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We present a fast compression and decompression technique for natural language texts. The
novelties are that (i) decompression of arbitrary portions of the text can be done very efficiently,
(ii) exact search for words and phrases can be done on the compressed text directly, using any
known sequential pattern matching algorithm and (iii) word-based approximate and extended
search can also be done efficiently without any decoding. The compression scheme uses a semi-
static word-based model and a Huffman code where the coding alphabet is byte-oriented rather
than bit-oriented. We compress typical English texts to about 30% of their original size, against
40% and 35% for Compress and Gzip, respectively. Compression time is close to that of Compress
and approximately half the time of Gzip, and decompression time is lower than that of Gzip and
one third of that of Compress.

We present three algorithms to search the compressed text. They allow a large number of varia-
tions over the basic word and phrase search capability, such as sets of characters, arbitrary regular
expressions and approximate matching. Separators and stopwords can be discarded at search time
without significantly increasing the cost. When searching for simple words, the experiments show
that running our algorithms on a compressed text is twice as fast as running the best existing
software on the uncompressed version of the same text. When searching complex or approximate
patterns, our algorithms are up to 8 times faster than the search on uncompressed text. We also
discuss the impact of our technique in inverted files pointing to logical blocks and argue for the
possibility of keeping the text compressed all the time, decompressing only for displaying purposes.
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1. INTRODUCTION

In this paper we present an efficient compression technique for natural language
texts that allows fast and flexible searching of words and phrases. To search for
simple words and phrases, the patterns are compressed and the search proceeds
without any decoding of the compressed text. Searching words and phrases that
match complex expressions and/or allowing errors can be done on the compressed
text at almost the same cost of simple searches. The reduced size of the compressed
text makes the overall searching time much smaller than on plain uncompressed
text. The compression and decompression speeds and the amount of compression
achieved are very good when compared to well known algorithms in the litera-
ture [Ziv and Lempel 1977; Ziv and Lempel 1978].

The compression scheme presented in this paper is a variant of the word-based
Huffman code [Bentley et al. 1986; Moffat 1989; Witten et al. 1999]. The Huffman
codeword assigned to each text word is a sequence of whole bytes and the Huffman
tree has degree either 128 (which we call “tagged Huffman code”) or 256 (which we
call “plain Huffman code”), instead of 2. In tagged Huffman coding each byte uses
7 bits for the Huffman code and 1 bit to signal the beginning of a codeword. As we
show later, using bytes instead of bits does not significantly degrade the amount of
compression. In practice, byte processing is much faster than bit processing because
bit shifts and masking operations are not necessary at compression, decompression
and search times. The decompression can start at any point in the compressed file.
In particular, the compression scheme allows fast decompression of fragments that
contain the search results, which is an important feature in information retrieval
systems.

Notice that our compression scheme is designed for large natural language texts
containing at least 1 megabyte to achieve an attractive amount of compression.
Also, the search algorithms are word oriented as the pattern is a sequence of ele-
ments to be matched to a sequence of text words. Each pattern element can be a
simple word or a complex expression, and the search can be exact or allowing errors
in the match. In this context, we present three search algorithms.

The first algorithm, based on tagged Huffman coding, compresses the pattern
and then searches for the compressed pattern directly in the compressed text. The
search can start from any point in the compressed text because all the bytes that
start a codeword are marked with their highest bit set in 1. Any conventional
pattern matching algorithm can be used for exact searching and a multi-pattern
matching algorithm is used for searching allowing errors, as explained later on.

The second algorithm searches on a plain Huffman code and is based on a word-
oriented Shift-Or algorithm [Baeza-Yates and Gonnet 1992]. In this case the com-
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pression obtained is better than with tagged Huffman code because the search
algorithm does not need any special marks on the compressed text.

The third algorithm is a combination of the previous ones, where the pattern
is compressed and directly searched in the text as in the first algorithm based on
tagged Huffman coding. However, it works on plain Huffman code, where there
is no signal of codeword beginnings, and therefore the second algorithm is used to
check a surrounding area in order to verify the validity of the matches found.

The three algorithms allow a large number of variations over the basic word and
phrase searching capability, which we group under the generic name of extended
patterns. As a result, classes of characters including character ranges and com-
plements, wild cards, and arbitrary regular expressions can be efficiently searched
exactly or allowing errors in the occurrences. Separators and very common words
(stopwords) can be discarded without significantly increasing the search cost.

The algorithms also allow “approximate phrase matching”. They are able to
search in the compressed text for approximate occurrences of a phrase pattern al-
lowing insertions, deletions or replacements of words. Approximate phrase match-
ing can capture different writing styles and therefore improve the quality of the
answers to the query. Our algorithms are able to perform this type of search at the
same cost of the other cases, which is extremely difficult on uncompressed search.

Our technique is not only useful to speed up sequential search. It can also be used
to improve indexed schemes that combine inverted files and sequential search, like
Glimpse [Manber and Wu 1993]. In fact, the techniques that we present here can
nicely be integrated to the inverted file technology to obtain lower space-overhead
indexes. Moreover, we argue in favor of keeping the text compressed all the time,
so the text compression cannot be considered an extra effort anymore.

The algorithms presented in this paper are being used in a software package called
Cgrep. Cgrep is an exact and approximate compressed matching tool for large text
collections. The software is available from ftp://dcc.ufmg.br/latin/cgrep, as
a prototype. Preliminary partial versions of this article appeared in [Moura et al.
1998a; Moura et al. 1998b].

This paper is organized as follows. In Section 2 we discuss the basic concepts
and present the related work found in the literature. In Section 3 we present our
compression and decompression method, followed by analytical and experimental
results. In Section 4 we show how to perform exact and extended searching on
tagged Huffman compressed texts. In Section 5 we show how to perform exact and
extended searching on plain Huffman compressed texts. In Section 6 we present
experimental results about the search performance. Finally, in Section 7 we present
conclusions and suggestions for future work.

2. BASICS AND RELATED WORK

Tezt compression is about exploiting redundancies in the text to represent it in less
space [Bell et al. 1990]. In this paper we denote the uncompressed file as T' and its
length in bytes as u. The compressed file is denoted as Z and its length in bytes
as n. Compression ratio is used in this paper to denote the size of the compressed
file as a percentage of the uncompressed file (i.e. 100 x n/u).

From the many existing compression techniques known in the literature we em-
phasize only the two that are relevant for this paper. A first technique of interest



4 . E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yates

is the Ziv-Lempel family of compression algorithms, where repeated substrings of
arbitrary length are identified in the text and the repetitions are replaced by point-
ers to their previous occurrences. In these methods it is possible that n = o(u),
achieving n = O(y/u) and even n = O(log u) in the best cases.

