
A

XXS: Efficient XPath Evaluation on Compressed XML Documents

NIEVES R. BRISABOA
ANA CERDEIRA-PENA
University of A Coruña, Spain
and
GONZALO NAVARRO
University of Chile, Chile

The eXtensible Markup Language (XML) is acknowledged as the de facto standard for semi-structured data
representation and data exchange on the Web and many other scenarios. A well-known shortcoming of XML
is its verbosity, which increases manipulation, transmission, and processing costs. Various structure-blind
and structure-conscious compression techniques can be applied to XML, and some are even access-friendly,
meaning that the documents can be efficiently accessed in compressed form. Direct access is necessary to
implement the query languages XPath and XQuery, which are the standard ones to exploit the expressive-
ness of XML. While a good deal of theoretical and practical proposals exist to solve XPath/XQuery operations
on XML, only a few ones are well integrated with a compression format that supports the required access
operations on the XML data. In this work we go one step further and design a compression format for XML
collections that boosts the performance of XPath queries on the data. This is done by designing compressed
representations of the XML data that support some complex operations apart from just accessing the data,
and those are exploited to solve key components of the XPath queries. Our system, called XXS, is aimed at
XML collections containing natural language text, which are compressed to within 35%-50% of their orig-
inal size while supporting a large subset of XPath operations in time competitive with, and many times
outperforming, the best state-of-the-art systems that work on uncompressed representations.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data Compaction and
Compression; H.2.3 [Database Management]: Languages—Query languages; H.2.3 [Database Man-
agement]: Systems—Query processing; H.3.2 [Information Storage and Retrieval]: Information stor-
age—File organization; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Search process; H.3.7 [Digital Libraries]: Collection

General Terms: Algorithms, Performance

Additional Key Words and Phrases: semi-structured data, XML, XPath, compression, self-index

ACM Reference Format:
Nieves R. Brisaboa, Ana Cerdeira-Pena, and Gonzalo Navarro, 2013. XXS: Efficient XPath Evaluation on
Compressed XML Documents. ACM Trans. Inf. Syst. V, N, Article A (January YYYY), 28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

A preliminary partial version of the data structure we use appeared in Proc. ECDL’09 [Brisaboa et al. 2009].
Authors’ addresses: Nieves R. Brisaboa, Ana Cerdeira-Pena, Department of Computer Science, Univer-
sity of A Coruña, Facultade de Informática, Campus de Elviña, s/n 15071 A Coruña, Spain. {acerdeira,
brisaboa}@udc.es. Gonzalo Navarro, Department of Computer Science, University of Chile, Blanco Encal-
ada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1046-8188/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 N. R. Brisaboa et al.

1. INTRODUCTION
The eXtensible Markup Language (XML) [W3C 1998] has become a de facto standard
to represent semi-structured information, due to its flexibility and suitability for data
representation and communication between applications and services across different
platforms. As a result, increasingly larger XML document databases are stored, trans-
mitted, and manipulated in a wide range of applications.

To exploit the expressive power of XML, powerful query languages like XPath [W3C
1999] and XQuery [W3C 2010b] have been designed to allow constraint formulation
on both document content and structure. Their growing interest and the challenge of
supporting those query languages have triggered much research during the last years
aimed to provide efficient solutions, either as theoretical works or practical systems.

Systems implementing XPath/XQuery have been usually divided into two categories
(Table I illustrates some representative solutions from each one): those that follow a
streaming approach, and thus sequentially read the documents to answer each query,
and the indexed ones, which first preprocess the documents to build additional data
structures over it; these are later used to solve queries without sequentially travers-
ing the whole collection. Although streaming systems use little main memory, their
processing times are conditioned by the need to sequentially scan the data. In turn,
indexed systems may improve query times, but at the expense of increasing space re-
quirements. Yet, note that in case the space needed for the index makes it necessary to
manipulate it on disk, the efficiency of indexed approaches could be seriously degraded
by I/O transfer times.

Reducing the space usage of XML data and additional structures is crucial to fit the
indexes in memory rather than swapping out to disk, thus operating in higher and
faster levels of the memory hierarchy, using fewer machines in distributed scenarios,
or even to achieve a feasible solution at all when the memory is limited (as in mobile
devices). In addition, working with a compressed version of a document saves time
when it is transmitted through a network, when we need to access to disk looking for
a document, and more importantly, when it is processed.

A common classification of the XML compression tools regards the awareness of its
structure, which leads to the distinction between XML blind (e.g., Ziv-Lempel tech-
niques [Ziv and Lempel 1977; 1978; Welch 1984], Huffman compression [Huffman
1952; de Moura et al. 2000], PPM based methods [Cleary and Witten 1984], Dense
Codes compression [Brisaboa et al. 2007], etc.), and XML conscious compressors (some
of the most relevant are shown in Table II). The last ones are subject to a further di-
vision. Given the relevance of the XML query languages, most of the XML conscious
compressors have gone one step beyond, and provide some query support rather than
just reducing space. These tools are known as queriable compressors, in contrast with
non-queriable compressors. Some of them allow one to perform queries directly over
the compressed representation of the text (either sequentially or using indexes), while
others need to decompress the data (either fully or partially) before operating over
them1. However, despite the large amount of research developed on these issues, today
there is a stated lack of available practical solutions [Sakr 2009].

A recent research line explores representations combining compression and index-
ing, by creating so-called self-indexes [Navarro and Mäkinen 2007]. A self-index is a
compressed representation of the data that can be searched with efficiency compara-
ble to that of an indexed representation. Thus it can be regarded as a compressor that
speeds up querying, instead of slowing it down, or as an index that reduces the space
usage, instead of increasing it.

1A complete review can be found in Cerdeira-Pena [2013].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:3

Table I. State-of-the-art solutions for XML storage and querying: General systems

Streaming Indexed
Sy

st
em

s Saxon [Kay 2008], Galax [Fernández et al. 2003]
SPEX [Olteanu 2007], XSQ [Peng and Chawathe 2005], eXist [Meier 2002], Qizx/DB [XML Mind products 2008],
GCX [Schmidt et al. 2007] MonetDB/XQuery [Boncz et al. 2006]

Table II. State-of-the-art solutions for XML storage and querying: XML conscious compressors

Non-queriable Queriable

X
M

L
C

om
pr

. Millau [Girardot and Sundaresan 2000], XGrind [Tolani and Haritsa 2002], XSeq [Lin et al. 2005],
XMill [Liefke and Suciu 2000], XMLPPM [Cheney 2001], XPRESS [Min et al. 2003], XQueC [Arion et al. 2007],
Exalt [Toman 2003], XWRT [Skibinski et al. 2008], XQzip [Cheng and Ng 2004], ISX [Wong et al. 2007]
SCA [Levene and Wood 2002], SCM [Adiego et al. 2007b], QXT [Skibinski et al. 2008], XCQ [Ng et al. 2006],
AXECHOP [Leighton et al. 2005], XComp [Li 2003], XCPaqs [Wang et al. 2004], LZCS [Adiego et al. 2007a],
RNGzip [League and Eng 2007] TREECHOP [Leighton et al. 2005]
XAUST [Subramanian and Shankar 2005] XBzipIndex [Ferragina et al. 2006; 2009]

TinyT [Maneth and Sebastian 2010]
SXSI [Arroyuelo et al. 2010]

A self-index for XML represents both the structured text and an index built over it.
The first such self-index [Ferragina et al. 2006; 2009], known as XBzipIndex, provides
direct access and support for a very limited class of XPath queries. Arroyuelo et al.
[2010] proposed another self-index for XML data. This tool, called SXSI, is tailored to
work in main memory and addresses an important subset of XPath. Its main drawback
is that its space usage is still high compared to the size obtained by a plain compres-
sor. Later, Maneth and Sebastian [2010] presented TinyT, a structural self-index for
XML based on grammar-based tree compression, optimized to specifically handle some
structural XPath queries.

When considering the overall picture, one can observe that efficient, scalable and
stable implementations taking little space and simultaneously providing a comprehen-
sive XML query support, are highly desirable, although they have not been achieved
yet. Regarding general systems, streaming solutions suffer from prohibitive process-
ing times, while the weakness of indexed proposals arises from their high space con-
sumption. XML compression solutions provide limited or no query support, and many
systems are not actually available. Self-indexed representations are promising alter-
natives, but they are still far from offering a competitive and complete solution.

In this paper we introduce a system, dubbed XXS: Efficient XPath Evaluation on
XML documents using a Self-Index, for the efficient evaluation of XPath queries within
the space of the compressed collection (35%-50% of the original data size). XXS is aimed
at working in main memory, is static (i.e., in case the XML data changes, it must be
rebuilt) and focuses on XML collections of natural language text, which comprises a
significant fraction of the available XML data2. This means that XXS indexes mean-
ingfully only XML collections where the text nodes contain natural language, and that
only whole-word (and phrase) queries are supported on the text contents.

The experimental evaluation proves that XXS has an outstanding performance. It
successfully competes with well-known state-of-the-art solutions (MonetDB/XQuery,
Qizx/DB and SXSI), which XXS outperforms by far in terms of space requirements,
using 2-5 times less space. Our experiments have focused on a wide fragment of XPath,
including a practical subset of Core XPath [Gottlob et al. 2005] and some additional

2See, for example, a list of large document-centric (or text-centric) XML databases by Bourret [2009, Sec-
tion 3.1]; data-centric applications are listed in Section 4.1. On the other hand, Oszu [2003, Section 4.2.1]
mentions that public testbeds are much more easily available for text-centric than for data-centric XML.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 N. R. Brisaboa et al.

functions such as equal, contains, and count. However, we remark that XXS works
over an exact representation of the text, thus allowing any other query extension to be
developed as well. In the Conclusions we briefly discuss some future lines of our work.

This paper is organized as follows. The next section introduces some preliminary
notions about data structures and essential concepts for the development of our tool.
Sections 3 to 5 are devoted to explain the XXS tool, with a detailed description of its
main components. Section 6 presents the results of our experiments. We conclude in
Section 7 and provide future research directions. A glossary with the most frequeny
acronyms used is given in the Appendix.

2. PREVIOUS CONCEPTS
2.1. Dense Code Word-based Bytewise Encoders
Word-based bytewise coding methods use words as source symbols, while codes are
sequences of bytes. For natural language text, it has been shown that using words3,
instead of characters, significantly improves compression ratios, as words exhibit a
more biased distribution of frequencies [Baeza-Yates and Ribeiro-Neto 1999]. On the
other hand, decompression and searching can be boosted by using byte-oriented en-
coders, since no bit manipulations are needed. Some of the most representative byte-
wise word-based encoders are Huffman-based codes (in particular, Plain Huffman and
Tagged Huffman) [Huffman 1952; de Moura et al. 2000], Dense Codes [Brisaboa et al.
2007], and Restricted Prefix Byte Codes [Culpepper and Moffat 2005].

The Dense Codes family is especially convenient for our work, given the distinction of
bytes that it considers: stoppers, or bytes that only can appear at the end of a codeword,
and continuers, or bytes that cannot end a codeword. End-Tagged Dense Code (ETDC)
[Brisaboa et al. 2007] is the simplest member of the Dense Codes family. It reserves
the same amount of byte values to be used as stoppers (values from 0 to 127) and as
continuers (values from 128 to 255). However, this proportion between stoppers and
continuers could not be optimal for a given word frequency distribution of the text.
The (s,c)-Dense Code (SCDC) [Brisaboa et al. 2007] is a generalization of ETDC where
digits between 0 and s−1 are used as stoppers and digits between s and s+c−1 = 255,
are used as continuers. The pair (s, c) (where s + c = 256) is chosen so as to optimize
compression ratios.

For semi-static statistical compression, the encoding process of both ETDC and
SCDC performs a first pass over the source text to gather the different words and
their frequencies (the model). The frequencies are used to sort the vocabulary and then
a codeword is assigned to each word (shorter codewords to more frequent words). The
codeword assignment is performed sequentially, thus making the computation very
simple. For instance, if we consider the SCDC technique, the first s words in the vocab-
ulary are given one-byte codewords, from 0 to s−1. Words ranked from s to s+sc−1 are
sequentially assigned two-byte codewords. The first byte of each codeword is a value
in the range [s, s + c − 1], that is, a continuer. The second byte, the stopper, is a value
that belongs to [0, s−1]. The next words are encoded with three-byte codewords, and so
on. After this process, a second pass is performed where the compressor replaces each
word by its codeword, yielding the compressed representation of the text.

2.2. Wavelet Trees on ByteCodes
The Wavelet Tree on Bytecodes (WTBC) [Brisaboa et al. 2012] reorganizes the code-
word bytes of a text compressed with any word-based byte-oriented technique. This

3We speak of words to simplify the discussion. In practice both words and separators are encoded as atomic
entities in word-based compression.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:5

codeword rearrangement basically consists of placing the different bytes of each code-
word at different nodes, following a wavelet-tree-like [Grossi et al. 2003] structure,
instead of sequentially concatenating them, as in a typical compressed text. The re-
organization turns to offer implicit indexing properties, so that random access to any
word of the text is supported, and search times are drastically improved, by using a
negligible amount of additional space. Brisaboa et al. [2012] showed that WTBC not
only performs much more efficiently than sequential searches over compressed text,
but also than explicit inverted indexes when little extra space is used. WTBC espe-
cially succeeds when searching for single words and short phrases.

The essence of this codeword rearrangement is the following: the root of the WTBC
is an array containing the first bytes of the codewords, in the same order as the
words they encode in the original text. That is, let us assume we have the text words
〈w1, w2 . . . wn〉, whose codewords are cw1, cw2 . . . cwn, respectively, and let us denote the
bytes of a codeword cwi as 〈cw1

i ...cw
m
i 〉 where m is the size of the codeword cwi in bytes.

Then the root is formed by the sequence of bytes 〈cw1
1, cw

1
2, cw

1
3...cw

1
n〉. At position i, we

place the first byte of the codeword that encodes the ith word in the source text, so
notice that the root node has as many bytes as words has the text.

We consider the root of the tree as the first level. The second bytes of the codewords
longer than one byte are placed in the nodes of a second level. The root has as many
children as different bytes can be the first byte of a codeword of two or more bytes.
For instance, in a (192, 64)-DC encoding scheme, the root will have always 64 children,
because there are 64 bytes that are continuers. Each node X in this second level con-
tains all the second bytes of the codewords whose first byte is X, following again the
same order of the source. That is, the second byte corresponding to the jth occurrence
of byte x in the root, is placed at position j in node X. That is, assume there are
f words coded by codewords cwi1 ...cwif (longer than one byte) whose first byte is x.
Then, the second bytes of those codewords, 〈cw2

i1
, cw2

i2
, cw2

i3
...cw2

if
〉, form the node X in

the second level. The same idea is used to create the lower levels of the tree. Assum-
ing there are d words whose first byte codewords is x and whose second one is y, then
node XY is a node of the third level, child of node X, and it stores the byte sequence
〈cw3

j1
, cw3

j2
, cw3

j3
...cw3

jd
〉 given by all the third bytes of these codewords. Those bytes are

again in the original text order. Therefore, the resulting tree has as many levels as
bytes have the longest codewords. Figure 1 shows an example of a WTBC4 built from
the text ‘MAKE EVERYTHING AS SIMPLE AS POSSIBLE BUT NOT SIMPLER’.

2.2.1. WTBC Basic Procedures. The two main operations using a WTBC are decoding
the word placed at a given position of the text, and locating the occurrences of a word.
Both algorithms are based on the use of rank and select operations over the node byte
sequences, respectively. Given a byte sequence B = 〈b1, . . . , bn〉:

— rankb(B, i) = number of occurrences of byte b in B up to position i.
— selectb(B, j) = position of the jth occurrence of the byte b in byte sequence B.

The efficiency of the WBTC hinges on the implementation of rank and select opera-
tions. A two-level directory of partial counters is maintained for each byte sequence in
order to avoid the sequential counting of the number of occurrences of a searched byte
from the beginning of a WTBC node5. There is a tradeoff between space and time. The
more the partial counters, the more space is needed, but rank and select operations
will be more efficient.

