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Abstract

We introduce a new probabilistic proximity search algorithm for range andK-nearest neighbor (K-

NN) searching in both coordinate and metric spaces. Although there exist solutions for these problems,

they boil down to a linear scan when the space is intrinsically high-dimensional, as is the case in many

pattern recognition tasks. This, for example, renders theK-NN approach to classification rather slow

in large databases.

Our novel idea is to predict closeness between elements according to how they order their distances

towards a distinguished set of anchor objects. Each elementin the space sorts the anchor objects from

closest to farthest to it, and the similarity between ordersturns out to be an excellent predictor of the

closeness between the corresponding elements.

We present extensive experiments comparing our method against state-of-the-art exact and approxi-

mate techniques, both in synthetic and real, metric and non-metric databases, measuring both CPU time

and distance computations. The experiments demonstrate that our technique almost always improves

upon the performance of alternative techniques, in some cases by a wide margin.

I. INTRODUCTION

The classical Pattern Recognition process has three main stages: segmentation, feature ex-

traction, and classification [29]. Segmentation consists of extracting the individual objects from

the digitalized data. Feature extraction consists in mapping the digital objects onto a (usually

high-dimensional) vector space, where each coordinate represents the degree of presence of a

certain feature in the object. Classification consists of assigning each object to one out of a set

of predefined classes of objects. This model encompasses concrete pattern recognition tasks such

as speech recognition, speaker identification, signature matching, handwriting recognition, face

recognition, biometric identification, and so on [22].

Feature extraction converts the original classification problem into a geometric problem.

Objects in the same class tend to be spatially close if the features are selected properly. The

most popular classification techniques, such as support vector machines, neural networks, orK

nearest neighbors, are defined in terms of geometry. Among those,K nearest neighbors (K-NN)

classifiers are attractive because the training is implicit.

The K-NN approach translates the problem of classification into aproximity searchproblem

(find theK representative objects closest to a new given element) in a high-dimensional feature
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space. Unfortunately, current methods for proximity searching suffer from the so-calledcurse of

dimensionality[16]: Any method for proximity searching, no matter how wellit works in low

dimensionalities, ends up scanning the whole set of objectsin high dimensionalities. Dimen-

sionality reduction techniques are effective and well-known, but they pose an extra overhead on

the system when the data isintrinsically high-dimensional, and the classification accuracy will

drop if the distances in the lower dimensional space are not well preserved. That is, the data

will be miss-classified when using aK-NN approach in a mapped space distorting the original

distances.

To avoid mapping onto a lower dimensional space, an abstractmetric could be defined

among objects (e.g., the edit distance or dynamic time warping to match sequences) and can

be transparently used as a black box in aK-NN classifier. In some cases this is preferred over

either mapping onto a vector space (to classify with a neuralnetwork) or defining a suitable

kernel function (to classify with a kernel-based support vector machine).

In the so-calledmetric spaces, intrinsic dimensionality can be defined in many ways, for

example as the minimum dimensionality of a vector space ontowhich the metric space objects

can be mapped without distorting much their pairwise distances. High-dimensional metric spaces

have a concentrated histogram of distances, and just as on high-dimensional vector spaces, no

proximity search algorithm can avoid comparing the query against all of the database.

Apart from classification, there are many other applicationareas for proximity searching:

searching for similar objects in multimedia databases, searching for similar documents in in-

formation retrieval, searching for similar biological sequences in computational biology, data

prediction, correction, or compression in signal processing, and so on. In all cases, the general

model is that of a black-box database of objects that can be preprocessed so as to answer

proximity queries against new objects that are given later.The only tool to obtain information

from the objects is the computation of their distance towards other objects. The curse of

dimensionality shows up in all these applications as well, in many cases rendering index-based

methods as bad as a linear scan over the database or even worse.

Such a linear scan does not scale well when the set of objects to search is large or the

distance function is computationally expensive. Different relaxations on the precision of the
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result have been proposed in order to obtain a computationally feasible solution in those cases.

This is calledinexact proximity searching, as opposed to the classicalexact proximity searching.

Inexact proximity searching is reasonable in many applications because the feature-extraction

or the metric-space modelizations already involve an approximation to reality, and therefore a

second approximation at search time is usually acceptable.

In the literature we find basically two alternatives for inexact proximity searching. A first

one uses a distance relaxation parameter: It is ensured thatthe distance to the nearest neighbor

answer they find is at most1+ε times the distance to the true nearest neighbor. This corresponds

to approximation algorithms in the usual algorithmic sense, and is considered in depth in [41],

[16], [18]. A second alternative takes a probabilistic approach, ensuring that the answer of the

algorithm is correct with high probability. This corresponds to probabilistic algorithms in the

usual algorithmic sense. A generic method to convert exact into probabilistic algorithms is studied

in [14], [10].

In this paper we present a new probabilistic proximity search algorithm for metric spaces

(which include vector spaces as a particular case). The central idea is to predict the closeness

between any two objects in a metric space by comparing the waythese two objects order their

distances towards a set of anchor objects calledpermutants. The index does not store any actual

distance, but just permutations of the anchor objects as perceived by each database element.

We show that the similarity among permutations is a remarkably good predictor of the

proximity among the corresponding objects. Thus, the database can be traversed from the

permutation most to the least similar to the permutation of the query object, and we expect

to find early most of the relevant answers.

