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2 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yatesand Compression; H.3.3 [Information Storage and Retrieval]: Information Search and Re-trieval|search processGeneral Terms: Text Compression, Searching Compressed TextsAdditional Key Words and Phrases: Compressed pattern matching, Natural language text com-pression, Word searching, Word-based hu�man coding1. INTRODUCTIONIn this paper we present an e�cient compression technique for natural languagetexts that allows fast and 
exible searching of words and phrases. To search forsimple words and phrases, the patterns are compressed and the search proceedswithout any decoding of the compressed text. Searching words and phrases thatmatch complex expressions and/or allowing errors can be done on the compressedtext at almost the same cost of simple searches. The reduced size of the compressedtext makes the overall searching time much smaller than on plain uncompressedtext. The compression and decompression speeds and the amount of compressionachieved are very good when compared to well known algorithms in the litera-ture [Ziv and Lempel 1977; Ziv and Lempel 1978].The compression scheme presented in this paper is a variant of the word-basedHu�man code [Bentley et al. 1986; Mo�at 1989; Witten et al. 1999]. The Hu�mancodeword assigned to each text word is a sequence of whole bytes and the Hu�mantree has degree either 128 (which we call \tagged Hu�man code") or 256 (which wecall \plain Hu�man code"), instead of 2. In tagged Hu�man coding each byte uses7 bits for the Hu�man code and 1 bit to signal the beginning of a codeword. As weshow later, using bytes instead of bits does not signi�cantly degrade the amount ofcompression. In practice, byte processing is much faster than bit processing becausebit shifts and masking operations are not necessary at compression, decompressionand search times. The decompression can start at any point in the compressed �le.In particular, the compression scheme allows fast decompression of fragments thatcontain the search results, which is an important feature in information retrievalsystems.Notice that our compression scheme is designed for large natural language textscontaining at least 1 megabyte to achieve an attractive amount of compression.Also, the search algorithms are word oriented as the pattern is a sequence of ele-ments to be matched to a sequence of text words. Each pattern element can be asimple word or a complex expression, and the search can be exact or allowing errorsin the match. In this context, we present three search algorithms.The �rst algorithm, based on tagged Hu�man coding, compresses the patternand then searches for the compressed pattern directly in the compressed text. Thesearch can start from any point in the compressed text because all the bytes thatstart a codeword are marked with their highest bit set in 1. Any conventionalpattern matching algorithm can be used for exact searching and a multi-patternmatching algorithm is used for searching allowing errors, as explained later on.The second algorithm searches on a plain Hu�man code and is based on a word-oriented Shift-Or algorithm [Baeza-Yates and Gonnet 1992]. In this case the com-



Fast and Flexible Word Searching on Compressed Text � 3pression obtained is better than with tagged Hu�man code because the searchalgorithm does not need any special marks on the compressed text.The third algorithm is a combination of the previous ones, where the patternis compressed and directly searched in the text as in the �rst algorithm based ontagged Hu�man coding. However, it works on plain Hu�man code, where thereis no signal of codeword beginnings, and therefore the second algorithm is used tocheck a surrounding area in order to verify the validity of the matches found.The three algorithms allow a large number of variations over the basic word andphrase searching capability, which we group under the generic name of extendedpatterns. As a result, classes of characters including character ranges and com-plements, wild cards, and arbitrary regular expressions can be e�ciently searchedexactly or allowing errors in the occurrences. Separators and very common words(stopwords) can be discarded without signi�cantly increasing the search cost.The algorithms also allow \approximate phrase matching". They are able tosearch in the compressed text for approximate occurrences of a phrase pattern al-lowing insertions, deletions or replacements of words. Approximate phrase match-ing can capture di�erent writing styles and therefore improve the quality of theanswers to the query. Our algorithms are able to perform this type of search at thesame cost of the other cases, which is extremely di�cult on uncompressed search.Our technique is not only useful to speed up sequential search. It can also be usedto improve indexed schemes that combine inverted �les and sequential search, likeGlimpse [Manber and Wu 1993]. In fact, the techniques that we present here cannicely be integrated to the inverted �le technology to obtain lower space-overheadindexes. Moreover, we argue in favor of keeping the text compressed all the time,so the text compression cannot be considered an extra e�ort anymore.The algorithms presented in this paper are being used in a software package calledCgrep. Cgrep is an exact and approximate compressed matching tool for large textcollections. The software is available from ftp://dcc.ufmg.br/latin/cgrep, asa prototype. Preliminary partial versions of this article appeared in [Moura et al.1998a; Moura et al. 1998b].This paper is organized as follows. In Section 2 we discuss the basic conceptsand present the related work found in the literature. In Section 3 we present ourcompression and decompression method, followed by analytical and experimentalresults. In Section 4 we show how to perform exact and extended searching ontagged Hu�man compressed texts. In Section 5 we show how to perform exact andextended searching on plain Hu�man compressed texts. In Section 6 we presentexperimental results about the search performance. Finally, in Section 7 we presentconclusions and suggestions for future work.2. BASICS AND RELATED WORKText compression is about exploiting redundancies in the text to represent it in lessspace [Bell et al. 1990]. In this paper we denote the uncompressed �le as T and itslength in bytes as u. The compressed �le is denoted as Z and its length in bytesas n. Compression ratio is used in this paper to denote the size of the compressed�le as a percentage of the uncompressed �le (i.e. 100� n=u).From the many existing compression techniques known in the literature we em-phasize only the two that are relevant for this paper. A �rst technique of interest



