve 8.3 bpe over TREC-8 Web
track graphs (WT2g set), yet they cannot access the graph in compressed form.
Broder et al. [2000] require 37.87 bpe on a graph of 200M nodes and 1.5G edges
(and can answer reverse neighbor queries as well). Boldi et al. [2008; 2009] largely
improve upon those results. For example they report in their WebGraph site, on a
133M node and 5.5G link crawl, compression to slightly more than 2.6 bpe. In our
experiments on this paper we show they achieve reasonable traversal times within
this space, if we use their better variant [Boldi et al. 2009]. In all the representations
that offer efficient access times [Suel and Yuan 2001; Raghavan and Garcia-Molina
2003; Randall et al. 2001; Boldi et al. 2009], these are of a few hundred nanoseconds
per delivered edge.

Buehrer and Chellapilla [2008] achieve the best compression we are aware of
for massive graphs, by exploiting structural properties of Web graphs and social
networks. Specifically, they look for bi-cliques, that is, pairs A and B of sets of
nodes such that each node in A points to all nodes in B. Then they create a
“virtual” node so that all nodes in A point to it and it points to all the nodes in
B. This is applied iteratively until no good bi-cliques are found. Several heuristics
are tried to find the bi-cliques, which is a hard problem. They do not give times
to extract neighbors, yet these are probably competitive (albeit slower than those
we achieve in this paper) as they have to decode the integers (they use ζ-codes
[Boldi and Vigna 2004b]) and then expand nonterminals. We note that Asano
et al. [2008] report even better compression figures by exploiting frequent patterns
in the adjacency matrix, but their method does not support efficient extraction of
edges and is difficult to apply on large graphs (the largest figure reported is for
a 20M edge graph, where they achieve 2.78 bpe, whereas Buehrer and Chellapilla
[2008] achieve 2.90 bpe).

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 7

2.2 Rank and Select on Sequences

In this work we make use of compact data structures to manipulate sequences of
symbols. In the simplest case we consider bitmaps (i.e., binary sequences) that are
able to answer rank and select queries. Rank counts the number of 1s in a given
prefix of the sequence and select finds the position of the i-th occurrence of a 1 in
the bitmap.
There are many constant-time solutions for the rank/select problem on bitmaps

B[1, n]. One of them requires n+ o(n) space (that is, o(n) bits on top of B itself)
[Clark 1996; Munro 1996]. An improvement to this solution [Raman et al. 2002]
retains constant-time queries while using nH0(B) + o(n) bits of space to represent
B and the extra data structures. H0(B) corresponds to the zero-order entropy
of bitmap B: The zero-order entropy for a binary sequence B[1, n] with n0 zeros
and n1 ones is H0(B) = n0

n
log n

n0

+ n1

n
log n

n1

. Rank and select operations can be
extended to arbitrary sequences drawn from an alphabet Σ of size σ. The operations
supported are: access(i) retrieves the character at position i; rank(a, i) counts the
number of occurrences of a until position i; and select(a, i) returns the position
where the i-th occurrence of the character a appears.
Golynski et al. [2006] presented a data structure capable of performing these three

operations in a sequence S[1, n] using n log σ+n o(log σ) bits and O(log log σ) time.
Note that n log σ is the space required by a plain representation of the sequence.
Ferragina et al. [2007] achieve zero-order compression, that is, nH0(S) + o(n) log σ
bits of space, and O(1 + log σ

log logn
) time per operation (this is a constant if σ =

O(polylog(n))). The zero-order entropy formula generalizes to sequences as follows:
H0(S) =

∑

a∈Σ
na

n
log n

na

, where na is the number of occurrences of symbol a in S.
The solution by Ferragina et al. builds over an elegant structure called the

wavelet tree [Grossi et al. 2003]. This is a perfect binary tree where the root stores
a bitmap formed by the n highest bits of each symbol in the sequence. Those
symbols with highest bit 0 are then sent to the left subtree, and those with 1 to
the right subtree. The decomposition continues recursively with the next highest
bit, and so on. The tree has σ leaves and overall stores n log σ bits, just as the
original sequence. If, however, those bitmaps are compressed to their zero-order
entropy [Raman et al. 2002], the wavelet tree over the sequence S[1, n] requires
overall space nH0(S) + o(n) log σ bits. It implements access, rank, and select via
log σ constant-time rank/select operations on the bitmaps. Ferragina et al. [2007]
improve upon this result by using multiary wavelet trees.

3. RE-PAIR AND OUR APPROXIMATE VERSION

Re-Pair [Larsson and Moffat 2000] is a phrase-based compressor that permits fast
and local decompression. It consists of repeatedly finding the most frequent pair of
symbols in a sequence of integers and replacing it with a new symbol, until no more
replacements are convenient. More precisely, Re-Pair over a sequence T works as
follows:

(1) It identifies the most frequent pair ab in T

(2) It adds the rule s → ab to a dictionary R, where s is a new symbol not appearing
in T (s is called a nonterminal).

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

8 · F. Claude and G. Navarro

(3) It replaces every occurrence of ab in T by s.4

(4) It iterates until every pair in T appears once.

Let us call C the resulting text (i.e., T after all the replacements). It is easy to
expand any symbol s from C in time linear on the expanded data (that is, optimal):
We expand s using rule s → s′s′′ in R, and continue recursively with s′ and s′′,
until we obtain the original symbols of T (called terminals).
As each new rule added to R costs two integers of space, replacing pairs that

appear twice does not involve any gain unless R is compressed. In the original
proposal [Larsson and Moffat 2000] a very space-effective dictionary compression
method is presented. However, it requires R to be fully decompressed before using
it. In this paper we are interested in being able to operate the graphs in little
space. Thus, we favor a second technique to compress R [González and Navarro
2007], which reduces its space to about a half and can operate on the compressed
representation. We use this dictionary representation in our experiments.
Despite its quadratic appearance, Re-Pair can be implemented in linear time

[Larsson and Moffat 2000]. However, this requires several data structures to track
the pairs that must be replaced. These require too much space and non-local
accesses, so compressing large sequences is problematic. This has been noted in
applications of Re-Pair to natural language text compression [Wan 2003], and suffix
array compression [González and Navarro 2007], where workarounds specific of those
applications were devised. In the first case, the sequence was compressed by chunks
and a complex postprocessing for merging dictionaries was applied. In the second,
an efficient approximate version that used specific properties of suffix arrays was
introduced, yet it cannot be applied in general.
We present now an alternative approximate Re-Pair compression method that:

(1) works on any sequence; (2) uses as little memory as desired on top of T ; (3)
given an extra memory to work, can trade accuracy for speed; (4) is able to work
smoothly on secondary memory due to its sequential access pattern.

3.1 Approximate Re-Pair

In this section we describe the method assuming we have M > |T | units of main
memory available, that is, the text fits in main memory. Section 3.3 considers the
case of larger texts.
We place T inside the bigger array of size M , and use the remaining space as a

(closed) hash table H of size |H| = min(M−|T |, 2|T |). Table H stores unique pairs
of symbols ab = titi+1 occurring in T , and a counter of their number of occurrences
in T . The key ab = titi+1 is represented as a single integer by its position i in T
(any occurrence works). Thus each entry in H requires two integers.
The algorithm carries out several passes. At each pass, we identify the k most

promising replacements to carry out, and then try to materialize them. Here k ≥ 1
is a time/quality tradeoff parameter. At the end, the new text is shorter and the
hash table can grow. We detail now the steps carried out for each pass.

4In case of overlaps one replaces greedily left-to-right, e.g., one cannot replace both occurrences

of aa in aaa, so one replaces the first pair.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 9

Step 1 (counting pair frequencies). We traverse T = t1t2 . . . sequentially and
insert all the pairs titi+1 into H. If, at some point, the table surpasses a load
factor 0 < α < 1 (defined by efficiency considerations), we do not insert new pairs
anymore, yet we keep traversing T to increase the counters of already inserted pairs.
This step requires O(|T |) = O(n) time on average (the constant depends on α).

Step 2 (finding k promising pairs). We scan H and retain the k most frequent
pairs from it, using a heap of k pointers to cells in H. Hence we need also space
for k further integers. This step requires O(|H| log k) = O(n log k) time.