4Notice that only the shaded byte sequences are stored; the rest of the text is shown for clarity.
5See Brisaboa et al. [2012] for implementation details.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 N. R. Brisaboa et al.

In order to decode a word we go down in the tree by using rank operations. For in-
stance, to know which is the 7th word in the example of Figure 1, we start by reading
the byte at that position in the root node. That is, root[7] = b3. According to the en-
coding scheme6, we know that the codeword is not complete yet, so we will move to
the second level of the tree, more precisely, to node B3. This node contains the second
bytes of all the codewords whose first byte is b3, following the order of the text. Thus, to
find out which position of that sequence we have to read, we use rankb3(root, 7) = 2. In
this way, B3[2] = b4 gives us the second byte of the codeword we are decoding. Again b4
is a continuer, so we proceed in a same way, but in the node B3B4, which corresponds
to the first two bytes of the codeword we have just read (b3b4). There we read the byte
that is at position rankb4(B3, 2) = 1, that is, B3B4[1] = b2. Byte b2 marks the end of the
searched codeword. As a result, we finally obtain the codeword b3b4b2, corresponding
to ‘BUT’, which is precisely the 7th word in the source text, as expected.

There are special procedures to perform full-text extraction and decompression of
a large contiguous area. These take advantage of the fact that the byte sequences of
the WTBC nodes follow the original order of the words in the source text, and are
efficiently implemented using pointers to the next positions to be read in each node.

For locating the occurrences of a word we traverse the tree upwards, by means of
select operations. For example, assume we want to find the first occurrence of the
word ‘SIMPLER’. In Figure 1, we can observe that its codeword is b4b5b1, so we start
the search at node B4B5, where we locate the first occurrence of b1 by computing
selectb1(B4B5, 1) = 1. Hence, the first position at node B4B5 corresponds to the first
occurrence of ‘SIMPLER’. Next, we need to find the position of the first occurrence of
byte b5 in node B4, which is selectb5(B4, 1) = 3. This indicates that our codeword is the
third one starting by b4 in the root node. We then proceed by locating the position of
the third b4 in the root of the tree, selectb4(root, 3) = 9. Finally, we can answer that the
first occurrence of ‘SIMPLER’ is at the 9th position in the source text.

Apart from decoding and searching, another basic procedure efficiently supported by
the WTBC is to count the number of occurrences of a word. It just consists of count-
ing how many times the last byte of the codeword assigned to the word appears in
the corresponding WTBC node, using a simple rank operation on that byte sequence.
Moreover, we can also count the number of occurrences of a word until a given position
of the text. In that case, the same strategy is performed, but for each codeword byte,
tracking down the endpoint toward the leaf node of the word.

Phrase pattern searches are also supported. A phrase search starts by locating each
occurrence of the least frequent word of the phrase, and then checking in the wavelet
tree root that the first bytes of the other words match. If they do, the rest of their bytes
are verified downwards in the tree.

2.3. Succinct Tree Representations
Given the tree structure of XML documents, succinct tree representations are a key
for the scope of this work. The classical representation of a general tree of n nodes
uses O(n) pointers (or words), each one requiring w ≥ log n bits (our logarithms are
base 2), thus leading to O(nw) bits of space. The associated constant is at least 2,
which permits to support basic operations such as moving to the first child and to
the next sibling, or to the ith child. Some other simple operations (e.g., moving to the
parent, obtaining the depth, etc.) and sophisticated ones (e.g., moving to a specific
level-ancestor or to the lowest common ancestor of two nodes), are also supported, but
by further increasing this constant. Since Jacobson [1989], much research has focused

6We assume that bytes b1 and b2 are stoppers, while bytes b3, b4, and b5 are continuers (not all the combi-
nations are used).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:7

on reducing the space to represent trees, achieving 2n+o(n) bits of space and constant
time for most of the operations. The distinct proposals mainly differ in the functionality
provided and also in the nature of the o(n) space overhead. In this work we consider
the family of balanced parentheses (BP) representations [Jacobson 1989; Munro and
Raman 2001; Sadakane and Navarro 2010]. This is built from a depth-first preorder
traversal, writing a ‘(’ when arriving to a node, and a ‘)’ when we leave it. In this
way, each node is represented by a pair of matching opening and closing parentheses,
leading to a sequence of 2n balanced parentheses. Tree operations are solved by using
some core parenthesis operations, namely findopen, findclose, and enclose. Early works
[Munro and Raman 2001] achieved constant time support for basic tree operations
(e.g., parent, subtreesize, nextsibling, etc.). Recently, a new proposal [Sadakane and
Navarro 2010], called fully-functional succinct tree, was able to solve in constant time
many other sophisticated operations (such as child, lowest common ancestor, or even
level ancestor) that are not usually handled by other BP representations.

3. XXS: XML WAVELET TREE
The XXS tool provides a compact representation of XML documents, with an efficient
query support. Two main parts compose our solution:

— XML representation: XML documents are represented in a compressed and self-
indexed way by using a new data structure that we call XML Wavelet Tree (XWT).
This data structure has been designed to support XML querying (Section 3).

— Query module: This part aims to efficiently solve XPath queries over an XWT repre-
sentation. It is divided into two main components:
— The Query Parser is in charge of the query parsing task, from the text representa-

tion of a query until the final query execution plan (Section 4).
— The Query Evaluator is devoted to perform the actual evaluation task. The global

evaluation procedure is characterized by three main strategies: a bottom-up ap-
proach, a lazy evaluation scheme, and a skipping strategy (Section 5).

This section deals with the first module, introducing the XML Wavelet Tree (XWT).

3.1. XWT Construction
The XWT data structure follows the essence of the WTBC reorganization of codewords
explained in Section 2.2, using as compression method the SCDC compressor discussed
in Section 2.1. As a result, the process of obtaining the final XWT representation of an
XML document7 is made in two phases. However, this data structure has been specif-
ically designed to deal with XML documents and to efficiently support XML retrieval,
by particularly focusing on XPath queries. To this end, various features are considered
throughout the general construction process.

3.1.1. Phase I: Document Parsing and Codeword Assignment.

Document parsing. The first step in the XWT construction consists of parsing the
input XML document to gather the different words that will compose the vocabular-
ies and to compute their frequency distributions. To this aim we use a variant of the
spaceless word model [de Moura et al. 2000], where single spaces are not coded but
implicitly assumed between two consecutive non-separator codes.

The parsing distinguishes different kinds of words depending on whether a word is8:

— A start-tag or an end-tag.

7Notice that a collection of documents can be regarded as a single document that integrates all of them.
8This division is in accordance with the XPath data model [W3C 1999].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 N. R. Brisaboa et al.

— The name of an attribute.
— An attribute value.
— A word inside a comment.
— A word inside a processing instruction.
— A word of the XML document text content.

With this aim, the basic spaceless word model is slightly modified, since we also
consider the following cases as single words, independently of whether alphanumeric
and non-alphanumeric characters are mixed: (i) the group of characters formed by the
left angle bracket, <, and the name of a start-tag markup (e.g., <name), (ii) the end-tag
markup as a whole (e.g., </name>), (iii) the name of an attribute followed by the equal
character (e.g., name=), and (iv) the reserved initial and final character groups defining
a special markup, such as comments (<!-- and -->), processing instructions (<? and
?>), CDATA sections (<![CDATA[and]]>), and so on.

As a result, the same word will be assigned different codewords depending on the
category it belongs to. For instance, if the word romance appears as text content (e.g.,
...an epic romance...), but also as an attribute value (e.g., category="romance") and
inside a comment (e.g., <!--...it was a romance...-->) it will be stored as three dif-
ferent entries in the vocabularies, one for each category, leading to three different code-
words. Making this difference between the same words according to their role increases
the vocabulary size, but it will yield more efficiency and flexibility for queries.

We also perform some minor normalization operations, such as to convert empty-
element tags into their corresponding pair of start-end tags (e.g., <price/> be-
comes <price></price>), or to delete redundant spaces and spaces inside tags (e.g.,
<price > becomes <price>). Such normalizations are accepted in the XML standard.

Taking the aforementioned word division into account, four different vocabularies
are created while parsing the XML document:

— The content vocabulary, which holds words from the text content category together
with attribute value entries9.

— The tags vocabulary, keeping the different start-tags and end-tags.
— The attributes vocabulary, which stores word entries corresponding to attribute

names.
— The nsearch10 vocabulary, holding words appearing inside processing instructions

and comments.

We refer as special vocabularies those apart from the content vocabulary. Figure 2
shows the XWT representation built from an XML document sample, where the four
different vocabularies are created.

Codeword assignment. To assign codewords, we use SCDC as the base compression
technique. Recall that this compressor uses different bytes for continuers and for stop-
pers. Note that by reserving some continuers to be the first byte of the codewords
assigned to words of the special vocabularies (one different continuer for each of the
vocabularies), we can keep them located under specific branches of the XWT; that is,
we can isolate them.

9We remark that, although attribute values and text content words share the alphabet, different word
entries are stored in case of same words appearing in both categories, hence receiving different codewords.
For example, in Figure 2, the word love appears as an attribute value, but also inside the text content of
opinion tag. Thus, we keep two different entries inside the content vocabulary (see loveatt and lovetext
entries).
10Non-searchable vocabulary.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:9

Therefore, once the parsing has finished, we start by assigning a codeword to the
words of the content vocabulary following an SCDC encoding scheme, but keeping
aside as many continuers as special vocabularies we have. For instance, in the example
of Figure 2, where a (3,5)-DC encoding scheme is used to encode content words, the first
three continuers, namely bytes b3, b4 and b5, are discarded. Notice that they are never
used as first byte of any of the codewords assigned to words of the content vocabulary.
In turn, these bytes will mark the starting byte of codewords corresponding to words of
the special vocabularies. We used byte b3 to mark start/end-tags, byte b4 for attribute
names and byte b5 for comments and processing instructions (see the bytes shaded in
the CODE column of the special vocabularies).

As stated, this particular feature allows the isolation of the special words, which has
important benefits. In case of the tags vocabulary, for instance, one can observe that
the subtree below B3 is devoted to exclusively store start-tags and end-tags. Remem-
ber that they follow the document order, and hence they maintain their relationships
as in the original XML document. So, we can say that this subtree actually stores
the complete XML document structure. The isolation of attributes, in turn, gives the
flexibility to directly operate on them during query evaluation, while the isolation of
comments and processing instructions provides a way to easily distinguish fragments
that should be skipped in general text searches.

3.1.2. Phase II: Compression and XWT Creation. After the codeword assignment, we per-
form a second pass over the text replacing each word by its corresponding codeword
and storing the codeword bytes along the different nodes of a tree, following the WTBC
codeword bytes reorganization. The XWT nodes can be allocated and filled with the
codeword bytes as the second pass takes place, since it is possible to precompute the
number of nodes as well as their size in advance11. Therefore, by just keeping an array
of markers indicating the next writing position for each node, they can be sequentially
filled following the order of the words in the text.

As the XWT is based on the WTBC codewords reorganization, the basic procedures to
count, decode and locate a word/phrase pattern that we can perform over the obtained
representation are basically those described in Section 2.2.1. All of them have been
extended to work over the XWT data structure.

3.2. Connection between XWT and a BP Representation
As previously pointed out, the subtree of the XWT that stores the document structure
provides a structural isolation. What is more interesting is that the root of this subtree
(node B3 in the example of Figure 2) matches a balanced parentheses (BP) represen-
tation of the XML document structure. That is, a position in that node exactly matches
the same position in the BP stream. For instance, if we consider the BP representa-
tion of the document sample shown in Figure 2, (((()())())) (see Figure 3), we can observe
that the third ‘(’ is closed by the ‘)’ at position 8, which precisely corresponds to <author
start-tag, and </author> end-tag, respectively. Therefore both data structures can be
used in combination to provide an efficient query support. We can perform basic tree
operations over the BP (such as finding the parent, the open/close pair, or even the
depth of a node), and then use the XWT to locate a position of the BP node into the
original XML document, and to obtain the associated tag identifier.

For instance, let us consider the example of Figure 3. Assuming that we have just
located the first occurrence of <opinion, we may be interested in the position of its
corresponding end-tag, or the identifier of its parent. Note that <opinion is at position

11More precisely, just after the first phase has finished, as they are determined by both the encoding scheme
and the frequencies of the words of the vocabularies.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 N. R. Brisaboa et al.

9 in the structural node B3, but also in the BP. Therefore, in the first case, we can take
advantage of the findclose operation provided by the BP representation and compute
findclose(9) = 10, which tells us that the matching end-tag of <opinion corresponds
to position 10 in B3. Once this position is known, we can easily obtain the position in
the source text, by simply going one level up the XWT through a select operation. If,
instead, we look for the parent of <opinion, we can use the enclose operation, which
returns the position of the start-tag enclosing another one. So, enclose(9) = 2 gives us
the location of the parent of <opinion, again in both the BP and B3. This information
is then enough for our data structure to perform the decode basic procedure from that
position of the structural node to finally discover the parent identifier of the target
occurrence of <opinion, which is <film.

3.3. Segments in an XML Document
Another relevant feature to consider at this point is that any component of an XML
document (e.g., an element, an attribute, a word, a phrase, etc.) can be ultimately
regarded as a segment [s, e], whose limits arise from the start (s) and end (e) positions
in the text of the component. For instance, in case of an element, the positions of its
corresponding start-tag and end-tag mark the limits of the segment that represents
it (see segments depicted in pink on top of the XWT structure in Figure 3). In the
same way, the segment representing a phrase pattern is determined by the positions
of the first and last word of the pattern. Indeed, even when working with words, the
same representation applies, since words are particular cases of segments starting and
finishing at a single position.

Such a representation allows one to compare any two segments a = [a.s, a.e] and
b = [b.s, b.e] by using the relations shown in Figure 4. In Section 5, this segment repre-
sentation will become a key factor to perform query evaluation over the XWT.

4. XXS: QUERY PLAN CONSTRUCTION
The Query Module of the XXS system is devoted to evaluate XPath queries over the
XWT. This module is composed by two main components: the Query Parser and the
Query Evaluator. This section focuses on the Query Parser submodule, which covers
the process from the initial query representation up to the construction of the final
execution plan. Next we will conceptually explain the different phases of this process12.

4.1. XPath Query Support
The XXS system supports a wide fragment of XPath, including the practical subset of
the Core XPath defined by Gottlob et al. [2005] (with the exception of the not boolean
operator). Therefore, we support all navigational axes, both element and attribute node
tests, and filters with and and or boolean operators. Additional to Core XPath, we also
support some of the most common text functions of XPath 1.0, namely the equality (=)
and contains (contains()) functions, plus the count node set function (count()). Text
functions can be applied over elements text content and also attribute values. In both
cases, we assume word-based text searches (according to the XWT word-based model).

We show below the EBNF notation of the target fragment. As stated, Axis stands
for any forward or reverse axis, NodeTest is either a tag/attribute name or the wildcard
‘*’, and Pattern can be any word or phrase pattern.

Core+ ::= ‘count(’ Core‘)’ | Core
Core ::= LocationPath | ‘/’ LocationPath
LocationPath ::= LocationStep(‘/’ LocationStep)*

12We refer the reader to Cerdeira-Pena [2013] for a detailed revision.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:11

LocationStep ::= Axis‘::’NodeTest |
Axis‘::’NodeTest‘[’Pred‘]’

Pred ::= Pred ‘and’ Pred | Pred ‘or’ Pred |
LocationPath | LocationPath‘=’Pattern |
‘contains(’ LocationPath‘,’Pattern‘)’ |
‘(’ Pred ‘)’

4.2. Initial Query Plan: The Query Parse Tree
XPath expressions are regarded as sequences of location steps, where the result of the
current step makes up the context for the next one. Previous and current location steps
are related by axes. Hence it is possible to get an initial representation of the query,
which we call query parse tree, by taking the output of a query parser13 and converting
sequences of location steps into a composition of binary relations, whose operands are
the corresponding node tests and the composition of the location path itself. That is,
from left to right, the query parse tree is built upwards as follows. Each location step is
translated into a main node labeled with the step axis name and two children. The left
child represents the location step node test, whose occurrences are delivered by the
axis node. In turn, the right child comes from the tree representation already set up
from the previous location step. Figure 5 shows the query parse tree14 corresponding to
the query /library/book[./data/following-sibling::summary]/descendant::title.
We remark that location paths inside predicates are similarly translated into a com-
position of relations as location paths outside predicates. This time, however, in order
to allow their further integration within the global query parse tree, we must reverse
both the order in which the location steps are considered to build the tree (now from
right to left) and the meaning of the axes. Axes with opposite meaning are, for instance,
child↔ parent, descendant↔ ancestor, following↔ preceding, etc.