The probabilistic algorithm that results from traversing agiven percentage of the database and

returning the closest elements seen up to then, is extremelyefficient and outperforms any existing

alternative we are aware of. This is remarkable because there already exist very successful

probabilistic techniques. We also tested our technique over non-metric databases, using quasi-

distances where the triangle inequality does not hold, and found that the retrieval effectiveness

is comparable to that on metric databases.
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II. BASIC CONCEPTS ANDRELATED WORK

A. Basic Terminology

Formally, the proximity searching problem may be stated as follows: There is a universe

X of objects, and a nonnegativedistance functiond : X × X −→ R
+ defined among them.

The distance satisfies the axioms that make the set ametric space: reflexivity (d(x, x) = 0),

strict positiveness (x 6= y ⇒ d(x, y) > 0), symmetry (d(x, y) = d(y, x)) and triangle inequality

(d(x, z) ≤ d(x, y) + d(y, z)). This distance is assumed to be expensive to compute (think, for

instance, in comparing two fingerprints). We have a finitedatabaseU ⊆ X, of sizen, which is a

subset of the universe of objects. The goal is to preprocess the databaseU to efficiently answer

(i.e., with as few distance computations as possible)range queriesandK-nearest neighbor (K-

NN) queries. Range queries are expressed as(q, r) (a point inX and a tolerance radius), which

should retrieve all the database points at distancer or less fromq, i.e., {u ∈ U, d(u, q) ≤ r}.

On the other hand,K-nearest neighbor queries retrieve theK elements ofU that are closest to

q.

Most of the existing approaches to solve the search problem areexact algorithmswhich retrieve

exactly the elements ofU as specified above. In [16], [27], [38], [44] most of those approaches

are surveyed and explained in detail. It is usually easier todesign range search algorithms, and

then apply standard techniques to deriveK-NN search algorithms from those.

B. Inexact Proximity Searching

In this work we are interested in inexact algorithms, which relax the condition of delivering

the exact solution. This relaxation uses, in addition to thequery, aprecision parameterε to

control how far away (in some sense) can the outcome of the query be from the correct result.

Approximation algorithms are surveyed in depth in [41]. An example is [4], which proposes a

data structure for vector spaces under Minkowski metricsLs. The structure, called the BBD-tree,

is inspired inkd-trees and can be used to find “(1 + ε) nearest neighbors”: instead of findingu

such thatd(u, q) ≤ d(v, q) ∀v ∈ U, they findu∗ such thatd(u∗, q) ≤ (1 + ε)d(v, q) ∀v ∈ U.

The essential idea behind this algorithm is to locate the query q in a cell (each leaf in the tree

is associated with a cell in the decomposition). Every pointinside that cell is processed so as to
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obtain the nearest neighboru of q within the cell. The search continues with neighboring cells and

stops when the radius of a ball centered atq and intersecting any cell not yet considered exceeds

d(q, u)/(1 + ε). The query time isO(⌈1 + 6D/ε⌉DD log n), whereD is the dimensionality of

the space.

Probabilistic algorithms have been proposed both for vector spaces [4], [43], [41], [23] and

for general metric spaces [20], [18], [14], [10]. We survey afew of them.

In [43], the data structure is a standardkd-tree. The author uses “aggressive pruning” to

improve the performance. The idea is to increase the number of branches pruned at the expense of

losing some candidate points in the process. This is done in acontrolled way, so the probability of

success is always known. The data structure is useful for finding limited-radius nearest neighbors,

that is, nearest neighbors within a fixed distance to the query.

In [23] the distance between two vectors is approximated by aconvex combination of ashape

measure of the vectors and their magnitudes. The shape measure has some resemblances with our

technique, as they sort the coordinates of vectors by increasing value. Yet, our method applies

to the more general metric spaces, and does not use any equivalent to the magnitudes.

In [20], the author chooses a “training set” of queries and builds a data structure able to answer

correctly only queries belonging to the training set. The idea is that this setup is enough to answer

correctly, with high probability, an arbitrary query. Under some probabilistic assumptions on the

distribution of the queries, it is shown that the probability of not finding the nearest neighbor

is O((log n)2/k), wherek can be made arbitrarily large at the expense ofO(knα) space and

O(kα log n) expected search time. Hereα is the logarithm of the ratio between the farthest and

the nearest pairs of points in the union ofU and the training set.

In [10], the authors use a technique to obtain probabilisticalgorithms that is relevant to this

work. They use different techniques tosort the databaseaccording to somepromise value. As

they traverse the database in such order, they obtain more and more relevant answers to the query.

In other words, given a limited amount of work allowed, the algorithm finds each correct answer

with some probability, and it can improve the answer incrementally if more work is allowed. A

good database ordering is one that obtains most of the relevant answers by traversing a small

fraction of the database. Thus, the problem of finding a good probabilistic search algorithm
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translates into finding a good ordering of the database givena queryq. Our contribution in this

paper falls within this general approach.

Finally, there are approaches that combine approximation and probabilistic techniques, such

as the PAC (probably approximately correct) method [17]. This is also the case of [14], which

present a general method based on stretching the triangle inequality.

C. Indexing

All metric space search algorithms rely on anindex, that is, a data structure that maintains

some information on the database in order to save some distance evaluations at search time.

There exist two main types of data organizations [16], whichwe cover next.

1) Pivoting Schemes:A pivot is a distinguished database element, whose distance to some

other elements is precomputed and stored in an index. Imagine that we have precomputedd(p, u)

for some pivotp and everyu ∈ U. At search time, for a range query with radiusr, we compute

d(p, q). Then, by the triangle inequality,d(q, u) ≥ |d(p, q)−d(p, u)|, so if |d(p, q)−d(p, u)| > r

we know thatd(q, u) > r, thusu can be filtered out without need of computing distanced(q, u).