4 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yatesis the Ziv-Lempel family of compression algorithms, where repeated substrings ofarbitrary length are identi�ed in the text and the repetitions are replaced by point-ers to their previous occurrences. In these methods it is possible that n = o(u),achieving n = O(pu) and even n = O(log u) in the best cases.A second technique is what we call \zero-order substitution" methods. Thetext is split into symbols and each symbol is represented by a unique codeword.Compression is achieved by assigning shorter codewords to more frequent symbols.The best known technique of this kind is the minimum redundancy code, also calledHu�man code [Hu�man 1952]. In Hu�man coding, the codeword for each symbol isa sequence of bits so that no codeword is a pre�x of another codeword and the totallength of the compressed �le is minimized. In zero-order substitution methods wehave n = �(u), even though the constant can be smaller than 1. Moreover, there are�(u) symbols in a text of u characters (bytes) and �(n) codewords in a compressedtext of n bytes. In this work, for example, we use O(u) to denote the number ofwords in T .The compressed matching problem was �rst de�ned in the work of Amir andBenson [Amir and Benson 1992] as the task of performing string matching in acompressed text without decompressing it. Given a text T , a corresponding com-pressed string Z, and an (uncompressed) pattern P of length m, the compressedmatching problem consists in �nding all occurrences of P in T , using only P andZ. A naive algorithm, which �rst decompresses the string Z and then performsstandard string matching, takes time O(u+m). An optimal algorithm takes worst-case time O(n + m). In [Amir et al. 1996], a new criterion, called extra space,for evaluating compressed matching algorithms, was introduced. According to theextra space criterion, algorithms should use at most O(n) extra space, optimallyO(m) in addition to the n-length compressed �le.The �rst compressed pattern matching algorithms dealt with Ziv-Lempel com-pressed text. In [Farach and Thorup 1995] was presented a compressed matchingalgorithm for the LZ1 classic compression scheme [Ziv and Lempel 1976] that runsin O(n log2(u=n)+m) time. In [Amir et al. 1996], a compressed matching algorithmfor the LZ78 compression scheme was presented, which �nds the �rst occurrence inO(n+m2) time and space, or in O(n logm+m) time and in O(n+m) space. Anextension of [Amir et al. 1996] to multipattern searching was presented in [Kidaet al. 1998], together with the �rst experimental results in this area. New practicalresults appeared in [Navarro and Ra�not 1999], which presented a general schemeto search on Ziv-Lempel compressed texts (simple and extended patterns) and im-plemented it for the particular cases of LZ77, LZ78 and a new variant proposedwhich was competitive and convenient for search purposes. A similar result, re-stricted to the LZW format, was independently found and presented in [Kida et al.1999]. Finally, [Kida et al. 1999] generalized the existing algorithms and nicelyuni�ed the concepts in a general framework.All the empirical results obtained roughly coincide in a general �gure: searchingon a Ziv-Lempel compressed text can take half the time of decompressing that textand then searching it. However, the compressed search is twice as slow as justsearching the uncompressed version of the text. That is, the search algorithms areuseful if the text has to be kept compressed anyway, but they do not give an extrareason to compress. The compression ratios are about 30% to 40% in practice when



Fast and Flexible Word Searching on Compressed Text � 5a text is compressed using Ziv-Lempel.A second paradigm is zero-order substitution methods. As explained, n = �(u) inthis model, and therefore the theoretical de�nition of compressed pattern matchingmakes little sense because it is based in distinguishing O(u) from O(n) time. Thegoals here, as well as the existing approaches, are more practical: search directlythe compressed text faster than the uncompressed text, taking advantage of itssmaller size.A �rst text compression scheme that allowed direct searching on compressed textwas proposed by Manber [Manber 1997]. This approach packs pairs of frequentcharacters in a single byte, leading to a compression ratio of approximately 70%for typical text �les.A particularly successful trend inside zero-order substitution methods has beenHu�man coding where the text words are considered the symbols that composethe text. The semi-static version of the model is used, that is, the frequencies ofthe text symbols is learned in a �rst pass over the text and the text is coded ina second pass. The table of codewords assigned to each symbol is stored togetherwith the compressed �le. This model is better suited to typical information re-trieval scenarios on large text databases, mainly because the data structures canbe shared (the vocabulary of the text is almost the same as the symbol table ofthe compressor), local decompression is e�cient, and better compression and fastersearch algorithms are obtained (it is possible to search faster on the compressedthan on the uncompressed text). The need for two passes over the text is normallyalready present when indexing text in information retrieval applications, and theoverhead of storing the text vocabulary is negligible for large texts. On the otherhand, the approach is limited to word-based searching on large natural languagetexts, unlike the Ziv-Lempel approach.To this paradigm belongs [Turpin and Mo�at 1997], a work developed indepen-dently of our work. The paper presents an algorithm to search on texts compressedby a word-based Hu�man method, allowing only exact searching for one-word pat-terns. The idea is to search for the compressed pattern codeword in the compressedtext.Our work is based on a similar idea, but uses bytes instead of bits for the codingalphabet. The use of bytes presents a small loss in the compression ratio and thegains in decompression and search e�ciency are large. We also extend the searchcapabilities to phrases, classes of characters, wild cards, regular expressions, exactlyor allowing errors (also called \approximate string matching").The approximate string matching problem is to �nd all substrings in a textdatabase that are at a given \distance" k or less from a pattern P . The distancebetween two strings is the minimum number of insertions, deletions or substitutionsof single characters in the strings that are needed to make them equal. The case inwhich k = 0 corresponds to the classical exact matching problem.Approximate string matching is a particularly interesting case of extended pat-tern searching. The technique is useful to recover from typing, spelling and opticalcharacter recognition errors. The problem of searching a pattern in a compressedtext allowing errors is an open problem in [Amir et al. 1996]. We partially solvethis problem, since we allow approximate word searching. That is, we can �nd textwords that match a pattern word with at most k errors. Note the limitations of this