4.3. Query Plan Optimization: Query Parse Tree Transformations
The initial query parse tree of an input query can already be used as the query execu-
tion tree to be further evaluated. Nevertheless, we perform some transformations over
it to gain efficiency during evaluation. Some of them are plain algebraic simplifications,
while some other are transformations that modify the original query parse tree (since
it only considers components of the XPath syntax), by producing an equivalent one in
terms of retrieved results, but optimized to meet XWT features. In the process we in-
troduce new operations that are not part of XPath but are efficiently solvable with the
XWT. We have defined four main groups of transformations, including about 40 rules.
A detailed description of each individual transformation can be found in Cerdeira-Pena
[2013]. Next, we will briefly enumerate the distinct groups, and illustrate an example
rule of each of them applied over the query sample depicted in Figure 615:

(1) Attributes equality simplification: this converts an equality step between
an attribute name and its value, such as ...[@city="Las Vegas"]/... or
.../@*[.="Paris"]/... into a phrase pattern search (Figure 6.1).

(2) Wildcard optimizations: we can distinguish the next three transformations over
location steps involving wildcards (‘*’):

13To parse an input query into its different components we have used the source code provided by Benjamin
Piwowarski, based on his soul library (http://sourceforge.net/projects/soulparsing).
14We refer as root the root node of an XML document, according to the XPath data model.
15For simplicity we use subscript “att” to mark nodes representing attributes or operators (i.e.,
axes/functions) whose child nodes is ultimately an attribute.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 N. R. Brisaboa et al.

(a) Redundancy removal: this optimization aims at discarding a costly (or unnec-
essary) step. For instance, given the fragment of the query parse tree depicted
in Figure 6.2, we can avoid processing the child step over the wildcard (which
potentially selects all element children from the root node to be further ana-
lyzed with respect to another wildcard element node), by combining it with the
descendant-or-self axis into a single step, descendant.

(b) Synonyms translation: with this transformation we aim to replace an axis with
an equivalent one (that is, delivering the same results), and to produce se-
quences of same steps that can be further optimized in Steps unification. Figure
6.3 shows an example of these equivalences.

(c) Steps unification: this optimization integrates several identical steps over the
wildcard ‘*’ into one, which is less costly16. For instance, let us consider the frag-
ment marked on top of Figure 6.4. It retrieves all summary element nodes (hav-
ing a keyword attribute with value “XML”) at distance 3 descending from a valid
content node. Instead of iteratively covering each child step involving wild-
cards, we can perform just one step, by creating a new operator, childdist3 ,
which modifies the child semantics to also enforce a distance parameter17.
The fragment highlighted at the bottom of Figure 6.4 shows another example
of axis unification, this time regarding the descendant axis.

(3) Or/and optimizations: these include several transformations that simplify the
query parse tree using properties of the logical or and and operators. Figure 6.5
depicts an example of transformation that applies over the or operator.

(4) Root node deletion: since the root node constitutes the root of the tree hierarchy
of an XML document, any other element will descend from it. Hence, any location
step involving a descendant selection from the root node can be removed.

4.4. Final Query Plan: The Query Execution Tree
Once the corresponding transformations over the query parse tree are performed, we
obtain the query execution tree, or final execution plan (see Figure 6.6), which will
become the input of the Query Evaluator submodule. At this stage, each node of the
query execution tree is directly translated into an operator that stands for the specific
component/axis/function it represents.

5. XXS: QUERY EVALUATION
The Query Evaluator component of XXS addresses the actual evaluation of the final
query execution tree obtained from the Query Parser submodule. In this section we
describe the global execution process, and discuss its most important features18.

5.1. Conceptual Description
The query evaluation strategy used by XXS can be broadly regarded as a practical
deployment of the general bottom-up evaluation strategy proposed by Gottlob et al.
[2005]. They showed that naive implementations of XPath queries, via exhaustive enu-
meration of all the paths in the tree that match the query, lead to query times exponen-
tial on the query size q. Instead, they proposed a strategy that achieves O(n4q2) time
and O(n2q2) space, where n is the number of nodes in the XML tree. The time com-
plexity improves to O(nq) in Core XPath and in an extension called XPatterns. Their

16Notice that ‘*’ potentially selects all occurrences of any element/attribute, which makes a location step
over it be extremely costly.
17We take advantage of the XWT ability to obtain the depth of an element/attribute, thanks to its linkage
with a balanced parentheses representation.
18Again, we refer the reader to Cerdeira-Pena [2013] for further insights and specific details.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:13

basic idea is to compute, for each node x of the query parse tree, a table called context-
value table, which gives the answer of the query subtree rooted at x, for each possible
context node in the XML tree. The table for each internal query tree node is built as a
Cartesian product of the tables of its children nodes. Then they manage to avoid com-
puting unnecessary entries from the tables, which are responsible for their high space
requirements. Bottom-up strategies implemented in practical systems like Proximal
Nodes [Navarro and Baeza-Yates 1997] avoid constructing the tables, but rather ob-
tain their entries on the fly, ideally in left-to-right order (which is not always possible
when axes pointing backwards in the XML document are present in the query).

XXS evaluation strongly relies on the Proximal Nodes model. This model builds on
the following principles: (1) use of segments to define operations, (2) bottom-up evalu-
ation, and (3) lazy evaluation. The use of segments was already explained in Section
3.3: any component of an XML document can be regarded as a segment [s, e], given by
the start (s) and end (e) positions of the text covered by the component. This repre-
sentation is one of the key factors of XXS query evaluation. The other two principles
define an operatory for query execution that is described next.

Given the query execution tree of an input query, the overall execution procedure
starts by demanding the first result to the root node. This request is sent down through
the tree nodes of the query execution tree until reaching the leaves. Note that tree
nodes are either leaf nodes or internal nodes.

— Leaf nodes: they constitute the basic extraction operands. Each leaf node retrieves,
from the XWT, the occurrences (segments) of the specific component that it repre-
sents, and delivers the valid segment found to the tree node above it.

— Internal nodes: these are operators that compare the segments they receive from
both sides, using the comparison relations shown in Figure 4 (that is,<,>,⊂,⊃, and
=). The semantics of the axis/function that the internal node represents indicates
the type of relationship that received segments should satisfy. Yet, in some cases
additional checks may also be needed (such as to have a given depth, or to share
a common parent). Figure 7 illustrates the target relations that received segments
must satisfy in order to meet the semantics of some of the most common XPath axes.
If the segment comparison fulfills the required relationship, the internal node sends
upwards the segment received from its left child19. Otherwise, the internal node
will keep searching, consuming results from either child, until it finds a valid one.
During this search, the decision of which side is asked for a new segment depends
on the relationship between the current segments, and the relationship that they
should satisfy to meet the node semantics.

With this operational scheme, results flow upwards until the root of the query
execution tree finally delivers the first result. At this point, the whole procedure
is repeated again searching for the next query result. We remark that results are
retrieved one by one, leading to a lazy evaluation scheme, in which results are
delivered on demand.

Example Let us consider Figure 8 to show this general behavior over the query
//image [contains (./parent::article, “Greek Islands”)]. As stated, the execution
procedure always starts by asking the root node of the query execution tree for the first
result. Since it is an internal node, it must compare the segments received from both
sides. Therefore, it first propagates the request downwards to obtain those segments.
The left side of the root node is a leaf node, hence it retrieves the segment associated to
the first occurrence of image, and delivers it to its parent (the root node, in this case). In

19The only exception is the or operator, which may deliver segments from both sides.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 N. R. Brisaboa et al.

turn, the right side is an internal node again (the one labeled contains), so it proceeds
by asking to its children the first article and “Greek Islands” segments, respectively,
and then it compares them by checking whether the article segment contains the
received segment of “Greek Islands”. If it does, we have a hit, thus contains reports
the article segment to the node above it, to continue the process in the same way up
(see Figure 8.a). Otherwise, and depending on the comparison result, next occurrences
of either child of contains will be requested, to proceed with comparisons until find-
ing a valid article segment. For instance, in Figure 8.b we show the situation where
a.e < t.s, therefore contains should ask for the next article occurrence to continue
validations. Finally, when contains finds a valid article, the child node of the query
execution tree can operate. In case that the received first segment of image is a child
of the article segment delivered by contains, then we can produce the first query re-
sult (see Figure 8.c). Otherwise, (e.g., in Figure 8.d, image is a descendant of article,
but not a direct child, as their depth difference is greater than 1) the process continues
with the child node requesting the next image segment or article segment containing
“Greek Islands”, depending on the relation between the current segments.

5.2. Evaluation Strategies
The general evaluation scheme just described combines, as explained, a bottom-up
approach, which starts from the leaf nodes of the query execution tree and works its
way up to the root (see the flow of pink arrows in Figure 8), with a lazy evaluation
plan, as results can be recovered by a loop that sequentially obtains them on demand.
Yet, there is still another key factor that makes XXS so efficient. Recall that internal
nodes keep on requesting segments from either child whenever current ones do not
fulfill the desired relationship. These requests will be actually sped up by a positional
restriction that the new retrieved segment must satisfy. This is our skipping strategy.

For instance, in Figure 9 we are interested in searching book elements that are an
ancestor of an award node. Note that current segments (those marked in bold face), do
not satisfy the ancestor axis condition, and that the book segment appears before the
award one. So, we know that the ancestor node should request a new book segment.
However, instead of just retrieving the next occurrence of book in a sequential order,
it can proceed in a more efficient way. Observe that the second and third occurrences
of book depicted in Figure 9 will not satisfy the ancestor semantics, as they finish
before the end of award. Therefore, we can avoid visiting useless book segments, thus
saving processing time, if the ancestor node seeks for the next occurrence of book, b’,
finishing after the end limit of award, that is, fulfilling b’.e > a.e.

Formally, when a node of the query execution tree is required to deliver a new seg-
ment, it will perform a position restricted retrieval regarding the start or end position
of the new requested segment, as applicable. We remark that, according to this evalu-
ation model, segments are traversed in preorder, but only visiting relevant ones, that
is, segments that we must necessarily visit in order to answer the query.

5.3. Implementation Details
The evaluation procedure can be ultimately regarded as a sequence of linked requests
(see the flow of blue arrows in Figure 8) demanding new segments to either a leaf
or an internal node, modified by positional restrictions that the retrieved segments
must fulfill. These requests are actually implemented through a procedure we call
next, whose most relevant details are analyzed next, by considering the operational
scheme of both type of nodes.

5.3.1. Leaf Nodes. Leaf nodes are in charge of delivering the basic components, that
is, elements, attribute names, words and phrase segments. Let us denote as patt the

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:15

specific component that the leaf node represents, and as p the positional restriction
received. Then, the next procedure of a leaf node basically consists of:

(1) Counting the number of occurrences of patt until p, that is count(patt, p) = k.
(2) Locating the (k + 1)th occurrence of patt, that is locate(patt, k + 1).

Notice that both algorithms are efficiently provided by the XWT data structure. This
general scheme applies for both words and attribute names. It also works in phrases,
but focused on the least frequent word of the pattern, as in general searches of phrase
patterns over the XWT. Yet, in this situation, we may also need to skip interleaved
occurrences of start/end-tags, comments and processing instructions (e.g., in case of
phrase patterns that may span more than one text node). Recall that we reserved spe-
cific first bytes to encode the words of those special vocabularies when we assigned
codewords during the XWT construction. Therefore, the text fragments that we must
omit now can be easily recognized while the first codeword bytes validation is per-
formed in the root of the XWT. Observe that, by doing this, we still avoid further pro-
cessing until the first bytes of the phrase codewords pass the test, following the same
strategy as in a general search of a phrase pattern.

For elements, the received positional restrictions may be related to their start-tag
or their end-tag, and both kinds may be inherited simultaneously from ancestors in
the query execution tree. To achieve the best performance, when both restrictions are
present procedure next will choose the one referring the most forward in the text, and
will use the operations findclose/findopen20 to find the other extreme of the segment
and validate the other restriction as well.

A slightly modified procedure must be considered in case of self-nested elements.
Under this scenario, the problem arises from a preorder delivery of the segments21

when the search is performed with respect to the end-tag of an element that may
contain occurrences of the same element inside it. The problem is that the general
procedure would select first the most internal segment fulfilling the condition, instead
of the next one in preorder. Thus, we need to check the ancestors of resulting segments
to find occurrences of the same element that should be retrieved before (as they also
satisfy the restriction, but appear before in a preorder traversal). Additionally we must
store the inner (and subsequent) segments, to be delivered upon further requests.

5.3.2. Internal Nodes. The implementation of the next procedure on an internal node
is more complex. Internal nodes may stand for any XPath axis, a function (e.g., equal
and contains), and also any of the different new axes we create as a result of the
query parse tree transformations (i.e., those modified with a distance parameter, as
shown in Figure 8.4). Remember that internal nodes are basically operators that have
to compare the segments received from both sides. In case those current segments do
not satisfy the required relationship, internal nodes must determine which side will be
asked for a new segment to continue the comparisons (according to the actual relation-
ship between current segments and the one they should hold), and also the skipping
positional restrictions. The generated positional restrictions will be different depend-
ing on each operator, but even for a same operator, we may find that these conditions
are also different depending on whether it operates over elements that are self-nested
or not. That is, in case of operators that retrieve element (tag) segments, or even which

20Again, thanks to the connection between the XWT structural node and the BP representation.
21According to XPath 1.0 [W3C 1999] results are node sets, hence with no order; while in XPath 2.0 [W3C
2010a], results are sequences of nodes in a particular order, the ‘document order’ (which applied over the
XML document structure corresponds to a preorder traversal). Notwithstanding, arguably all the systems
supporting XPath 1.0 assume as well this ‘document order’ for results delivery. We also assume that, even
as a way to allow the compatibility of XXS with future extensions.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 N. R. Brisaboa et al.

do not deliver them at last, but which work over elements, the implementation of their
next procedure may lead up to four different variants:

(1) Non-nested: if none of the elements recovered from each side may contain occur-
rences of the same element.

(2) Full-nested: if elements from both sides are self-nested.
(3) Left-nested: if just the left side delivers elements that are self-nested.
(4) Right-nested: if only elements delivered by the right side are self-nested.

As a result, for a same internal node, we may have several implementations of the
next algorithm. All of them have been designed and implemented by considering the
subset of XPath addressed in this work. A detailed analysis of each version for all the
operators is described in Cerdeira-Pena [2013].

6. EXPERIMENTAL EVALUATION
This section evaluates the experimental performance of XXS. We analyze both its com-
pression properties (Section 6.1) and its query performance (Section 6.2). An isolated
Intel R©Pentium R©Core i5 2.67GHz system, with 16GB dual-channel DDR-1200Mhz
RAM was used in our tests. It ran Ubuntu 11.04 GNU/Linux (kernel version 2.6.38).
The compiler used was g++ version 4.5.2 and -O9 compiler optimizations were set.

6.1. Compression Properties
As previously mentioned in the Introduction, very few of the queriable compression
tools existing in the literature have currently available source codes. To the best of our
knowledge, only XGrind [Tolani and Haritsa 2002], XBzipIndex [Ferragina et al. 2006;
2009], SXSI [Arroyuelo et al. 2010] and TinyT [Maneth and Sebastian 2010] tools are
accessible. From these, XGrind could not be run under the Linux system of our test
machine.

Therefore, we have also validated XXS against some general text compression meth-
ods and XML conscious non-queriable compressors. The result of such a comparison
is not completely fair, since none of these tools provides query support. Still, these
compressors serve as a reference to evaluate the compression performance of XXS.