Step 3 (simultaneous replacement). The k pairs identified will be simultaneously
replaced in a single pass over T . For this sake we must consider that some replace-
ments may invalidate others, for example we cannot replace both ab and bc in abc.
Some pairs can have so many occurrences invalidated that they are not worthy of
replacement anymore (especially at the end, when even the most frequent pairs
occur a few times). Special care is needed to handle this problem.

We first empty H and reinsert only the k pairs to be replaced. This time we
store the explicit key ab in the table, as well as a field pos, the position of its
first occurrence in T . Special values for pos are null if we have not yet seen any
occurrence in this second pass, and proceed if we have already started replacing
it. We now scan T and use H to identify pairs that must be replaced. If pair ab
is in H and its pos value is null, then this is its first occurrence, whose position
we now record in pos (that is, we do not immediately replace the first occurrence,
but wait to be sure there will be at least two occurrences to replace). If, on the
other hand, its pos value is proceed, we just replace ab by sz in T , where s is the
new symbol for pair ab and z is an invalid symbol. Finally, if pair ab already has
a first position recorded in pos, we read this position in T and if it still contains
ab (after possible replacements that occurred since we saw that position), then we
make both replacements and set the pos value to proceed. Otherwise, we set the
pos value of pair ab to the current occurrence we are processing (i.e., its new first
position). This method ensures that we create no new symbols s that will appear
just once in T . It takes O(|T |) = O(n) time on average.

Step 4 (compacting T and enlarging H). We compact T by deleting all the z
entries, and restart the process. As now T is smaller, we can have a larger hash
table of size |H| = min(M − |T |, 2|T |). The traversal of T , regarded as a circular
array, will now start at the point where we stopped inserting pairs in H in Step 1
of the previous pass, to favor a uniform distribution of the replacements. This step
takes O(|T |) = O(n) time.

3.2 Analysis.

The following analysis helps understand the accuracy/time tradeoff involved in
the choice of k. Assume the exact method creates |R| new symbols. The ap-
proximate method can also consider |R| replacements (achieving hopefully similar
compression, since these need not be the same replacements of the exact method)
in p = ⌈|R|/k⌉ passes, which take overall average time O(⌈|R|/k⌉ n log k). Thus
we can trade time for accuracy by tuning k. The larger k, the faster the algorithm
(as there is an O(log(k)/k) factor in its time complexity), but the less similar the

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

10 · F. Claude and G. Navarro

result compared to the exact method. Note that the algorithm considers carrying
out |R| replacements, but some can be disregarded after taking into account the
impact of other simultaneous replacements. Thus the final number of rules can be
less than the number |R| initiall considered.
Note that even k = 1 does not guarantee that the algorithm works exactly as

Re-Pair, as we might not have space to store all the different pairs in H. In this
respect, it is interesting that the algorithm becomes more accurate (thanks to a
larger H) in its later stages, as by that time the frequency distribution is flatter
and more precision is required to identify the best pairs to replace.

3.3 Running on Disk

The process described above also works well if T is too large to fit in main memory.
In this case we maintain T on disk and tableH occupies almost all the main memory,
|H| ≈ M < |T |. We must also reserve sufficient main memory for the heap of k
elements. To avoid random accesses to T in Step 1, we do not store anymore in
H the position of pairs ab, but instead ab explicitly. Thus Step 1 carries out a
sequential traversal of T . Step 2 runs entirely in main memory. Step 4 involves
another sequential traversal of T .
Step 3 is, again, the most complicated part. In principle, a sequential traversal

of T is carried out. However, when a pos value changes to proceed, we make two
replacements: one at its first occurrence (at value pos) and one at the current
position in the traversal of T . The first involves a random access to T . Yet, this
occurs only when we make the first replacement of an occurrence of a pair ab. This
occurs at most k times per pass. However, checking that the first position pos still
contains ab and has not been overwritten, involves another random access to T ,
and these cannot be bounded.
To carry out Step 3 efficiently, we note that there are at most k positions

in T needing random access at any time, namely, those containing the pos (6∈
{null, proceed}) values of the k pairs to be replaced. We maintain those k disk
pages cached in main memory. Those must be replaced whenever value pos changes.
This replacement does not involve reading a new page, because the new pos value
always corresponds to the current traversal position (whose block is also cached in
main memory). Thus cached pages not pointed anymore from any pos values are
simply discarded (hence an elementary reference counting mechanism is necessary),
and the current page of T might be retained in main memory if, after processing
it, some pos values now point to it.
As explained, most changes to T are done at the current traversal position, hence

it is sufficient to write back the current page of T after processing it to handle those
changes. The exceptions are the cases when one writes at some old position pos.
In those cases the pages we have cached in main memory must be written back to
disk. Yet, as explained, this occurs at most k times per pass. (Note that using a
dirty bit for the cached pages might avoid some of those write-backs, as the dirty
page could be modified several times before being abandoned by all the pairs.)

Thus the worst-case I/O cost of this algorithm, if p passes are carried out, is
O(p · (n/B + k)), where B is the disk block size. That is, the algorithm is almost
I/O optimal with respect to its main memory version. Indeed, it is asymptotically
I/O optimal if k ≤ n/B, which for large graphs is a reasonable limit.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 11

4. A COMPRESSED GRAPH REPRESENTATION USING RE-PAIR

Let G = (V,E) be the graph we wish to compress and navigate. Let V =
{v1, v2, . . . , vn} be the set of nodes in arbitrary order, and adj(vi) = {vi,1, vi,2, . . .
vi,ai

} the set of neighbors of node vi. Finally, let vi be an alternative identifier for
node vi. We represent G by the following sequence:

T = T (G) = v1 v1,1 v1,2 . . . v1,a1
v2 v2,1 v2,2 . . . v2,a2

. . . vn vn,1 vn,2 . . . v1,an

so that vi,j < vi,j+1 for any 1 ≤ i ≤ n, 1 ≤ j < ai. This is essentially the
concatenation of all the adjacency lists with separators that indicate the node each
list belongs to, and where we impose that all the elements listed inside an adjacency
list must be sorted by their id. Figure 1 shows an example graph, and Figure 2
illustrates the construction of the structure using the original Re-Pair algorithm.

Fig. 1. An example graph.

Fig. 2. The result of compressing the text representing the graph of Figure 1. We show the
resulting text after three replacements and then we remove the delimiters. Just below the resulting

sequence we show the pointers to each adjacency list and the corresponding bitmaps obtained when
we remove to those pointers to improve the space. This last idea is explained in Section 4.1. Values
v̄ are represented as −v.

The application of Re-Pair to T (G) has several important properties:

—Re-Pair permits fast local decompression, as it is a matter of extracting successive
symbols from C (the compressed T) and expanding them using the dictionary of
rules R. Moreover, Re-Pair handles well large alphabets, |V | in our case.

—This works also very well if T (G) must be anyway stored in secondary memory
because the accesses to C are local and sequential, and moreover we access fewer
disk blocks because it is a compressed version of T . This requires, however, that R
(the set of rules) fits in main memory. This can be enforced at compression time,

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

12 · F. Claude and G. Navarro

at the expense of losing some compression ratio, by preempting the compression
algorithm when |R| reaches the memory limit.

—As the symbols vi are unique in T , they will not be replaced by Re-Pair. This
guarantees that the beginning of the adjacency list of each vi will start at a new
symbol in C, so that we can decompress it in optimal time O(|adj(vj)|) without
decompressing unnecessary symbols.

—If there are similar adjacency lists, Re-Pair will spot repeated pairs, therefore
capturing them into shorter sequences in C. Actually, assume adj(vi) = adj(vj).
Then Re-Pair will end up creating a new symbol s which, through several rules,
will expand to adj(vi) = adj(vj). In C, the text around those nodes will read
visvi+1 . . . vjsvj+1. Even if those symbols do not appear elsewhere in T (G), the
compression method for R [González and Navarro 2007] (Section 3) will represent
R using |adj(vi)| numbers plus 1 + |adj(vi)| bits. Therefore, in practice we are
paying almost the same as if we referenced one adjacency list from the other. Thus
we achieve, with a uniform technique, the result achieved by Boldi and Vigna
[2004a] by explicit techniques such as looking for similar lists in an interval of
nearby nodes.