The most basic pivoting scheme choosesk pivots p1 . . . pk and computes all the distances

d(pi, u), u ∈ U, into a table ofkn entries. Then, at query time, all thek distancesd(pi, q)

are computed and every elementu such thatD(q, u) = maxi=1...k |d(pi, q) − d(pi, u)| > r is

discarded. Finally,q is compared against the elements not discarded.

As k grows, we have to pay more comparisons against pivots, butD(q, u) becomes closer to

d(q, u) and more elements may be discarded. It can be shown that thereis an optimum number

of pivotsk∗, which grows fast with the dimensionality and becomes quickly unreachable because

of memory limitations. In all but the easiest metric spaces,one simply uses as many pivots as

memory permits. There exist many variations over the basic idea, including different ways to

store the table ofkn entries to reduce extra CPU time, e.g. [13], [11], [32], [5],[12].

Several tree data structures are built on the same pivoting concept, e.g. [42], [9], [30]. In most

of them, a pivotp is chosen as the root of a tree, and its subtrees correspond toranges ofd(p, u)

values, being recursively structured. In some cases the exact distancesd(p, u) are not stored, just

the range can be inferred from the subtree the elementu is in. Albeit this reduces the accuracy

of the index, the tree usually takesO(n) space instead of theO(kn) needed withk pivots.

7



Moreover, every internal node is a partial pivot (which knows distances to its subtree elements

only), so we actually have many more pivots (albeit local andwith coarse data). Finally, the

trees can be traversed using sublinear extra CPU time.

Different tree variants arise according to the tree arities, the way the ranges of distances are

chosen (trying to balance the tree or not), how local are the pivots (different nodes can share

pivots, which do not belong anymore to the subtree), the number of pivots per node, and so on.

Very little is known about which is best. For example, the golden rule of preferring balanced

trees, which works well for exact searching, becomes a poorer choice against unbalancing as

the dimensionality increases. For very high dimensional data a good structure is almost a linked

list (i.e., a degenerate tree) [15]. Also, little is known about how to choose the pivots.

2) Local Partitioning Schemes:Another scheme builds on the idea of dividing the database

into spatially compact groups, meaning that the elements ineach group are close to each other.

A representative is chosen from each group, so that comparing q against the representative has

good chances of discarding the whole group without further comparisons. Usually these schemes

are hierarchical, so that groups are recursively divided into subgroups.

Two main ways exist to define the groups. One can define “centers” with a covering radius,

so that all elements in its group are within the covering radius distance to the center, e.g. [19].

If a group has centerc and covering radiusrc then, if d(q, c) > r + rc, the whole group can be

discarded. The geometric shape of the above scheme corresponds to a ball centered aroundc.

In the second approach, e.g. [8], [33], a set of centers is chosen and every other point is added

to the group of its closest center. At query time, ifq is closest to centerci, andd(q, cj)− r >

d(q, ci) + r, then we can discard the whole group ofcj . The geometric shape in this approach

corresponds to a Dirichlet domain of the space (a generalization of the Voronoi diagram for

metric spaces), without overlaps between groups.

III. A N EFFECTIVE INDEX BASED ON ORDERING PERMUTATIONS

Since the objects in the metric space are seen as black boxes from which we can only compute

their distances toward other objects, all indexes in the literature are bound to store distance

information. Actually, the most information an index can store is then × n matrix of all the

distances among objects inU. This is actually what algorithm AESA [40], a pivot-based scheme,
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Fig. 1. On the left, the matrix of all distances inU. On the right, on top, a pivot-based algorithm chooses some columns of the
distance matrix. On the bottom right, our algorithm only records the order of the pivots, from closest to farthest to the element.
Actually, only the permutation is stored, so for example thesecond row is stored as 1,3,2.

stores as its index. This makes AESA an unbeatable exact algorithm, yet usually impractical

because of its high storage consumption.

The design of metric space indexes can be regarded as a quest to store the most useful data

from the distance matrix within bounded space. Pivot-basedindexes storek columns from the

full distance matrix, that is, for each element they store its distances tok fixed pivots. Clustering

algorithms store only some of the smallest distances in the matrix, that is, for each cluster center

they store the distances to the elements in that cluster. Some algorithms do not store the actual

distances but just a range containing them, so as to store more distances with less precision.

Within this framework, our approach can be stated as follows: We choosek columns from the

distance matrix and store, for each row, the order in which the columns are read to obtain the

distances in increasing order.Compared to a classical pivot-based scheme, we do not store the

exact distances, but just the order in which each database element sees the pivots, from closest

to farthest to the element. That is, to each element we associate apermutationof the k pivots.

Figure 1 illustrates.
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Just as two close elements will have similar distances to pivots, close elements will see the

pivots in similar order of closeness, and thus will have similar permutations. A difference in the

order between two permutations will hint that the corresponding elements are not too close to

each other. However, those differences do not permit us to prove how far away from the query

is a database element, thus we will obtain a probabilistic algorithm.

A. Overview of Our Method

We need a bit of terminology. LetP ⊆ U be a set of distinguished objects from the database,

called permutants. Each element of the space,x ∈ X, defines apermutationΠx, where the

elements ofP are written in increasing order of distance tox. Ties are broken using any consistent

order, for example the order of the elements inP.

Definition 1: Let P = {p1, p2, . . . , pk} and x ∈ X. Then we defineΠx as a permutation of

(1 . . . k) so that, for all1 ≤ i < k it holds eitherd(pΠx(i), x) < d(pΠx(i+1), x), or d(pΠx(i), x) =

d(pΠx(i+1), x) andΠx(i) < Πx(i + 1).