Besides compressors, we have also benchmarked some of the best state-of-the-art
solutions supporting XPath, whose query performance will be analyzed in Section 6.2.
In particular, we have considered the space usage of MonetDB/XQuery and Qizx/DB.

We have divided the overall set of solutions tested into three main groups, to provide
a comprehensive but clear discussion:

— General text compressors: we have included into this category the SCDC compres-
sor, as it constitutes the back-end compression method used by the XWT repre-
sentation, and also another word-based byte-oriented semistatic statistical com-
pressor, Plain Huffman [de Moura et al. 2000], based on Huffman codes. In addi-
tion, we have considered some well-known Ziv-Lempel based compressors, namely
gzip (http://www.gzip.org) and p7zip (http://www.7-zip.org); a representative
method of the PPM family, the PPMdi compressor; and finally, a compressor
based on the the Burrows-Wheeler Transform [Burrows and Wheeler 1994], bzip2
(http://www.bzip.org).

— XML conscious non-queriable compressors: this category also suffers from the lack of
source code/binaries. Only those available could be compared. One is XMill [Liefke
and Suciu 2000], which can be combined with the general back-end compressors
gzip, bzip2, and PPM, leading to variants XMillGzip, XMillBzip2, and XMillPPM.
We also compare XMLPPM [Cheney 2001] and SCMPPM [Adiego et al. 2007b] com-
pressors, as well as the two variants of XWRT [Skibinski et al. 2008], which use

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:17

zlib (http://www.zlib.net) and lpaq (http://mattmahoney.net/dc), respectively,
as back-end techniques. Finally, although XBzipIndex is generally classified as a
queriable XML conscious compressor, it provides a very limited query support in
comparison to the rest of the queriable solutions. Therefore, we have decided to in-
clude it into this category.

— Queriable solutions: this group covers SXSI [Arroyuelo et al. 2010], TinyT [Maneth
and Sebastian 2010], MonetDB/XQuery22 [Boncz et al. 2006] and Qizx/DB23 [XML
Mind products 2008].

For any of the tested compressors, we have used the maximum and minimum com-
pression options whenever they exist. We also remark that, in the case of pure com-
pression methods, the analysis of their compression properties includes the compres-
sion ratio and the compression and decompression times. In turn, for the queriable
approaches, we have measured the global size of the representation created to allow
query evaluation24, as well as the construction times.

6.1.1. Document Corpus. We have collected a corpus of 33 documents selected from
multiple data sources. Table III summarizes their main properties: name, size in
MBytes (Size), maximum structure depth (MaxDepth), and both number of different
words of each vocabulary (VTags, for start-tags and end-tags; VAttributes, for attribute
names; VContent, for text content; and VNSearch, for comments and processing in-
structions) and total number of words of the document that fall into each of them (see
#Tags, #Attributes, #Content, and #NSearch).

6.1.2. Results.

Compression ratios. Figure 10 shows the compression ratios25 (in % with respect to
the original document size) achieved by each of the compared solutions26. We have
used different color ranges to make clear the distinction among the three main groups
in which tools have been categorized. Regarding our proposal, we have distinguished
two different compression ratios, marked as ‘XWT’ and ‘XXS’. Recall that the XXS
compression format builds on the XWT data structure. Therefore, we denote as ‘XWT’
the space needed just to represent the XML document using the XWT representation.
In turn, ‘XXS’ stands for the XWT plus the waste of extra space needed to perform an
efficient query evaluation, including that used for the structure of partial counters to
speed up rank and select operations over the XWT byte sequence, and also that needed
for the succinct tree representation of the balanced parentheses data structure. We
have also considered the space used to maintain the vocabularies of words into hash
tables. In this way, we will use ‘XWT’ values for comparisons with general compression
methods, and XML conscious non-queriable compressors, while ‘XXS’ values will be
compared against queriable solutions.

As it can be observed, XWT represents a document within 30%-40% of its original
size, while XXS just amounts (in general) to an additional 4%-8% of extra space over

22We used version Oct2010-SP1 of MonetDB, that includes version 4.40.3 of MonetDB4 server and version
0.40.3 of the XQuery module.
23We used Qizx/DB free edition, version 4.2.
24Regarding space properties, TinyT deserves a special mention. This tool was initially devised as a struc-
tural index for XML (thus just considering XML documents structure) aimed to allow fast evaluation of spe-
cific structural XPath count queries. For such operations, the corresponding indexes are minuscule (tipically,
less than 1% of the original XML documents size). However, to support serialization, additional structures
must be added, to store attribute and text values. In Figure 10 we show the total size of the representation
that allows TinyT both to count and to serialize query results.
25Missing values indicate that a tool failed to compress/decompress the document.
26We use -f and -b to represent the fast and best variants of a compressor, respectively.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 N. R. Brisaboa et al.

Table III. Document properties

Si
ze

(M
B

)
M

ax
D

ep
th

V
Ta

gs
VA

tt
ri

bu
te

s

V
C

on
te

nt
V

N
Se

ar
ch

#T
ag

s

#A
tt

ri
bu

te
s

#C
on

te
nt

#N
Se

ar
ch

XMark1 55.32 12 148 9 85,441 12 1,665,820 191,160 9,276,986 13
XMark2 115.76 12 148 9 132,359 12 3,470,166 397,928 19,384,255 13
XMark3 513.96 12 148 9 417,309 12 15,381,746 1,762,307 85,916,582 13
XMark4 1,029.18 12 148 9 757,852 12 30,749,422 3,525,025 171,832,697 13
Dblp2008 282.42 6 70 6 1,750,576 14 13,856,520 1,426,867 60,222,798 17
Dblp2012 961.75 6 70 9 4,525,940 14 47,888,064 6,082,270 214,012,325 17
Psd 683.64 7 128 7 3,142,459 9 42,611,636 1,052,770 105,568,992 9
Medline1 121.02 7 156 5 266,168 0 5,732,160 138,315 16,490,261 0
Medline2 593.14 7 164 15 894,702 14 28,478,436 4,436,417 87,413,949 15
Medline3 877.32 7 166 16 1360745 14 40,199,504 6,468,566 131,882,636 15
Alfred 74.16 5 120 0 75,630 14 4,089,784 0 8,105,935 17
Baseball 0.64 6 92 0 3149 0 56,612 0 60,897 0
Lineitem 30.80 3 36 1 39,593 0 2,045,952 1 3,411,432 0
Mondial 1.78 5 46 32 19,086 30 44,846 47,423 321,201 33
Nasa 23.89 8 122 9 77,687 0 953,292 56,317 4,180,538 0
Shakespeare 7.53 7 44 0 28,346 9 359,380 0 1,505,075 9
Swissprot 112.76 5 170 14 500,909 0 5,954,062 2,189,859 23,166,916 0
Treebank 85.42 36 500 1 1,979,256 0 4,875,332 1 10,439,446 0
USHouse 0.51 16 86 21 5,179 14 13,424 2,732 82,414 15
TCSD-normal 107.18 8 48 1 613,408 33 5,499,502 7,333 22,129,473 37
DCSD-normal 105.37 8 100 3 663,514 33 4,485,398 150,000 14,547,468 37
Uniprot1 434.99 6 144 39 1,061,320 14 17,587,730 11,364,588 89,110,893 15
Uniprot2 716.00 6 144 39 1,608,280 14 28,999,340 18,671,115 146,563,011 15
EXI-Array 22.06 10 94 17 94,951 27 453,046 226,550 3,600,182 33
EXI-Factbook 4.04 5 398 0 28,013 39 110,906 0 604,601 54
EXI-Invoice 0.93 7 104 7 16,748 9 30,150 14,060 109,538 9
EXI-Weblog 2.53 3 24 0 1,260 0 186,870 0 435,894 0
EnwikiNews 69.42 5 40 7 311,877 0 809,304 35,000 15,416,589 0
EnwikiQuote 124.27 5 40 7 412,082 0 525,910 23,837 29,155,406 0
EnwikiTionary 556.61 5 40 7 3,479,730 0 16,770,268 726,129 104,853,291 0
EnwikiVersity 81.40 5 40 7 300,349 0 991,678 43,621 18,830,566 0
EnwikiAbstract1 660.56 5 18 1 540,589 0 28,327,694 3,811,222 140,817,649 0
EnwikiAbstract2 327.96 5 18 1 420,168 0 13,692,938 1,714,361 70,280,032 0

the XWT basic representation. More precisely, we use about 3%-4% of extra space in
the rank/select structures and the balanced parentheses succinct representation. The
other 1%-4% is used to maintain the vocabularies in hash tables.

Regarding general text compressors (see the values marked in black in Figure 10),
if we compare XWT compression ratios with SCDC, which constitutes the base of the
XWT compression scheme, we note that XWT needs, on average, about 3%-4% more
space. This is the price of reserving special first bytes for the codewords of separate
alphabets. The same small difference is kept with respect to Plain Huffman (PH). In
comparison with the rest of the general text compressors, and also the XML conscious
non-queriable solutions (see the pink marks in Figure 10), differences may vary for
each technique, yet almost all of them achieve better compression ratios than XWT.
We remind, however, that these compression formats do not support queries on the
compressed documents, and thus they just optimize for space.

A fairer analysis arises from the comparison of XXS with other queriable solutions
(see the values depicted in green in Figure 10). Recall that, in this scenario, we must
consider the values corresponding to the ‘XXS’ label, which include the overall space
usage of our proposal. As shown in Figure 10, our tool is by far the system with the

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:19

best compression ratios. In particular, XXS needs between 2 and 5 time less space than
any other queriable solution.

Therefore, it is clear that XXS achieves compression ratios much closer to those
obtained by non-queriable solutions, than to queriable tools. The most striking feature
is that, even using such a little amount of space, our tool provides query evaluation
capabilities like those of the significantly bulkier queriable ones.

Compression and decompression times. With regard to time measures27, if we focus
on the performance of general text compressors (see the plots at the top of Figure 11)
we notice that XWT needs, in general, more time to compress the input data than
both SCDC and PH codes, mainly due to the more complex parsing we perform to
handle the XML features. On the other hand, decompression times are not affected,
and even improve in many cases. From the behavior of the rest of the general text
compressors, we can infer that XWT outperforms both compression and decompression
times of virtually all of them.

With respect to the XML conscious non-queriable compressors (see bottom left of
Figure 11), we can see that all these techniques require significantly more time to
compress than XWT28. They are also much slower than their general-purpose counter-
parts. XWT is also unbeaten in decompression time (see bottom right of Figure 11).

Finally, we compare in Figure 12 the construction times of the queriable solutions.
The construction times of XXS match the time to build the XWT representation and
to store it on disk, since the additional structures used for efficient searching29 are
created on-the-fly when the data structures are loaded from disk. The results show that
XXS and MonetDB/XQuery are the queriable alternatives fastest to build, achieving
a speed over 10 MB/sec, whereas Qizx/DB, SXSI and TinyT are usually slower. In
particular, the construction speed of the last two is usually below 1 MB/sec.

6.2. Query Evaluation Performance
To illustrate the behavior of XXS in query evaluation, we have compared its perfor-
mance with a group of well-established queriable solutions, namely MonetDB/XQuery,
Qizx/DB, and SXSI (see Section 6.2.2). Although both XBzipIndex and TinyT may be
also categorized as queriable tools, they are intended for very specific XPath queries.
Hence, we have devoted a separate section (Section 6.2.3) to analyze them.

Additionally, we have decided not to include in this study comparisons with stream-
ing XPath engines (e.g., GCX and SPEX) or in-memory processors (e.g., Galax and
Saxon). Such a comparison is hardly fair since, in the first scenario, streaming pro-
cessors need to parse the whole XML document at each run. For instance, the SPEX
streaming processor runs about 475 times slower than XXS. In turn, the limitation
of in-memory processors arises from the high times required to build the in-memory
representation, prior to evaluating each query. For example, this makes Saxon run
about 125 times slower than XXS. Moreover, this kind of tools usually represents XML
data using machine pointers, which blow up memory consumption. For example, Saxon
needs 4-5 times the size of the original XML documents used in our experiments.

It is interesting to mention how the chosen tools perform on the tests designed by
Gottlob et al. [2005] to detect algorithms that are exponential on the query size. While
the times of XXS and MonetDB increase only linearly with the query size, those of
SXSI and Qizx/DB increase exponentially.

27Figures 11 and 12 use the same legends and colors as Figure 10.
28Except XMillGzip compressor with the minimum compression options, which gets similar compression
times to those of our tool.
29The rank/select structures and the balanced parentheses representation.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 N. R. Brisaboa et al.

6.2.1. Query Test Bed. The experimental framework for query evaluation has been de-
signed to be tested over any of the XMark documents presented in Section 6.1.1. These
are files generated with xmlgen, an XML data generator modeling an auction website
that has been developed inside the XMark Project (http://monetdb.cwi.nl/xml)30. We
have developed a comprehensive query test bed that evaluates the whole practical
subset of XPath discussed in Section 4.1, and that aims to test the efficiency, scalabil-
ity and stability of the analyzed systems. Queries have been divided into four main
groups, described next (see Figures 13 and 14):

— Structural (Q01-Q21): these queries are taken from the XPathMark benchmark31,
which simulates realistic query needs of a potential user of an auction site. We have
taken the queries related to the practical subset of XPath addressed in this work,
that is, all the queries covering the forward and reverse XPath axes, using as node
tests either a tag/attribute name or the wildcard ‘*’, and that admit the use of pred-
icates, in combination with conjunctive and disjunctive boolean operators. We have
also included some additional queries, created ad-hoc, exhibiting the same proper-
ties.

— Wildcards (Q22-Q42): one of the most challenging scenarios for query evaluation
is that posed by queries involving a sequence of steps over the wildcard ‘*’, due to
the potentially high number of intermediate results that may be generated (e.g.,
/book/*/*//*/image). This group of queries aims to validate the performance of the
systems in these situations.

— Names (Q43-Q58): these queries aim to seek the occurrences of specific elements and
attributes chosen at random. We also regard the special queries that search for any
element (Q43) or attribute appearance (Q54).

— Text (Q59-Q73): previous groups of queries are composed by purely structural con-
straints. This group is designed to cover examples of typical queries that a user
could formulate by using the contains and equal functions, applied over either an
element content or an attribute value. They include both word and phrase patterns.

6.2.2. Comparison with Full-fledged Solutions. We have run the set of queries described on
the documents XMark2 and XMark4 of our collection (see Table III). For each query of
the test bed we have measured the running times (in milliseconds) of the main search
operations, namely count32, materialize (locate) and materialize+serialize33 (display)
the results. We have used the systems timing reports, and kept the best of five runs.
For MonetDB/XQuery, times are given by option -t of the client program, mclient. The
server is properly exited and restarted before each group of five runs. For Qizx/DB, we
used option ‘-r 2’ of the command line interface to run twice each individual run
(the second one being always faster). We ignore the time to load the index into main
memory, in any system.

We must also remark that in case of Qizx/DB it is not possible to isolate materializa-
tion times, so it was only compared in the other two scenarios. On SXSI, some of the
queries could not be run, as it does not support following, attribute or reverse axes.

The running times for the complete set of queries presented in Section 6.2.1 is
available in Cerdeira-Pena [2013]34. For conciseness, here we will provide a general

30We have focused on these documents of the data set, as the XMark Project has been acknowledged as a
reference for benchmarking XML data.
31http://sole.dimi.uniud.it/∼massimo.franceschet/xpathmark
32In this case, queries are run by adding the XPath count function to each one. For instance, a query such
as //open auction //price will result into count(//open auction//price).
33Results are serialized to the /dev/null device in order to discard the output.
34http://lbd.udc.es/Repository/Thesis/1366361229174 PhD acerdeira.rar.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:21

overview, discussing the most important facts about the performance of the systems.
Figures 15 to 26 illustrate, for each group of queries, the percentage of queries (com-
puted over the total number of queries of the group) for which each system obtained
the best running times. They also include more detailed reviews of the results for a
selection of queries most representative of the overall results. These graphs should be
read as follows. For each query pointed at the bottom of the graph, vertical bars repre-
sent the relative running times of the systems with respect to the tool that reached the
best time (whose score is always 100%). In addition, we also provide at the top of each
bar the actual running time of the query in milliseconds (or seconds, if it is suffixed
with an “s”). Missing values mean either that a query is not supported by a system or
that the query did not complete within reasonable time.