—Even when the adjacency lists are not identical, Re-Pair can take partial ad-
vantage of their similarity. For example, if we have abcde and abde, Re-Pair
can transform them to scs′ and ss′, respectively. Again, we obtain automatically
what Boldi and Vigna [2004a] achieve by explicitly encoding the differences using
gaps, bitmaps, and other tools.

—The locality property (i.e., the fact that most outgoing links from each page point
within the same domain) is not exploited by Re-Pair, unless its translates into
similar adjacency lists. This, however, makes our technique independent of the
numbering. In the work of Boldi and Vigna [2004a] it is essential to be able of
renumbering the nodes according to site locality. Despite this is indeed a clever
numbering for other reasons, it is possible that renumbering is forbidden if the
technique is used inside another application. However, we show next a way to
exploit locality.

The representation T (G) we have described is useful for reasoning about the
compression performance, but it does not give an efficient method to know where a
list adj(vi) begins. For this sake, after compressing T (G) with Re-Pair, we remove
all the symbols vi from the compressed sequence C (as explained, those symbols
remain unaltered in C). Using essentially the same space we have gained with this
removal, we create a table that, for each node vi, stores a pointer to the beginning
of the representation of adj(vi) in C. With it, we can obtain adj(vi) in optimal
time for any vi. Integers in C are stored using the minimum bits required to store
the maximum value in C.

4.1 Improvements

We describe now several possible improvements over the basic scheme. Some can be
combined, some not. Several possible combinations are explored in the experiments.

Differential encoding. If we are allowed to renumber the nodes, we can exploit
the locality property in a subtle way. We let the nodes be ordered and numbered

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 13

by their URL lexicographic order, and encode every adjacency list using differential
encoding. The first value is absolute and the rest represents the difference to the
previous value. For example the list 4 5 8 9 11 12 13 is encoded as 4 1 3 1 2 1 1.

Differential encoding is usually a previous step to represent small numbers with
fewer bits. We do not want to do this as it hampers decoding speed (in contrast,
Buehrer and Chellapilla [2008] use ζ-coding to reduce space). Our main idea to
exploit differential encoding is that, if many nodes tend to have local links, there
will be many small differences we could exploit with Re-Pair, say pairs like (1, 1),
(1, 2), (2, 1), etc. The price is slightly slower decompression due to the need of
adding up differences. Figure 3 shows the differential encoding of the graph shown
in Figure 1.

Fig. 3. Differential encoding of the graph shown in Figure 1.

Reordering lists. Since the adjacency list does not need to be output in any
particular order, we can alter the original order to spot more global similarities.
Consider the lists 1, 2, 3, 4, 5 and 1, 2, 4, 5. Re-Pair can replace 1, 2 by 6 and 4, 5
by 7, but the common subsequence 1, 2, 4, 5 cannot be fully exploited because the
first list has a 3 in between. If we sort both adjacency lists after compressing we
get 3, 6, 7 and 6, 7, and then we can replace 6, 7, thus exploiting global regularities
in both adjacency lists. The method is likely to improve compression ratios. The
compression process is slightly slower: it works almost as in the original version,
except that the lists are sorted after each pass of Re-Pair, so we cannot combine
this method with differences. Decompression and traversal, on the other hand,
are not affected at all. The experimental results show that this approach achieves
better compression ratios than applying Re-Pair without differences. Note that this
reordering is just a heuristic, and one could aim to finding the optimal ordering.
However, similar problems have been studied for differential encoding of inverted
lists, and they have been found to be hard [Fink and Voß 1999; Shieh et al. 2003].
Indeed, the whole point of the work of Buehrer and Chellapilla [2008] is to develop
heuristics to find good subsequences efficiently.

Removing pointers. It might be advantageous, for relatively sparse graphs, to
remove the need to spend a pointer for each node (to the beginning of its adjacency
list in C). We can replace the pointers by two bitmaps. The first one, B1[1, n],
marks in B1[i] whether node vi has a non-empty adjacency list. The second bitmap,
B2[1, c] (where c = |C| ≤ m), marks the positions in C where adjacency lists begin.
Hence the starting position of the list for node vi in C is select(B2, rank(B1, i)) if
B1[i] = 1 (otherwise the list is empty). The list extends up to the next 1 in B2.
The space is n+ c+ o(n+ c) bits, instead of n log c needed by the pointers. When
n is significant compared to c, space reduction is achieved at the expense of slower
access to the adjacency lists. See Figure 2 for an example on the values assigned in
B1 and B2.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

14 · F. Claude and G. Navarro

5. LEMPEL-ZIV COMPRESSION OF WEB GRAPHS

The Lempel-Ziv compression family [Ziv and Lempel 1977; 1978] achieves compres-
sion by replacing repeated sequences found in the text by a pointer to a previous
occurrence thereof. In particular, the LZ78 variant [Ziv and Lempel 1978] stands as
a plausible alternative candidate to Re-Pair for our goals: it detects duplicate lists
of links in the adjacency lists, handles well large alphabets, and permits fast lo-
cal decompression. Moreover, LZ78 admits efficient compression without requiring
approximations.

5.1 The LZ78 Compression Algorithm

LZ78 compresses the text by dividing it into phrases. Each phrase is built as the
concatenation of the longest previous phrase that matches the prefix of the text yet
to be compressed and an extra character which makes this phrase different from all
the previous ones. The algorithm is as follows:

(1) It starts with a dictionary S of known phrases, containing initially the empty
string.

(2) It finds the longest prefix Ti,j of the text Ti,n yet to be processed, which matches
an existing phrase. Let p be that phrase number.

(3) It adds a new phrase to S, with a fresh identifier, and content (p, tj+1).

(4) It returns to Step 2, to process the rest of the text Tj+2,n.

In order to carry out Step 2 efficiently, S is organized as a trie data structure.
The output of the compressor is just the sequence of pairs (p, tj+1). The phrase
identifier is implicitly given by the position of the pair in the sequence.
The text of any phrase in the compressed text can be obtained backwards in

optimal time. Let p0 the phrase we wish to expand. We read the p0-th pair in the
compressed sequence and get (p1, c0). Then c0 is the last character of the phrase.
Now we read the p1-th pair and get (p2, c1), thus c1 precedes c0. We continue until
reaching pi = 0, which denotes the empty phrase. In i constant-time steps we
obtained the content ci−1ci−2 . . . c1c0.

Just as Re-Pair, this extraction can be made I/O-optimal if we limit the creation
of phrases to what can be maintained in main memory. After that point, the
process continues identically but no new phrases are inserted into S (hence not all
the phrase contents will be different).

5.2 Using LZ78 for Graph Compression

For a graph G = (V,E), where V = {v1, v2, . . . , vn} and adj(vi) = {vi1, vi2,
. . . , viai

} is the set of neighbors of node vi, the textual representation used for
LZ78 compression is slightly different from that of Section 4:

T = T ′(G) = v11v12v13 . . . v1a1
v21v22 . . . v2a2

. . . vn1vn2 . . . vnan
,

where we note that the special symbols vi have been removed. The reason is that
removing them later is not as easy as for Re-Pair. To ensure that adjacency lists
span an integral number of phrases (and therefore can be extracted in optimal time
O(|adj(vi)|)), we run a variant of LZ78 compression. In this variant, when we look

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 15

for the longest phrase Ti,j in Step 2, we never cross a list boundary. More precisely,
the character tj+1 to be appended to the new phrase must still belong to the current
adjacency list. This might produce repeated phrases in the compressed text, which
of course are not inserted into S.
Like C, the array of pointers and symbols added are stored using the minimum

number of bits required by the largest pointer and symbol, respectively.
In addition, we store a pointer to every beginning of an adjacency list in the

compressed sequence, just as for Re-Pair. Some of the improvements in Section 4.1
can be applied as well: differential encoding (which will have a huge impact with
LZ78) and replacing pointers by bitmaps.

