
Bounding the Expected Length ofLongest Common Subsequences and ForestsRicardo A. Baeza-YatesRicard Gavald�aDept. LSI,Technical Univ. of Catalunya,Pau Gargallo 5,08028 Barcelona, Spain Gonzalo NavarroRodrigo ScheihingDepto. de Cs. de la Computaci�on,University of Chile,Blanco Encalada 2120,Santiago, Chile �AbstractWe present improvements to two techniques to �nd lower and upper bounds for the expectedlength of longest common subsequences and forests of two random sequences of the same length,over a �xed size, uniformly distributed alphabet. We emphasize the power of the methods used,which are Markov chains and Kolmogorov complexity. As a corollary, we obtain some new lowerand upper bounds for the problems addressed.1 IntroductionThe longest common subsequence (LCS) of two strings is one of the main problems in combinatorialpattern matching. The LCS problem is related to DNA or protein alignments, �le comparison,speech recognition, etc. We say that x is a subsequence of u if we can obtain x by deleting zeroor more characters of u. The LCS of two strings u and v of length n is de�ned as the longestsubsequence x common to u and v. For example, the LCS of longest and large is lge. Anopen problem related to the LCS is its expected length for two random strings of length n overa uniformly distributed alphabet of size k, denoted by EL(k)n . In particular, if an alignment orcommon subsequence of two given sequences is relatively larger than EL(k)n , we may infer that itis more than a coincidence, and that the result should be studied further. If `cs(u; v) denotes thelength of the LCS for two strings u and v, we have:EL(k)n = 1k2n Xjuj=jvj=n `cs(u; v) :Because EL(k)n is superadditive, that is, EL(k)n +EL(k)m � EL(k)n+m, it is possible to show [CS75] that
k = limn!1 EL(k)nn = supn EL(k)nn :�This work has been partially supported by the ESPRIT Long Term Research Project 20244, ALCOM IT. The �rstauthor has also been supported by Direcci�on General de Investigaci�on y T�ecnica (Ministry of Education and Science,Spain) and Fundaci�on Andes. The second author has also been supported by Fondecyt grants 1950569 and 1940520.The third author has also been supported by Fondecyt grant 1960881. E-mail: frbaeza,gavaldag@goliat.upc.es,fgnavarro,rscheihig@dcc.uchile.cl. 1

exists. However, the exact values of
k are still not known. For that reason, several lower andupper bounds have been devised for
k. For example, it is known that1 �
kpk � e :First we present new lower bounds for k > 2 for the LCS. These new results are based on a newclass of automata (following the work of Deken [Dek79] and Dan�c��k & Paterson [Dan94, PD94]) thatsimulates an algorithm that computes the LCS over two random in�nite strings. These automataare called CSS (Common SubSequence) machines in [Dan94].To obtain upper bounds, we re�ne and extend the Kolmogorov complexity approach mentionedby Li and Vit�anyi [LV93], which is simple and elegant. Kolmogorov complexity has been veryuseful in many areas of computer science. The reader is referred to the monograph of Li andVit�anyi [LV93] for a very complete treatment of the origins, development, and applications of thisconcept.We also apply both techniques to a generalization of the LCS problem, called the LongestCommon Forest (LCF) by Pevzner and Waterman [PW93], obtaining the �rst known lower andupper bounds for the expected size of the LCF of two random sequences. In particular, we showthat for large alphabets, the fraction of the expected length of the LCF is also upper bounded bye=pk.The results included here were presented in preliminary form in [BYS95, BYGN96].2 Longest Common Subsequences and ForestsThe LCS of two strings u and v can be computed using dynamic programming over a matrix Lde�ned by L[0; i] = L[i; 0] = 0 for 0 � i � n andL[i; j] = max(L[i� 1; j]; L[i; j� 1]; L[i� 1; j � 1] + (u[i] =?v[j])); 1� i; j � n ;where (u[i] =?v[j]) is de�ned as 1 if both characters are equal, or 0 otherwise. The length of theLCS is given by L[n; n]. This algorithm can be implemented using 3n2 comparisons. For fasteralgorithms which solve the LCS problem we refer the reader to [GBY91, PD94, Ric95].Longest Common Forests (LCF) are de�ned in [PW93] as one particular case of general align-ments between strings, called the A-LCS problem. Basically, in a LCF we allow a character tomatch more than one character of the other sequence, but if we look at every match as an edgebetween the two sequences, then no edge crossings can exist. Hence, the alignment is a set of treesor forest. In [PW93] a cn2 algorithm to compute the A-LCS problem is given, where c is related tothe determinant of a matrix de�ning the generalized alignment rules. They mention that c = 2 forthe LCF problem, but a simple algorithm is not explicitly given. In fact, the dynamic programmingprocedure for LCF is given byL[i; j] = max(L[i� 1; j]; L[i; j� 1]) + (u[i] =?v[j]) ;which requires only 2n2 comparisons. If `cf(u; v) denotes the length of the LCF for two strings uand v, in general we have 0 � `cf(u; v)� 2(juj+ jvj)� 1 ;where the upper bound can be seen as the longest path where we either advance in a row or acolumn of the matrix L. Similarly to the LCS, LCF is superadditive. We can de�neEF (k)n = 1k2n Xjuj=jvj=n `cf(u; v)2