Group ‘Structural’. Figures 15 to 17 depict the performance of the systems for the
group of queries Structural over the documents XMark2 and XMark4. For counting and
materializing (see Figures 15 and 16), the results show that XXS performs on par
and even better than the other solutions, achieving the best running times in most
queries. We also note that, in those cases, both XXS and SXSI scale well, whereas
MonetDB/XQuery does not: It performs better over XMark2, but its performance de-
grades over the larger XMark4. The opposite happens to Qizx/DB, although this system
performs poorly in general.

With respect to materializing plus serializing times, Figure 17 shows that the best
results are usually obtained by MonetDB/XQuery and SXSI when dealing with the
small document instance, XMark2. Yet, MonetDB/XQuery does not perform so well for
the larger document, XMark4, whereas XXS and SXSI scale well. Again, Qizx/DB does
not obtain any outstanding result. The reason why XXS does not compete as well as for
counting or materializing is intrinsic to its goals: it maintains the data in compressed
form, and thus there is a time penalty for decompressing it.35 The other systems, in-
stead, can afford to maintain a copy of the original text and thus can output any portion
of the data with much less effort. Even SXSI, which uses compressed representations,
maintains a plain copy of the text to enable fast serialization of results. Notwithstand-
ing, we recall that another relevant feature of XXS is its ability to obtain the results
upon user demand, as in most text search engines. Cerdeira-Pena [2013] analyzes the
performance of XXS in a scenario where the results are consumed gradually, measur-
ing the times to deliver a first batch of 50 results per query. In most cases, those results
are reported in less than a millisecond.

Group ‘Wildcards’. These queries aim to evaluate the robustness of the systems on
queries involving several steps over the ‘*’ wildcard, and in particular, the benefits of
the wildcard optimizations we designed for XXS during the construction of the query
execution plan (see Section 4.3). In this case, results are shown in Figures 18 to 20
just for the larger document, as all the systems behave similarly on the smallest one36.
As it can be observed, XXS clearly overcomes the rest of the systems for counting and
materializing. This is not always the case when results are to be displayed, as before.

Group ‘Names’. This is composed of basic queries that count, materialize and seri-
alize the occurrences of a given element or attribute. In the general XXS evaluation
scheme, to obtain the number of results of a given query, the query must first be ma-
terialized (that is, its results must be located). However, for this group of queries, the

35Indeed, the time taken by XXS to serialize the results shadows the query processing time itself.
36With the only exception of the serialization scenario, where MonetDB/XQuery gets the best results on half
of the queries, mainly in detriment of SXSI and Qizx/DB.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 N. R. Brisaboa et al.

count operation is performed more efficiently by using a simple rank operation37. As
shown in Figure 2138, XXS is the fastest by far in this scenario (just requiring some
microseconds). Yet, for materializing and serializing (see Figures 22 and 23), we can-
not take advantage of that procedure. In any case, we notice that these kind of queries
are also subject to optimization in the other systems. Observe that, for instance, Mon-
etDB/XQuery, which usually worsens on the largest document, obtains the best mate-
rialization times over XMark4 for an important set of queries (see queries Q47 to Q53
in Figure 22).

Group ‘Text’. To evaluate the performance of the systems over queries involving a
text function, we used the Full text extension of XQuery [W3C 2011] available in the
tested version of Qizx/DB, and rewrote some of the queries of this group to make them
as efficient as possible, while preserving the semantics of the original ones. In par-
ticular, we used the ftcontains text function instead of the standard contains, as it
is more efficient. For MonetDB/XQuery, the included PF/Tijah text index [List et al.
2005] also supports some full-text capabilities. However it does not provide an opti-
mized version of the contains operator, hence we used the standard one, that relies on
string conversions. Finally, we note that the contains and equal implementations of
SXSI do not support text searches over phrases spanning more than one text node.

Figures 24 to 26 present the results obtained for the group of text oriented queries.
As it can be seen, XXS performs on par with SXSI, and with MonetDB/XQuery for
tests over XMark2 (as none of them actually stands out from the other), all of them out-
performing Qizx/DB39. However, in case of XMark4, MonetDB/XQuery becomes much
slower, while both XXS and SXSI scale well. As before, Qizx/DB performs better on the
larger document, and in particular it stands out for counting on XMark4.

An important fact is that text oriented queries turn out to be much more selective
than the groups of structural based queries, in terms of number of results produced.
Hence, XXS materialization plus serialization times are not as affected by the times
required to decompress the words before outputting them, as happened before.

To summarize, according to the experimental evaluation performed, we can high-
light the three following features as the base properties that define the global behav-
ior of our system, leaving it in a cutting edge position compared with some of the
best-known state-of-the-art solutions supporting XPath:

(1) XXS uses between 2 and 5 times less space than any of the compared solutions.
(2) XXS is, in general, the fastest alternative for counting and materializing queries.
(3) XXS is not the fastest one at displaying. Yet, it is not far from the other alterna-

tives, and moreover its underlying lazy evaluation scheme allows serializing the
results immediately, delivering them upon user needs.

6.2.3. Comparison with Indices Offering Limited Support. The tools analyzed in this section
provide a limited XPath query support. For instance, in case of XBzipIndex, solely
full-specified paths of the form //x1/ . . . /xn and //x1/ . . . /xn[contains(., γ)], where x1
and xn denote tag/attribute names40, and γ is an arbitrary string, are supported. For
TinyT, it is not necessary to set the complete path, as this tool allows one to use the ‘*’
wildcard41. Nonetheless, TinyT only supports child and descendant axes, while filters

37Recall that, to count number of occurrences of a given word, it is just necessary to compute how many
times the last byte of its codeword appears in the corresponding node of the XWT.
38Again, we only show the results for XMark4; the same conclusions are obtained for XMark2.
39With the exception of MonetDB/XQuery for some queries.
40The available binaries of this tool do not admit the use of attributes.
41Similarly to XBzipIndex, TinyT binaries do not handle attributes.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:23

are not allowed (nor data value comparisons). Therefore, just a small group of queries
from the complete query test bed presented in Section 6.2.1 could be run over each of
these two tools42.

Regarding XBzipIndex, results show that this tool performs much slower than any
other solution, for any query. TinyT deserves a more detailed discussion43. Recall that
this tool was initially conceived to speed up count operations over structural XPath
queries. In fact, for the counting scenario, the set of queries analyzed from groups
Structural and Wildcards show that TinyT obtains better results than XXS (which
turned out to be the best system from the comparisons of Section 6.2.2) over virtually
all the tested queries, yet the time differences are in the same order of magnitude or
just one order higher. The comparison changes when considering the queries of the
group Names (for which the count operation is optimized in XXS). In this group, XXS
has no competitors.

Before reviewing materialization and materialization+serialization operations, we
must remark that TinyT does not allow materializing the results, and that serializa-
tion44 also avoids materialization. Hence, just the second scenario could be analyzed
over TinyT. Furthermore, the results obtained for such a situation can not be compared
straightforwardly with the rest of the tools, since they do not include materialization
times. In any case, for the subset of queries from groups Structural and Wildcards,
TinyT improves the best results, but within the same order of magnitude. This is not
so homogeneous on the queries of group Names, as SXSI still exhibits the best running
times for several queries.

As shown, even in comparison with more restricted, specialized indices, the perfor-
mance of XXS remains outstanding.

7. CONCLUSIONS AND FUTURE WORK
As the adoption of the XML standard spreads over more and more areas related to in-
formation retrieval, data manipulation and knowledge representation, the challenges
of efficiently operating it become more crucial. Two of the most striking problems are
(1) the complexity of its standard query languages, XPath and XQuery, and the diffi-
culty of supporting them efficiently, and (2) the amount of space required by the repre-
sentation of the XML data and its indexes, which also impacts the time performance.
Despite much recent research, one can safely say that there are no available, practical,
and scalable solutions properly addressing these two challenges simultaneously.

In this paper we have presented XXS, a tool that tackles both issues through the
use of a compressed self-indexed representation of the XML data. This representation
encodes the XML data in a form that reduces space and at the same time enables pow-
erful queries on it. XXS is aimed at semistructured natural language text collections,
and to be operated in main memory. In our experiments, it reduces the XML data to
35%-50% of its original size, and within this compressed size it efficiently supports a
large subset of the XPath query language. While bare compressors can achieve better
compression ratios, XXS uses 2-5 times less space than any other tool we are aware of
that can support a reasonable subset of XPath. It also requires less time to build the
representation. This makes XXS an attractive alternative to manipulate larger XML
collections in main memory.

42In particular, queries Q01, Q44-Q53, and Q61, for XBzipIndex; and queries Q01-Q03, Q22-Q27,
Q38-Q42, and Q43-Q53, for TinyT. The specific running times for those experiments are available at
http://vios.dc.fi.udc.es/acerdeira.
43The same conclusions apply for both XMark2 and XMark4 documents.
44Like SXSI, TinyT also maintains a copy of the text for fast data extraction.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 N. R. Brisaboa et al.

The query evaluation engine of XXS builds on the following principles: (i) efficient
implementation of some core operations using the self-index data structure, (ii) query
optimization adapted to the cost model of the self-index, (iii) translation of XPath
operations to restrictions on segments covered by the structures, (iv) lazy evaluation
with results flowing bottom up in the query parse tree, strengthened with (v) skipping
restrictions that flow top-down. Our comprehensive experimental results highlight the
good performance of XXS. Most of the times, it performs better than the best current
systems supporting XPath queries, both for counting and for materializing queries.
Only when serialization is involved, the performance of XXS is degraded due to the
need to decompress the data (whereas other systems can maintain the text in plain
form). Yet, the results are still competitive. Moreover, the lazy evaluation capability of
XXS allows it to obtain the results upon user demand, which is very valuable when
the results are directly consumed by persons. In this scenario, XXS can report, within
one millisecond in most queries, a first batch of, say, 50 query results, and continue
producing the rest while the others are being analyzed by the user.

As a general conclusion, we can say that our proposal requires little space, pro-
vides efficient XPath querying capabilities, and displays a robust and scalable behav-
ior. These features leave XXS without competitors with comparable query evaluation
performance while using similar space. The usefulness of XXS in real-life scenarios
is also being demonstrated in a current project for the integration of XXS within the
Miguel de Cervantes Digital Library (http://www.cervantesvirtual.com), the largest
repository of digitalized texts from the Spanish literature.

We plan to extend the subset of XPath targeted in this work, in order to include
XPath extensions such as inequalities and positional predicates, and eventually aim at
supporting XQuery. As XPath constitutes the core of the XQuery language, we intend
to exploit the efficient querying capabilities of XXS to solve FLWOR expressions.

Another quite interesting future line of research is to introduce ranking of results,
which is essential in an Information Retrieval scenario. This requires the adoption of
a relevance measure that is compatible with a hierarchical text model, which is a re-
search topic by itself [Lalmas 2009]. The suitability of the XWT structure for ranked
document retrieval (a simplified case where the structure consists of plain text docu-
ments) with simple conjunctive and disjunctive text queries has already been demon-
strated [Brisaboa et al. 2012]. This suggests that the XXS data organization may be
suitable for the more complex task of ranked retrieval on structured text.

APPENDIX
We include a glossary of the most frequent acronyms used along the paper.

Streaming XPath engines

GCX Stream processor that uses a buffer management scheme in combination with
document projections.

SPEX XPath query evaluator over XML data streams based on pushdown transduc-
ers.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:25

Indexed XPath solutions

In-memory engines

Galax Query processor over in-memory XML data model instances built at runtime.

Saxon Main-memory processor based on in-memory DOM/DTM XML representations.

Database systems

MonetDB/XQuery RDBMS providing full support of XQuery.

Qizx/DB Native XML database system fully supporting XQuery, and its full-text exten-
sion.

General text compressors

Bzip2 Compressor based on the Burrows Wheeler Transform (BWT).

ETDC End-Tagged Dense Code: the simplest word-based bytewise encoder from the
Dense Code family.

Gzip Ziv-Lempel compressor based on LZ77 technique.

p7zip Ziv-Lempel compressor based on LZMA algorithm.

PH Plain Huffman: a word-based byte-oriented semistatic statistical compressor,
based on Huffman codes.

PPMdi Statistical adaptive compressor from the PPM (Prediction by Partial Matching)
family.

(s, c)-DC / SCDC (s, c)-Dense Code: dense code generalization of ETDC.

Non-queriable XML compressors

SCMPPM Structure Context Modeling (SCM) variant based on PPM compression tech-
niques.

XMill First approach to XML conscious compression. Structure and data containers
are separately compressed.

XMLPPM Streaming XML compressor based on the Multiplexed Hierarchical Modeling
(MHM) technique that combines SAX encoding and PPM compression scheme.

XWRT Dictionary-based compression technique that applies similar ideas to XMill.

Queriable XML compressors

SXSI Up-to-date proposal for compressed indexing of XML documents.

TinyT Structural self-index for XML based on grammar-based tree compression.

XBzipIndex Compressed and searchable implementation of the XML Burrows Wheeler
Transform (XBWT).

XGrind First XML conscious queriable compressor able to support queries over the
compressed form. It does not separate structure from data content.

XXS Our proposal: a self-index for efficient XPath evaluation within the space of the
compressed text.

Other structures

BP Balanced parentheses succinct tree representation.

WTBC Codeword bytes rearrangement of a natural language text compressed with
any word-based byte-oriented semistatic statistical encoding scheme.

XWT Compressed self-indexed XML representation (core part of XXS).

ACKNOWLEDGMENTS

Funded in part by MICINN grants (PGE and FEDER) TIN2009-14560-C03-02 and TIN2010-21246-C02-01,
Xunta de Galicia grants (co-funded with FEDER) GRC2013/053 and CN 2012/211, and MINECO grants
(co-funded with CDTI and GAIN) CDTI EXP 00064563 and ITC-20133062 (for the Spanish group); and by
Fondecyt grants 1-080019 and 1-110066, Chile (G.N.). We thank Felipe Sologuren and Kim Nguy˜̂en for useful
discussions.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 N. R. Brisaboa et al.

REFERENCES
ADIEGO, J., NAVARRO, G., AND DE LA FUENTE, P. 2007a. Lempel-Ziv compression of highly structured

documents. Journal of the American Society for Information Science and Technology 58, 4, 461–478.
ADIEGO, J., NAVARRO, G., AND DE LA FUENTE, P. 2007b. Using structural contexts to compress semistruc-

tured text collections. Information Processing and Management 43, 3, 769–790.
ARION, A., BONIFATI, A., MANOLESCU, I., AND PUGLIESE, A. 2007. XQueC: A query-conscious compressed

XML database. ACM Transactions on Internet Technology 7, 2.
ARROYUELO, D., CLAUDE, F., MANETH, S., MÄKINEN, V., NAVARRO, G., NGUYEN, K., SIRÉN, J., AND

VÄLIMÄKI, N. 2010. Fast in-memory XPath search using compressed indexes. In Proc. of the 26th IEEE
International Conference on Data Engineering (ICDE). 417–428.

BAEZA-YATES, R. A. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley Long-
man.

BONCZ, P. A., GRUST, T., VAN KEULEN, M., MANEGOLD, S., RITTINGER, J., AND TEUBNER, J. 2006. Mon-
etDB/XQuery: a fast XQuery processor powered by a relational engine. In Proc. of the 2006 ACM SIG-
MOD International Conference on Management of Data (SIGMOD). 479–490.

BOURRET, R. 2009. Going native: Use cases for native XML databases.
http://www.rpbourret.com/xml/UseCases.htm.

BRISABOA, N. R., CERDEIRA-PENA, A., AND NAVARRO, G. 2009. A compressed self-indexed representation
of XML documents. In Proc. of the 13th European Conference on Digital Libraries (ECDL). LNCS 5714.
273–284.