A second technique is what we call “zero-order substitution” methods. The
text is split into symbols and each symbol is represented by a unique codeword.
Compression is achieved by assigning shorter codewords to more frequent symbols.
The best known technique of this kind is the minimum redundancy code, also called
Huffman code [Huffman 1952]. In Huffman coding, the codeword for each symbol is
a sequence of bits so that no codeword is a prefix of another codeword and the total
length of the compressed file is minimized. In zero-order substitution methods we
have n = O(u), even though the constant can be smaller than 1. Moreover, there are
©(u) symbols in a text of u characters (bytes) and ©(n) codewords in a compressed
text of n bytes. In this work, for example, we use O(u) to denote the number of
words in T.

The compressed matching problem was first defined in the work of Amir and
Benson [Amir and Benson 1992] as the task of performing string matching in a
compressed text without decompressing it. Given a text T', a corresponding com-
pressed string Z, and an (uncompressed) pattern P of length m, the compressed
matching problem consists in finding all occurrences of P in T', using only P and
7. A naive algorithm, which first decompresses the string Z and then performs
standard string matching, takes time O(u+m). An optimal algorithm takes worst-
case time O(n + m). In [Amir et al. 1996], a new criterion, called extra space,
for evaluating compressed matching algorithms, was introduced. According to the
extra space criterion, algorithms should use at most O(n) extra space, optimally
O(m) in addition to the n-length compressed file.

The first compressed pattern matching algorithms dealt with Ziv-Lempel com-
pressed text. In [Farach and Thorup 1995] was presented a compressed matching
algorithm for the LZ1 classic compression scheme [Ziv and Lempel 1976] that runs
in O(nlog® (u/n)+m) time. In [Amir et al. 1996], a compressed matching algorithm
for the LZ78 compression scheme was presented, which finds the first occurrence in
O(n +m?) time and space, or in O(nlogm + m) time and in O(n + m) space. An
extension of [Amir et al. 1996] to multipattern searching was presented in [Kida
et al. 1998], together with the first experimental results in this area. New practical
results appeared in [Navarro and Raffinot 1999], which presented a general scheme
to search on Ziv-Lempel compressed texts (simple and extended patterns) and im-
plemented it for the particular cases of LZ77, LZ78 and a new variant proposed
which was competitive and convenient for search purposes. A similar result, re-
stricted to the LZW format, was independently found and presented in [Kida et al.
1999]. Finally, [Kida et al. 1999] generalized the existing algorithms and nicely
unified the concepts in a general framework.

All the empirical results obtained roughly coincide in a general figure: searching
on a Ziv-Lempel compressed text can take half the time of decompressing that text
and then searching it. However, the compressed search is twice as slow as just
searching the uncompressed version of the text. That is, the search algorithms are
useful if the text has to be kept compressed anyway, but they do not give an extra
reason to compress. The compression ratios are about 30% to 40% in practice when
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a text is compressed using Ziv-Lempel.

A second paradigm is zero-order substitution methods. As explained, n = ©(u) in
this model, and therefore the theoretical definition of compressed pattern matching
makes little sense because it is based in distinguishing O(u) from O(n) time. The
goals here, as well as the existing approaches, are more practical: search directly
the compressed text faster than the uncompressed text, taking advantage of its
smaller size.

A first text compression scheme that allowed direct searching on compressed text
was proposed by Manber [Manber 1997]. This approach packs pairs of frequent
characters in a single byte, leading to a compression ratio of approximately 70%
for typical text files.

A particularly successful trend inside zero-order substitution methods has been
Huffman coding where the text words are considered the symbols that compose
the text. The semi-static version of the model is used, that is, the frequencies of
the text symbols is learned in a first pass over the text and the text is coded in
a second pass. The table of codewords assigned to each symbol is stored together
with the compressed file. This model is better suited to typical information re-
trieval scenarios on large text databases, mainly because the data structures can
be shared (the vocabulary of the text is almost the same as the symbol table of
the compressor), local decompression is efficient, and better compression and faster
search algorithms are obtained (it is possible to search faster on the compressed
than on the uncompressed text). The need for two passes over the text is normally
already present when indexing text in information retrieval applications, and the
overhead of storing the text vocabulary is negligible for large texts. On the other
hand, the approach is limited to word-based searching on large natural language
texts, unlike the Ziv-Lempel approach.

To this paradigm belongs [Turpin and Moffat 1997], a work developed indepen-
dently of our work. The paper presents an algorithm to search on texts compressed
by a word-based Huffman method, allowing only exact searching for one-word pat-
terns. The idea is to search for the compressed pattern codeword in the compressed
text.

Our work is based on a similar idea, but uses bytes instead of bits for the coding
alphabet. The use of bytes presents a small loss in the compression ratio and the
gains in decompression and search efficiency are large. We also extend the search
capabilities to phrases, classes of characters, wild cards, regular expressions, exactly
or allowing errors (also called “approximate string matching”).

The approzimate string matching problem is to find all substrings in a text
database that are at a given “distance” k or less from a pattern P. The distance
between two strings is the minimum number of insertions, deletions or substitutions
of single characters in the strings that are needed to make them equal. The case in
which £ = 0 corresponds to the classical exact matching problem.

Approximate string matching is a particularly interesting case of extended pat-
tern searching. The technique is useful to recover from typing, spelling and optical
character recognition errors. The problem of searching a pattern in a compressed
text allowing errors is an open problem in [Amir et al. 1996]. We partially solve
this problem, since we allow approximate word searching. That is, we can find text
words that match a pattern word with at most & errors. Note the limitations of this
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statement: if a single error inserts a space in the middle of "flower", the result
is a sequence of two words, "flo" and "wer", none of which can be retrieved by
the pattern "flowers" allowing one error. A similar problem appears if a space
deletion converts "many flowers" into a single word.

The best known software to search uncompressed text with or without errors is
Agrep [Wu and Manber 1992]. We show that our compressed pattern matching
algorithms compare favorably against Agrep, being up to 8 times faster depending
on the type of search pattern. Of course Agrep is not limited to word searching and
does not need to compress the file prior to searching. However, this last argument
can in fact be used in the other direction: we argue that thanks to our search
algorithms and to new techniques to update the compressed text, the text files can
be kept compressed all the time and be decompressed only for displaying purposes.
This leads to an economy of space and improved overall efficiency.

For all the experimental results of this paper we used natural language texts
from the TREC collection [Harman 1995]. We have chosen the following texts: AP -
Newswire (1989), DOE - Short abstracts from DOE publications, FR - Federal Reg-
ister (1989), wsJ - Wall Street Journal (1987, 1988, 1989) and ZIFF - articles from
Computer Selected disks (Ziff-Davis Publishing). Table 1 presents some statistics
about the five text files. We considered a word as a contiguous maximal string of
characters in the set {A...Z, a...z, 0...9}. All tests were run on a SUN SparcStation
4 with 96 megabytes of RAM running Solaris 2.5.1.