0 0 0 0 0 0 0 01 1 1 1 1 1 11 1lcs = lcf = 0(a) 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0(d)0 0 01 1 1 10 0 0 01 1 1 10(c)lcs = n � 1, lcf = n � 10 0 0 0 0 0 01 1 1 1 11 11 01(b)lcs = 2, lcf = n � 1 lcs = n, lcf= 2n� 1Figure 1: Some extreme LCS and LCF examples for a binary alphabet.and fk = limn!1 EF (k)nn = supn EF (k)nn � 2 :Figure 1 shows some examples of LCFs as well as the corresponding LCS length (the solutionsshown in the examples are not necessarily unique).Table 1 and Figure 2 show some exact values of EL(2)n =n and EF (2)n =n for n � 16. For theLCS these results extend [CS75]. Figure 3 shows the probability distribution of LCS and LCF forn = 15 normalized by the length n. We can see that in both cases the distribution is centered butwith signi�cative tails, which partly explains why it is di�cult to bound better their average value.n EL(2)n =n EF (2)n =n1 0.5 0.52 0.5625 0.8753 0.604167 1.06254 0.630859 1.164065 0.649219 1.227346 0.66333 1.271487 0.674491 1.303998 0.68364 1.328819 0.691303 1.3482810 0.697844 1.3638811 0.703517 1.3766212 0.708493 1.3872113 0.712904 1.3961314 0.7168467 1.40373615 0.7203977 1.410305816 0.7236174 1.4160315Table 1: Exact values for ELn=n and EFn=n for n � 16 and k = 2.3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[E
L/

n
--

 E
F

/n
]

[n]

LCS
LCF

Figure 2: Exact values for ELn=n and EFn=n for n � 16 and k = 2.3 Lower Bounds: Markov ChainsThe lower bounds are based on the work by Deken [Dek79] and Dan�c��k & Paterson [PD94, Dan94].They present a �nite automaton that models an algorithm which �nds a common subsequence (CS)on two in�nite strings (tapes). By analyzing the associated Markov chain, a bound on the expectedlength of the LCS is found. The same idea can be applied to the LCF problem. A completeexposition of this section appears in [BYS95].Dan�c��k and Paterson use an automaton that alternatively reads from each one of the twounbounded tapes. We read at the same time from both strings, allowing the possibility of applyingsome symmetry rules which reduce the number of states. Informally, when reading a new pair ofsymbols of an alphabet � of size k with symbols f0; 1; � � � ; k � 1g, the automaton outputs somematches that increase the CS and computes a new state based on the symbols not yet used.Therefore, at this point, all information about the past has been lost. So, we obtain a lower bound,because potentially, a longer CS (the LCS) could have been obtained looking at the complete strings.Nevertheless, the fact that we only have to look at the current state and the future, simpli�es theproblem by applying the following rules. Consider that each state s 2 S is identi�ed by two strings[a; b] which are the symbols not yet used in each tape, then:1. We force that jaj � jbj. If it is not true, we just switch the two tapes and the behavior of theautomaton is the same. This is only true because the contents of the tape are random andthe symbols uniformly distributed.2. We force that a < b lexicographically on their �rst jbj symbols (note that due to the previousrule, jaj � jbj. We do that by exchanging symbols. If a[1] is not 0, we exchange in a and b allthe occurrences of a[1] with 0 and vice versa. The same thing can be done with b. If b[1] > 1then we exchange in a and b all the occurrences of b[1] with 1 and vice versa. This is valid4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Probability distrib. of EL(n)/n
Probability distrib. of EF(n)/n