BRISABOA, N. R., CERDEIRA-PENA, A., NAVARRO, G., AND PEDREIRA, O. 2012. Ranked document retrieval
in (almost) no space. In Proc. of the 19th International Symposium on String Processing and Information
Retrieval (SPIRE). 155–160.

BRISABOA, N. R., FARIÑA, A., LADRA, S., AND NAVARRO, G. 2012. Implicit indexing of natural language
text by reorganizing bytecodes. Information Retrieval 15, 6, 527–557.

BRISABOA, N. R., FARIÑA, A., NAVARRO, G., AND PARAMÁ, J. R. 2007. Lightweight natural language text
compression. Information Retrieval 10, 1, 1–33.

BURROWS, M. AND WHEELER, D. 1994. A block-sorting lossless data compression algorithm. In Tech. Rep
124, Digital Equipment Corporation.

CERDEIRA-PENA, A. 2013. Compressed self-indexed XML representation with efficient XPath evaluation.
Ph.D. thesis, Department of Computer Science, University of A Coruña, Spain.

CHENEY, J. 2001. Compressing XML with multiplexed hierarchical PPM models. In Proc. of the 11th Data
Compression Conference (DCC). 163–172.

CHENG, J. AND NG, W. 2004. XQzip: Querying compressed XML using structural indexing. In Proc. of the
9th International Conference on Extending Database Technology (EDBT). 219–236.

CLEARY, J. AND WITTEN, I. H. 1984. Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communication 32, 4, 396–402.

CULPEPPER, J. S. AND MOFFAT, A. 2005. Enhanced byte codes with restricted prefix properties. In SPIRE.
1–12.

DE MOURA, E. S., NAVARRO, G., ZIVIANI, N., AND BAEZA-YATES, R. A. 2000. Fast and flexible word search-
ing on compressed text. ACM Transactions on Information Systems 18, 2, 113–139.

FERNÁNDEZ, M. F., SIMÉON, J., CHOI, B., MARIAN, A., AND SUR, G. 2003. Implementing XQuery 1.0:
The Galax experience. In Proc. of the 29th International Conference on Very Large Data Bases (VLDB).
1077–1080.

FERRAGINA, P., LUCCIO, F., MANZINI, G., AND MUTHUKRISHNAN, S. 2006. Compressing and searching
XML data via two zips. In Proc. of the 15th International World Wide Web Conference (WWW). 751–760.

FERRAGINA, P., LUCCIO, F., MANZINI, G., AND MUTHUKRISHNAN, S. 2009. Compressing and indexing
labeled trees, with applications. Journal of the ACM 57, 1, 4:1–4:33.

GIRARDOT, M. AND SUNDARESAN, N. 2000. Millau: an encoding format for efficient representation and
exchange of XML over the web. Computer Networks 33, 1-6, 747–765.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2005. Efficient algorithms for processing XPath queries. ACM
Transactions on Database Systems 30, 2, 444–491.

GROSSI, R., GUPTA, A., AND VITTER, J. S. 2003. High-order entropy-compressed text indexes. In Proc. of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

HUFFMAN, D. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the Insti-
tute of Radio Engineers 40, 9, 1098–1101.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:27

JACOBSON, G. 1989. Space-efficient static trees and graphs. In Proc. of the 30th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 549–554.

KAY, M. 2008. Ten reasons why Saxon XQuery is fast. IEEE Data Engineering Bulletin 31, 4, 65–74.
LALMAS, M. 2009. XML Retrieval. Morgan & Claypool Publishers.
LEAGUE, C. AND ENG, K. 2007. Schema-based compression of XML data with RELAX NG. Journal of

Computers 2, 10, 9–17.
LEIGHTON, G., DIAMOND, J., AND MÜLDNER, T. 2005. AXECHOP: A grammar-based compressor for XML.

In Proc. of the 15th Data Compression Conference (DCC). 467.
LEIGHTON, G., MÜLDNER, T., AND DIAMOND, J. 2005. TREECHOP: A tree-based queriable compressor for

XML. Technical report, Acadia University.
LEVENE, M. AND WOOD, P. 2002. XML structure compression. In Proc. of the 2nd International Workshop

on Web Dynamics.
LI, W. 2003. XComp: an XML Compression Tool. M.S. thesis, University of Waterloo, Waterloo, Ontario,

Canadá.
LIEFKE, H. AND SUCIU, D. 2000. XMill: An efficient compressor for XML data. In Proc. of the 2000 ACM

SIGMOD International Conference on Management of Data (SIGMOD). 153–164.
LIN, Y., ZHANG, Y., LI, Q., AND YANG, J. 2005. Supporting efficient query processing on compressed XML

files. In Proceedings of the 20th Annual ACM Symposium on Applied Computing (SAC). 660–665.
LIST, J. A., MIHAJLOVIC, V., RAMÍREZ, G., DE VRIES, A. P., HIEMSTRA, D., AND BLOK, H. E. 2005. Tijah:

Embracing IR methods in XML databases. Information Retrieval 8, 4, 547–570.
MANETH, S. AND SEBASTIAN, T. 2010. Fast and tiny structural self-indexes for XML. CoRR abs/1012.5696.
MEIER, W. 2002. eXist: An Open Source Native XML Database. In Web, Web-Services, and Database Sys-

tems. 169–183.
MIN, J., PARK, M., AND CHUNG, C. 2003. XPRESS: A queriable compression for XML data. In Proc. of the

2003 ACM SIGMOD International Conference on Management of Data (SIGMOD). 122–133.
MUNRO, J. I. AND RAMAN, V. 2001. Succinct representation of balanced parentheses and static trees. SIAM

Journal on Computing 31, 3, 762–776.
NAVARRO, G. AND BAEZA-YATES, R. 1997. Proximal Nodes: a model to query document databases by con-

tent and structure. ACM Transactions on Information Systems 15, 4, 400–435.
NAVARRO, G. AND MÄKINEN, V. 2007. Compressed full-text indexes. ACM Computing Surveys 39, 1.
NG, W., LAM, W. Y., WOOD, P. T., AND LEVENE, M. 2006. XCQ: A queriable XML compression system.

Knowledge and Information Systems 10, 4, 421–452.
OLTEANU, D. 2007. SPEX: Streamed and progressive evaluation of XPath. IEEE Transactions on Knowledge

and Data Engineering 19, 7, 934–949.
OSZU, T. 2003. XBench - a family of benchmarks for XML DBMSs.

https://cs.uwaterloo.ca/~tozsu/ddbms/projects/xbench/Specification.html.
PENG, F. AND CHAWATHE, S. S. 2005. XSQ: A streaming XPath engine. ACM Transactions on Database

Systems 30, 2, 577–623.
SADAKANE, K. AND NAVARRO, G. 2010. Fully-functional succinct trees. In Proc. of the 21th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA). 134–149.
SAKR, S. 2009. XML compression techniques: A survey and comparison. Journal of Computer and System

Sciences 75, 5, 303–322.
SCHMIDT, M., SCHERZINGER, S., AND KOCH, C. 2007. Combined static and dynamic analysis for effective

buffer minimization in streaming XQuery evaluation. In Proc. of the 23rd International Conference on
Data Engineering (ICDE). 236–245.

SKIBINSKI, P., GRABOWSKI, S., AND SWACHA, J. 2008. Effective asymmetric XML compression. Software:
Practice and Experience 38, 10, 1027–1047.

SUBRAMANIAN, H. AND SHANKAR, P. 2005. Compressing XML documents using recursive finite state au-
tomata. In Proc. of the 10th International Conference on Implementation and Application of Automata
(CIAA). 282–293.

TOLANI, P. M. AND HARITSA, J. R. 2002. XGrind: A query-friendly XML compressor. In Proc. of the 18th
International Conference on Data Engineering (ICDE). 225–234.

TOMAN, V. 2003. Compression of XML data. M.S. thesis, Charles University, Prague, Czech Republic.
W3C. 1998. Recommendation of Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/REC-xml.
W3C. 1999. Recommendation of XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath.
W3C. 2010a. Recommendation of XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 N. R. Brisaboa et al.

W3C. 2010b. Recommendation of XML Query Language (XQuery) 1.0. http://www.w3.org/TR/xquery.
W3C. 2011. Recommendation of XQuery and XPath Full Text 1.0.

http://www.w3.org/TR/xpath-full-text-10.
WANG, H., LI, J., LUO, J., AND HE, Z. 2004. XCPaqs: Compression of XML documents with XPath query

support. In Proc. International Conference on Information Technology: Coding and Computing (ITCC).
354–358.

WELCH, T. A. 1984. A technique for high-performance data compression. IEEE Computer 17, 6, 8–19.
WONG, R. K., LAM, F., AND SHUI, W. M. 2007. Querying and maintaining a compact XML storage. In Proc.

of the 16th International World Wide Web Conference (WWW). 1073–1082.
XML MIND PRODUCTS. 2008. Qizx XML database engine. http://www.axyana.com/qizx.
ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Transactions

on Information Theory 23, 3, 337–343.
ZIV, J. AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE Trans-

actions on Information Theory 24, 5, 530–536.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:29

Fig. 1. Example of WTBC structure.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 N. R. Brisaboa et al.

b0

b1

b2

b6b0

b6b1

b6b2

b7b0

b7b1

b7b2

b6b3b0

b6b3b1

b6b3b2

b6b4b0

b6b4b1

b6b4b2

b6b5b0

b6b5b1

>

“

One

lovetext

Timesatt

Theatt

of

most

inatt

loveatt

John

stories

Shakespeareatt

ever

fascinating

written

the

Content vocabulary (3,5)-DC Tags vocabulary (6,2)-DC

SYMBOL CODEFREQUENCY

6

4

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SYMBOL FREQUENCY

2

2

1

1

1

1

1

1

1

1

b3 b0

b3 b1

b3 b2

b3 b3

b3 b4

b3 b5

b3 b6b0

b3 b6b1

b3 b6b2

b3 b6b3

CODE

<name

</name>

<opinion

</opinion>

<author

</author>

<film

</film>

<movies

</movies>

XML document:

<movies>

 <film title=”Shakespeare in love”>

 <author journal=”The Times”>

 <name>John One</name>

 <!-- Using as pseudonym -->

 <name>One</name>

 </author>

 <opinion>

 One of the most fascinating

 love stories ever written

 </opinion>

 </film>

</movies>

Attributes vocabulary (2,6)-DC

1

1

b4 b0

b4 b1

SYMBOL FREQUENCY CODE

NSearch vocabulary (5,3)-DC

pseudonym

as

Using

<!--

-->

1

1

1

1

1

SYMBOL FREQUENCY CODE

b5 b0

b5 b1

b5 b2

b5 b3

b5 b4

journal=

title=

B6

b2 b0 b1
lo

v
e

a
tt

m
o
s
t

B5

J
o

h
n

S
h
a
k
e

s
p
e

a
re

a
tt

w
ri

tt
e
n

...

 b4 b3 b3 b5 b4 ... b5

B3

 b6 b6 b4 b0 b1 b0 b1 b5 b2 b3 b6 b6

<
m

o
v
ie

s

<
fi
lm

ti
tl
e

=

“ S
h

a
k
e

s
p
e
a

re
a

tt

in
a

tt

lo
v
e

a
tt

<
o
p

in
io

n

b3 b0 b3 b4 b1 b6 b7 b6 … b3 … b6 b7 b6 b6 … b3 b3 b3

fa
s
c
in

a
ti
n

g

lo
v
e

te
x
t

<
/f
ilm

>

<
/m

o
v
ie

s
>

<
/o

p
in

io
n

>

...th
e

m
o
s
t

Complete XML document structure

B6B3 B6B4 B6B5
fa

s
c
in

a
ti
n

g

e
v
e

r

w
ri

tt
e

n
 b0 b2 b1 b0 b1 b2

J
o
h
n

s
to

ri
e

s

th
e

 b1 b0

B3B6

 b2 b0 b1 b3

<
/o

p
in

io
n

>

<
m

o
v
ie

s

<
a

u
th

o
r

<
fi
lm

<
n

a
m

e

<
/n

a
m

e
>

<
n

a
m

e

<
/n

a
m

e
>

<
/a

u
th

o
r>

<
o

p
in

io
n

<
/f
ilm

>

<
/m

o
v
ie

s
>

<
/m

o
v
ie

s
>

<
m

o
v
ie

s

<
fi
lm

<
/f
ilm

>

b1 b0

jo
u

rn
a

l=

ti
tl
e
=

B4

b3 b2 b1 b0 b4

U
s
in

g

a
s

p
s
e
u

d
o
n

y
m

B7

o
f

fa
s
c
in

a
ti
n
g

S
h
a

k
e
s
p

e
a
re

a
tt

lo
v
e

a
tt

in
a
tt

th
e

>

<
!-

-

--
>

Fig. 2. Example of XWT structure built from an XML document.

<film </film>

</opinion><opinion

33 44

453

Complete XML document structure

<
/o

p
in

io
n
>

<
m

o
v
ie

s

<
a

u
th

o
r

<
fi
lm

<
n

a
m

e

<
/n

a
m

e
>

<
n

a
m

e

<
/n

a
m

e
>

<
/a

u
th

o
r>

<
o

p
in

io
n

<
/f
ilm

>

<
/m

o
v
ie

s
>

 (((() ()) ()))BP:

1 2 3 4 5 6 7 8 9 10 11 12

findclose (9) = 10enclose (9) = 2

 b6 b4 b0 b1 b0 b1 b5 b6b6 b2 b3 b6

Fig. 3. Correspondence between the root of the XWT subtree storing the document structure and a balanced
parentheses representation.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:31

a < b :

a > b :

a = b :

a.s a.e b.s b.e

a.s a.eb.s b.e

a.s a.e

b.s b.e

a.e < b.s

a.s > b.e

a.s = b.s

 and

a.e = b.e

Relation Conditions Relation Conditions

a.s > b.s

 and

a.e < b.e

a b :
a.s a.e

b.s b.e

a b :

a.s a.e

b.s b.e

a.s < b.s

 and

a.e > b.e

Fig. 4. Segment relationships.

data

 XPath: /library/book[./data/following-sibling::summary]/descendant::title

1) 2) 3)1)2)

descendant

title child

child

library root

3)

2)

1)parent

book preceding-

sibling

summary

Q
u

e
ry

 P
a
rs

e
 T

re
e

Predicate 1)

2)

Query: Title of books with an available summary

XML document

 <library>

 <book>

 <data>

 <title> … summer sunset … </title>

 <author> … </author>

 </data>

 <summary> … </summary>

 </book>

 <book>

 <data>

 <title> … dark mistery … </title>

 <author> … </author>

 </data>

 </book>

 …

 </library>

Fig. 5. Example of query parse tree.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 N. R. Brisaboa et al.

child

parentatt child

summary equalatt

keywordatt “XML”

* child

*
child

content child

or desc-or-self

* child

*
root

keywordatt=”XML”

1)

child

paper journal

child

paper book

Attributes equality simplification

child

parentatt child

summary child

child

child

desc-or-self

* child

* root

keywordatt=”XML”

2) Wildcard optimizations: Redundancy removal

descendant

root*

child

paper journal

child

paper book

*

*

child

parentatt child

summary child

content

keywordatt=”XML” *

descendant

root
*

descendant

descendant

*

*
child

child

or

child

paper journal

child

paper book

or

root

3) Wildcard optimizations: Synonyms translation

child

parentatt
child

summary
child

keywordatt=”XML” *

descendant

root*

or

descendantdist 2

root

parentatt

childdist 3

child

*
child

content descendant

or

child

paper journal

child

paper book

4) Wildcard optimizations: Steps unification

content

or

child

paper journal

child

paper book

Or/and optimizations

orpaper

journal

child

book

parentatt

summary

child

contentkeywordatt=”XML”

root

descendantdist 2

childdist 3

or

5)

parentatt

summary

child

contentkeywordatt=”XML”

orpaper

journal

child

book

Final Query Execution Tree

root

descendantdist 2

childdist 3

6)

Query: Summary of journal and book papers whose keyword attribute is equal to “XML”

XPath: /*/descendant-or.self::*/paper[./parent::journal or ./parent::book]/content/*/*/summary[./@keyword=”XML”]

Fig. 6. Optimizations applied over a query parse tree until reaching the final query execution tree.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:33

a < b †

internalnode

A B

a b

Internalnode Relation

a bancestor

descendant

parent

child

self

a b

a b
*

a b
*

a = b * Additional validation of the segments depth

 depth(a) = depth(b) – 1 (parent)

 depth(a) = depth(b) + 1 (child)

† Segments must share the same parent,

 in addition

following

preceding

following-sibling

preceding-sibling

a > b

a < b

a > b †

Internalnode Relation

Fig. 7. Relations that compared segments must hold to satisfy the semantics of different XPath axes.

image

child

contains

“Greek Islands"article

Sequence of requests (i.e. calls to next() procedure)

 Flow of delivered results

a.s a.e

a.ea.s

t.s t.e

t.s t.e

a.ea.s

t.s t.e

a) b)
i.s i.e

a.ea.s

i.s i.e

a.ea.s

i.s i.e

c) d)

Query: Images of articles containing the phrase pattern “Greek Islands”

XPath: //image[contains(./parent::article, “Greek Islands”]
 <magazine>

 <section>

 <article>

 … Greek Islands ...