Text Vocabulary Vocab. /Text

Size (bytes) | #Words | Size (bytes) | #Words Size #Words
AP | 237,766,005 | 38,977,670 | 1,564,050 | 209,272 | 0.65% | 0.53%
DOE | 181,871,525 | 28,505,125 1,949,140 235,133 1.07% 0.82%
FR 219,987,476 | 34,455,982 1,284,092 181,965 0.58% 0.52%
ws3 | 262,757,554 | 42,710,250 | 1,549,131 | 208,005 | 0.59% | 0.48%
ZIFF | 242,660,178 | 39,675,248 1,826,349 255,107 | 0.75% 0.64%

Files

Table 1. Some statistics of the text files used from the TREC collection.

3. THE COMPRESSION SCHEME

General compression methods are typically adaptive as they allow the compression
to be carried out in one pass and there is no need to keep separately the parameters
to be used at decompression time. However, for natural language texts used in a
full-text retrieval context, adaptive modeling is not the most effective compression
technique.

Following [Moffat 1989; Witten et al. 1999], we chose to use word-based semi-
static modeling and Huffman coding [Huffman 1952]. In a semi-static model the
encoder makes a first pass over the text to obtain the frequency of each different text
word and performs the actual compression in a second pass. There is one strong
reason for using this combination of modeling and coding. The data structures
associated with them include the list of words that compose the vocabulary of the
text, which we use to derive our compressed matching algorithm. Other important
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001
001
001
0Q1 0Q1
[each] [Lu |[for] [is ]
Original Text: for each rose, a rose is a rose

Compressed Text: 0010 0000 1 0001 01 1 0011 01 1

Fig. 1. A canonical tree and a compression example using binary Huffman coding for spaceless
words.

reasons in text retrieval applications are that decompression is faster on semi-static
models, and that the compressed text can be accessed randomly without having
to decompress the whole text as in adaptive methods. Furthermore, previous ex-
periments have shown that word-based methods give good compression ratios for
natural language texts [Bentley et al. 1986; Moffat 1989; Horspool and Cormack
1992].

Since the text is not only composed of words but also of separators, a model must
also be chosen for them. In [Moffat 1989; Bell et al. 1993] two different alphabets
are used: one for words and one for separators. Since a strict alternating property
holds, there is no confusion about which alphabet to use once it is known that the
text starts with word or separator.

We use a variant of this method to deal with words and separators that we call
spaceless words. If a word is followed by a space, we just encode the word. If
not, we encode the word and then the separator. At decoding time, we decode a
word and assume that a space follows, except if the next symbol corresponds to a
separator. In this case the alternating property does not hold and a single coding
alphabet is used. This idea was firstly presented in [Moura et al. 1997], where it
is shown that the spaceless word model achieves slightly better compression ratios.
Figure 1 presents an example of compression using Huffman coding for spaceless
words method. The set of symbols in this case is {"a", "each", "is", "for",
"rose", ",U"}, whose frequencies are 2, 1, 1, 1, 3, 1, respectively.

The number of Huffman trees for a given probability distribution is quite large.
The preferred choice for most applications is the canonical tree, defined by Schwartz
and Kallick [Schwartz and Kallick 1964]. The Huffman tree of Figure 1 is a canonical
tree. It allows more efficiency at decoding time with less memory requirement.
Many properties of the canonical codes are mentioned in [Hirschberg and Lelewer
1990; Zobel and Moffat 1995; Witten et al. 1999].

3.1 Byte-Oriented Huffman Code

The original method proposed by Huffman [Huffman 1952] is mostly used as a
binary code. That is, each symbol of the input stream is coded as a sequence of
bits. In this work the Huffman codeword assigned to each text word is a sequence
of whole bytes and the Huffman tree has degree either 128 (in this case the eighth
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bit is used as a special mark to aid the search) or 256, instead of 2. In all cases
from now on, except otherwise stated, we consider that

—the words and separators of the text are the symbols,
—the separators are codified using the spaceless word model,
—canonical trees are used,

—and the symbol table, which is the vocabulary of the different text words and
separators, is kept compressed using the classical binary Huffman coding on char-
acters.

We now define the different types of Huffman codes used in this work, all of which
adhere to the above points.

Binary Huffman Code A sequence of bits is assigned to each word or separator.

Byte Huffman Code A sequence of bytes is assigned to each word or separator.
This encompasses the two coding schemes that follow.

Plain Huffman Code A byte Huffman coding where all the bits of the bytes are
used. That is, the Huffman tree has degree 256.

Tagged Huffman Code A byte Huffman coding where only the 7 lower order
bits of each byte are used. That is, the Huffman tree has degree 128. The
highest bit of each byte is used as follows: the first byte of each codeword has
the highest bit in 1, while the other bytes have their highest bit in 0. This is
useful for direct searching on the compressed text, as explained later.

All the techniques for efficient encoding and decoding mentioned in [Zobel and
Moffat 1995] can easily be extended to our case. As we show later in the experimen-
tal results section no significant degradation of the compression ratio is experienced
by using bytes instead of bits. On the other hand, decompression of byte Huffman
code is faster than decompression of binary Huffman code. In practice, byte pro-
cessing is much faster than bit processing because bit shifts and masking operations
are not necessary at decoding time or at searching time.

3.2 Compression Ratio

In this section we consider the compression ratios achieved with this scheme. A
first concern is that Huffman coding needs to store, together with the compressed
file, a table with all the text symbols. As we use word compression, this table is
precisely the vocabulary of the text, that is, the set of all different text words. This
table can in principle be very large and ruin the overall compression ratio.

However, this is not the case on large texts. Heaps’ Law [Heaps 1978], an empiri-
cal law widely accepted in information retrieval, establishes that a natural language
text of O(u) words has a vocabulary of size v = O(u?), for 0 < 3 < 1. Typically,
B is between 0.4 and 0.6 [Aradjo et al. 1997; Moura et al. 1997], and therefore v is
close to O(y/u).

Hence, for large texts the overhead of storing the vocabulary is minimal. On
the other hand, storing the vocabulary represents an important overhead when the
text is small. This is why we chose to compress the vocabulary (that is, the symbol
table) using classical binary Huffman on characters. As shown in Figure 2, this
fact makes our compressor better than Gzip for files of at least 1 megabyte instead
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a8 L Plain Huffman (uncompressed vocabulary) —— |
Plain Huffman(compressed vocabulary) -+---
46 | Compress -&-- |
Gzip -~

Compression Ratio(%)

30 L L L L

(] 10 20 30 40 50 60 70 80 90 100
File Size(megabytes)

Fig. 2. Compression ratios for the wsJ file compressed by Gzip, Compress, and plain Huffman
with and without compressing the vocabulary.

of 10 megabytes!. The need to decompress the vocabulary at search time poses
a minimal processing overhead which can even be completely compensated by the
reduced I/0.