We are now ready to describe the indexing process, the index structure, and the search process.

1) Indexing: Our index will be just the permutationsΠu for everyu ∈ U, with respect to a

set of permutantsP = {p1, . . . , pk} ⊆ U.

The construction of the index is carried out as follows:

1) We choose a parameterk, which is the number of permutants to use. The largerk, the

more effective the index, but it will need more space (kn⌈log2 k⌉ bits) and also sorting

the database to traverse it in the desired order will be slower.

2) We chooseP = {p1, . . . , pk}, a set ofk permutants, at random fromU. We will show in

Section IV that other selection heuristics of linear-time complexity make no difference in

the effectiveness of the indexing algorithm.

3) For eachu ∈ U, we computed(u, pi) for all pi ∈ P, and store permutationΠu according

to Definition 1.

The result is a table ofn rows (one per database element) andk columns (one per permutant).

Each cell needs⌈log2 k⌉ bits to store one permutation at each row. The indexing cost is kn

distance computations plusO(nk log k) CPU time to sort all the permutations.
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2) Searching:At query time we computeΠq and traverseU in the order induced byΠq. In

this order an elementu will be smaller than an elementv if Πu is more similar toΠq thanΠv.

As we expect that elements with permutations more similar toΠq will also be spatially closer

to q, we will review them earlier.

The search is carried out as follows:

1) We computed(q, pi) for all pi ∈ P, and compute permutationΠq according to Definition 1.

2) Given a similarity measureS between permutations, we sortU according toS(Πu, Πq)

(thoseu ∈ U with smaller S() value go first). Given that we will need just a (small)

subset of the first elements after this sorting, we have used an incremental sorting method

[36], which gives the elements in order as we need them. Othermethods such as a full

QuickSort or BucketSort were usually inferior.

3) We traverse the sorted elementsu ∈ U and computed(u, q) for each suchu. For range

queries, we report anyu such thatd(u, q) ≤ r. For K-NN queries, we remember theK

database elements that yielded the smallestd(q, u) values so far.

4) We stop the scanning ofU at some point, and then deliver the result as obtained up to

then, hoping that it will be close to the result we would obtain by a full scan.

Say that we are willing to traversef ·n elements ofU. The total time complexity of the search

process isk distance computations andO(k log k) CPU time for step 1;O(kn) CPU time to

compute theS() values (we see later that the measureS we use can be computed inO(k) time)

and O(n + fn log n) CPU time for the incremental sorting at step 2; and finallyf · n further

distance computations for step 3. This adds upO(kn+ fn logn) CPU time andk + fn distance

computations. We tried some alternatives to avoid computing S() for the whole database, but

the result was not practical.

The stopping criterion deserves some discussion. The simplest is to scan a fraction0 < f < 1

of the database, so that the amount of work is fixed beforehandand we have no control over the

quality of the answer. Alternatively, we could like to fix an expected fraction0 < p < 1 of the

correct answer retrieved. ForK-NN queries, this can be obtained by previously building plots

like those in the Appendix with a set of training queries. Those plots depend on the space but

not onK. Later, given aK-NN query, we consider in the plot the points belowy = K/n×100%
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in they-axis. Now we find the pointx in thex-axis so that a fractionp of those points are to the

left of x. This x value is the fraction of the database we should traverse to obtain on average a

fractionp of theK correct nearest neighbors. For range queries the mechanismis similar, using

a plot that on they axis gives the distance to the points found, andy = r.

B. Measuring Similarity between Permutations

It remains to specify how we measure the difference between two permutations. We use

Spearman Rho [24], denotedSρ(Πq, Πu), as our similarity measure: We sum the squares of

differences in the relative positions of each element in both permutations. That is, for each

pi ∈ P we compute its position inΠu and Πq, namelyΠ−1
u (i) and Π−1

q (i), and sum up the

squares of the differences in the positions. A formal definition follows.

Definition 2: Given permutationsΠu andΠq of (1 . . . k), Spearman Rho is defined as1

Sρ(Πu, Πq) =
∑

1≤i≤k

(

Π−1
u (i)− Π−1

q (i)
)2

.

Let us give an example ofSρ(Πq, Πu). Let Πq = 6, 2, 3, 1, 4, 5 be the permutation of the query,

andΠu = 3, 6, 2, 1, 5, 4 that of an elementu. A particular elementp3 in permutationΠu is found

two positions off with respect to its position inΠq. The differences between permutations are:

1− 2, 2− 3, 3− 1, 4− 4, 5− 6, 6− 5, and the sum of their squares isSρ(Πq, Πu) = 8.

There are other similarity measures between permutations [24], such as Kendall Tau and Spear-

man Footrule. Kendall Tau is defined as follows: For every pair pi, pj ∈ P, if pi andpj are in the

same order inΠu andΠq, (that isΠ−1
u (i) < Π−1

u (j)⇔ Π−1
q (i) < Π−1

q (j)) thenKpi,pj
(Πu, Πq) =

0; otherwise it is 1. Kendall Tau is given byK(Πu, Πq) =
∑

pi,pj∈P
Kpi,pj

(Πu, Πq), which turns

out to be equal to the number of exchanges needed by a bubble sort to convert one permutation

into the other. The Spearman Footrule between two permutations is

F (Πu, Πq) =
∑

1≤i≤k

|Π−1
u (i)− Π−1

q (i)|.