6 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yatesstatement: if a single error inserts a space in the middle of "flower", the resultis a sequence of two words, "flo" and "wer", none of which can be retrieved bythe pattern "flowers" allowing one error. A similar problem appears if a spacedeletion converts "many flowers" into a single word.The best known software to search uncompressed text with or without errors isAgrep [Wu and Manber 1992]. We show that our compressed pattern matchingalgorithms compare favorably against Agrep, being up to 8 times faster dependingon the type of search pattern. Of course Agrep is not limited to word searching anddoes not need to compress the �le prior to searching. However, this last argumentcan in fact be used in the other direction: we argue that thanks to our searchalgorithms and to new techniques to update the compressed text, the text �les canbe kept compressed all the time and be decompressed only for displaying purposes.This leads to an economy of space and improved overall e�ciency.For all the experimental results of this paper we used natural language textsfrom the trec collection [Harman 1995]. We have chosen the following texts: ap -Newswire (1989), doe - Short abstracts from DOE publications, fr - Federal Reg-ister (1989), wsj - Wall Street Journal (1987, 1988, 1989) and ziff - articles fromComputer Selected disks (Zi�-Davis Publishing). Table 1 presents some statisticsabout the �ve text �les. We considered a word as a contiguous maximal string ofcharacters in the set fA: : :Z, a: : :z, 0: : :9g. All tests were run on a SUN SparcStation4 with 96 megabytes of RAM running Solaris 2.5.1.Files Text Vocabulary Vocab./TextSize (bytes) #Words Size (bytes) #Words Size #Wordsap 237,766,005 38,977,670 1,564,050 209,272 0.65% 0.53%doe 181,871,525 28,505,125 1,949,140 235,133 1.07% 0.82%fr 219,987,476 34,455,982 1,284,092 181,965 0.58% 0.52%wsj 262,757,554 42,710,250 1,549,131 208,005 0.59% 0.48%ziff 242,660,178 39,675,248 1,826,349 255,107 0.75% 0.64%Table 1. Some statistics of the text �les used from the trec collection.3. THE COMPRESSION SCHEMEGeneral compression methods are typically adaptive as they allow the compressionto be carried out in one pass and there is no need to keep separately the parametersto be used at decompression time. However, for natural language texts used in afull-text retrieval context, adaptive modeling is not the most e�ective compressiontechnique.Following [Mo�at 1989; Witten et al. 1999], we chose to use word-based semi-static modeling and Hu�man coding [Hu�man 1952]. In a semi-static model theencoder makes a �rst pass over the text to obtain the frequency of each di�erent textword and performs the actual compression in a second pass. There is one strongreason for using this combination of modeling and coding. The data structuresassociated with them include the list of words that compose the vocabulary of thetext, which we use to derive our compressed matching algorithm. Other important
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Compressed Text:Fig. 1. A canonical tree and a compression example using binary Hu�man coding for spacelesswords.reasons in text retrieval applications are that decompression is faster on semi-staticmodels, and that the compressed text can be accessed randomly without havingto decompress the whole text as in adaptive methods. Furthermore, previous ex-periments have shown that word-based methods give good compression ratios fornatural language texts [Bentley et al. 1986; Mo�at 1989; Horspool and Cormack1992].Since the text is not only composed of words but also of separators, a model mustalso be chosen for them. In [Mo�at 1989; Bell et al. 1993] two di�erent alphabetsare used: one for words and one for separators. Since a strict alternating propertyholds, there is no confusion about which alphabet to use once it is known that thetext starts with word or separator.We use a variant of this method to deal with words and separators that we callspaceless words. If a word is followed by a space, we just encode the word. Ifnot, we encode the word and then the separator. At decoding time, we decode aword and assume that a space follows, except if the next symbol corresponds to aseparator. In this case the alternating property does not hold and a single codingalphabet is used. This idea was �rstly presented in [Moura et al. 1997], where itis shown that the spaceless word model achieves slightly better compression ratios.Figure 1 presents an example of compression using Hu�man coding for spacelesswords method. The set of symbols in this case is f"a", "each", "is", "for","rose", ",t"g, whose frequencies are 2, 1, 1, 1, 3, 1, respectively.The number of Hu�man trees for a given probability distribution is quite large.The preferred choice for most applications is the canonical tree, de�ned by Schwartzand Kallick [Schwartz and Kallick 1964]. The Hu�man tree of Figure 1 is a canonicaltree. It allows more e�ciency at decoding time with less memory requirement.Many properties of the canonical codes are mentioned in [Hirschberg and Lelewer1990; Zobel and Mo�at 1995; Witten et al. 1999].3.1 Byte-Oriented Hu�man CodeThe original method proposed by Hu�man [Hu�man 1952] is mostly used as abinary code. That is, each symbol of the input stream is coded as a sequence ofbits. In this work the Hu�man codeword assigned to each text word is a sequenceof whole bytes and the Hu�man tree has degree either 128 (in this case the eighth



8 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yatesbit is used as a special mark to aid the search) or 256, instead of 2. In all casesfrom now on, except otherwise stated, we consider that|the words and separators of the text are the symbols,|the separators are codi�ed using the spaceless word model,|canonical trees are used,|and the symbol table, which is the vocabulary of the di�erent text words andseparators, is kept compressed using the classical binary Hu�man coding on char-acters.We now de�ne the di�erent types of Hu�man codes used in this work, all of whichadhere to the above points.Binary Hu�man Code A sequence of bits is assigned to each word or separator.Byte Hu�man Code A sequence of bytes is assigned to each word or separator.This encompasses the two coding schemes that follow.Plain Hu�man Code A byte Hu�man coding where all the bits of the bytes areused. That is, the Hu�man tree has degree 256.Tagged Hu�man Code A byte Hu�man coding where only the 7 lower orderbits of each byte are used. That is, the Hu�man tree has degree 128. Thehighest bit of each byte is used as follows: the �rst byte of each codeword hasthe highest bit in 1, while the other bytes have their highest bit in 0. This isuseful for direct searching on the compressed text, as explained later.All the techniques for e�cient encoding and decoding mentioned in [Zobel andMo�at 1995] can easily be extended to our case. As we show later in the experimen-tal results section no signi�cant degradation of the compression ratio is experiencedby using bytes instead of bits. On the other hand, decompression of byte Hu�mancode is faster than decompression of binary Hu�man code. In practice, byte pro-cessing is much faster than bit processing because bit shifts and masking operationsare not necessary at decoding time or at searching time.3.2 Compression RatioIn this section we consider the compression ratios achieved with this scheme. A�rst concern is that Hu�man coding needs to store, together with the compressed�le, a table with all the text symbols. As we use word compression, this table isprecisely the vocabulary of the text, that is, the set of all di�erent text words. Thistable can in principle be very large and ruin the overall compression ratio.However, this is not the case on large texts. Heaps' Law [Heaps 1978], an empiri-cal law widely accepted in information retrieval, establishes that a natural languagetext of O(u) words has a vocabulary of size v = O(u�), for 0 < � < 1. Typically,� is between 0.4 and 0.6 [Ara�ujo et al. 1997; Moura et al. 1997], and therefore v isclose to O(pu).Hence, for large texts the overhead of storing the vocabulary is minimal. Onthe other hand, storing the vocabulary represents an important overhead when thetext is small. This is why we chose to compress the vocabulary (that is, the symboltable) using classical binary Hu�man on characters. As shown in Figure 2, thisfact makes our compressor better than Gzip for �les of at least 1 megabyte instead
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Fig. 2. Compression ratios for the wsj �le compressed by Gzip, Compress, and plain Hu�manwith and without compressing the vocabulary.of 10 megabytes1. The need to decompress the vocabulary at search time posesa minimal processing overhead which can even be completely compensated by thereduced I/O.A second concern is whether the compression ratio can or cannot worsen as thetext grows. Since in our model the number of symbols v grows (albeit sublinearly) asthe text grows, it could be possible that the average length to code a symbol growstoo. The key to prove that this does not happen is to show that the distribution ofwords in the text is biased enough for the entropy2 to be O(1), and then to showthat Hu�man codes put only a constant overhead over this entropy. This �nal stepwill be done for d-ary Hu�man codes, which includes our 7-bit (tagged) and 8-bit(plain) cases.We use the Zipf's Law [Zipf 1949] as our model of the frequency of the wordsappearing in natural language texts. This law, widely accepted in informationretrieval, states that if we order the v words of a natural language text in decreasingorder of probability, then the probability of the �rst word is i� times the probabilityof the i-th word, for every i. This means that the probability of the i-th word ispi = 1=(i�H), where H = H(�)v =Pvj=1 1=j�. The constant � depends on the text.Zipf's Law comes in two 
avors. A simpli�ed form assumes that � = 1. Inthis case, H = O(log v). Although this simpli�ed form is popular because it issimpler to handle mathematically, it does not follow well the real distribution ofnatural language texts. There is strong evidence that most real texts have in facta more biased vocabulary. We performed in [Ara�ujo et al. 1997] a thorough setof experiments on the trec collection, �nding out that the � values are roughlybetween 1.5 and 2.0 depending on the text, which gives experimental evidencein favor of the \generalized Zipf's Law" (i.e. � > 1). Under this assumption,1The reason why both Ziv-Lempel compressors do not improve for larger texts is in part becausethey search for repetitions only in a relatively short window of the text already seen. Hence, theyare prevented from exploiting most of the already processed part of the text.2We estimate the zero-order word-based binary entropy of a text as �Pi=1::v pi log2 pi, wherepi is the relative frequency of the i-th vocabulary word. For simplicity we call this measure just\entropy" in this paper.