6. EXPERIMENTAL RESULTS

We carried out several experiments to measure the compression and time perfor-
mance of our graph compression techniques, comparing them to the state of the
art. We downloaded four Web crawls from the WebGraph project [Boldi and Vi-
gna 2004a], http://law.dsi.unimi.it. Table I shows their main characteristics.
The last column shows the size required by a plain adjacency list representation
using 4-byte integers. For larger graphs 4 bytes per node id would not suffice, and
we would spend even more space per edge in a plain representation. Later on we
introduce a larger graph to study the scalability of our approach.

Crawl Nodes Edges Edges/Nodes Plain size (MB)

EU (2005) 862,664 19,235,140 22.30 77
Indochina (2004) 7,414,866 194,109,311 26.18 769
UK (2002) 18,520,486 298,113,762 16.10 1,208

Arabic (2005) 22,744,080 639,999,458 28.14 2,528

Table I. Some characteristics of the fours crawls used in our experiments.

6.1 Compression Performance

Our compression algorithm is parameterized by M , k, and α. Those parameters
yield a tradeoff between compression time and compression effectiveness. In this
section we study those tradeoffs. As there are several possible variants of our
method, we stick in this section to the one called Re-Pair Diffs CDict NoPtrs in
Section 6.3. The machine used in this section is a 2GHz Intel Xeon (8 cores) with
16 GB RAM and 580 GB Disk (SATA 7200rpm), running Ubuntu GNU/Linux with
kernel 2.6.22-14 SMP (64 bits). The code was compiled with g++ using the -Wall,
-O9 and -m32 options. The space is measured in bits per edge (bpe), dividing the
total space of the structure by the number of edges in the graph.

Parameter α (the maximum load ratio of the hash table H before we stop in-
serting new pairs) turns out to be not too relevant, as its influence on the results
is negligible for a wide range of reasonable choices. We set α = 0.6 for all of our
experiments.
Value M is related to the amount of extra memory we require on top of T . Our

first experiment aims at demonstrating that we obtain competitive results using
very little extra memory. Table II shows the compression ratios achieved with

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

16 · F. Claude and G. Navarro

different values of M (as a percentage over the size of T). As it can be seen, we
gain little compression by using more than 5% over |T |, which is extremely modest
(the linear-time exact Re-Pair algorithm [Larsson and Moffat 2000] uses at the very
least 200% extra space). The rest of our experiments are run using 3% extra space5.

Graph 1% 3% 5% 10% 50%

EU 4.68 4.47 4.47 4.47 4.47
Indochina 2.53 2.53 2.53 2.52 2.52

UK 4.23 4.23 4.23 4.23 4.23
Arabic 3.16 3.16 3.16 3.16 3.16

Table II. Compression ratios (in bpe) achieved when using different amounts of extra memory

for H (measured in percentage over the size of the sequence to compress). In all cases we use
k = 10, 000.

We now study the effect of parameter k in our time/quality compression trade-
off. Table III shows the time and compression ratio achieved for different k on our
crawls. For the smaller crawls we also run the exact algorithm (using a relatively
compact implementation [González and Navarro 2007] that requires 260 MB total
space for EU and 2.4 GB for Indochina). It can be seen that our approximate
method is able of getting very close to the exact result while achieving reason-
able performance (around 1 MB/sec). Lempel-Ziv compression is much faster but
compresses far less.
It is interesting to notice that, as k doubles, compression time is almost halved

(especially for small k). This is related to the fact that we cannot guarantee that
all the k pairs chosen are actually replaced. Table IV measures the number of
replacements actually done by our algorithm on crawls EU and Indochina. As it
can be seen, for k up to 10,000, more than 85% of the planned replacements are
actually carried out, and this improves for larger graphs. Note also that the number
of passes made by the algorithm is rather reasonable. This is relevant for secondary
memory, as it means for example that with k = 10, 000 we expect to do about 60
passes over the (progressively shrinking) text on disk for the EU crawl, and 263 for
the Indochina crawl.
For the rest of the experiments we use k = 10, 000.

6.2 Limiting the Dictionary

As explained, we can preempt Re-Pair compression at any pass in order to limit
the size of the dictionary. This is especially interesting when the graph, even in
compressed form, does not fit in main memory. In this case, we can take advantage
of the locality of accesses to C to speed up the access to the graph: If we are able of
compressing T (G) by a factor c, then access to long adjacency lists can be speeded
up by a factor up to c. However, some Re-Pair structures need random access, and
those must reside in RAM. This includes the dictionary, but also the structure that
tells us where each adjacency list starts in C. The latter could still be kept on disk

5That is, in the beginning. As the text is shortened along the compression process we enlarge the

hash table and keep using the absolute space originally allowed.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 17

EU

k time (min) bpe

exact 86.15 4.40

10,000 1.77 4.47
25,000 1.03 4.70
50,000 0.83 4.74
75,000 0.72 4.76

100,000 0.73 4.79
250,000 0.62 4.91
500,000 0.62 4.95

1,000,000 0.67 4.95

LZ Diffs 0.07 7.38

Indochina

k time (min) bpe

exact 5,230.67 2.50

10,000 52.97 2.53
25,000 20.73 2.53
50,000 12.68 2.54
75,000 8.70 2.54

100,000 7.75 2.54
250,000 4.85 2.56
500,000 4.07 2.59

1,000,000 3.77 2.62

LZ Diffs 0.53 4.89

UK

k time (min) bpe

10,000 341.32 4.23
25,000 142.57 4.24

50,000 74.20 4.25
75,000 49.08 4.25

100,000 38.22 4.25
250,000 20.45 4.26

500,000 14.23 4.27
1,000,000 10.60 4.29

LZ Diffs 1.32 8.56

Arabic

k time (min) bpe

10,000 1,034.53 3.16
25,000 370.08 3.18

50,000 191.60 3.19
75,000 132.72 3.19

100,000 102.55 3.19
250,000 53.77 3.20

500,000 30.48 3.21
1,000,000 24.57 3.23

LZ Diffs 2.72 6.11

Table III. Time for compressing different crawls with different k values. For the smaller graphs we

also include the exact method. We also include the results of our LZ variants for the four crawls.
The LZ version was compiled without the -m32 flag, since our implementation requires more than
4 GB of RAM for the larger graphs.

at the cost of one extra disk access per list, whereas the former definitely needs to
lie in main memory.
Figure 4 shows the tradeoffs achieved between the size of the main sequence C and

that of the RAM structures, as we modify the preemption point. It is interesting
to notice that the main memory usage has a minimum, due to the fact that, as
compression progresses, the dictionary grows but the width of the pointers to C
decreases6.
At those optima, the overall size of C plus RAM data is not the best possible one,

but rather close. In our graphs, the optimum space in RAM is from 0.2 to 0.4 bpe.
This means, for example, that just 15 MB of RAM is needed for our largest graph,
Arabic. If we extrapolate to the 4 TB graph of the whole indexed Web mentioned
in the Introduction, we get that we could handle it in secondary memory while
using 20–45 GB of RAM (64 GB RAM servers are becoming commonplace). If the
compression would stay at about 3 bpe (as in our largest graph, Section 6.5), this
would mean that access to the compressed Web graph would be up to 10 times
faster than in uncompressed form, on disk.

6In the variant NoPtrs we use a bitmap of |C| bits, which produces the same effect.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

18 · F. Claude and G. Navarro

EU

k Passes Total Pairs Pairs/pass % of k

5,000 108 497,297 4,604 92.08
10,000 58 502,530 8,664 86.64
20,000 33 513,792 15,569 77.85
50,000 19 543,417 28,600 57.20

100,000 14 576,706 41,193 41.19
500,000 12 676,594 56,382 11.28

1,000,000 12 676,594 56,382 5.64

Indochina

k Passes Total Pairs Pairs/pass % of k

10,000 263 2,502,880 9,516 95.16
20,000 136 2,502,845 18,403 92.02
50,000 60 2,503,509 41,725 83.45

100,000 34 2,528,530 74,368 74.37

500,000 16 2,772,091 173,255 34.65
1,000,000 14 2,994,149 213,867 21.39
5,000,000 14 3,240,351 231,453 4.63

10,000,000 14 3,240,351 231,453 2.31

Table IV. Number of pairs created by approximate Re-Pair over two crawls.