1The actual definition in [24] corresponds to
p

Sρ(Πq, Πu) in our terminology. We omit the square root because it is
monotonous and hence does not affect the ordering.
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Fig. 2. Using different similarity measures between permutations (log scale). The space is a random uniformly distributed set
of 10,000 points in the unitary cube of dimension 128 with Euclidean distance. 256 permutants were used.

In Figure 2 we show thatF () is not as good asSρ() for our purposes (similar results were

obtained in other metric spaces). On the other hand,K() performs similarly toSρ(), but it is

more cumbersome to compute. Thus we stick to Spearman Rho in the sequel.

We promised thatSρ would be computable in linear time. According to Definition 2, this is

easy if we store theinversepermutationsΠ−1
u andΠ−1

q . As we prove next, it is enough to invert

one of them to computeSρ in O(k) time. Therefore we actually useΠ−1
q instead ofΠq.

Lemma 1:Definition 2 is equivalent to

Sρ(Πq, Πu) =
∑

1≤j≤k

(

j −Π−1
q (Πu(j))

)2
.

Proof: It is a matter of callingj = Π−1
u (i) and summing in different order.

Algorithm 1 gives the complete pseudocode for range searching. It receives the query(q, r)

and the fraction of the database0 < f < 1 to examine. The permutationsΠu, as well as the setsU

andP, are global variables. The database and theSρ values are stored as tuples〈ui, Sρ(Πui
, Πq)〉

in an arrayA, which is computed and then partially traversed to retrievethe (approximate)

answer. For simplicity we describe the algorithm as fully sorting A, not incrementally.
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Algorithm 1 Sort-rangeQuery(q,r,f )
1: INPUT: q is a query andr its radius,f is the fraction of the database to traverse.
2: OUTPUT: Reports a subset of thoseu ∈ U that are at distance at mostr to q.
3: Let A[1, n] be an array of tuples andU = {u1, . . . , un}
4: ComputeΠ−1

q

5: for i← 1 to n do
6: A[i]← 〈ui, Sρ(Πui

, Πq)〉
7: end for
8: SortIncreasing(A) // by second component of tuples
9: for i← 1 to f · n do

10: Let A[i] = 〈u, s〉
11: if d(q, u) ≤ r then
12: Reportu
13: end if
14: end for

IV. EXPERIMENTAL EVALUATION

In this section we evaluate and compare the performance of our technique in different metric

spaces, such as synthetic vectors on the unitary cube and clustered data (multivariate Gaussian

distribution), as well as real-life databases like face images and text documents. We also tested the

algorithm in non-metric spaces, where the triangle inequality does not hold. All the experiments

reported excellent results for our method. The experimentswere carried out on a Intel Xeon

workstation with 2.6 GHz CPU and 4GB of RAM with Red Hat Linux,running kernel 2.4.20-9.

A. Unitary Cube

We made some experiments using uniformly distributed sets of 10,000 points in the unitary

cube, in 128, 256, 512 and 1024 dimensions, under Euclidean distance. As we can precisely

control the dimensionality of the space, we use this experiment to show how the predictive power

of permutants varies with the dimensionality, compared with other methods. We tested range

queries with a search radius that retrieved on average 0.05%of the database (that is, 5 points).

We emphasize that no exact algorithm can avoid a linear scan of the database when we go over

dimensionality 30 with uniformly distributed points, onlyprobabilistic algorithms work.

We consideredk = 128 and k = 256 permutants in our experiments. We compare our

technique with a standard pivot-based method using the sameamountk of pivots, even though
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Fig. 3. Performance of ours versus pivot-based probabilistic algorithms in different dimensionalities. On the left weuse 128
pivots/permutants, and 256 on the right. Series with the word piv refer to the standard pivot-based algorithm.

this represents at least 4 times the memory we use for our algorithm. If we used the same amount

of memory for the two algorithms, the comparison would be even more favorable to us.

The pivot-based probabilistic alternative we tested [10] calculates, for each database element

u, estimateL∞(q, u) = maxp∈P |d(q, p)− d(p, u)|. The database is then sorted by increasingL∞

value and compared against the query in this order.

Figure 3 shows the comparison. Thex axis represents the percentage of the database examined,

and they axis is the percentage of the actual answer that was retrieved (this estimates the

probability of returning a given answer element).

Retrieving 90% of the answer is good enough for most proximity searching applications. With

128 pivots, in dimensionality 128, 60% of the database must be examined to retrieve 90% of the

results. For our permutation-based algorithm, with 128 permutants we must examine only 10%

of the database to retrieve 90% of the outcome. This raises to99% if we use 256 permutants.

With 256 pivots, instead, one needs to compare 85% of the database to retrieve 99% of the

answers.

In general we observe that, as the dimensionality grows, a larger fraction of the database must

be examined to obtain a given fraction of the result. This observation is true for the pivot-based

algorithm as well as for ours. Yet, the pivot-based algorithm is more affected by dimensionality

than ours. Note that an algorithm that traverses the database in random order would achieve a
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Fig. 4. Comparison betweenL1 andL∞ Minkowski metrics to sort the database with pivot-based algorithms, using 256 pivots.

straight line from the bottom-left to the top-right corner,that is, it needs to examine 90% of the

database to obtain 90% of the answer. It can be seen that pivot-based algorithms actually behave

almost randomly on very high dimensionalities.

Note that in this synthetic data we may be using more permutants than space coordinates.

Since the permutation similarity is more expensive to compute than plain Euclidean distance,

this may seem nonsense. We remark that this experiment is just to demonstrate the performance

of the technique in terms of distance computations. Real data may have thousands of coordinates

or no coordinates at all. We include real CPU times for all theother metric spaces that follow.