 

 …

 </article>

 <article>

 …

 </article>

 </section>

 <section>

 <article>

 … Greek Islands ...

 

 …

 </article>

 …

 </section>

 ...

 </magazine>

XML document

Fig. 8. General query evaluation scheme.

 … <book> … </book> <book> … </book> <book> … </book> … <book> … <award> …</award>… </book> …

XPath : //book[./descendant::award]

ANCESTOR

b.s b.e
...

a.s a.e

XML doc:

Query : Books that have been awarded

ancestor

book award

 The end of the new book segment, b’.e,

 must be larger than the end of the current

 award segment, a.e

b’.e > a.e

Fig. 9. Skipping of segments.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 N. R. Brisaboa et al.

1%

10%

100%

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

X
M

a
rk

1

X
M

a
rk

2

X
M

a
rk

3

X
M

a
rk

4

D
b

lp
1

D
b

lp
2

P
s
d

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lf
re

d

B
a
s
e
b
a
ll

L
in

e
it
e
m

M
o
n
d
ia

l

N
a
s
a

S
h
a
k
e
s
p
e
a
re

S
w

is
s
p
ro

t

T
re

e
b

a
n
k

U
S

H
o

u
s
e

T
C

S
D

−
n
o
rm

a
l

D
C

S
D

−
n

o
rm

a
l

U
n
ip

ro
t1

U
n
ip

ro
t2

E
X

I−
A

rr
a
y

E
X

I−
F

a
c
tb

o
o
k

E
X

I−
In

v
o
ic

e

E
X

I−
W

e
b

lo
g

E
n
w

ik
iN

e
w

s

E
n
w

ik
iQ

u
o
te

E
n
w

ik
iT

io
n
a
ry

E
n
w

ik
iV

e
rs

it
y

E
n
w

ik
iA

b
s
tr

a
c
t1

E
n
w

ik
iA

b
s
tr

a
c
t2

MonetDB

SXSI

TinyT

Qizx/DB

XXS

XWT

(s,c)−DC

PH

gzip −f

gzip −b

bzip2 −f

bzip2 −b

ppmdi −f

ppmdi −b

p7zip

xmillgzip −f

xmillgzip −b

xmillbzip2

xmillppm

xbzipindex

xmlppm

scmppm −f

scmppm −b

xwrtzlib

xwrtlpaq

Fig. 10. Compression ratios achieved by our proposal (in blue), general text compressors (in black), XML
conscious non-queriable compressors (in pink), and queriable tools (in green) over different XML documents.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:35

10
−3

10
−2

10
−1

10
0

X
M

a
rk

1
X

M
a

rk
2

X
M

a
rk

3
X

M
a

rk
4

D
b

lp
1

D
b

lp
2

P
sd

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lfr

e
d

B
a

se
b

a
ll

L
in

e
ite

m
M

o
n

d
ia

l
N

a
sa

S
h

a
ke

sp
e

a
re

S
w

is
sp

ro
t

T
re

e
b

a
n

k
U

S
H

o
u

se
T

C
S

D
−

n
o

rm
a

l
D

C
S

D
−

n
o

rm
a

l
U

n
ip

ro
t1

U
n

ip
ro

t2
E

X
I−

A
rr

a
y

E
X

I−
F

a
ct

b
o

o
k

E
X

I−
In

vo
ic

e
E

X
I−

W
e

b
lo

g
E

n
w

ik
iN

e
w

s
E

n
w

ik
iQ

u
o

te
E

n
w

ik
iT

io
n

a
ry

E
n

w
ik

iV
e

rs
ity

E
n

w
ik

iA
b

st
ra

ct
1

E
n

w
ik

iA
b

st
ra

ct
2

Compression Time (sec/MB)

10
−4

10
−3

10
−2

10
−1

10
0

X
M

a
rk

1
X

M
a

rk
2

X
M

a
rk

3
X

M
a

rk
4

D
b

lp
1

D
b

lp
2

P
sd

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lfr

e
d

B
a

se
b

a
ll

L
in

e
ite

m
M

o
n

d
ia

l
N

a
sa

S
h

a
ke

sp
e

a
re

S
w

is
sp

ro
t

T
re

e
b

a
n

k
U

S
H

o
u

se
T

C
S

D
−

n
o

rm
a

l
D

C
S

D
−

n
o

rm
a

l
U

n
ip

ro
t1

U
n

ip
ro

t2
E

X
I−

A
rr

a
y

E
X

I−
F

a
ct

b
o

o
k

E
X

I−
In

vo
ic

e
E

X
I−

W
e

b
lo

g

E
n

w
ik

iN
e

w
s

E
n

w
ik

iQ
u

o
te

E
n

w
ik

iT
io

n
a

ry
E

n
w

ik
iV

e
rs

ity
E

n
w

ik
iA

b
st

ra
ct

1
E

n
w

ik
iA

b
st

ra
ct

2

Decompression Time (sec/MB)

10
−2

10
−1

10
0

10
1

X
M

a
rk

1
X

M
a

rk
2

X
M

a
rk

3
X

M
a

rk
4

D
b

lp
1

D
b

lp
2

P
sd

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lfr

e
d

B
a

se
b

a
ll

L
in

e
ite

m
M

o
n

d
ia

l
N

a
sa

S
h

a
ke

sp
e

a
re

S
w

is
sp

ro
t

T
re

e
b

a
n

k
U

S
H

o
u

se
T

C
S

D
−

n
o

rm
a

l
D

C
S

D
−

n
o

rm
a

l
U

n
ip

ro
t1

U
n

ip
ro

t2
E

X
I−

A
rr

a
y

E
X

I−
F

a
ct

b
o

o
k

E
X

I−
In

vo
ic

e
E

X
I−

W
e

b
lo

g
E

n
w

ik
iN

e
w

s
E

n
w

ik
iQ

u
o

te
E

n
w

ik
iT

io
n

a
ry

E
n

w
ik

iV
e

rs
ity

E
n

w
ik

iA
b

st
ra

ct
1

E
n

w
ik

iA
b

st
ra

ct
2

Compression Time (sec/MB)

10
−3

10
−2

10
−1

10
0

10
1

X
M

a
rk

1
X

M
a

rk
2

X
M

a
rk

3
X

M
a

rk
4

D
b

lp
1

D
b

lp
2

P
sd

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lfr

e
d

B
a

se
b

a
ll

L
in

e
ite

m
M

o
n

d
ia

l
N

a
sa

S
h

a
ke

sp
e

a
re

S
w

is
sp

ro
t

T
re

e
b

a
n

k
U

S
H

o
u

se
T

C
S

D
−

n
o

rm
a

l
D

C
S

D
−

n
o

rm
a

l
U

n
ip

ro
t1

U
n

ip
ro

t2
E

X
I−

A
rr

a
y

E
X

I−
F

a
ct

b
o

o
k

E
X

I−
In

vo
ic

e
E

X
I−

W
e

b
lo

g
E

n
w

ik
iN

e
w

s
E

n
w

ik
iQ

u
o

te
E

n
w

ik
iT

io
n

a
ry

E
n

w
ik

iV
e

rs
ity

E
n

w
ik

iA
b

st
ra

ct
1

E
n

w
ik

iA
b

st
ra

ct
2

Decompression Time (sec/MB)

Fig. 11. Compression and decompression times. Comparison of XWT with general text compressors (top)
and XML conscious non-queriable compressors (bottom).

MonetDB

SXSI

TinyT

Qizx/DB

XXS

XWT

(s,c)−DC

PH

gzip −f

gzip −b

bzip2 −f

bzip2 −b

ppmdi −f

ppmdi −b

p7zip

xmillgzip −f

xmillgzip −b

xmillbzip2

xmillppm

xbzipindex

xmlppm

scmppm −f

scmppm −b

xwrtzlib

xwrtlpaq

10
−2

10
−1

10
0

10
1

X
M

a
rk

1
X

M
a

rk
2

X
M

a
rk

3
X

M
a

rk
4

D
b

lp
1

D
b

lp
2

P
sd

M
e

d
lin

e
1

M
e

d
lin

e
2

M
e

d
lin

e
3

A
lfr

e
d

B
a

se
b

a
ll

L
in

e
ite

m
M

o
n

d
ia

l
N

a
sa

S
h

a
ke

sp
e

a
re

S
w

is
sp

ro
t

T
re

e
b

a
n

k
U

S
H

o
u

se
T

C
S

D
−

n
o

rm
a

l
D

C
S

D
−

n
o

rm
a

l
U

n
ip

ro
t1

U
n

ip
ro

t2
E

X
I−

A
rr

a
y

E
X

I−
F

a
ct

b
o

o
k

E
X

I−
In

vo
ic

e
E

X
I−

W
e

b
lo

g
E

n
w

ik
iN

e
w

s
E

n
w

ik
iQ

u
o

te
E

n
w

ik
iT

io
n

a
ry

E
n

w
ik

iV
e

rs
ity

E
n

w
ik

iA
b

st
ra

ct
1

E
n

w
ik

iA
b

st
ra

ct
2

Construction Time (sec/MB)

Fig. 12. Construction times of queriable solutions.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 N. R. Brisaboa et al.

Q01: /site/closed_auctions/closed_auction/annotation/description/text/

 keyword

 Q02: //closed_auction//keyword

Q03: /site/closed_auctions/closed_auction//keyword

Q04: /site/closed_auctions/closed_auction[./annotation/description/text/

 keyword]/date

Q05: /site/closed_auctions/closed_auction[./descendant::keyword]/date

Q06: /site/people/person[./profile/gender and ./profile/age]/name

Q07: /site/people/person[./phone or ./homepage]/name

Q08: /site/people/person[./address and (./phone or ./homepage) and

 (./creditcard or ./profile)]/name

Q09: /site/regions/*/item[./parent::namerica or ./parent::samerica]/name

Q10: //keyword/ancestor::listitem/text/keyword

Q11: //happiness/ancestor::closed_auction/annotation/author

Q12: /site/open_auctions/open_auction/bidder[./following sibling::bidder]

Q13: /site/*/person[./homepage/following sibling::creditcard]/name

 Q14: /site/open_auctions/open_auction/bidder[./preceding sibling::bidder]

Q15: /site/people/person/*/gender[./preceding sibling::education]

Q16: /site/regions/*/item[./following::item]/name

Q17: /site/open_auctions/open_auction/reserve/following::happiness

 Q18: //type/preceding::price

Q19: /site/regions/*/item[./preceding::item]/name

Q20: //person[./profile/@income]/name

Q21: //open_auction[./privacy]/itemref/@item

Q22: //mailbox/*/*/keyword

Q23: //namerica/*/mailbox//*/*/keyword

Q24: //open_auction/*/author

Q25: //regions/*/*/*/*/*/parlist//emph

Q26: //categories/*/description/*/*/keyword

Q27: //categories/*/description//*/*/keyword

Q28: //keyword/parent::*/parent::*/parent::mail/date

Q29: //author/parent::*/parent::open_auction/itemref

Q30: //parlist/parent::*/parent::*/parent::*/parent::*/parent::*/

 parent::regions

Q31: //keyword/parent::*/parent::*/ancestor::description/parent::category/

 name

Q32: //keyword/parent::*/ancestor::description/parent::item

 [./parent::namerica]/location

Q33: //open_auction[.//*/*/@person]/seller

Q34: //person[.//*/*/@category]/homepage

Q35: //person[./*/*/@open_auction]/name

Q36: //categories//*/@id

Q37: //person//*/@income

Q38: /*/*/*//*//*//*/*/*/*

Q39: /*/*/*/*/*/*/*/*/*

Q40: /*//*/*/*/*

Q41: /*/*/*/*

Q42: /*

Fig. 13. Groups of queries Structural (left) and Wildcards (right).

Q59: //mail//text[contains(.,"image")]

Q60: //item/location[contains(.,"Island")]

Q61: //location[.="Israel"]

Q62: /site/regions/europe/*/location[.="United States"]

Q63: //open_auction/bidder[./date="09/13/1998"]

Q64: //payment[contains(.,"Creditcard")]

 Q65: //australia//payment[contains(.,"Personal Check, Cash")]/

 parent::item/@id

Q66: //namerica//payment[contains(.,"Personal Check, Cash")]

Q67: //text[contains(.,"weaker dove")]

Q68: //annotation[contains(.,"dove miserable")]

 Q69: //person/profile/@income[.="9876.00"]

Q70: /site/regions/*/item[./@featured="yes"]/name

Q71: /site//interest[./@category="category266"]

Q72: //interest/@category[.="category328"]

Q73: //@category[.="category328"]

 Q43: //*

Q44: //edge

Q45: //australia

Q46: //province

Q47: //age

Q48: //street

Q49: //homepage

Q50: //parlist

 Q51: //keyword

 Q52: //date

 Q53: //time

 Q54: //@*

Q55: //@from

 Q56: //@featured

Q57: //@income

 Q58: //@id

Fig. 14. Groups of queries Names (left) and Text (right).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:37

XXS SXSI MonetDB/XQuery Qizx/DB

52%

24%

19%

5%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

c
o

u
n

t)

8
.1

3
9
.2

3
1
0
.9

9
1
4
.0

0

2
1
.8

9
1
7
.7

6
2
1
.4

5
1
9
.0

0

1
0
.0

1
2
3
.4

3
1
6
.6

6
2
2
.0

0

3
6
.9

7
3
2
.3

8
4
9
.1

3
7
9
.0

0

1
6
.4

2
* 2
0
.3

3
1
1
5
.0

0

2
1
.7

3
2
5
.5

1
2
0
.7

4
7
2
.0

0

1
1
.1

7
* 2
7
.9

7
3
5
.0

0

1
0
.5

6
* 3
3
.3

3
+ 3
.9

3
* 5
4
.7

1
+ 3
5
.7

3
* 2
4
.4

0
9
6
.0

0

57%

19%

5%

19%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

c
o

u
n

t)

7
3
.9

3
7
0
.1

6
1
7
4
.7

9
6
6
.0

0

1
9
7
.3

8
1
3
4
.0

5
2
1
7
.7

4
1
2
3
.0

0

9
0
.2

8
1
8
7
.4

9
2
0
2
.3

0
1
7
4
.0

0

3
3
4
.3

0
2
5
1
.1

4
4
8
8
.2

5
5
3
7
.0

0

1
4
8
.0

4
* 1
.2

9
s

3
.4

3
s

1
9
7
.6

6
2
0
2
.2

8
6
1
9
.4

4
4
5
8
.0

0

9
9
.7

2
* 6
8
4
.2

8
4
1
8
.0

0

9
5
.5

1
* 1
.3

2
s

+ 3
5
.3

3
* 2
.9

9
s

+ 3
2
3
.9

3
* 3
5
7
.7

8
3
5
8
.0

0

Fig. 15. Count: ratio of queries of group Structural for which each system obtained the best running times
(left). Detailed performance analysis for a selection of queries over XMark2 and XMark4 (right).