A second concern is whether the compression ratio can or cannot worsen as the
text grows. Since in our model the number of symbols v grows (albeit sublinearly) as
the text grows, it could be possible that the average length to code a symbol grows
too. The key to prove that this does not happen is to show that the distribution of
words in the text is biased enough for the entropy? to be O(1), and then to show
that Huffman codes put only a constant overhead over this entropy. This final step
will be done for d-ary Huffman codes, which includes our 7-bit (tagged) and 8-bit
(plain) cases.

We use the Zipf’s Law [Zipf 1949] as our model of the frequency of the words
appearing in natural language texts. This law, widely accepted in information
retrieval, states that if we order the v words of a natural language text in decreasing
order of probability, then the probability of the first word is i’ times the probability
of the i-th word, for every i. This means that the probability of the i-th word is
pi = 1/(i°H), where H = o = Z;’:l 1/j%. The constant § depends on the text.

Zipf’s Law comes in two flavors. A simplified form assumes that § = 1. In
this case, H = O(logwv). Although this simplified form is popular because it is
simpler to handle mathematically, it does not follow well the real distribution of
natural language texts. There is strong evidence that most real texts have in fact
a more biased vocabulary. We performed in [Aradjo et al. 1997] a thorough set
of experiments on the TREC collection, finding out that the 6 values are roughly
between 1.5 and 2.0 depending on the text, which gives experimental evidence
in favor of the “generalized Zipf’s Law” (i.e. 6 > 1). Under this assumption,

IThe reason why both Ziv-Lempel compressors do not improve for larger texts is in part because
they search for repetitions only in a relatively short window of the text already seen. Hence, they
are prevented from exploiting most of the already processed part of the text.

2We estimate the zero-order word-based binary entropy of a text as — Zi:l..v pi log, pi, where
p; is the relative frequency of the i-th vocabulary word. For simplicity we call this measure just
“entropy” in this paper.
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H=0(Q1).

We have tested the distribution of the separators as well, finding that they also
follow reasonably well a Zipf’s distribution. Moreover, their distribution is even
more biased than that of words, being 6 closer to 1.9. We therefore assume that
6 > 1 and consider only words, since an analogous proof will hold for separators.

On the other hand, more refined versions of Zipf’s Law exist, such as the Man-
delbrot distribution [Gonnet and Baeza-Yates 1991]. This law tries to improve the
fit of Zipf’s Law for the most frequent values. However, it is mathematically harder
to handle and it does not alter the asymptotic results that follow.

We analyze the entropy E(d) of such distribution for a vocabulary of v words
when d digits are used in the coding alphabet, as follows:

- 1 1nH+01nz
ilogg — =
gp Ogdpi lndz
1 le”:1+ez”:1ni C e H 4+ ! Z1m
T Humd\ & TV ) T ok Hind

Bounding the summation with an integral, we have that

ilni In2 (A#—1)ln2+1

j— j— A e -1y _
<ot gyt Olosv/ ) = 0()

i=1
which allows us to conclude that E(d) = O(1), as log, H is also O(1).

If we used the simple Zipf’s Law instead, the result would be that E(d) =
O(logv), i.e., the average codeword length would grow as the text grows. The
fact that this does not happen for 1 gigabyte of text is an independent experi-
mental confirmation of the validity of the generalized Zipf’s Law against its simple
version.

We consider the overhead of Huffman coding over the entropy. Huffman coding
is not optimal because of its inability to represent fractional parts of bits. That
is, if a symbol has probability p;, it should use exactly log,(1/p;) bits to represent
the symbol, which is not possible if p; is not a power of 1/2. This effect gets worse
if instead of bits we use numbers in base d. We give now an upper bound on the
compression inefficiency involved.

In the worst case, Huffman will encode each symbol with probability p; using
[log,(1/pi)] digits. This is a worst case because some symbols are encoded using
|log,(1/pi)] digits. Therefore, in the worst case the average length of a codeword
in the compressed text is

v v
> pi Mogy(1/pi)] < 14 pi logy(1/ps)
=1 =1
which shows that, regardless of the probability distribution, we cannot spend more
than one extra digit per codeword due to rounding overheads. For instance, if we
use bytes we spend at most one more byte per word.
This proves that the compression ratio will not degrade as the text grows, even
when the number of different words and separators increases.
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Table 2 shows the entropy and compression ratios achieved for binary Huffman,
plain Huffman, tagged Huffman, Gnu Gzip and Unix Compress for the files of
the TREC collection. As can be seen, the compression ratio degrades only slightly
by using bytes instead of bits and, in that case, we are still below Gzip. The
exception is the FR collection, which includes a large part of non-natural language
such as chemical formulas. The compression ratio of the tagged Huffman code is
approximately 3 points (i.e. 3% of u) over that of plain Huffman, which comes from
the extra space allocated for the tag bit in each byte.

Files
Method
AP WSJ DOE ZIFF FR
Entropy 26.20 | 26.00 | 24.60 | 27.50 | 25.30

Binary Huffman | 27.41 | 27.13 | 26.25 | 28.93 | 26.88
Plain Huffman 31.16 | 30.60 | 30.19 | 32.90 | 30.14
Tagged Huffman | 34.12 | 33.70 | 32.74 | 36.08 | 33.53
Gzip 38.56 | 37.53 | 34.94 | 34.12 | 27.75
Compress 43.80 | 42.94 | 41.08 | 41.56 | 38.54

Table 2. Compression ratios achieved by different compression schemes, where “entropy” refers
to optimal coding. The space used to store the vocabulary is included in the Huffman compression
ratios.

3.3 Compression and Decompression Performance

Finally, we consider in this section the time taken to compress and decompress the
text.

To compress the text, a first pass is performed in order to collect the vocabulary
and its frequencies. By storing it in a trie data structure, O(u) total worst case
time can be achieved. Since a trie requires non practical amounts of memory, we
use a hash table to perform this step in our implementation. The average time to
collect the vocabulary using a hash table is O(u). The vocabulary is then sorted
by the word frequencies at O(vlogv) cost, which in our case is O(u®logu) = o(u).

After the sorting, we generate a canonical Huffman code of the vocabulary words.
The advantage of using canonical trees is that they are space economic. A canonical
tree can be represented by using only two small tables with size O(logv). Further,
previous work has shown that decoding using canonical codes reduces decompres-
sion times [Hirschberg and Lelewer 1990; Zobel and Moffat 1995; Turpin and Moffat
1997]. The canonical code construction can be done at O(v) cost, without using
any extra space by using the algorithm described in [Moffat and Katajainen 1995].
Finally, the file is compressed by generating the codeword of each text word, which
is again O(u).