10 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-YatesH = O(1).We have tested the distribution of the separators as well, �nding that they alsofollow reasonably well a Zipf's distribution. Moreover, their distribution is evenmore biased than that of words, being � closer to 1.9. We therefore assume that� > 1 and consider only words, since an analogous proof will hold for separators.On the other hand, more re�ned versions of Zipf's Law exist, such as the Man-delbrot distribution [Gonnet and Baeza-Yates 1991]. This law tries to improve the�t of Zipf's Law for the most frequent values. However, it is mathematically harderto handle and it does not alter the asymptotic results that follow.We analyze the entropy E(d) of such distribution for a vocabulary of v wordswhen d digits are used in the coding alphabet, as follows:E(d) = vXi=1 pi logd 1pi = 1ln d vXi=1 lnH + � ln ii�H= 1H ln d  lnH vXi=1 1i� + � vXi=1 ln ii� ! = logdH + �H ln d vXi=1 ln ii�Bounding the summation with an integral, we have thatvXi=1 ln ii� � ln 22� + (� � 1) ln 2 + 12��1(� � 1)2 +O(log v=v��1) = O(1)which allows us to conclude that E(d) = O(1), as logdH is also O(1).If we used the simple Zipf's Law instead, the result would be that E(d) =O(log v), i.e., the average codeword length would grow as the text grows. Thefact that this does not happen for 1 gigabyte of text is an independent experi-mental con�rmation of the validity of the generalized Zipf's Law against its simpleversion.We consider the overhead of Hu�man coding over the entropy. Hu�man codingis not optimal because of its inability to represent fractional parts of bits. Thatis, if a symbol has probability pi, it should use exactly log2(1=pi) bits to representthe symbol, which is not possible if pi is not a power of 1=2. This e�ect gets worseif instead of bits we use numbers in base d. We give now an upper bound on thecompression ine�ciency involved.In the worst case, Hu�man will encode each symbol with probability pi usingdlogd(1=pi)e digits. This is a worst case because some symbols are encoded usingblogd(1=pi)c digits. Therefore, in the worst case the average length of a codewordin the compressed text isvXi=1 pi dlogd(1=pi)e � 1 + vXi=1 pi logd(1=pi)which shows that, regardless of the probability distribution, we cannot spend morethan one extra digit per codeword due to rounding overheads. For instance, if weuse bytes we spend at most one more byte per word.This proves that the compression ratio will not degrade as the text grows, evenwhen the number of di�erent words and separators increases.



Fast and Flexible Word Searching on Compressed Text � 11Table 2 shows the entropy and compression ratios achieved for binary Hu�man,plain Hu�man, tagged Hu�man, Gnu Gzip and Unix Compress for the �les ofthe trec collection. As can be seen, the compression ratio degrades only slightlyby using bytes instead of bits and, in that case, we are still below Gzip. Theexception is the fr collection, which includes a large part of non-natural languagesuch as chemical formulas. The compression ratio of the tagged Hu�man code isapproximately 3 points (i.e. 3% of u) over that of plain Hu�man, which comes fromthe extra space allocated for the tag bit in each byte.Method Filesap wsj doe ziff frEntropy 26.20 26.00 24.60 27.50 25.30Binary Hu�man 27.41 27.13 26.25 28.93 26.88Plain Hu�man 31.16 30.60 30.19 32.90 30.14Tagged Hu�man 34.12 33.70 32.74 36.08 33.53Gzip 38.56 37.53 34.94 34.12 27.75Compress 43.80 42.94 41.08 41.56 38.54Table 2. Compression ratios achieved by di�erent compression schemes, where \entropy" refersto optimal coding. The space used to store the vocabulary is included in the Hu�man compressionratios.3.3 Compression and Decompression PerformanceFinally, we consider in this section the time taken to compress and decompress thetext.To compress the text, a �rst pass is performed in order to collect the vocabularyand its frequencies. By storing it in a trie data structure, O(u) total worst casetime can be achieved. Since a trie requires non practical amounts of memory, weuse a hash table to perform this step in our implementation. The average time tocollect the vocabulary using a hash table is O(u). The vocabulary is then sortedby the word frequencies at O(v log v) cost, which in our case is O(u� logu) = o(u).After the sorting, we generate a canonical Hu�man code of the vocabulary words.The advantage of using canonical trees is that they are space economic. A canonicaltree can be represented by using only two small tables with size O(log v). Further,previous work has shown that decoding using canonical codes reduces decompres-sion times [Hirschberg and Lelewer 1990; Zobel and Mo�at 1995; Turpin and Mo�at1997]. The canonical code construction can be done at O(v) cost, without usingany extra space by using the algorithm described in [Mo�at and Katajainen 1995].Finally, the �le is compressed by generating the codeword of each text word, whichis again O(u).Decompression starts by reading the vocabulary into memory at O(v) cost, as wellas the canonical Hu�man tree at O(log v) cost. Then each word in the compressedtext is decoded and its output written on disk, for a total time of O(u).Table 3 shows the compression and decompression times achieved for binaryHu�man, plain Hu�man, tagged Hu�man, Compress and Gzip for �les of the treccollection. In compression, we are 2-3 times faster than Gzip and only 17% slower