Figure 3: Probability distribution of ELn=n and EFn=n for n = 16 and k = 2.because the symbols are indistinguishable and uniformly distributed.These two rules diminish approximately by a factor of 2k2 the possible number of states that amachine like this can generate, by using classes of equivalence between states. Rule 2 can beextended recursively to a[2], by permuting a[2] with 2 if a[2] > 2, etc. We have done that for largerk, up to k � 1 characters, reducing for every exchange the number of states by a factor of k. Thissymmetry is used in a similar way in [Dan94].Formally, our CSS machine is a tuple (S; �; O) where S is a set of states, � is the transitionfunction which given a state s and a pair of symbols gives the new state (s0 �(s; [x; y])), and Ois the output function which given a state s and a pair of symbols [x; y], returns the length of thechosen CS for that transition (this is explained later). The expected behavior of a CSS machinecan be modeled by a strongly connected Markov chain (no absorbing states), where the probabilityof transition from one state to another state is the probability of the input symbol pair associatedto that transition (1=k2). In the limit, the probability of being in a given state converges to thesolution of T~p = ~p ; Xi pi = 1 ;where T is the probability transition matrix and ~p is the steady state probability vector [CM65].After these probabilities are obtained, a lower bound on
k is given by
k � Xs2S ps X[x;y]2��� O(s; [x; y])k2 :CSS machines can be produced automatically as shown in [Dan94]. In our case we have adi�erent production algorithm. The idea is that given a CSS machine M(S; �; O), we select a subsetof m states Um from S and we expand those states. Expanding a state s means to concatenate all5

s0MS S0Expanded statessUmM 0
Figure 4: Production process.possible pairs of symbols to s, obtaining k2 states. We normalize each of those states by applyingrules 1 and 2 de�ned above. That is, all the transitions of s go to these states. Of those, someof them are new. Let S 0 be the set of new states. For each s0 2 S 0, we compute all the possibletransitions as before, but we impose the condition that the states generated by s will have at mostthe same number of symbols of s0. If we have a larger number of symbols, we drop one or twosymbols (we choose to delete the symbols with smaller frequency). If we produce new states, weadd them to S 0 marking s0 as expanded. The condition above implies that at some point all statesin S 0 have been expanded, obtaining a new CSS machine M 0. All states that have been expandedplus the states of M , form M 0(see Figure 4).We can repeat this process several times to obtain larger and larger CSS machines, startingwith the empty state [�; �] where � denotes the empty string.There are several possibilities to generate the next state in a transition. We tried several waysto do it and the most successful one was the following. Given a state s = [a; b], and a pair ofsymbols [x; y], the next state is given by s0 = [a0; b0] such that ax = ua0 and by = vb0 where u andv are the strings that maximize `cs(u; v)juj+ jvjif `cs(a; b) > 0. If there is more than one candidate we minimize over juj + jvj. Otherwise, if`cs(a; b) = 0, we use u = a[1]. In this case, for v, we use v = � if jaj > jbj or jbj = 0; else v = b[1].This can be seen as a heuristic that locally maximizes
k by using the fewest possible number ofcharacters. In practice, most of the time the cut u; v will happen on the \best" �rst match fromleft to right. Note that it may happen that a[1] = b[1] in opposition to [Dan94] where they forcethe starting symbols to be di�erent.Figure 5 shows the basic CSS machine for general k for the LCS case when applying theproduction algorithm once starting from the empty state and using m = 1. The output function isshown between parenthesis. 6

[1; x] or [y; 0] (+1) [x; y] x 6= y; x 6= 1; y 6= 0[x; y] x 6= y [0; 1][�; �] [0; �] [x; y] x 6= y; y 6= 0[x; 0] (+1)p0 p1p2
[x; x] (+1) [x; x] x > 1 (+1)[x; x] x 6= 0 (+1)