Decompression starts by reading the vocabulary into memory at O(v) cost, as well
as the canonical Huffman tree at O(logv) cost. Then each word in the compressed
text is decoded and its output written on disk, for a total time of O(u).

Table 3 shows the compression and decompression times achieved for binary
Huffman, plain Huffman, tagged Huffman, Compress and Gzip for files of the TREC
collection. In compression, we are 2-3 times faster than Gzip and only 17% slower
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than Compress (which achieves much worse compression ratios). In decompression,
there is a significant improvement when using bytes instead of bits. This is because
no bit shifts nor masking are necessary. Using bytes, we are more than 20% faster
than Gzip and three times faster than Compress.

Compression Decompression
Method P P

AP WSJ | DOE | ZIFF FR AP | WSJ | DOE | ZIFF | FR
Binary Huff. | 490 526 | 360 518 440 | 170 | 185 | 121 | 174 | 151
Plain Huff. 487 520 | 356 515 435 | 106 | 117 81 112 96
Tagged Huff. | 491 534 | 364 | 527 446 | 112 | 121 85 116 99
Compress 422 456 | 308 | 417 375 | 367 | 407 | 273 | 373 | 331
Gzip 1333 | 1526 | 970 | 1339 | 1048 | 147 | 161 | 105 | 139 | 111

Table 3. Compression and decompression times (in elapsed seconds for the whole collections)
achieved by different compression schemes.

The main disadvantage of word-based Huffman methods are the space require-
ments to both compress and decompress the text. At compression time they need
the vocabulary and a look up table with the codewords that is used to speed up
the compression. The Huffman tree is constructed without any extra space by us-
ing an in-place algorithm [Moffat and Katajainen 1995; Milidiu et al. 1998]. At
decompression time we need to store the vocabulary in main memory. Therefore
the space complexities of our methods are O(u?). The methods used by Gzip and
Compress have constant space complexity and the amount of memory used can
be configured. So, our methods are more memory-demanding than Compress and
Gzip, which constitutes a drawback for some applications. For example, our meth-
ods need 4.7 megabytes of memory to compress and 3.7 megabytes of memory to
decompress the wsJ file, while Gzip and Compress need only about 1 megabyte
to either compress or decompress this same file. However, for the text searching
systems we are interested in, the advantages of our methods (i.e. allowing efficient
exact and approximate searching on the compressed text and fast decompression
of fragments) are more important than the space requirements.

4. SEARCHING ON TAGGED HUFFMAN COMPRESSED TEXT

Our first searching scheme works on tagged Huffman compressed texts. We recall
that the tagged Huffman compression uses one bit of each byte in the compressed
text to mark the beginning of each codeword.

General Huffman codes are prefix free codes, which means that no codeword is
a prefix of another codeword. This feature is sufficient to decode the compressed
text, but it is not sufficient to allow direct searching for compressed words, due to
the possibility of false matches. To see this problem, consider the word "ghost"
in the example presented in Figure 3. Although the word is not present on the
compressed text, its codeword is.

The false matches are avoided if in the compressed text no codeword prefix is
a suffix of another codeword. We add this feature to the tagged Huffman coding
scheme by setting to 1 the highest bit of the first byte of each codeword (this bit is
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Word Code

real 85 132 Original Text ...real word...

word 229 12 99 \ 1 ]
Compressed Text ...85132 229 12 99...

ghost 132 229 12 p

ghost ?
Fig. 3. An example where the codeword of a word is present in the compressed text but the word
is not present in the original text. Codewords are shown in decimal notation.

the “tag”). Since a compressed pattern can now only match its first byte against the
first byte of a codeword in the text, we know that any possible match is correctly
aligned. This permits the use of any conventional text searching algorithm directly
on the compressed text, provided we search for whole words.

In general we are able to search phrase patterns. A phrase pattern is a sequence
of elements, where each element is either a simple word or an extended pattern.
Extended patterns, which are to be matched against a single text word, include the
ability to have any set of characters at each position, unbounded number of wild
cards, arbitrary regular expressions, approximate searching, and combinations. The
Appendix gives a detailed description of the patterns supported by our system.

The search for a pattern on a compressed text is made in two phases. In the
first phase we compress the pattern using the same structures used to compress the
text. In the second phase we search for the compressed pattern. In an exact pattern
search, the first phase generates a unique pattern that can be searched with any
conventional searching algorithm. In an approximate or extended pattern search,
the first phase generates all the possibilities of compressed codewords that match
with the original pattern in the vocabulary of the compressed text. In this last case
we use a multi-pattern algorithm to search the text. We now explain this method
in more detail and show how to extend it for phrases.

4.1 Preprocessing Phase

Compressing the pattern when we are performing an exact search is similar to
the coding phase of the Huffman compression. We search for each element of the
pattern in the Huffman vocabulary and generate the compressed codeword for it.
If there is an element in the pattern that is not in the vocabulary then there are
no occurrences of the pattern in the text.

If we are doing approximate or extended search then we need to generate com-
pressed codewords for all symbols in the Huffman vocabulary that match with the
element in the pattern. For each element in the pattern we make a list of the
compressed codewords of the vocabulary symbols that match with it. This is done
by sequentially traversing the vocabulary and collecting all the words that match
the pattern. This technique has been already used in block addressing indices on
uncompressed texts [Manber and Wu 1993; Araijo et al. 1997; Baeza-Yates and
Navarro 1997]. Since the vocabulary is very small compared to the text size, the
sequential search time on the vocabulary is negligible, and there is no other addi-
tional cost to allow complex queries. This is very difficult to achieve with online
plain text searching, since we take advantage of the knowledge of the vocabulary
stored as part of the Huffman tree.
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Depending on the pattern complexity we use two different algorithms to search
the vocabulary. For phrase patterns allowing k errors (k > 0) that contain sets
of characters at any position we use the algorithm presented in [Baeza-Yates and
Navarro 1999]. If v is the size of the vocabulary and w is the length of a word W
the algorithm runs in O(v + w) time to search W. For more complicated patterns
allowing k errors (k > 0) that contain unions, wild cards or regular expressions we
use the algorithm presented in [Wu and Manber 1992], which runs in O(kv + w)
time to search W. A simple word is searched in O(w) time using, e.g., a hash table.

4.2 Searching Phase

For exact search, after obtaining the compressed codeword (a sequence of bytes)
we can choose any known algorithm to process the search. In the experimental
results presented in this paper we used the Sunday [Sunday 1990] algorithm, from
the Boyer-Moore family, which has good practical performance. In the case of ap-
proximate or extended searching we convert the problem to the exact multipattern
searching problem. We just obtain a set of codewords that match the pattern and
use a multipattern search algorithm proposed by Baeza-Yates and Navarro [Baeza-
Yates and Navarro 1999]. This algorithm is an extension of the Sunday algorithm,
and works well when the number of patterns to search is not very large. In case of a
large number of patterns to search, the best option would be Aho-Corasick [Aho and
Corasick 1975], which allows to search in O(n) time independently of the number
of patterns.