12 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-Yatesthan Compress (which achieves much worse compression ratios). In decompression,there is a signi�cant improvement when using bytes instead of bits. This is becauseno bit shifts nor masking are necessary. Using bytes, we are more than 20% fasterthan Gzip and three times faster than Compress.Method Compression Decompressionap wsj doe ziff fr ap wsj doe ziff frBinary Hu�. 490 526 360 518 440 170 185 121 174 151Plain Hu�. 487 520 356 515 435 106 117 81 112 96Tagged Hu�. 491 534 364 527 446 112 121 85 116 99Compress 422 456 308 417 375 367 407 273 373 331Gzip 1333 1526 970 1339 1048 147 161 105 139 111Table 3. Compression and decompression times (in elapsed seconds for the whole collections)achieved by di�erent compression schemes.The main disadvantage of word-based Hu�man methods are the space require-ments to both compress and decompress the text. At compression time they needthe vocabulary and a look up table with the codewords that is used to speed upthe compression. The Hu�man tree is constructed without any extra space by us-ing an in-place algorithm [Mo�at and Katajainen 1995; Milidiu et al. 1998]. Atdecompression time we need to store the vocabulary in main memory. Thereforethe space complexities of our methods are O(u�). The methods used by Gzip andCompress have constant space complexity and the amount of memory used canbe con�gured. So, our methods are more memory-demanding than Compress andGzip, which constitutes a drawback for some applications. For example, our meth-ods need 4.7 megabytes of memory to compress and 3.7 megabytes of memory todecompress the wsj �le, while Gzip and Compress need only about 1 megabyteto either compress or decompress this same �le. However, for the text searchingsystems we are interested in, the advantages of our methods (i.e. allowing e�cientexact and approximate searching on the compressed text and fast decompressionof fragments) are more important than the space requirements.4. SEARCHING ON TAGGED HUFFMAN COMPRESSED TEXTOur �rst searching scheme works on tagged Hu�man compressed texts. We recallthat the tagged Hu�man compression uses one bit of each byte in the compressedtext to mark the beginning of each codeword.General Hu�man codes are pre�x free codes, which means that no codeword isa pre�x of another codeword. This feature is su�cient to decode the compressedtext, but it is not su�cient to allow direct searching for compressed words, due tothe possibility of false matches. To see this problem, consider the word "ghost"in the example presented in Figure 3. Although the word is not present on thecompressed text, its codeword is.The false matches are avoided if in the compressed text no codeword pre�x isa su�x of another codeword. We add this feature to the tagged Hu�man codingscheme by setting to 1 the highest bit of the �rst byte of each codeword (this bit is
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...real word...

word
ghost Compressed Text

Original Text

Code

...85 229 99...
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85  132
229  12  99
132 229  12 132 12

real

Word

Fig. 3. An example where the codeword of a word is present in the compressed text but the wordis not present in the original text. Codewords are shown in decimal notation.the \tag"). Since a compressed pattern can now only match its �rst byte against the�rst byte of a codeword in the text, we know that any possible match is correctlyaligned. This permits the use of any conventional text searching algorithm directlyon the compressed text, provided we search for whole words.In general we are able to search phrase patterns. A phrase pattern is a sequenceof elements, where each element is either a simple word or an extended pattern.Extended patterns, which are to be matched against a single text word, include theability to have any set of characters at each position, unbounded number of wildcards, arbitrary regular expressions, approximate searching, and combinations. TheAppendix gives a detailed description of the patterns supported by our system.The search for a pattern on a compressed text is made in two phases. In the�rst phase we compress the pattern using the same structures used to compress thetext. In the second phase we search for the compressed pattern. In an exact patternsearch, the �rst phase generates a unique pattern that can be searched with anyconventional searching algorithm. In an approximate or extended pattern search,the �rst phase generates all the possibilities of compressed codewords that matchwith the original pattern in the vocabulary of the compressed text. In this last casewe use a multi-pattern algorithm to search the text. We now explain this methodin more detail and show how to extend it for phrases.4.1 Preprocessing PhaseCompressing the pattern when we are performing an exact search is similar tothe coding phase of the Hu�man compression. We search for each element of thepattern in the Hu�man vocabulary and generate the compressed codeword for it.If there is an element in the pattern that is not in the vocabulary then there areno occurrences of the pattern in the text.If we are doing approximate or extended search then we need to generate com-pressed codewords for all symbols in the Hu�man vocabulary that match with theelement in the pattern. For each element in the pattern we make a list of thecompressed codewords of the vocabulary symbols that match with it. This is doneby sequentially traversing the vocabulary and collecting all the words that matchthe pattern. This technique has been already used in block addressing indices onuncompressed texts [Manber and Wu 1993; Ara�ujo et al. 1997; Baeza-Yates andNavarro 1997]. Since the vocabulary is very small compared to the text size, thesequential search time on the vocabulary is negligible, and there is no other addi-tional cost to allow complex queries. This is very di�cult to achieve with onlineplain text searching, since we take advantage of the knowledge of the vocabularystored as part of the Hu�man tree.



14 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-YatesDepending on the pattern complexity we use two di�erent algorithms to searchthe vocabulary. For phrase patterns allowing k errors (k � 0) that contain setsof characters at any position we use the algorithm presented in [Baeza-Yates andNavarro 1999]. If v is the size of the vocabulary and w is the length of a word Wthe algorithm runs in O(v + w) time to search W . For more complicated patternsallowing k errors (k � 0) that contain unions, wild cards or regular expressions weuse the algorithm presented in [Wu and Manber 1992], which runs in O(kv + w)time to searchW . A simple word is searched in O(w) time using, e.g., a hash table.4.2 Searching PhaseFor exact search, after obtaining the compressed codeword (a sequence of bytes)we can choose any known algorithm to process the search. In the experimentalresults presented in this paper we used the Sunday [Sunday 1990] algorithm, fromthe Boyer-Moore family, which has good practical performance. In the case of ap-proximate or extended searching we convert the problem to the exact multipatternsearching problem. We just obtain a set of codewords that match the pattern anduse a multipattern search algorithm proposed by Baeza-Yates and Navarro [Baeza-Yates and Navarro 1999]. This algorithm is an extension of the Sunday algorithm,and works well when the number of patterns to search is not very large. In case of alarge number of patterns to search, the best option would be Aho-Corasick [Aho andCorasick 1975], which allows to search in O(n) time independently of the numberof patterns.If we assume that the compressed codeword of a pattern of length m is c, thenBoyer-Moore type algorithms inspect about n=c bytes of the compressed text inthe best case. This best case is very close to the average case because the alphabetis large (of size 128 or 256) and uniformly distributed, as compared to the smallpattern length c (typically 3 or 4). On the other hand, the best case in uncompressedtext searching is to inspect u=m characters. Since the compression ratio n=u shouldroughly hold for the pattern on average, we have that n=u � c=m and thereforethe number of inspected bytes in compressed and uncompressed text is roughly thesame.There are, however, three reasons that make compressed search faster. First, thenumber of bytes read from disk is n, which is smaller than u. Second, in compressedsearch the best case is very close to the average case, while this is not true whensearching uncompressed text. Third, the argument that says that c=m is closeto n=u assumes that the search pattern is taken randomly from the text, while inpractice a model of selecting it randomly from the vocabulary matches reality muchbetter. This model yields a larger c value on average, which improves the searchtime on compressed text.Searching a phrase pattern is more complicated. A simple case arises when thephrase is a sequence of simple words that is to be found as is (even with the sameseparators). In this case we can concatenate the codewords of all the words andseparators of the phrase and search for the resulting (single) pattern.If, on the other hand, we want to disregard the exact separators between phraseelements or they are not simple words, we apply a di�erent technique. In thegeneral case, the original pattern is represented by the sequence of lists L1; ::; Lj ,where Li has the compressed codewords that match the i-th element of the original