Figure 5: CSS example for LCS.The transition probability matrix of this example isT = 264 1=k 1� 1=k 0(k � 2)=k2 ((k � 1)2 � (k � 2))=k2 (2k� 1)=k2(k � 1)=k2 (k � 1)2=k2 1=k 375and the steady state probabilities arep0 = k2 � 1D p1 = k2(k � 1)D ; p2 = k(2k � 1)D ;where D = k3 + 2k2 � k � 1. For this automaton we have
k � p0k + 3(k� 1)p1k2 + (2k � 1)p2k2 = 3k2 � k � 1k3 + 2k2 � k � 1 = 3k + O(k�2) :For k = 2 we obtain
2 � 9=13 � 0:6923.In the production algorithm we have left open the question as to how to select Um. Here, thenumber of statesm to be expanded and the selection procedure is not �xed. In [Dan94] a next stateis selected by \looking ahead" on the random input and chosing the transition where on averagea longer CS is lost. Although this might be the best selection procedure, looking ahead can becomputationally very expensive. They do it only for k = 2 using the average of all possible stringsof length 6. This is not practical for k > 2 as the number of look ahead strings grows very fast.For that reason, we tried di�erent heuristic cost functions associated with a state s. The one thatgave the best results was to expand the states with largest expected output, that is:Cost(s) = ps X[x;y]2���O(s; [x; y]) :7

[1; x] or [y; 0] (+1)x 6= 1; y 6= 1(+1=(k� 1))[x; y] x 6= y; y 6= 0[x; y] x 6= y [0; 1][�; �] [0; �] p2p0 p1 [x; y] x 6= y; x 6= 1; y 6= 0[x; x] x � 1 (+2)
x 6= 0[0; 0] (+2)[x; 0] (+1)

[x; x] (+1 + 1=k)
Figure 6: CSS example for LCF.So, the selection procedure chooses the m states with largest Cost to obtain Um. For small k weused m between 2 and 10 to speed up the growing rate of the CSS machine. For larger k, m = 1was enough, as the number of states grows exponentially.The CSS machine for the LCF problem is given in Figure 6 for the case m = 1. We can furtherimprove this automaton by noticing that in states 0 and 2, the previous event is always a match.So, if one of the new symbols is equal to the previous match, we can increase the LCF by 1. Thishas been considered in the output by adding the adequate terms which are a function of k. So, wehave the following transition matrixT = 264 1=k 1� 1=k 01=k ((k� 1)2 � (k � 2))=k2 (2k� 3)=k21=k (k � 1)2=k2 (k � 1)=k2 375and we obtain fk � (k + 1)p0k2 + (3k � 1)k2 (p1 + p2) = 3k2 � 3k + 2k3which for k = 2 gives f2 � 1.The generation algorithm described has been implemented using the Maple symbolic algebrasystem [CGG+91]. Table 2 shows the lower bounds obtained so far by using our CSS machines upto 2000 states for the LCS and LCF problem.4 Upper Bounds: Kolmogorov ComplexityThe original goal of Kolmogorov complexity was to have a quantitative measure of the complexityof a �nite object. Kolmogorov and others had the following idea: the regularities of an object canbe used to give short descriptions of it; on the other hand, if an object is highly non-regular, orrandom, there should be no way of describing it that is much shorter than giving the full object8