One might wonder whether theL∞ distance used by the pivot-based probabilistic algorithm

is a good predictor. Although there are good reasons to useL∞ [10], one can also argue in favor

of L1: AESA, the best exact algorithm [40], usesL1 metric as the oracle to select next-best

candidates for pruning the database, that is,L1(q, u) =
∑

p∈P
|d(q, p)− d(p, u)|. We tested in

Figure 4 theL1 distance to sort the database for the probabilistic algorithm based on pivots,

versus theL∞ choice used above. It can be seen that the results are mixed. In the first part

(e.g., scanning less than 20% of the database in dimensionality 128) distanceL1 retrieves a

larger percent of the database compared toL∞. Yet, once a turn point is reached, the result is

reversed. The same behavior is observed in all the dimensionalities considered. We emphasize

that, anyway, the results are very far from what we obtain with our new technique.

In the Appendix we display the power of the sorting methods using clouds of points. These
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Fig. 5. Retrieving the nearest neighbor on a 1024-dimensional Gaussian space with 32 clusters, using 32 (left) and 128 (right)
pivots/permutants. We show the retrieval percentage versus the total time to obtain the results.

clouds show how often our technique put nearest neighbors inthe first positions.

B. Gaussian Spaces

Uniformly distributed data is full-dimensional. Real datasets behave more like clustered data,

which is easier to index. We tested our algorithm on a Gaussian space. The data was generated

for a 1024-dimensional space[0, 1]1024 with 10,000 points obtained from a multivariate Gaussian

distribution with 32 clusters (centers). The variance of the center distribution was 0.09, and the

variance inside the clusters was 0.01.

Figure 5 shows experiments of the CPU time needed for retrieving the nearest neighbor using

32 and 128 pivots/permutants. Notice that the ordering using permutations retrieves 100% of the

answer faster than the others. On the left, using 32 pivots/permutants, ordering using permutations

retrieves 100% of the answer in just 0.03 seconds, while the others require 0.17 seconds.

C. Face Recognition

In many real-world scenarios, objects are modeled as very high-dimensional feature vectors.

Spatial access techniques cannot be used efficiently in thiscase, due to the curse of dimensional-

ity. An alternative is to work without coordinates, using the distance just as a black box, that is,

resorting to the metric space model. Yet, in several cases the resulting intrinsic dimensionality

is still very high and no exact search method can avoid an exhaustive scan of the database.
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In this section we consider the FERET database [37], which consists of 762 grayscale frontal

face images of 254 different persons (3 images per person). The pictures are of128 × 128

pixels, that is, each face is represented by 16,384 features. The query set has 254 images (1

image per person). To speed up searches, the vectors were transformed by eigenspace methods,

which project the input faces onto a 761-components (coordinates) space where the recognition

is carried out.

We considerK-NN search, as this is the most frequent query in this application. For the

probabilistic algorithms, we measure the number of distance computations performed (averaged

over all the queries) until the algorithms obtain the correct K nearest neighbors. We used all

the 254 queries for eachK value tested.

Since the size of the database allows it, we included AESA [40] in the comparison, as it

is considered a baseline to compare exact searching algorithms. AESA uses the entire distance

matrix to answer queries, and it is the best exact algorithm.As the distance is Euclidean, we

also experiment with akd-tree [7] as an exact search method that attempts to reduce CPU time.

Figure 6 (top) shows the results, using 64 permutants. It canbe seen that the best exact

technique (AESA) requires scanning 30%–40% of the databaseto find the nearest neighbor, and

this quickly raises to 80%–90% for largerK. Kd-trees need 50% to find the nearest neighbor.

Our technique performs better, scanning around 10% of the database on average to find the

nearest neighbor, and 30%–40% for 20 nearest neighbors. Forthe probabilistic algorithm based

on pivots we chose theL1 distance to sort the database. It requires to traverse a larger fraction

of the database to achieve the same result of permutants (40%–50% forK = 20 neighbors). The

results for theL∞ distance were not included as they are worse than forL1.

Figure 6 (bottom) shows real CPU times. It can be seen that, although permutations pose a

CPU time overhead higher than pivots, the result is still advantageous in terms of CPU time.

(Note that AESA is more expensive in practice than a sequential scan.)

Figure 7 displays the results in a form more similar to previous plots. We show the percentage

of queries successfully solved (that is, all theirK nearest neighbors are found) after traversing

a given percentage of the database. We also display therelative error ratio between the distance

to the K-th nearest neighbor found divided by the distance to the true K-th nearest neighbor
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Fig. 6. Comparing techniques over a real database of faces. We show the percentage of the database compared (top) and CPU
time (bottom) to find the correctK nearest neighbors, using 64 pivots/permutants. On the leftwe work with the original space;
on the right with the projected space.

(computed only over the unsuccessful queries). It can be seen that, even when the algorithm

fails to find the true answer, the approximation it finds is rather good.

Again, in the Appendix we display the power of the sorting methods for this database.

D. Documents

A central problem in Information Retrieval consists in finding documents relevant to a given

query. The relevance is measured using a specialized distance definition. Documents are rep-

resented as unitary vectors, where every coordinate corresponds to a term, and the value of a

document vector along each coordinate is proportional to the weight of the term in that document.

The number of different terms in a collection is in the order of hundreds of thousands, resulting in

a very high-dimensional vector space with the usual dimensionality curse problems. The distance
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Fig. 7. Comparing techniques over a real database of faces. On top for K = 2 and on the bottom forK = 4. On the left,
percentage of queries where all theK nearest neighbors are correctly found. On the right, relative error for those queries that
do not find all the correct neighbors.

between two documents can be taken as the angle between theirrepresenting vectors (the cosine

of this angle is a similarity measure heavily used in Information Retrieval [6]).