Fast and Flexible Word Searching on Compressed Text � 15pattern. To start the search in the compressed text we choose one of these lists anduse the algorithm for one-word patterns to �nd the occurrences in the text. Whenan occurrence of one element of the �rst list searched is found, we use the otherlists to verify if there is an occurrence of the entire pattern at this text position.The choice of the �rst list searched is fundamental for the performance of thealgorithm. We heuristically choose the element i of the phrase that maximizes theminimal length of the codewords in Li. This choice comes directly from the costto search a list of patterns. Longer codewords have less probability of occurrencein the text, which translates into less veri�cations for occurrences of elements ofthe other lists. Moreover, most text searching algorithms work faster on longerpatterns. This type of heuristic is also of common use in inverted �les when solvingconjunctive queries [Baeza-Yates and Ribeiro-Neto 1999; Witten et al. 1999].A particularly bad case for this �lter arises when searching a long phrase formedby very common words, such as "to be or not to be". The problem gets worseif errors are allowed in the matches or we search for even less stringent patterns. Ageneral and uniform cost solution to all these types of searches is depicted in thenext section.5. SEARCHING ON PLAIN HUFFMAN COMPRESSED TEXTA disadvantage of our �rst searching scheme described before is the loss in compres-sion due to the extra bit used to allow direct searching. A second disadvantage isthat the �lter may not be e�ective for some types of queries. We show now how tosearch in the plain Hu�man compressed text, a code that has no special marks andgives a better compression ratio than the tagged Hu�man scheme. We also showthat much more 
exible searching can be carried out in an elegant and uniformway.We present two distinct searching algorithms. The �rst one, called plain �lterless,is an automaton-based algorithm that elegantly handles all possible complex casesthat may arise, albeit slower than the previous scheme. The second, called plain�lter, is a combination of both algorithms, trying to do direct pattern matchingon plain Hu�man compressed text and using the automaton-based algorithm as averi�cation engine for false matches.5.1 The Automaton-Based AlgorithmAs in the previous scheme, we make heavy use of the vocabulary of the text, whichis available as part of the Hu�man coding data. The Hu�man tree can be regardedas a trie where the leaves are the words of the vocabulary and the path from the rootto a leaf spells out its compressed codeword, as shown in the left part of Figure 4for the word "rose".We �rst explain how to solve exact words and phrases and then extend theidea for extended and approximate searching. The pattern preprocessing consistson searching it in the vocabulary as before and marking the corresponding entry.In general, however, the patterns are phrases. To preprocess phrase patterns wesimply perform this procedure for each word of the pattern. For each word of thevocabulary we set up a bit mask that indicates which elements of the pattern doesthe word match. Figure 4 shows the marks for the phrase pattern "rose is", where01 indicates that the word "is" matches the second element in the pattern and 10
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rose 10
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Marks Nondeterministic Searching AutomatonFig. 4. The searching scheme for the pattern "rose is". In this example the word "rose" has athree-byte codeword 47 131 8. In the nondeterministic �nite automaton, '?' stands for 0 and 1.indicates that the word "rose" matches the �rst element in the pattern (all theother words have 00 since they match nowhere). If any word of the pattern is notfound in the vocabulary we immediately know that the pattern is not in the text.Next, we scan the compressed text, byte by byte, and at the same time traversethe Hu�man tree downwards, as if we were decompressing the text3. A new symboloccurs whenever we reach a leaf of the Hu�man tree. At each word symbol obtainedwe send the corresponding bit mask to a nondeterministic automaton, as illustratedin Figure 4. This automaton allows moving from state i to state i+1 whenever thei-th word of the pattern is recognized. Notice that this automaton depends onlyon the number of words in the phrase query. After reaching a leaf we return to theroot of the tree and proceed in the compressed text.The automaton is simulated with the Shift-Or algorithm [Baeza-Yates and Gonnet1992]. We perform one transition in the automaton for each text word. The Shift-Or algorithm simulates e�ciently the nondeterministic automaton using only twooperations per transition. In a 32-bit architecture it can search a phrase of up to32 elements using a single computer word as the bit mask. For longer phrases weuse as many computer words as needed.For complex patterns the preprocessing phase corresponds to a sequential searchin the vocabulary to mark all the words that match the pattern. To search thesymbols in the vocabulary we use the same algorithms described in Section 4.1.The corresponding mask bits of each matched word in the vocabulary are set toindicate its position in the pattern. Figure 5 illustrates this phase for the pattern"ro# rose is" with k = 1 (i.e. allowing 1 error per word, where "ro#" meansany word starting with "ro"). For instance, the word "rose" in the vocabularymatches the pattern at positions 1 and 2. The compressed text scanning phase doesnot change.The cost of the preprocessing phase is as in Section 4.1. The only di�erence isthat we mark bit masks instead of collecting matching words. The search phasetakes O(n) time.Finally, we show how to deal with separators and stopwords. Most online search-3However, this is much faster than decompression because we do not generate the uncompressedtext.
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Marks Nondeterministic Searching AutomatonFig. 5. General searching scheme for the phrase "ro# rose is" allowing 1 error. In the nonde-terministic �nite automaton, '?' stands for 0 and 1.ing algorithms cannot e�ciently deal with the problem of matching a phrase dis-regarding the separators among words (e.g. two spaces between words instead ofone). The same happens with the stopwords, which usually can be disregardedwhen searching indexed text but are di�cult to disregard in online searching. Inour compression scheme we know which elements of the vocabulary correspond infact to separators, and the user can de�ne (at compression or even at search time)which correspond to stopwords. We can therefore have marked the leaves of theHu�man tree corresponding to separators and stopwords, so that the searching al-gorithm can ignore them by not producing a symbol when arriving at such leaves.Therefore, we disregard separators and stopwords from the sequence and from thesearch pattern at negligible cost. Of course they cannot be just removed from thesequence at compression time if we want to be able to recover the original text.5.2 A Filtering AlgorithmWe show in this section how the search on the plain Hu�man compressed text isimproved upon the automaton-based algorithm described in the previous section.The central idea is to search the compressed pattern directly in the text, as wasdone with the tagged Hu�man code scheme presented in Section 4.Every time a match is found in the compressed text we must verify whether thismatch indeed corresponds to a word. This is mandatory due to the possibilityof false matches, as illustrated in Figure 3 of Section 4. The veri�cation processconsists of applying the automaton-based algorithm to the region where the possiblematch was found. To avoid processing the text from the very beginning to makethis veri�cation we divide the text in small blocks of the same size at compressiontime. The codewords are aligned to the beginning of blocks, so that no codewordcrosses a block boundary. Therefore, we only need to run the basic algorithm fromthe beginning of the block that contains the match.The block size must be small enough so that the slower basic algorithm is usedonly on small areas, and large enough so that the extra space lost at block bound-aries is not signi�cant. We ran a number of experiments on the wsj �le, arrivingto 256-byte blocks as a good time-space tradeo�.The extension of the algorithm for complex queries and phrases follows the sameidea: search as in Section 4 and then use the automaton-based algorithm to check
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Fig. 6. A nondeterministic automaton for approximate phrase searching (4 words, 2 errors) in thecompressed text. Dashed transitions 
ow without consuming any text input. The other verticaland diagonal (unlabeled) transitions accept any bit mask. The '?' stands for 0 and 1.the matches. In this case, however, we use multipattern searching, and the per-formance may be degraded not only for the same reasons as in Section 4, but alsobecause of the possibility of verifying too many text blocks. If the number of match-ing words in the vocabulary is too large, the e�ciency of the �lter may be degraded,and the use of the scheme with no �lter might be preferable.5.3 Even More Flexible Pattern MatchingThe Shift-Or algorithm can do much more than just searching for a simple sequenceof elements. For instance, it has been enhanced to search for regular expressions,to allow errors in the matches and other 
exible patterns [Wu and Manber 1992;Baeza-Yates and Navarro 1999]. This powerful type of search is the basis of thesoftware Agrep [Wu and Manber 1992].A new handful of choices appear when we use these abilities in our word-basedcompressed text scenario. Consider the automaton of Figure 6. It can search in thecompressed text for a phrase of four words allowing up to two insertions, deletionsor replacements of words. Apart from the well known horizontal transitions thatmatch words, there are vertical transitions that insert new words in the pattern,diagonal transitions that replace words, and dashed diagonal transitions that deletewords from the pattern.This automaton can be e�ciently simulated using extensions of the Shift-Or al-gorithm to search in the compressed text for approximate occurrences of the phrase.For instance, the search of "identifying potentially relevant matches" could�nd the occurrence of "identifying a number of relevant matches" in thetext with one replacement error, assuming that the stop words "a" and "of" aredisregarded as explained before. Moreover, if we allow three errors at the charac-ter level as well we could �nd the occurrence of "who identified a number ofrelevant matches" in the text, since for the algorithm there is an occurrence of"identifying" in "identified". Other e�ciently implementable setups can beinsensitive to the order of the words in the phrase. The same phrase query could be