6.3 Compressed Graph Size and Access Time

We now study the space versus access time tradeoffs of our graph compression
proposals based on Re-Pair and LZ78. From all the possible combinations of im-
provements7 depicted in Sections 4 and 5 we have chosen the following, which should
be sufficient to illustrate what can be achieved (see in particular Section 4.1).

—Re-Pair: Normal Re-Pair.

—Re-Pair Diffs: Re-Pair with differential encoding.

—Re-Pair Diffs NoPtrs: Re-Pair with differential encoding and with pointers to C
replaced by bitmaps.

—Re-Pair Diffs CDict NoPtrs: Re-Pair with differential encoding and a compacted
dictionary. In the other implementations, every element of the dictionary is stored
as an integer in order to speed up the access. This version stores every value using
the required number of bits and not 32 by default. It also replaces the pointers
to C by bitmaps.

—Re-Pair Reord: Normal Re-Pair with list reordering.

—Re-Pair Reord CDict: Re-Pair with list reordering and compacted dictionary.

—LZ: Normal LZ78.

—LZ Diffs: LZ78 on differential encoding.

For each of those variants, we measured the size needed by the structure ver-
sus the time required to access random adjacency lists. Structures that offer a

7We can devise 16 combinations of Re-Pair and 8 combinations of LZ78 variants.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

EU

App. Re-Pair

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Indochina

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

UK

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Arabic

App. Re-Pair

Fig. 4. Space used by the sequence versus the dictionary plus the pointers, all measured in bits

per edge.

space/time tradeoff will appear as a line in this plot, otherwise they will appear as
points. The time is measured by extracting full adjacency lists and then computing
the time per extracted element in adj(vi). More precisely, we generate a random
permutation of all the nodes in the graph and sum the user time of recovering all
the adjacency lists (in random order). The time per edge is this total time divided
by the number of edges in the graph. This is a sort of worst-case situation for real
traversals, which might exhibit some locality; we explore DFS and BFS traversals
in Section 6.5.
These experiments were run on a Pentium IV 3.0 GHz with 4 GB of RAM using

Ubuntu GNU/Linux 8.10 with kernel 2.6.27-16 and g++ with -O9 and -DNDEBUG

options.
We compared to the implementation by Boldi and Vigna [2004a], run on our

machine, with various space/time tradeoffs. The implementation of Boldi and Vigna
gives a size measure that is consistent with the sizes of the generated files (and
with their paper [Boldi and Vigna 2004a]). This is the space we report, despite
the process (in Java8) actually needs more memory to run. The times we show are
obtained with the garbage collector disabled and sufficient RAM to let the process
achieve maximum speed. Although our own code is in C++, the Java compiler

8Using the Sun Java virtual machine provided by Ubuntu 8.10 default packaging system, v1.6.0 14.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

20 · F. Claude and G. Navarro

achieves very competitive results9.
We also show, in a second plot, a comparison of our variants with plain adjacency

list representations. One representation, called “plain”, uses 32-bit integers for
nodes and pointers. A second one, called “compact”, uses ⌈log2 n⌉ bits for node
identifiers and ⌈log2 m⌉ for pointers to the adjacency list.
Figure 5 shows the results for the four Web crawls. The different variants of LZ

achieve the worst compression ratios (particularly without differences), but they
are the fastest (albeit for a very little margin). The normal Re-Pair achieves a
competitive result both in time and space. The other variants achieve different
competitive space/time tradeoffs. The most space-efficient variant is Re-Pair Diffs
CDict NoPtrs.
Node reordering usually achieves better compression without any time penalty,

yet it cannot be combined with differential encoding.
A similar time/space tradeoff shown between Re-Pair Diffs and Re-Pair Diffs

NoPtrs can be achieved with the other representations that use Re-Pair, since the
pointers are the same for all of them. The time/space tradeoff between compacting
the dictionary or not should be almost the same for the other Re-Pair implemen-
tations too.
Two lines display the best current tradeoffs offered within the WebGraph project,

which is the state of the art for Web graphs. These are labeled BV, which is
the current release in their site (version 2.4.3), and BSV [Boldi et al. 2009], a
variant that uses another node ordering, called shbhGray, to achieve better tradeoffs
(available within the same release).
From a pure compression standpoint, our results are not competitive with those

of WebGraph (except on the small EU graph). However, when we consider the time
to access the graphs, it turns out that WebGraph needs significantly more space
than the minimum in order to provide reasonable navigation times. In particular, it
is still 1.5–2 times slower than our representations when using the same amount of
space. In addition, some of our versions (those that do not use differential encoding)
do not impose any particular node numbering.
Compared to an uncompressed graph representation, our method is also a very

interesting alternative. It is 3–10 times smaller than the compact version and 2–4
times slower than it; and it is 5–13 times smaller than the plain version and 4–8
times slower.
No traversal times are reported by Buehrer and Chellapilla [2008] for their “vir-

tual node mining” (VNM) approach. However, we can distinguish two stages in
VNM compression: (1) identifying bi-cliques and replacing them by virtual nodes;
(2) ζ-encoding the resulting adjacency lists. Our results in Figure 5 indicate that
our extraction is currently so fast that even the use of differential encoding (that is,
we have to add the current number to the previous one before reporting it) makes a
noticeable difference in performance. Thus decoding a ζ-encoded bitstream is likely
to make the VNM approach considerably slower than ours. Our encoding is just a
plain sequence of integers (all using a fixed number of bits). On the other hand,
if VNM omitted stage (2) and used a plain sequence of integers, the access time

9See http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html or

http://www.osnews.com/story/5602.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 21

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10 12 14

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ
BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 1 2 3 4 5 6 7 8 9

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ
BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10 12

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ
BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ
BSV
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Fig. 5. Space and time to find neighbors for different graph representations, over the four crawls.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

22 · F. Claude and G. Navarro

of both approaches should be very similar, as both have to (recursively) expand
virtual nodes (or nonterminals, in our case) until obtaining the final list of real
nodes (terminals, in our case).
Therefore, we divide the comparison into two parts. In this section we test how

would both methods compare in space if VNM omitted stage (2) in order to reach
the speed of our method. In Section 6.4 we consider how to achieve further space
reduction in our method and compare with the full VNM approach.

Table V shows the compression ratios of the methods measured in number of
integers of the adjacency lists before and after grammar compression. For VNM
we use the data Buehrer and Chellapilla [2008] give in their Figure 3 (left), which
accounts for all the edges in the graph before and after replacing bi-cliques by
virtual nodes. For our method, we present a plain approach (Plain) where we
add the length (in integers) of sequence C (the adjacency list after compression)
plus two integers per nonterminal, which corresponds to a plain representation of
the dictionary R. Interpreted in terms of virtual nodes, this corresponds to the
fact that our “virtual nodes” (nonterminals) have always outdegree 2. We also
present the more realistic approach where we add the length of C and the integers
in our compressed representation of dictionary R. Again interpreted in terms of
virtual nodes, this acknowledges the fact that, despite we use Re-Pair, which creates
nonterminals as pairs of other symbols, one could unroll part of the recursion and
rewrite nonterminals as sequences of nodes (this is what is done, implicitly, in the
dictionary compression technique of González and Navarro [2007]). Furthermore,
we show versions Diff and Reord. Note the former deviates from the model of
virtual nodes (as its nonterminals are differences rather than node identifiers, and
this has no metaphor in terms of graph nodes) and the latter is able of detecting
noncontiguous subsequences thanks to the reordering. Note that in all cases we are
ignoring the cost of the vector of pointers from nodes to adjacency lists.

Graph Ours Ours Ours Ours VNM

Plain Diff Plain Reord Diff Reord

EU 21% 24% 20% 20% 22%
Indochina 11% 14% 10% 12%

UK 17% 22% 15% 19% 20%
Arabic 13% 15% 11% 13% 14%

Table V. Compression ratios (in percentage) achieved by different grammar compression methods,

before any further encoding of the sequences.