We used a subset of collection TREC-3 [26] to compare the performance of our approach

against the best previous results using probabilistic algorithms [10]. The database consists of

24,960 documents. We averaged 1,000 range queries chosen atrandom, with a radius retrieving

on average 0.035% of the database (9 documents). No exact algorithm performs well in this

setup: Even AESA needs to compare the query against 60% of thedatabase to solve this query.

The results can be seen in Figure 8, using 128 pivots or permutants. Permutations quickly

reach a good percentage of retrieval: We review just 2% of thedatabase to retrieve 95% of the

outcome, while the classical pivot-based algorithm (i.e.,using L∞ ordering) needs to review
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Fig. 8. Comparing our technique with others in a real database of documents. On the left, retrieval performance, on the right,
the CPU time compared against retrieval performance for allthe probabilistic algorithms.

almost 20% of the database to achieve the same retrieval performance. A pivot-based algorithm

usingL1 (not tried before as far as we know) performs almost as well aspermutations. Finally,

in [10] a method calledDynamic Betais proposed, which needs to review about 10% of the

database to reach the same retrieval performance. We note that Dynamic Beta, after paying that

10% of comparison, surpasses by far the pivot-based method,and from then on it becomes

similar to permutations.

Figure 8 (right) shows the result of a 5-NN query, this time focusing on CPU times. Again

using permutations is (slightly) faster than the others.

We again display the power of the sorting methods on this database using clouds of points in

the Appendix.

E. Non-Metric Databases

There are several real-life applications where similaritysearching has to be carried out over a

space that is not even metric, i.e., where the triangle inequality does not hold. In this case exact

proximity search algorithms are useless in general, as there is no way to prove that an element

is sufficiently far away from the queryq. A probabilistic algorithm, instead, has a chance of

still proposing an appealing order to traverse the database. A variation of this idea, forging a

monotonous transformation of the database, is indeed used in [39] as a good alternative to search

in non-metric databases.

21



In particular, our probabilistic algorithm does not make use of the triangle inequality, as it

never discards an element; it just hints which are the most promising candidates to consider first.

As such, it can be used on non-metric databases.

We apply ourK-NN algorithm over a couple of non-metric spaces, in order todemonstrate

its suitability. The first space is a synthetic uniform vector space just as those in Section IV-A

using, instead of Euclidean distance, a so-calledfractional normLp with 0 < p < 1:

Lp((x1, . . . , xD), (y1, . . . , yD)) =

(

∑

1≤i≤D

|xi − yi|
p

)
1

p

.

Fractional norms are sometimes preferred over the usual Minkowski normsL1, L2 or L∞,

because they lead to lower intrinsic dimensionality [2], [1], [21], [28]. (Please do not confuse

this norm, that is used as thed distance in the metric space, with theL1 andL∞ norms explained

in Section IV-A to sort the database. These are independent.)

Figure 9 compares the performance of our ordering based on permutations with those based

on L1 andL∞ as in previous sections. It can be seen that permutations achieve the best result,

followed by L1. The problem is easier asp grows and the space gets closer to be metric.

The second space is that of sequences usingnormalized edit distance (NED)[31], [3]. The

usual edit distance (which is a metric) favors short sequences over long ones, given the same

fraction of similarity between the two sequences. The NED counterweights this bias by dividing

the cost of a sequence of operations by the length of that sequence. The result is not anymore

a metric, but it works better in several applications.

Figure 10 shows the results over 40,000 words from a dictionary using this distance, for a

range search with radius 1. In this case, the permutations and the L1 orderings yield similar

results, superior to those ofL∞.

F. Selecting Permutants

Permutants are central to our method. Hence, it is worthy to investigate the role of permu-

tant selection. We tested heuristics based on selecting permutants with minimum or maximum

Spearman Rho in the set: We start with a set with only one element, and the next permutant
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Fig. 9. Comparing our technique with others in uniformly distributed vector spaces usingLp distance (non-metric,p < 1), to
retrieve two nearest neighbors. On topp = 0.2 and on the bottomp = 0.8; using 128 pivots on the left and 256 on the right.

will be selected minimizing (or maximizing) the sump = minui∈U

∑

pj∈P
Sp(ui, pj). This type

of heuristic has been successful to choose pivots [10]. Its complexity isO(k3n).

We show experiments in Figure 11, for uniformly distributeddata (top) and Gaussian data

(bottom), with the setup of previous sections. As can be seen, no significant improvement

is obtained with the different heuristics. In some cases random selection is even better than

the alternatives. Other experiments, choosing artificially the permutants as the centers used to

generate the Gaussian data, failed as well.
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V. CONCLUSION AND FUTURE WORK

We have presented a new method for probabilistic proximity searching in metric spaces. It

is based on comparing the proximity ordering towards a set ofdistinguished objects (called

permutants). We show that this ordering is a very good predictor of the relevance of points to

the query. This leads to a very strong probabilistic proximity search algorithm, which needs to

scan just a small fraction of the database to obtain most of the relevant answers. Our technique

is by far better than any other existing proposal we are awareof.

Our proposal is very simple to implement and has immediate applications to many pattern

recognition problems, as well as in other areas that use proximity searching and can tolerate

(very good) approximations to the exact solutions to proximity queries. One application we

have pursued was to use our technique as an oracle to choose the pivots in AESA, the best

exact proximity search algorithm: We useSρ instead ofL1 [25]. The result, iAESA, achieves

an interesting reduction over an algorithm that had standedout as unbeatable for 20 years.