If we assume that the compressed codeword of a pattern of length m is ¢, then
Boyer-Moore type algorithms inspect about n/c bytes of the compressed text in
the best case. This best case is very close to the average case because the alphabet
is large (of size 128 or 256) and uniformly distributed, as compared to the small
pattern length ¢ (typically 3 or 4). On the other hand, the best case in uncompressed
text searching is to inspect u/m characters. Since the compression ratio n/u should
roughly hold for the pattern on average, we have that n/u =~ ¢/m and therefore
the number of inspected bytes in compressed and uncompressed text is roughly the
same.

There are, however, three reasons that make compressed search faster. First, the
number of bytes read from disk is n, which is smaller than u. Second, in compressed
search the best case is very close to the average case, while this is not true when
searching uncompressed text. Third, the argument that says that ¢/m is close
to n/u assumes that the search pattern is taken randomly from the text, while in
practice a model of selecting it randomly from the vocabulary matches reality much
better. This model yields a larger ¢ value on average, which improves the search
time on compressed text.

Searching a phrase pattern is more complicated. A simple case arises when the
phrase is a sequence of simple words that is to be found as is (even with the same
separators). In this case we can concatenate the codewords of all the words and
separators of the phrase and search for the resulting (single) pattern.

If, on the other hand, we want to disregard the exact separators between phrase
elements or they are not simple words, we apply a different technique. In the
general case, the original pattern is represented by the sequence of lists Ly, .., L;,
where L; has the compressed codewords that match the i-th element of the original
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pattern. To start the search in the compressed text we choose one of these lists and
use the algorithm for one-word patterns to find the occurrences in the text. When
an occurrence of one element of the first list searched is found, we use the other
lists to verify if there is an occurrence of the entire pattern at this text position.

The choice of the first list searched is fundamental for the performance of the
algorithm. We heuristically choose the element ¢ of the phrase that maximizes the
minimal length of the codewords in L;. This choice comes directly from the cost
to search a list of patterns. Longer codewords have less probability of occurrence
in the text, which translates into less verifications for occurrences of elements of
the other lists. Moreover, most text searching algorithms work faster on longer
patterns. This type of heuristic is also of common use in inverted files when solving
conjunctive queries [Baeza-Yates and Ribeiro-Neto 1999; Witten et al. 1999].

A particularly bad case for this filter arises when searching a long phrase formed
by very common words, such as "to be or not to be". The problem gets worse
if errors are allowed in the matches or we search for even less stringent patterns. A
general and uniform cost solution to all these types of searches is depicted in the
next section.

5. SEARCHING ON PLAIN HUFFMAN COMPRESSED TEXT

A disadvantage of our first searching scheme described before is the loss in compres-
sion due to the extra bit used to allow direct searching. A second disadvantage is
that the filter may not be effective for some types of queries. We show now how to
search in the plain Huffman compressed text, a code that has no special marks and
gives a better compression ratio than the tagged Huffman scheme. We also show
that much more flexible searching can be carried out in an elegant and uniform
way.

We present two distinct searching algorithms. The first one, called plain filterless,
is an automaton-based algorithm that elegantly handles all possible complex cases
that may arise, albeit slower than the previous scheme. The second, called plain
filter, is a combination of both algorithms, trying to do direct pattern matching
on plain Huffman compressed text and using the automaton-based algorithm as a
verification engine for false matches.

5.1 The Automaton-Based Algorithm

As in the previous scheme, we make heavy use of the vocabulary of the text, which
is available as part of the Huffman coding data. The Huffman tree can be regarded
as a trie where the leaves are the words of the vocabulary and the path from the root
to a leaf spells out its compressed codeword, as shown in the left part of Figure 4
for the word "rose".

We first explain how to solve exact words and phrases and then extend the
idea for extended and approximate searching. The pattern preprocessing consists
on searching it in the vocabulary as before and marking the corresponding entry.
In general, however, the patterns are phrases. To preprocess phrase patterns we
simply perform this procedure for each word of the pattern. For each word of the
vocabulary we set up a bit mask that indicates which elements of the pattern does
the word match. Figure 4 shows the marks for the phrase pattern "rose is", where
01 indicates that the word "is" matches the second element in the pattern and 10
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Fig. 4. The searching scheme for the pattern "rose is". In this example the word "rose" has a
three-byte codeword 47 131 8. In the nondeterministic finite automaton, ’?’ stands for 0 and 1.

indicates that the word "rose" matches the first element in the pattern (all the
other words have 00 since they match nowhere). If any word of the pattern is not
found in the vocabulary we immediately know that the pattern is not in the text.

Next, we scan the compressed text, byte by byte, and at the same time traverse
the Huffman tree downwards, as if we were decompressing the text®. A new symbol
occurs whenever we reach a leaf of the Huffman tree. At each word symbol obtained
we send the corresponding bit mask to a nondeterministic automaton, as illustrated
in Figure 4. This automaton allows moving from state i to state i + 1 whenever the
i-th word of the pattern is recognized. Notice that this automaton depends only
on the number of words in the phrase query. After reaching a leaf we return to the
root of the tree and proceed in the compressed text.

The automaton is simulated with the Shift-Or algorithm [Baeza-Yates and Gonnet
1992]. We perform one transition in the automaton for each text word. The Shift-
Or algorithm simulates efficiently the nondeterministic automaton using only two
operations per transition. In a 32-bit architecture it can search a phrase of up to
32 elements using a single computer word as the bit mask. For longer phrases we
use as many computer words as needed.

For complex patterns the preprocessing phase corresponds to a sequential search
in the vocabulary to mark all the words that match the pattern. To search the
symbols in the vocabulary we use the same algorithms described in Section 4.1.
The corresponding mask bits of each matched word in the vocabulary are set to
indicate its position in the pattern. Figure 5 illustrates this phase for the pattern
"ro# rose is" with k = 1 (i.e. allowing 1 error per word, where "ro#" means
any word starting with "ro"). For instance, the word "rose" in the vocabulary
matches the pattern at positions 1 and 2. The compressed text scanning phase does
not change.

The cost of the preprocessing phase is as in Section 4.1. The only difference is
that we mark bit masks instead of collecting matching words. The search phase
takes O(n) time.