From the table we can conclude that, if we consider the variant of our grammar
compression that can most easily be identified as a mechanism to add virtual nodes
to the graph in order to factor out edges, that is, our Plain Reord variant, the result
is 7% to 10% worse than VNM. Note that Reord does capture common subsequences
as well, but VNM does it better. However, our model is not exactly like that of
creating virtual nodes, and so the comparison is not only “who finds better virtual
nodes”. Our non-Plain variants take advantage of the hierarchical structure of our
nonterminals to represent them using fewer integers, and our Reord variant already
improves upon VNM by 5% to 14%. Furthermore, Diffs totally deviates from the

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 23

virtual nodes model, as explained. In non-Plain form, it takes 9% to 25% less
space than VNM, yet it could be slightly slower due to the need of adding up the
differences.
To summarize: If we take only the grammar-compression aspect of VNM, and

encode its adjacency lists as a sequence of integers using a fixed number of bits,
both techniques are likely to achieve similar speeds, yet ours would take up to
14% less space (if we consider variant Reord, as Diff is slightly slower). Actually,
VNM produces fewer virtual nodes than we produce nonterminals, and thus their
integers use potentially fewer bits. In the tested graphs, however, this only makes
a difference of 2% on Arabic, yet Reord is still 4% smaller.

As explained, VNM achieves further space reduction via ζ-coding. In the next
section we consider how we can also our space at the expense of higher access time,
and up to which point can we match the space achieved by VNM.

6.4 Further Compression

Our experiments indicate that our technique offers a good space/time tradeoff, yet
it is unable to achieve the best compression ratios reached by alternative methods
[Boldi et al. 2008; 2009; Buehrer and Chellapilla 2008]. We explore now how far
can we reach in terms of compression ratio, even if sacrificing access time.
As explained, compressed sequence C is stored with fixed-length integers, and

possibly amenable of further compression. The techniques used in other schemes,
such as ζ-encoding the differences, do not work well after Re-Pair factors out com-
mon pairs of differences ((1,1), (1,2), etc.). Nevertheless, it turns out that the
zero-order entropy of C is low enough to permit compression: After applying Re-
Pair, every pair of symbols in C is unique, yet individual symbols are not.
Yet, it is not immediate how to apply a zero-order compressor to such sequence,

because its alphabet is very large. For example, applying Huffman would be im-
practical because of the need to store the table (i.e., at least the symbol permutation
in decreasing frequency order). Instead, one could consider approximations such as
that of Hu and Tucker [1971], which does not permute the symbols and thus needs
only to store the tree shape. Hu-Tucker achieves less than 2 bits over the entropy.
To get a rough idea of what could be achieved, we estimated the space needed

by Huffman and Hu-Tucker methods on our graphs, for the version Re-Pair Diffs.
Let us call Σ the alphabet of C, and σ its size (n ≤ σ ≤ n + |R|), and say
that ni is the number of occurrences of the symbol i in C. We lower bound the
maximum size that Huffman can achieve as: Huffman ≥ σ log σ +

∑

i∈Σ ni log
n
ni

,
where we have optimistically bounded its output with the zero-order entropy and
also assumed that the tree shape information is free (it is indeed almost free when
using canonical Huffman codes, and the entropy estimation is at most 1 bit per
symbol off, so the lower bound is rather tight).
Since Hu-Tucker achieves more competitive results, we lower and upper bound

its performance: 2σ +
∑

i∈Σ ni log
n
ni

≤ HT ≤ 2σ +
∑

i∈Σ ni

(

log n
ni

+ 2
)

, where

the term 2σ arises because we have to represent an arbitrary binary tree of σ leaves,
so the tree has 2σ− 1 nodes and we need basically 2σ− 1 bits to represent it (e.g.,
using 1 for internal nodes and 0 for leaves).
Table VI shows the compresion ratio bounds for C (i.e., not considering the

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

24 · F. Claude and G. Navarro

other structures). As expected, Huffman compression is not promising, because
just storing the symbol permutation offsets any possible gains. Yet, Hu-Tucker
stands out as a promising alternative to achieve further compression. However,
because of the bit-wise output of these zero-order compressors, the pointers to C
must be wider10. Table VII measures the size of the whole data structure with and
without Hu-Tucker (we use the lower bound estimation for the latter). It can be
seen that compression is not attractive at all, and in addition we will suffer from
increased access time due to bit manipulations.

Graph Huffman Hu-Tucker Hu-Tucker

lower bound lower bound upper bound

EU 145.68% 84.65% 94.18%
Indochina 161.57% 82.11% 90.44%
UK 168.87% 82.94% 90.64%

Arabic 162.96% 82.81% 90.51%

Table VI. Compression ratio bounds for C, using Re-Pair Diffs. We measure the compressed C

size as a percentage of the uncompressed C size.

Graph Hu-Tucker Hu-Tucker Original

(Diff NoPtrs) (Diff)

EU 6.61 4.89 4.47
Indochina 3.64 3.13 2.53

UK 6.14 5.33 4.23
Arabic 4.01 3.14 3.16

Table VII. Total space required by our original structures and the result after applying Hu-Tucker
(lower-bound estimation).

An alternative, more sophisticated, approach to achieve zero-order entropy is
to represent C using a wavelet tree where the bitmaps are compressed using the
technique described in Section 2.2. This guarantees zero-order entropy (plus some
sublinear terms for accessing the sequence), and it can take even less because each
small chunk of around 16 entries of C is compressed to its own zero-order entropy.
The sum of those zero-order entropies add up to at most the zero-order entropy
of the whole sequence, but it can be significantly less if there are local biases of
symbols (as it could perfectly be the case in Web graphs due to local references).
Our wavelet tree implementation [Claude and Navarro 2008] uses a sampling

method that permits accessing the compressed sequences at arbitrary points. The
sparser the sampling, the slower the access but the lower the space. Table VIII
shows some results on the achievable space. We note that, because we can still
refer to entry offsets (and not bit offsets) in C, our pointers to C do not need to
change (nor the NoPtrs bitmap). We achieve impressive space reductions, to 70%–
75% of the original space, and for Indochina we largely break the 2 bpe barrier.

10In the NoPtrs case this is worse, as we now need to spend one extra bit per bit of C, not per

number in C.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 25

In exchange, symbol extraction from C becomes rather slow. We measured the
access time per link for the Arabic crawl using a sample of 32, and found that
this approach is 22 times slower than our smallest (and slowest) version based on
Re-Pair. For a samplig of 128 the slowdown is 43.
This can be alleviated by extracting all the symbols from an adjacency list at

once, as no new rank operations are needed once we go through the same wavelet
tree node again. In the worst case, we pay O(k(1 + log σ

k
)) time, instead of

O(k log σ), to extract k symbols. This improvement can only be applied when the
symbols can be retrieved in any order, so it could not be combined with differences.

Graph Orig. WT(8) WT(32) WT(128) WT(∞) BV(∞) VNM VNM(∞)

EU 4.47 4.59 3.71 3.49 3.42 4.38 4.07 2.90
Indochina 2.53 2.52 1.97 1.84 1.79 1.47

UK 4.23 4.36 3.40 3.16 3.08 1.70 3.75 1.95
Arabic 3.16 3.34 2.60 2.42 2.36 1.99 2.91 1.81

Table VIII. Total space, measured in bpe, achieved when using compressed wavelet trees to rep-
resent C, with different sampling rates. We also show the best results of WebGraph, and those of
virtual node mining, with and without direct access.

The 7th column of Table VIII shows the best result reported in the WebGraph
site. It beats our best results except on EU, but that representation does not sup-
port direct access. The last two columns of Table VIII show the results reported
by Buehrer and Chellapilla [2008], first adding (VNM) and second not adding
(VNM(∞)) the space of their pointers array. The compression ratios of VNM(∞)
are also unreachable for us, but again this variant does not provide direct access.
The ratios VNM achieves with direct access, instead, are between our WT(8) and
WT(32). It is likely that VNM, even with ζ-codes, will be faster than our wavelet-
tree-based variants. Tradeoffs between VNM and VNM(∞) can be achieved by
sampling the array of pointers (for example, storing some absolute values and then
differentially encoding the subsequent ones). Moreover, one could consider com-
binations such as compressing the VNM adjacency lists with wavelet trees, for
example, and then use our NoPtrs variants.
Considering the results of the previous section, we note that the merit of the

VNM approach is not that it finds a smaller grammar than ours (it usually does
not, as shown), but in that its resulting sequence seems to be more compressible.
On the other hand, we have proposed compression techniques (like using wavelet
trees) that do not affect the width of the pointers, and thus could offer different
space/time tradeoffs to VNM.