Another idea we are pursuing is to use our algorithm to build approximateK-NN graphs, which

are useful for many applications including proximity searching [34]. Our preliminary results

indicate that we obtain almost always the correctK-NN graph at very low cost compared to

exact construction algorithms such as [35].

On the other hand, several aspects of our technique deserve more research. One challenge is
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Fig. 11. Different heuristics to select permutants. On top,range searching that retrieves 0.05% of the database on uniform
data. On the bottom, 1-NN on clustered data.

to reduce CPU times. Although we have shown that permutants obtain good CPU times when

the distance function is moderately expensive to compute, it might be possible to do better. In

particular, our best current solutions still take time proportional to the database size (albeit with

a small constant in practice). Another is to devise new methods to determine where to stop the

scanning so as to achieve some expected quality in the answer. Our method to do this requires

training. Maybe it is possible to use the history of the updates to the answer produced by the

current query to predict its future behavior.
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[13] E. Chávez, J.L. Marroquin, and G. Navarro. Fixed queries array: A fast and economical data structure for proximity

searching.Multimedia Tools and Applications (MTAP), 14(2):113–135, 2001.
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[15] E. Chávez and G. Navarro. A compact space decomposition for effective metric indexing.Pattern Recognition Letters,

26(9):1363–1376, 2005.
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[28] P. Howarth and S. Rüger. Fractional distance measuresfor content-based image retrieval. InProc. 27th European Conf.

on IR Research (ECIR), LNCS 3408, pages 447–456, 2005.

[29] Oxford J. Kittler, NATO ASI, editor. Computational geometric problems in pattern recognition. Pattern Recognition

Theory and Applications, 1981.

[30] I. Kalantari and G. McDonald. A data structure and an algorithm for the nearest point problem.Transactions on Software

Engineering, 9(5), 1983.

[31] A. Marzal and E. Vidal. Computation of normalized edit distance and applications.IEEE TPAMI, 15(9):926–932, 1993.
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[34] R. Paredes and E. Chávez. Using thek-nearest neighbor graph for proximity searching in metric spaces. InProc. 12th

String Processing and Information Retrieval (SPIRE), LNCS 3772, pages 127–138, 2005.
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APPENDIX: CLOUDS OF POINTS

A nice way to visualize the power of the different database sorting methods (L1, L∞, permu-

tants) advocated in [10] is to drawclouds of pointsas follows. We sort the database with either

method and plot, for thei-th point in that order (x axis) the position where the point falls if

we sort the database by actual distance to the query (y axis). The more similar the cloud to a

line from (0,0) to (100,100), the better the method predictstrue proximity. This experiment is

independent on the type of query intended, nor its radiusr or number of neighborsk to retrieve.

Figure 12 displays the results for uniformly distributed vectors, in dimension 8 (64 pivots)

and 128 (256 pivots). We aggregate 150 queries in the clouds.We can see that permutants

obtain a better database ordering. is more consistent with the true ordering by distance to the

query. This good ordering somewhat blurs for the higher dimension (curse of dimensionality),

but permutations still perform consistently better (for example,L∞ looks basically random).

As we usually are interested only in the closest elements to the query, and wish to traverse a

small percentage of the database, we obtain two zooms from the previous plots. Aprecisionplot

considers only scanning the first 10% of the database, and displays the positions of the elements

found in that traversal. Arecall plot considers, along the whole database traversal, when are the

10% closest elements found. Figure 13 displays those plots for dimension 128 (now aggregating

500 queries). It can be confirmed that the permutants behave better in both precision and recall.

Figure 14 (left) shows the clouds of points for faces, according to Section IV-C, using 64

pivots. Again, permutants deal better with this space, although the difference is not that large.

Note that, withL∞ there is a strange line close to 100% in they axis. This is a cluster, far away

from the query, which is not handled well with this ordering,but rather its elements are spread

across all the spectrum inx. Figure 15 shows the corresponding precision and recall plots.

In Figure 14 (right) we show the clouds of points for documents, according to Section IV-D,

using 128 pivots. This time the clusters in the space, and howdifferent orderings deal with

them, is more apparent. For example, there is a cluster at distance 40%–60% from the query,

which permutations leave for the end of the ordering, whereas the other methods put in the range

20%–40% of their traversal. Important data at distance below 30% of the query are considered

with L1 andL∞ ordering only when traversing 80% of the database, whereas permutants have
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found almost all of the 40% closest results after traversing40% of the database (same with

the closest 20%). The precision and recall plots in Figure 16show that permutants are by far

superior in both aspects.
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Fig. 12. Clouds of points for uniformly distributed points in dimension 8 and using 64 pivots (left) and dimension 128 using
256 pivots (right). From top to bottom,L1, L∞, and permutations.
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Fig. 13. Zooms for the clouds of points for uniformly distributed points in dimension 128 and 256 pivots. Precision plotson
the left and recall plots on the right. From top to bottom,L1, L∞, and permutations.
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Fig. 14. Clouds of points for the faces database, using 64 pivots (left) and for the documents database, using 128 pivots (right).
From top to bottom,L1, L∞, and permutations.
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Fig. 15. Precision (left) and recall (right) zooms of the clouds of points for the faces database, using 64 pivots. From top to
bottom,L1, L∞, and permutations.
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Fig. 16. Precision (left) and recall (right) zooms of the clouds of points for the documents database, using 128 pivots. From
top to bottom,L1, L∞, and permutations.
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