Finally, we show how to deal with separators and stopwords. Most online search-

3However, this is much faster than decompression because we do not generate the uncompressed
text.
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Fig. 5. General searching scheme for the phrase "ro# rose is" allowing 1 error. In the nonde-
terministic finite automaton, ’?’ stands for 0 and 1.

ing algorithms cannot efficiently deal with the problem of matching a phrase dis-
regarding the separators among words (e.g. two spaces between words instead of
one). The same happens with the stopwords, which usually can be disregarded
when searching indexed text but are difficult to disregard in online searching. In
our compression scheme we know which elements of the vocabulary correspond in
fact to separators, and the user can define (at compression or even at search time)
which correspond to stopwords. We can therefore have marked the leaves of the
Huffman tree corresponding to separators and stopwords, so that the searching al-
gorithm can ignore them by not producing a symbol when arriving at such leaves.
Therefore, we disregard separators and stopwords from the sequence and from the
search pattern at negligible cost. Of course they cannot be just removed from the
sequence at compression time if we want to be able to recover the original text.

5.2 A Filtering Algorithm

We show in this section how the search on the plain Huffman compressed text is
improved upon the automaton-based algorithm described in the previous section.
The central idea is to search the compressed pattern directly in the text, as was
done with the tagged Huffman code scheme presented in Section 4.

Every time a match is found in the compressed text we must verify whether this
match indeed corresponds to a word. This is mandatory due to the possibility
of false matches, as illustrated in Figure 3 of Section 4. The verification process
consists of applying the automaton-based algorithm to the region where the possible
match was found. To avoid processing the text from the very beginning to make
this verification we divide the text in small blocks of the same size at compression
time. The codewords are aligned to the beginning of blocks, so that no codeword
crosses a block boundary. Therefore, we only need to run the basic algorithm from
the beginning of the block that contains the match.

The block size must be small enough so that the slower basic algorithm is used
only on small areas, and large enough so that the extra space lost at block bound-
aries is not significant. We ran a number of experiments on the wsJ file, arriving
to 256-byte blocks as a good time-space tradeoff.

The extension of the algorithm for complex queries and phrases follows the same
idea: search as in Section 4 and then use the automaton-based algorithm to check



18 . E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yates

no errors

1 error

2 errors

Fig. 6. A nondeterministic automaton for approximate phrase searching (4 words, 2 errors) in the
compressed text. Dashed transitions flow without consuming any text input. The other vertical
and diagonal (unlabeled) transitions accept any bit mask. The ’?’ stands for 0 and 1.

the matches. In this case, however, we use multipattern searching, and the per-
formance may be degraded not only for the same reasons as in Section 4, but also
because of the possibility of verifying too many text blocks. If the number of match-
ing words in the vocabulary is too large, the efficiency of the filter may be degraded,
and the use of the scheme with no filter might be preferable.

5.3 Even More Flexible Pattern Matching

The Shift-Or algorithm can do much more than just searching for a simple sequence
of elements. For instance, it has been enhanced to search for regular expressions,
to allow errors in the matches and other flexible patterns [Wu and Manber 1992;
Baeza-Yates and Navarro 1999]. This powerful type of search is the basis of the
software Agrep [Wu and Manber 1992].

A new handful of choices appear when we use these abilities in our word-based
compressed text scenario. Consider the automaton of Figure 6. It can search in the
compressed text for a phrase of four words allowing up to two insertions, deletions
or replacements of words. Apart from the well known horizontal transitions that
match words, there are vertical transitions that insert new words in the pattern,
diagonal transitions that replace words, and dashed diagonal transitions that delete
words from the pattern.

This automaton can be efficiently simulated using extensions of the Shift-Or al-
gorithm to search in the compressed text for approximate occurrences of the phrase.
For instance, the search of "identifying potentially relevant matches" could
find the occurrence of "identifying a number of relevant matches" in the
text with one replacement error, assuming that the stop words "a" and "of" are
disregarded as explained before. Moreover, if we allow three errors at the charac-
ter level as well we could find the occurrence of "who identified a number of
relevant matches" in the text, since for the algorithm there is an occurrence of
"identifying" in "identified". Other efficiently implementable setups can be
insensitive to the order of the words in the phrase. The same phrase query could be
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found in "matches considered potentially relevant were identified" with
one deletion error for "considered". Finally, prozimity searching is of interest in
IR and can be efficiently solved. The goal is to give a phrase and find its words rel-
atively close to each other in the text. This would permit to find out the occurrence
of "identifying and tagging potentially relevant matches" in the text.

Approximate searching has traditionally operated at the character level, where it
aims at recovering the correct syntaz from typing or spelling mistakes, errors coming
from optical character recognition software, misspelling of foreign names, and so
on. Approximate searching at the word level, on the other hand, aims at recovering
the correct semantics from concepts that are written with a different wording. This
is quite usual in most languages and is a common factor that prevents finding the
relevant documents.

This kind of search is very difficult for a sequential algorithm. Some indexed
schemes permit proximity searching by operating on the list of exact word positions,
but this is all. In the scheme described above, this is simple to program, elegant and
extremely efficient (more than on characters). This is an exclusive feature of this
compression method that opens new possibilities aimed at recovering the intended
semantics, rather than the syntax, of the query. Such capability may improve the
retrieval effectiveness of IR systems.

6. SEARCHING PERFORMANCE

The performance evaluation of the three algorithms presented in previous sections
was obtained by considering 40 randomly chosen patterns containing 1 word, 40
containing 2 words, and 40 containing 3 words. The same patterns were used by
the three search algorithms. All experiments were run on the wsJ text file and the
results were obtained with a 99% confidence interval. The size of the uncompressed
WsJ is 262.8 megabytes, while its compressed versions are 80.4 megabytes with the
plain Huffman method and 88.6 megabytes with tagged Huffman.

Table 4 presents exact (k = 0) and approximate (k = 1,2,3) searching times
using Agrep [Wu and Manber 1992], tagged (direct search on tagged Huffman),
plain filterless (the basic algorithm on plain Huffman), and plain filter (the filter
on plain Huffman, with Sunday filtering for blocks of 256 bytes). It can be seen
from this table that our three algorithms are almost insensitive to the number of
errors allowed in the pattern while Agrep is not. The plain filterless algorithm
is really insensitive because it maps all the queries to the same automaton that
does not depend on k. The filters start taking about 2/3 of the filterless version,
and become closer to it as k grows. The experiments also shows that both tagged
and plain filter are faster than Agrep, almost twice as fast for exact searching and
nearly 8 times faster for approximate searching. For all times presented, there is
a constant I/O time factor of approximately 8 seconds for our algorithms to read
the wsJ compressed file and approximately 20 seconds for Agrep to read the wsi
uncompressed file. These times are already included on all tables.