52%

24%

24%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

m
a

te
ri
a

liz
e

)

8
.1

3
1
3
.8

6
1
1
.3

6

2
1
.8

9
1
8
.3

5
2
1
.6

5

1
0
.0

1
2
4
.4

4
1
6
.8

2

3
6
.9

7
3
3
.9

6
4
9
.2

7

1
6
.4

2
* 2
0
.8

7

2
1
.7

3
2
6
.8

3
2
0
.9

9

1
1
.1

7
* 2
8
.0

4

1
0
.5

6
* 3
3
.5

5

3
.9

3
* 5
6
.6

9

3
5
.7

3
* 2
4
.0

3

76%

24%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a

te
ri
a

liz
e

)

7
3
.9

3
1
1
1
.8

9
1
8
1
.7

8

1
9
7
.3

8
1
3
7
.7

8
2
2
1
.3

4

9
0
.2

8
1
9
4
.5

8
2
0
0
.7

8

3
3
4
.3

0
2
6
1
.6

1
4
8
8
.0

4

1
4
8
.0

4
* 1
.3

3
s

1
9
7
.6

6
2
1
2
.2

7
6
2
1
.4

7

9
9
.7

2
* 6
2
8
.5

7

9
5
.5

1
* 1
.4

4
s

3
5
.3

3
* 3
.0

3
s

3
2
3
.9

3
* 3
6
4
.2

5

Fig. 16. Materialize: ratio of queries of group Structural for which each system obtained the best running
times (left). Detailed performance analysis for a selection of queries over XMark2 and XMark4 (right).

19%

24% 52%

5%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

m
a

t.
 +

 s
e

r.
)

2
0
3
.0

4
3
0
.2

4
2
8
.1

8
4
7
.0

0

3
2
.6

1
2
0
.9

9
2
5
.9

6
7
4
.0

0

2
7
.3

9
3
0
.0

0
2
4
.1

9
7
3
.0

0

1
0
8
.7

0
4
1
.5

3
5
7
.5

3
1
1
8
.0

0

1
0
7
.8

3
* 2
9
.3

2
1
1
2
.0

0

8
6
.9

6
3
3
.8

6
2
7
.6

5
1
1
2
.0

0

2
2
.6

1
* 3
1
.0

0
7
9
.0

0

8
4
.3

5
* 5
4
.7

8
+ 5
6
.5

2
* 6
7
.3

7
+ 5
0
.0

0
* 2
7
.4

0
1
1
4
.0

0

38%

48%

9%
5%

Q03 Q04 Q05 Q08 Q11 Q13 Q15 Q17 Q18 Q21
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a

t.
 +

 s
e

r.
)

1
.8

1
s

2
5
8
.0

5
1
.3

7
s

5
6
5
.0

0

2
9
3
.8

5
1
6
2
.4

9
1
.4

3
s

1
8
7
.0

0

2
5
0
.7

7
2
4
4
.6

7
1
.3

9
s

3
8
1
.0

0

1
.0

0
s

3
2
9
.6

1
1
.1

5
s

5
9
2
.0

0

9
7
8
.6

7
* 1
.4

1
s

4
.4

9
s

8
0
0
.0

0
2
7
4
.7

0
8
8
0
.7

3
5
5
2
.0

0

2
0
6
.9

2
* 9
5
5
.9

6
3
7
4
.0

0

7
2
7
.6

9
* 3
.8

3
s

+ 5
0
3
.8

5
* 3
.9

7
s

+ 4
5
2
.3

1
* 3
9
1
.4

2
4
5
9
.0

0

Fig. 17. Materialize + Serialize: ratio of queries of group Structural for which each system obtained the
best running times (left). Detailed performance analysis for a selection of queries over XMark2 and XMark4
(right).
ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 N. R. Brisaboa et al.

XXS SXSI MonetDB/XQuery Qizx/DB

95%

5%

Q25 Q27 Q28 Q31 Q34 Q35 Q36 Q38 Q39 Q42
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

c
o
u

n
t)

1
5

2
.8

0
1

.0
7

s
7

2
3

.3
2

2
5

9
.0

0

6
.8

2
4

5
.7

7
3

7
.7

4
7

2
.0

0

1
7

0
.0

0
* 2

.6
2

s
1

1
.6

7
s

9
.0

7
* 2

.8
2

s
1

2
.7

6
s

2
6

7
.8

5
* 9

3
4

.2
8

2
.4

5
s

3
2

0
.7

5
* 8

8
0

.2
7

1
.2

1
s

1
2

.7
1

* 3
2

.0
3

9
2

.0
0

2
5

9
.7

2
2

.8
4

s
3

.6
2

s
6

1
.3

9
s

1
2

5
.0

5
1

.7
8

s
2

.3
5

s
2

0
.5

2
s

0
.0

0
2

0
.8

7
7

.7
0

1
.0

0

Fig. 18. Count: ratio of queries of group Wildcards for which each system obtained the best running times
(left). Detailed performance analysis for a selection of queries over XMark4 (right).

100%

Q25 Q27 Q28 Q31 Q34 Q35 Q36 Q38 Q39 Q42
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a
te

ri
a
liz

e
)

1
5

2
.8

0
1

.0
9

s
8

0
1
.1

7

6
.8

2
4

8
.3

4
3

7
.8

1

1
7

0
.0

0
* 2

.7
3

s

9
.0

7
* 2

.8
3

s

2
6

7
.8

5
* 9

3
5
.8

0

3
2

0
.7

5
* 8

7
5
.8

8

1
2

.7
1

* 3
4

.2
7

2
5

9
.7

2
3

.3
4

s
3

.6
2

s

1
2

5
.0

5
1

.9
5

s
2

.3
5

s

0
.0

0
2

0
.9

0
1

3
.5

9

Fig. 19. Materialize: ratio of queries of group Wildcards for which each system obtained the best running
times (left). Detailed performance analysis for a selection of queries over XMark4 (right).

48%

33%

5%

14%

Q25 Q27 Q28 Q31 Q34 Q35 Q36 Q38 Q39 Q42
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a
t.
 +

 s
e
r.

)

1
.2

1
s

1
.1

8
s

5
.8

7
s

6
3

1
.0

0

1
2

8
.4

6
5
9

.0
1

1
4

5
.7

7
1
1

5
.0

0

2
6

5
.3

9
* 6
.1

3
s

1
1

.7
7

s

3
3

.0
8

* 2
.8

1
s

1
2

.8
3

s

7
4

6
.1

5
* 1
.6

3
s

2
.5

7
s

1
.3

4
s

* 1
.5

6
s

1
.3

2
s

3
3

.0
8

* 3
6

.8
3

1
2

7
.0

0

4
7

.6
7

s
7
.4

3
s

1
2

.5
0

s
7
6

.1
0

s

2
4

.9
9

s
3
.8

7
s

1
1

.7
1

s
2
3

.4
0

s

1
0

.1
2

s
7
.7

1
s

1
5

.7
1

s
4
3

.1
7

s

Fig. 20. Materialize + Serialize: ratio of queries of group Wildcards for which each system obtained the best
running times (left). Detailed performance analysis for a selection of queries over XMark4 (right).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

XXS: Efficient XPath Evaluation on Compressed XML Documents A:39

XXS SXSI MonetDB/XQuery Qizx/DB

100%

Q44 Q45 Q47 Q48 Q50 Q52 Q53 Q55 Q57 Q58
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

c
o

u
n

t)

0
.0

0
3

0
.5

7
4

7
.2

9
1

3
.0

0

0
.0

0
3

0
.5

7
9

8
.5

7
1

.0
0

0
.0

0
3

0
.5

6
9

8
.7

6
1

0
.0

0

0
.0

0
4

0
.5

7
2

1
3
.1

4
1

7
.0

0

0
.0

0
3

0
.5

7
8

1
6
.6

8
1

9
.0

0

0
.0

0
3

0
.5

7
7

2
7
.9

6
9

6
.0

0

0
.0

0
3

0
.5

6
7

2
1
.4

7
6

2
.0

0

0
.0

0
3

* 4
.9

0
s

2
3
.7

2
s

0
.0

0
2

* 4
.9

0
s

2
3
.7

6
s

0
.0

0
3

* 4
.9

9
s

2
4
.4

2
s

Fig. 21. Count: ratio of queries of group Names for which each system obtained the best running times (left).
Detailed performance analysis for a selection of queries over XMark4 (right).

44%

19%

37%

Q44 Q45 Q47 Q48 Q50 Q52 Q53 Q55 Q57 Q58
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a
te

ri
a
liz

e
)

1
.4

0
2

9
.5

9
1

1
.0

8

0
.0

0
6

0
.6

1
8

.5
3

1
4

.8
6

6
.6

1
8

.1
0

2
4

.0
2

1
2

.2
9

1
1

.6
6

6
1

.7
8

4
2

.8
0

1
6

.2
6

1
4

7
.9

4
7

8
.0

6
2

7
.0

0

9
1

.2
2

5
3

.6
2

1
9

.1
5

1
.7

8
* 4

.9
1

s

5
1

.0
3

* 4
.9

1
s

2
8

6
.0

8
* 5

.0
2

s

Fig. 22. Materialize: ratio of queries of group Names for which each system obtained the best running times
(left). Detailed performance analysis for a selection of queries over XMark4 (right).

25%

62%

13%

Q44 Q45 Q47 Q48 Q50 Q52 Q53 Q55 Q57 Q58
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a
t.
 +

 s
e
r.

)

1
1

0
.0

0
3
9

.2
6

2
7

.7
3

1
8

0
.0

0

5
0

4
.6

2
3
8

6
.0

4
6
0

6
.7

0
1
.2

6
s

2
0

3
.8

5
6
4

.2
3

1
.1

9
s

9
3

.0
0

9
3

9
.2

3
1
2

9
.4

1
1
.1

5
s

1
5

9
.0

0

3
0

.6
5

s
4
.0

1
s

1
1

.6
7

s
1
9

.0
5

s

2
.3

7
s

8
7

0
.1

3
1
1

.4
5

s
8
.7

3
s

1
.8

5
s

5
5

6
.1

3
3
.5

1
s

1
.6

4
s

2
1

.5
4

* 4
.7

9
s

2
3

.7
6

s

3
0

3
.8

5
* 4
.8

5
s

2
8

.5
8

s

1
.4

9
s

* 5
.1

3
s

2
4

.7
8

s

Fig. 23. Materialize + Serialize: ratio of queries of group Names for which each system obtained the best
running times (left). Detailed performance analysis for a selection of queries over XMark4 (right).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 N. R. Brisaboa et al.

XXS SXSI MonetDB/XQuery Qizx/DB

40%

27%

27%

6%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

c
o

u
n

t)

2
9
.9

1
7
3
.8

3
1
8
7
.7

7
4
0
.0

0

6
.5

0
8
.6

3
3
0
.7

7
3
2
.0

0

3
3
.7

5
1
8
4
.2

8
1
7
.6

2
4
2
.0

0

1
3
.6

9
2
.2

7
4
8
.7

0
2
1
.0

0

3
8
.0

2
5
5
.3

7
1
8
.6

6
3
9
.0

0

2
.7

0
1
.5

9
2
1
8
.1

2
9
.0

0

2
2
.8

9
* 2
4
.7

3
9
0
.0

0

5
2
.1

0
* 2
3
.6

2
6
9
.0

0

3
.4

2
* 1
2
.9

6
5
3
.0

0

3
.1

0
* 3
3
.9

2
5
7
.0

0

40%

27%

33%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

c
o

u
n

t)

2
6
7
.6

6
5
9
7
.5

2
6
.4

8
s

8
8
.0

0

4
4
.7

7
7
2
.6

1
4
.7

3
s

3
6
.0

0

3
0
4
.3

9
1
.5

3
s

1
.4

0
s

2
9
5
.0

0

1
2
0
.3

7
1
2
.9

4
2
.7

8
s

1
2
6
.0

0

3
3
7
.2

0
4
9
9
.9

9
2
.1

3
s

1
4
3
.0

0

1
8
.4

1
7
.9

5
8
.9

5
s

1
9
.0

0

2
0
5
.2

3
* 3
7
1
.1

1
3
5
2
.0

0

4
6
6
.7

3
* 1
.1

6
s

4
.2

8
s

2
.8

0
* 7
7
5
.8

3
2
4
6
.0

0

2
.1

5
* 2
5
0
.3

3
2
9
1
.0

0

Fig. 24. Count: ratio of queries of group Text for which each system obtained the best running times (left).
Detailed performance analysis for a selection of queries over XMark2 and XMark4 (right).

40%

27%

33%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

m
a

te
ri
a

liz
e

)

2
9
.9

1
7
5
.6

0
1
8
7
.6

2

6
.5

0
8
.8

3
3
0
.7

6

3
3
.7

5
1
8
9
.8

5
1
7
.3

5

1
3
.6

9
2
.3

7
4
8
.2

3

3
8
.0

2
5
6
.4

2
1
8
.5

4

2
.7

0
1
.6

8
2
1
6
.8

4

2
2
.8

9
* 2
4
.3

5

5
2
.1

0
* 2
3
.9

9

3
.4

2
* 1
2
.9

9

3
.1

0
* 3
4
.4

3

73%

27%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a

te
ri
a

liz
e

)

2
6
7
.6

6
6
1
0
.2

5
6
.9

4
s

4
4
.7

7
7
3
.4

6
4
.7

4
s

3
0
4
.3

9
1
.5

7
s

1
.4

0
s

1
2
0
.3

7
1
3
.0

7
2
.8

6
s

3
3
7
.2

0
5
0
6
.3

1
2
.2

1
s

1
8
.4

1
7
.9

3
8
.9

7
s

2
0
5
.2

3
* 3
7
5
.7

0

4
6
6
.7

3
* 1
.2

1
s

2
.8

0
* 7
7
6
.2

6

2
.1

5
* 2
5
2
.8

9

Fig. 25. Materialize: ratio of queries of group Text for which each system obtained the best running times
(left). Detailed performance analysis for a selection of queries over XMark2 and XMark4 (right).

27%

27%

40%

6%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

2
 (

m
a

t.
 +

 s
e

r.
)

8
3
.4

8
8
2
.5

8
1
9
2
.7

6
6
2
.0

0

7
.3

9
9
.4

2
3
1
.3

0
3
4
.0

0

4
8
.7

0
1
9
2
.8

3
2
0
.4

8
8
4
.0

0

1
4
.7

8
2
.5

0
4
8
.6

9
3
1
.0

0

4
9
.5

7
5
9
.5

5
2
0
.7

0
9
2
.0

0

3
.9

1
1
.6

7
2
1
7
.1

1
1
8
.0

0

3
6
.0

9
* 2
5
.0

6
1
1
1
.0

0

7
7
.7

8
* 2
7
.8

8
9
6
.0

0

4
.0

7
* 1
3
.1

4
5
5
.0

0

3
.4

8
* 3
4
.5

6
6
9
.0

0

53%

33%

14%

Q59 Q60 Q62 Q63 Q66 Q68 Q69 Q70 Q71 Q72
(%) 0

100

200

300

400

500

600

700

800

900

1000

X
M

a
rk

4
 (

m
a

t.
 +

 s
e

r.
)

7
4
8
.4

6
6
7
7
.2

7
6
.9

8
s

2
2
2
.0

0

5
7
.6

9
7
8
.9

2
4
.9

9
s

5
9
.0

0

4
3
8
.4

6
1
.6

0
s

1
.5

0
s

4
8
1
.0

0

1
2
6
.1

5
1
4
.0

1
2
.8

7
s

1
9
1
.0

0

4
5
0
.0

0
5
3
5
.6

8
2
.2

3
s

2
4
6
.0

0

2
6
.9

2
7
.9

4
8
.9

7
s

4
2
.0

0

3
2
3
.0

8
* 3
8
2
.5

5
4
5
9
.0

0

6
9
9
.2

3
* 4
.8

6
s

4
.2

9
s

3
.8

5
* 7
7
8
.7

7
2
6
2
.0

0

2
.3

1
* 2
5
3
.0

4
2
9
2
.0

0

Fig. 26. Materialize + Serialize: ratio of queries of group Text for which each system obtained the best
running times (left). Detailed performance analysis for a selection of queries over XMark2 and XMark4 (right).

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