6.5 Scalability

A disadvantage of our method is that Re-Pair compression is offline, thus we cannot
process the graph incrementally as for example Boldi and Vigna [2004a]. In case of
a large graph we can resort to secondary memory as described in Section 3.3, yet
compression will require multiple passes on disk (recall Table IV). In this section we
explore an alternative solution, which is also relevant for a distributed processing
scenario. We propose a simple heuristic that exploits the locality of reference: We

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

26 · F. Claude and G. Navarro

partition the graph into pieces of the maximum size we can handle in main memory
and compress them separately, considering them as independent graphs. We will
call each part of the graph a subgraph, even when formally they are not, as some of
them point to nodes that are not in the subgraph.
Our compression method does not require the node identifiers to be in a given

range. Rather, it regards the lists as generic sequences, so it does not matter if a
node in a subgraph points to a non-existing identifier. Therefore, we do not rename
the nodes in the adjacency lists inside each subgraph. As a consequence, when we
obtain the adjacency list of a node, no mapping is required.
Our final graph representation is an array of subgraphs represented using our

technique and an array of offsets, offs, containing the absolute node identifier of
the first adjacency list represented in each subgraph. For retrieving the neighbors
of a node v, we search for the largest index i such that offs[i] ≤ v. Then we
retrieve the (v − offs[i] + 1)-th list of the i-th subgraph.

We tested this approach on the uk-union-2006-06-2007-05 graph (uk-union
from now on), the largest crawl available at the WebGraph site. It has 133, 633, 040
nodes and 5, 507, 679, 822 edges (41.21 edges/node). Its plain adjacency list repre-
sentation requires 22 GB of memory.
We partitioned the graph into 9 pieces. The first eight were cut just before

passing the 650M edges barrier, and the last was the remainder. The first eight
pieces are 2.5 GB in size, the last one is 1.2 GB. We compressed the graph using
Re-Pair Diffs CDict NoPtrs, our smallest practical variant.

We achieved 2.91 bpe for uk-union using k = 100, 000 and 3% extra space on
top of each sequence when compressing. The final result requires just less than 2
GB for operating the whole graph, which can be handled in main memory by most
commodity PCs.
We compare our technique with BV, which performed best on our previous ex-

periments. This time, instead of giving the average time to retrieve each neighbor
from a random node, we opt for demonstrating the performance when carrying out
the two most typical graph traversals: depth-first-search (DFS) and breadth-first-
search (BFS).
Even when our implementation was perfectly capable of running both algorithms

in the original machine using less than 3 GB11, the overhead imposed by the Java
virtual machine on B(S)V made it impossible to execute the process within that
space. So for this experiment we switched to an Intel(R) Xeon(R) CPU running
at 2 GHz, with 8 cores and 16 GB of RAM, running Ubuntu GNU/Linux (Server)
with kernel 2.6.24-27 in 64-bit mode. For both traversals we implemented a similar
queue/stack [Cormen et al. 2001] using arrays, to make sure that the STL and the
Java API were not altering the performance results.
Table IX shows the time for the two traversals, including the space required

by each representation, and displaying two tradeoff points for BV. The situation
is as for all previous experiments: BV is able of achieving less space than our
representation, but ours is faster when both use the same amount of space (or BV
uses even more, as in this case).
It is interesting to note that, using the wavelet tree, we achieve as little as 2.17

11That is, the memory limit for a process on the GNU/Linux kernel on 32-bit machines.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 27

Method bpe DFS(sec) BFS(sec)

Ours 2.91 632 636
BV 2.58 1, 194 1, 168

BV 3.22 740 722

Table IX. Time and space tradeoffs obtained for uk-union when running BFS and DFS traversals.

bpe, less than the best space reported in WebGraph. Still retaining the current ac-
cess times, our representation could still achieve better space by choosing a smaller
k, as shown in Table III. Another interesting point to mention is that B(S)V in-
clude some caches in their code to speed up recently decompressed lists. This is
quite relevant for the traversals, given the locality of references and the fact that, in
their method, nearby lists have to be decompressed to obtain the desired list. We
could aim at doing something similar with frequent nonterminals, yet this requires
serious further study as it has a price in terms of extra memory.

Finally, we remark that, since our representations work with any node ordering,
we could use orderings suitable for running external memory algorihtms [Vitter
2006] so that our reduction of space on disk would translate into reduced execution
times, in case the compressed graph does not fit in RAM. We could also refine
our partitioning technique by using separators [Blandford et al. 2003] to reduce the
amount of external links, which may miss some compression opportunities, or use
techniques to merge the dictionaries of the different partitions [Wan 2003].

7. CONCLUSIONS AND FUTURE WORK

We have presented a graph compression method that exploits the similarities be-
tween adjacency lists by using grammar-based compressors such as Re-Pair [Larsson
and Moffat 2000] and LZ78 [Ziv and Lempel 1978]. Our results demonstrate that
those similarities account for most of the compressibility of Web graphs, on which
our technique performs particularly well. Our experiments over different Web crawls
demonstrate that our method, although unable to match the compression ratios of
WebGraph [Boldi and Vigna 2004a; Boldi et al. 2008; 2009] (the state of the art),
is 1.5–2 times faster to navigate the compressed graph when both structures are
given the same amount of space to operate. Compared to a plain adjacency list
representation, our compressed graphs can be 5 to 13 times smaller, at the price
of a 4- to 8-fold traversal slowdown (this has to be compared to the hundred to
thousand times slowdown caused by running on secondary memory).
This makes our representation a very attractive choice to maintain graphs all

the time in compressed form, without the need of a full decompression in order to
access them. As a result, graph algorithms that are designed for main memory can
be run over much larger graphs, by maintaining them in compressed form. In cases
the graphs do not fit in main memory even in compressed form, our scheme adapts
well to secondary memory, where it can make fewer accesses to disk and/or shorter
seeks than its uncompressed counterpart for navigation.
As a byproduct, we developed an efficient approximate version of Re-Pair, which

can work within very limited space and also works well on secondary memory. This
can be of independent interest given the large amount of memory required by the
exact Re-Pair compression algorithm.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

28 · F. Claude and G. Navarro

Our technique is not particularly tailored to Web graphs (more than trying to
exploit similarities in adjacency lists). This could make it suitable to compress
other types of graphs, whereas other approaches which are too tailored to Web
graphs could fail.
Recent work [Buehrer and Chellapilla 2008] confirms that grammar-based com-

pression is indeed an extremely promising avenue for future research. Unlike our
representation, theirs achieve better compression ratios than WebGraph. Although
their access time is not clear, our limited experiments show that the techniques
achieve comparable space/time tradeoffs and, more importantly, that some tech-
niques could be combined to achieve an improved representation.

Another line of research focuses on adding more functionality to the compact
representations, further than retrieving the neighbors of a node. For example, some
sampling algorithms on the Web [Kleinberg et al. 1999; Kleinberg 1999] require
access to the nodes pointing to the current one, that is, reverse navigation. There
has been some progress on providing bidirectional navigation, within space that
is more than those shown in this paper for simple forward navigation, but less
than that of representing the original and the transposed graph [Broder et al. 2000;
Brisaboa et al. 2009; Claude and Navarro 2010]. Their main problem is that, due to
their non-local access pattern, they succeed only if the graph fits in main memory.

Acknowledgements

We thank Rodrigo Paredes for pointing out that reordering the adjacency lists
would allow us to exploit more regularities.

REFERENCES

Adler, M. and Mitzenmacher, M. 2001. Towards compressing Web graphs. In Proc. 11th Data
Compression Conference (DCC). 203–212.

Aiello, W., Chung, F., and Lu, L. 2000. A random graph model for massive graphs. In Proc.
32th ACM Symposium on Theory of Computing (STOC). 171–180.