The following test was for more complex patterns. This time we experimented
with specific patterns instead of selecting a number of them at random. The reason
is that there is no established model for what is a “random” complex pattern.
Instead, we focused on showing the effect of different pattern features, as follows:
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Algorithm k=0 k=1 k=2 k=3
Agrep 238 £ 0.38 | 117.9 £ 0.14 | 146.1 & 0.13 | 174.6 £ 0.16
tagged 14.1 4018 | 15.0 £0.33 | 17.0 £ 0.71 | 22.7 + 2.23

plain filterless | 22.1 £ 0.09 | 23.1 £ 0.14 24.7 + 0.21 25.0 + 0.49
plain filter 15.1 £ 0.30 16.2 + 0.52 19.4 £ 1.21 234 +1.79

Table 4. Searching times (in elapsed seconds) for the wsJ text file using different search techniques
and different number of errors k. Simple random patterns were searched.

(1) prob# (where # means any character considered zero or more times, one possible
answer being "problematic"): an example of pattern that matches with lot of
words on the vocabulary;

(2) local television stations, a phrase pattern composed of common words;
(3) hydraulic forging, a phrase pattern composed of uncommon words;
(4) Bra[sz]il# and Ecua#, a phrase pattern composed of a complex expression.

Table 4 presents exact (k = 0) and approximate (k = 1 and k = 2) searching
times for the patterns presented above.

Algorithm Pattern 1 Pattern 2
k=0 |k=1|k=2|k=0|k=1]|k=2
Agrep 74.3 117.7 | 146.0 23.0 117.6 | 145.1
tagged 18.4 20.6 21.1 16.5 19.0 26.0

plain filterless | 22.8 23.5 23.6 211 233 25.5
plain filter 21.4 214 22.1 15.2 17.1 22.3

Algorithm Pattern 3 Pattern 4
k=0 |k=1|k=2|k=0|k=1]|k=2
Agrep 21.9 117.1 | 145.1 74.3 117.6 | 145.8
tagged 14.5 15.0 16.0 18.2 18.3 18.7

plain filterless | 21.7 21.5 21.6 24.2 24.2 24.6
plain filter 15.0 15.7 16.5 17.6 17.6 18.0

Table 5. Searching times (in elapsed seconds) for the wsJ text file using different search techniques
and different number of errors k.

Note that, in any case, the results on complex patterns do not differ much from
those for simple patterns. Agrep, on the other hand, takes much more time on
complex patterns such as pattern (1) and pattern (4).

7. CONCLUSIONS AND FUTURE WORK

In this paper we investigated a fast compression and decompression scheme for nat-
ural language texts and also presented algorithms which allow efficient search for
exact and extended word and phrase patterns. We showed that we achieve about
30% compression ratio, against 40% and 35% for Compress and Gzip, respectively.
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For typical texts, compression times are close to the times of Compress and ap-
proximately half the times of Gzip, and decompression times are lower than those
of Gzip and one third of those of Compress.

Search times are better on the compressed text than on the original text (about
twice as fast). Moreover, a lot of flexibility is provided in the search patterns.
Complex patterns are searched much faster than on uncompressed text (8 times
faster is typical) by making heavy use of the vocabulary information kept by the
COMPpressor.

The algorithms presented in this paper have been implemented in a software
system called Cgrep, which is publicly available. An example of the power of Cgrep is
the search of a pattern containing 3 words and allowing 1 error, in a compressed file
of approximately 80.4 megabytes (corresponding to the ws1 file of 262.8 megabytes).
Cgrep runs at 5.4 megabytes per second, which is equivalent to searching the original
text at 17.5 megabytes per second. As Agrep searches the original text at 2.25
megabytes per second, Cgrep is 7.8 times faster than Agrep.

These results are so good that they encourage keeping the text compressed all
the time. That is, all the textual documents of a user or a database can be kept
permanently compressed as a single text collection. Searching of interesting docu-
ments can be done without decompressing the collection, and fast decompression
of relevant files for presentation purposes can be done efficiently. To complete this
picture and convert it into a viable alternative, a mechanism to update a compressed
text collection must be provided, so documents can be added, removed and altered
efficiently. Some techniques have been studied in [Moura 1999], where it is shown
that efficient updating of compressed text is possible and viable.

Finally, we remark that sequential searching is not a viable solution when the text
collections are very large, in which case indexed schemes have to be considered. Our
technique is not only useful to speed up sequential search. In fact, it can be used
with any indexed scheme. Retrieved text is usually scanned to find the byte position
of indexed terms and our algorithms will be of value for this task [Witten et al.
1999]. In particular, it can also be used to improve indexed schemes that combine
inverted files and sequential search, like Glimpse [Manber and Wu 1993]. Glimpse
divides the text space into logical blocks and builds an inverted file where each list
of word occurrences points to the corresponding blocks. Searching is done by first
searching in the vocabulary of the inverted file and then sequentially searching in
all the selected blocks. By using blocks, indices of only 2%-4% of space overhead
can significantly speed up the search. We have combined our compression scheme
with block addressing inverted files, obtaining much better results than those that
work on uncompressed text [Navarro et al. 2000].
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APPENDIX
A. COMPLEX PATTERNS

We present the types of phrase patterns supported by our system. For each word
of a pattern it allows to have not only single letters in the pattern, but any set of
letters or digits (called just “characters” here) at each position, exactly or allowing
errors, as follows:

—range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a and
z);

—arbitrary sets of characters (e.g. t[aeilxt meaning the words taxt, text and
tixt);

—complements (e.g. t[~ablxt, where ~ab means any single character except a or
b; t [~a-d]lxt, where ~a-d means any single character except a, b, c or d);

—arbitrary characters (e.g. t-xt means any character as the second character of
the word);

—case insensitive patterns (e.g. Text and text are considered as the same words).

In addition to single strings of arbitrary size and classes of characters described
above the system supports patterns combining exact matching of some of their
parts and approximate matching of other parts, unbounded number of wild cards,
arbitrary regular expressions, and combinations, exactly or allowing errors, as fol-
lows:

—unions (e.g. t(elai)xt means the words text and taixt; t(elai)*xt means
the words beginning with t followed by e or ai zero or more times followed by
xt). In this case the word is seen as a regular expression;

—arbitrary number of repetitions (e.g. t(ab)*xt means that ab will be considered
zero or more times). In this case the word is seen as a regular expression;

—arbitrary number of characters in the middle of the pattern (e.g. t#xt, where #
means any character considered zero or more times). In this case the word is not
considered as a regular expression for efficiency. Note that # is equivalent to -x
(e.g. t#xt and t-*xt obtain the same matchings but the latter is considered as
a regular expression);

—combining exact matching of some of their parts and approximate matching of
other parts (<te>xt, with £ = 1, meaning exact occurrence of te followed by any
occurrence of xt with 1 error);

—matching with nonuniform costs (e.g. the cost of insertions can be defined to be
twice the cost of deletions).

We emphasize that the system performs whole-word matching only. That is, the
pattern is a sequence of words or complex expressions that are to be matched against
whole text words. It is not possible to write a single regular expression that returns
a phrase. Also, the extension described in Section 5.3 is not yet implemented.
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