Fast and Flexible Word Searching on Compressed Text � 19found in "matches considered potentially relevant were identified"withone deletion error for "considered". Finally, proximity searching is of interest inIR and can be e�ciently solved. The goal is to give a phrase and �nd its words rel-atively close to each other in the text. This would permit to �nd out the occurrenceof "identifying and tagging potentially relevant matches" in the text.Approximate searching has traditionally operated at the character level, where itaims at recovering the correct syntax from typing or spelling mistakes, errors comingfrom optical character recognition software, misspelling of foreign names, and soon. Approximate searching at the word level, on the other hand, aims at recoveringthe correct semantics from concepts that are written with a di�erent wording. Thisis quite usual in most languages and is a common factor that prevents �nding therelevant documents.This kind of search is very di�cult for a sequential algorithm. Some indexedschemes permit proximity searching by operating on the list of exact word positions,but this is all. In the scheme described above, this is simple to program, elegant andextremely e�cient (more than on characters). This is an exclusive feature of thiscompression method that opens new possibilities aimed at recovering the intendedsemantics, rather than the syntax, of the query. Such capability may improve theretrieval e�ectiveness of IR systems.6. SEARCHING PERFORMANCEThe performance evaluation of the three algorithms presented in previous sectionswas obtained by considering 40 randomly chosen patterns containing 1 word, 40containing 2 words, and 40 containing 3 words. The same patterns were used bythe three search algorithms. All experiments were run on the wsj text �le and theresults were obtained with a 99% con�dence interval. The size of the uncompressedwsj is 262.8 megabytes, while its compressed versions are 80.4 megabytes with theplain Hu�man method and 88.6 megabytes with tagged Hu�man.Table 4 presents exact (k = 0) and approximate (k = 1; 2; 3) searching timesusing Agrep [Wu and Manber 1992], tagged (direct search on tagged Hu�man),plain �lterless (the basic algorithm on plain Hu�man), and plain �lter (the �lteron plain Hu�man, with Sunday �ltering for blocks of 256 bytes). It can be seenfrom this table that our three algorithms are almost insensitive to the number oferrors allowed in the pattern while Agrep is not. The plain �lterless algorithmis really insensitive because it maps all the queries to the same automaton thatdoes not depend on k. The �lters start taking about 2=3 of the �lterless version,and become closer to it as k grows. The experiments also shows that both taggedand plain �lter are faster than Agrep, almost twice as fast for exact searching andnearly 8 times faster for approximate searching. For all times presented, there isa constant I/O time factor of approximately 8 seconds for our algorithms to readthe wsj compressed �le and approximately 20 seconds for Agrep to read the wsjuncompressed �le. These times are already included on all tables.The following test was for more complex patterns. This time we experimentedwith speci�c patterns instead of selecting a number of them at random. The reasonis that there is no established model for what is a \random" complex pattern.Instead, we focused on showing the e�ect of di�erent pattern features, as follows:



20 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-YatesAlgorithm k = 0 k = 1 k = 2 k = 3Agrep 23.8 � 0.38 117.9 � 0.14 146.1 � 0.13 174.6 � 0.16tagged 14.1 � 0.18 15.0 � 0.33 17.0 � 0.71 22.7 � 2.23plain �lterless 22.1 � 0.09 23.1 � 0.14 24.7 � 0.21 25.0 � 0.49plain �lter 15.1 � 0.30 16.2 � 0.52 19.4 � 1.21 23.4 � 1.79Table 4. Searching times (in elapsed seconds) for the wsj text �le using di�erent search techniquesand di�erent number of errors k. Simple random patterns were searched.(1) prob# (where #means any character considered zero or more times, one possibleanswer being "problematic"): an example of pattern that matches with lot ofwords on the vocabulary;(2) local television stations, a phrase pattern composed of common words;(3) hydraulic forging, a phrase pattern composed of uncommon words;(4) Bra[sz]il# and Ecua#, a phrase pattern composed of a complex expression.Table 4 presents exact (k = 0) and approximate (k = 1 and k = 2) searchingtimes for the patterns presented above.Algorithm Pattern 1 Pattern 2k = 0 k = 1 k = 2 k = 0 k = 1 k = 2Agrep 74.3 117.7 146.0 23.0 117.6 145.1tagged 18.4 20.6 21.1 16.5 19.0 26.0plain �lterless 22.8 23.5 23.6 21.1 23.3 25.5plain �lter 21.4 21.4 22.1 15.2 17.1 22.3Algorithm Pattern 3 Pattern 4k = 0 k = 1 k = 2 k = 0 k = 1 k = 2Agrep 21.9 117.1 145.1 74.3 117.6 145.8tagged 14.5 15.0 16.0 18.2 18.3 18.7plain �lterless 21.7 21.5 21.6 24.2 24.2 24.6plain �lter 15.0 15.7 16.5 17.6 17.6 18.0Table 5. Searching times (in elapsed seconds) for the wsj text �le using di�erent search techniquesand di�erent number of errors k.Note that, in any case, the results on complex patterns do not di�er much fromthose for simple patterns. Agrep, on the other hand, takes much more time oncomplex patterns such as pattern (1) and pattern (4).7. CONCLUSIONS AND FUTURE WORKIn this paper we investigated a fast compression and decompression scheme for nat-ural language texts and also presented algorithms which allow e�cient search forexact and extended word and phrase patterns. We showed that we achieve about30% compression ratio, against 40% and 35% for Compress and Gzip, respectively.



Fast and Flexible Word Searching on Compressed Text � 21For typical texts, compression times are close to the times of Compress and ap-proximately half the times of Gzip, and decompression times are lower than thoseof Gzip and one third of those of Compress.Search times are better on the compressed text than on the original text (abouttwice as fast). Moreover, a lot of 
exibility is provided in the search patterns.Complex patterns are searched much faster than on uncompressed text (8 timesfaster is typical) by making heavy use of the vocabulary information kept by thecompressor.The algorithms presented in this paper have been implemented in a softwaresystem called Cgrep, which is publicly available. An example of the power of Cgrep isthe search of a pattern containing 3 words and allowing 1 error, in a compressed �leof approximately 80.4 megabytes (corresponding to thewsj �le of 262.8 megabytes).Cgrep runs at 5.4 megabytes per second, which is equivalent to searching the originaltext at 17.5 megabytes per second. As Agrep searches the original text at 2.25megabytes per second, Cgrep is 7.8 times faster than Agrep.These results are so good that they encourage keeping the text compressed allthe time. That is, all the textual documents of a user or a database can be keptpermanently compressed as a single text collection. Searching of interesting docu-ments can be done without decompressing the collection, and fast decompressionof relevant �les for presentation purposes can be done e�ciently. To complete thispicture and convert it into a viable alternative, a mechanism to update a compressedtext collection must be provided, so documents can be added, removed and alterede�ciently. Some techniques have been studied in [Moura 1999], where it is shownthat e�cient updating of compressed text is possible and viable.Finally, we remark that sequential searching is not a viable solution when the textcollections are very large, in which case indexed schemes have to be considered. Ourtechnique is not only useful to speed up sequential search. In fact, it can be usedwith any indexed scheme. Retrieved text is usually scanned to �nd the byte positionof indexed terms and our algorithms will be of value for this task [Witten et al.1999]. In particular, it can also be used to improve indexed schemes that combineinverted �les and sequential search, like Glimpse [Manber and Wu 1993]. Glimpsedivides the text space into logical blocks and builds an inverted �le where each listof word occurrences points to the corresponding blocks. Searching is done by �rstsearching in the vocabulary of the inverted �le and then sequentially searching inall the selected blocks. By using blocks, indices of only 2%-4% of space overheadcan signi�cantly speed up the search. We have combined our compression schemewith block addressing inverted �les, obtaining much better results than those thatwork on uncompressed text [Navarro et al. 2000].ACKNOWLEDGMENTSWe wish to acknowledge the many fruitful discussions with Marcio D. Ara�ujo,who helped particularly with the algorithms for approximate searching in the textvocabulary. We also thank the many comments of the referees that helped us toimprove this work.



22 � E. S. de Moura and G. Navarro and N. Ziviani and R. Baeza-YatesAPPENDIXA. COMPLEX PATTERNSWe present the types of phrase patterns supported by our system. For each wordof a pattern it allows to have not only single letters in the pattern, but any set ofletters or digits (called just \characters" here) at each position, exactly or allowingerrors, as follows:|range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a andz);|arbitrary sets of characters (e.g. t[aei]xt meaning the words taxt, text andtixt);|complements (e.g. t[�ab]xt, where �ab means any single character except a orb; t[�a-d]xt, where �a-d means any single character except a, b, c or d);|arbitrary characters (e.g. t�xt means any character as the second character ofthe word);|case insensitive patterns (e.g. Text and text are considered as the same words).In addition to single strings of arbitrary size and classes of characters describedabove the system supports patterns combining exact matching of some of theirparts and approximate matching of other parts, unbounded number of wild cards,arbitrary regular expressions, and combinations, exactly or allowing errors, as fol-lows:|unions (e.g. t(e|ai)xt means the words text and taixt; t(e|ai)*xt meansthe words beginning with t followed by e or ai zero or more times followed byxt). In this case the word is seen as a regular expression;|arbitrary number of repetitions (e.g. t(ab)*xt means that ab will be consideredzero or more times). In this case the word is seen as a regular expression;|arbitrary number of characters in the middle of the pattern (e.g. t#xt, where #means any character considered zero or more times). In this case the word is notconsidered as a regular expression for e�ciency. Note that # is equivalent to ��(e.g. t#xt and t�*xt obtain the same matchings but the latter is considered asa regular expression);|combining exact matching of some of their parts and approximate matching ofother parts (<te>xt, with k = 1, meaning exact occurrence of te followed by anyoccurrence of xt with 1 error);|matching with nonuniform costs (e.g. the cost of insertions can be de�ned to betwice the cost of deletions).We emphasize that the system performs whole-word matching only. That is, thepattern is a sequence of words or complex expressions that are to be matched againstwhole text words. It is not possible to write a single regular expression that returnsa phrase. Also, the extension described in Section 5.3 is not yet implemented.REFERENCESAho, A. and Corasick, M. 1975. E�cient string matching: an aid to bibliographic search.Communications of the ACM 18, 6, 333{340.
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