Asano, Y., Miyawaki, Y., and Nishizeki, T. 2008. Efficient compression of Web graphs. In
Proc. 14th Conference on Computing and Combinatorics (COCOON). LNCS 5092. 1–11.

Badue, C., Baeza-Yates, R., Ribeiro-Neto, B., and Ziviani, N. 2001. Distributed query
processing using partitioned inverted files. In Proc. 8th International Symposium on String
Processing and Information Retrieval (SPIRE). 10–20.

Bharat, K., Broder, A., Henzinger, M., Kumar, P., and Venkatasubramanian, S. 1998. The
Connectivity Server: Fast access to linkage information on the Web. In Proc. 7th World Wide
Web Conference (WWW). 469–477.

Blandford, D. 2006. Compact data structures with fast queries. Ph.D. thesis, School of Com-
puter Science, Carnegie Mellon University. Also as TR CMU-CS-05-196.

Blandford, D., Blelloch, G., and Kash, I. 2003. Compact representations of separable graphs.
In Proc. 14th Symposium on Discrete Algorithms (SODA). 579–588.

Boldi, P., Santini, M., and Vigna, S. 2008. A large time-aware web graph. SIGIR Forum 42, 2,
33–38.

Boldi, P., Santini, M., and Vigna, S. 2009. Permuting Web graphs. In Proc. 6th Workshop on
Algorithms and Models for the Web Graph (WAW). 116–126.

Boldi, P. and Vigna, S. 2004a. The WebGraph framework I: compression techniques. In Proc.
13th World Wide Web Conference (WWW). 595–602.

Boldi, P. and Vigna, S. 2004b. The WebGraph framework II: Codes for the world-wide web. In

Proc. 14th Data Compression Conference (DCC). 528.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

Fast and Compact Web Graph Representations · 29

Brisaboa, N., Ladra, S., and Navarro, G. 2009. K2-trees for compact Web graph representa-

tion. In Proc. 16th International Symposium on String Processing and Information Retrieval
(SPIRE). LNCS 5721. Springer, 18–30.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,

A., and Wiener, J. 2000. Graph structure in the Web. Journal of Computer Networks 33, 1–6,
309–320.

Buehrer, G. and Chellapilla, K. 2008. A scalable pattern mining approach to Web graph
compression with communities. In Proc. International Conference on Web Search and Web

Data (WSDM). 95–106.

Chakrabarti, D., Papadimitriou, S., Modha, D., and Faloutsos, C. 2004. Fully automatic
cross-associations. In Proc. ACM Special Interest Group on Knowledge Discovery and Data
Mining (SIGKDD).

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., and Shelat,

A. 2005. The smallest grammar problem. IEEE Transactions on Information Theory 51, 7,

2554–2576.

Chuang, R., Garg, A., He, X., Kao, M.-Y., and Lu, H.-I. 1998. Compact encodings of planar

graphs with canonical orderings and multiple parentheses. In LNCS 1443. 118–129.

Clark, D. 1996. Compact pat trees. Ph.D. thesis, University of Waterloo.

Claude, F. and Navarro, G. 2007. A fast and compact Web graph representation. In Proc.
14th International Symposium on String Processing and Information Retrieval (SPIRE). LNCS
4726. 105–116.

Claude, F. and Navarro, G. 2008. Practical rank/select queries over arbitrary sequences. In
Proc. 15th International Symposium on String Processing and Information Retrieval (SPIRE).

LNCS 5280. 176–187.

Claude, F. and Navarro, G. 2010. Extended compact web graph representations. In Algorithms

and Applications, T. Elomaa, H. Mannila, and P. Orponen, Eds. Lecture Notes in Computer
Science, vol. 6060. Springer, 77–91.

Cormen, T. H., Leiserson, C. E.,Rivest, R. L., and Stein, C. 2001. Introduction to Algorithms,
2nd ed. MIT Press and McGraw-Hill.

Deo, N. and Litow, B. 1998. A structural approach to graph compression. In Proc. of the 23th
MFCS Workshop on Communications. 91–101.

Donato, D., Laura, L., Leonardi, S.,Meyer, U.,Millozzi, S., and Sibeyn, J. 2006. Algorithms

and experiments for the Webgraph. Journal of Graph Algorithms and Applications 10, 2, 219–
236.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3, 2, article 20.

Fink, A. and Voß, S. 1999. Applications of modern heuristic search methods to pattern se-
quencing problems. Computers & Operations Research 26, 17–34.

Golynski, A., Munro, I., and Rao, S. 2006. Rank/select operations on large alphabets: a tool for
text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).

368–373.

González, R. and Navarro, G. 2007. Compressed text indexes with fast locate. In Proc. 18th

Symposium on Combinatorial Pattern Matching (CPM). LNCS 4580. 216–227.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

He, X., Kao, M.-Y., and Lu, H.-I. 2000. A fast general methodology for information-theoretically
optimal encodings of graphs. SIAM Journal on Computing 30, 838–846.

Hu, T. and Tucker, A. 1971. Optimal computer-search trees and variable-length alphabetic
codes. SIAM Journal of Applied Mathematics 21, 514–532.

Jacobson, G. 1989. Succinct static data structures. Ph.D. thesis, Carnegie Mellon University.

Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. 1999. The Web
as a graph: Measurements, models, and methods. In Proc. 5th Annual International Conference

on Computing and Combinatorics (COCOON). LNCS 1627. 1–17.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

30 · F. Claude and G. Navarro

Kleinberg, J. M. 1999. Authoritative sources in a hyperlinked environment. Journal of the

ACM 46, 5, 604–632.

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. 1999. Extracting large scale

knowledge bases from the Web. In Proc. 25th Conference on Very Large Data Bases (VLDB).
639–650.

Larsson, J. and Moffat, A. 2000. Off-line dictionary-based compression. Proceedings of the

IEEE 88, 11, 1722–1732.

Munro, I. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and

Theoretical Computer Science (FSTTCS). LNCS 1180. 37–42.

Munro, I. and Raman, V. 1997. Succinct representation of balanced parentheses, static trees

and planar graphs. In Proc. 38th Symposium on Foundations of Computer Science (FOCS).
118–126.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-
veys 39, 1, article 2.

Raghavan, S. and Garcia-Molina, H. 2003. Representing Web graphs. In Proc. 19th Interna-
tional Conference on Data Engineering (ICDE). 405.

Raman, R., Raman, V., and Rao, S. S. 2002. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In ACM-SIAM 13th Symposium on Discrete Algorithms
(SODA). 233–242.

Randall, K., Stata, R., Wickremesinghe, R., and Wiener, J. 2001. The LINK database: Fast
access to graphs of the Web. Tech. Rep. 175, Compaq Systems Research Center, Palo Alto,
CA.

Rytter, W. 2003. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science 302, 1-3, 211–222.

Saito, H., Toyoda, M., Kitsuregawa, M., and Aihara, K. 2007. A large-scale study of link
spam detection by graph algorithms. In Proc. 3rd International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb). ACM Press.

Sakamoto, H. 2005. A fully linear-time approximation algorithm for grammar-based compres-

sion. Journal of Discrete Algorithms 3, 2-4, 416–430.

Shieh, W., Chen, T., Shann, J., and Chung, C. 2003. Inverted file compression through docu-

ment identifier reassignment. Information Processing & Management 39, 1, 117–131.

Suel, T. and Yuan, J. 2001. Compressing the graph structure of the Web. In Proc. 11th Data

Compression Conference (DCC). 213–222.

Tomasic, A. and Garcia-Molina, H. 1993. Performance of inverted indices in shared-nothing

distributed text document information retrieval systems. In Proc. 2nd International Conference
on Parallel and Distributed Information Systems (PDIS). 8–17.

Vitter, J. S. 2006. Algorithms and data structures for external memory. Foundations and Trends
in Theoretical Computer Science 2, 4, 305–474.

Wan, R. 2003. Browsing and searching compressed documents. Ph.D. thesis, Dept. of Computer
Science and Software Engineering, University of Melbourne.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE
Transaction on Information Theory 23, 337–343.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory 24, 5, 530–536.

ACM Transactions on the Web, Vol. 1, No. 1, 06 2009.