k Our
k Previous
k
k fk (New) fkLower bound [PD94, Dan94] (Exper.) Lower bound (Exper.)2 0.75796 0.77391 0.8118 1.41031 1.49983 0.63376 0.61538 0.7172 1.03554 1.29694 0.55282 0.54545 0.6537 0.83356 1.14265 0.50952 0.50615 0.6069 0.67948 1.02816 0.46695 0.47169 0.5701 0.56400 0.9403Table 2: New lower bounds for LCS and LCF (new results in boldface),and experimental results for n = 100; 000.itself. To formalize this notion, we �rst encode discrete objects as strings, as is customary in thetheory of computation. Second, we want to have descriptions that can be handled algorithmically,so we identify descriptions with \programs for a su�ciently powerful model of computation".Fix a Universal Turing Machine U whose input alphabet is f0; 1g and output alphabet is �.The Kolmogorov complexity of a string x 2 �? is the minimum length of a program that makes Ugenerate x and stops.Observe that this de�nition seems to depend on the choice of the Universal Turing Machine.However, it can be shown that changing the machine only a�ects this measure of complexity by anadditive constant.Strings whose Kolmogorov complexity is equal, or close to, their length are called Kolmogorov-random. These are strings that cannot be compressed algorithmically.As there are at most 2n�1 binary \programs" of length n�1 or less, clearly there is some stringof length n whose Kolmogorov complexity is at least n. A slight generalization of this countingargument gives that for every c and n, there are at most 2n�c strings in �n having Kolmogorovcomplexity � n � c.For c even a small constant, this amounts to say that most strings, all but a fraction of 2�c, arealmost random: they cannot be compressed by more than c bits.Many combinatorial properties have simple proofs via this prepackaged counting argument.Suppose that we want to show that property P (x) holds for some string x. Take a Kolmogorov-random string x. Assume that P (x) is false; show that this gives a way to describe x concisely. Thisis a contradiction. In fact, this argument usually gives proof that P (x) holds with high probability,as the majority of strings are Kolmogorov random up to small constants.For example, P (x) could be some static property of x, such as \the di�erence between zerosand ones in x is at most 2 log jxj"1; or a dynamic property such as \algorithm A takes time at most5jxj on input x". In fact, several lower bounds on the (worst-case and expected) running time ofalgorithms have been proved using Kolmogorov complexity [LV93].To apply this kind of argument to the case of LCS, observe that if two n-bit strings have avery long LCS (i.e., close to n bits), these two strings are in some sense very similar: knowing oneof them gives away a lot of information about the other. Intuitively, if two strings are mutuallyrandom, knowing one of them should give essentially zero information to build the other. This mustbe true, in particular, if the two strings are obtained by chopping a Kolmogorov random string of2n bits into two n-bit pieces. This argument is given in [LV93, Exercise 6.12, p.343], though in factthey only do it for k = 2.1All logarithms in this paper are in base 2. 9

We formalize this argument for general alphabets �: just bear in mind that we can identifystrings of length n over k letters with binary strings of length n log k.We will determine
 such that `cs(x; y) �
n for Kolmogorov random strings x and y. Thenaveraging over all strings we obtain EL(k)n �
kn + O(1=n). Indeed, let A be the set of wordsxy (x; y 2 �n) that have Kolmogorov complexity at least (2n� 3 logn) � log k. See that all but afraction O(1=n3) of strings have this property. ThenEL(k)n = 1=k2n 24 Xxy2A `cs(xy) + Xxy 62A `cs(xy)35� 1=k2n 24 Xxy2A
n+ Xxy 62An35� 1=k2n hk2n(1�O(1=n3))
n+ k2nO(1=n3)ni= (1 +O(1=n2))
n:Assume `cs(x; y) =
n. Clearly we can obtain xy if we have the following information:� The values of n and
n.� The LCS of x and y: LCS(x; y).� A description of the letter positions of x and y that give LCS(x; y).� The sequence of letters of x that do not belong to LCS(x; y).� The sequence of letters of y that do not belong to the LCS(x; y).Formally, there is a �xed program (independent of n, x, and y) that, given this information,makes the Universal Turing Machine produce xy. As xy is random, the length of writing downthis information in bits, plus the size of this program, must be at least (2n� 3 logn) log k. Let usestimate the bit-length of each part.The values of n and
n can be given in 2 logn bits each. By assumption, LCS(x; y) can beencoded in (
n) logk bits. The bits necessary to specify the letter positions is the log of the numberof position sets that correspond to LCS's of two strings. Call this number In;
 .For the last item, we use the following. A pair of strings may have several LCS's. We take as arepresentative that one with a lexicographically smallest set of positions: that is, if there are twochoices for matching a letter we match it with the lowest index. Then, for every letter not in theLCS we can discard one out of k possibilities: if adjacent letters from positions i to j of x are notin the LCS, but letter j+1 is, we know that x[k] 6= x[j+1], for any i � k � j. Hence, the (1�
)nletters of x not in the LCS can be encoded given as a string of length (1 �
)n over an alphabetwith k � 1 letters, and similarly for y. In particular, for k = 2, this information is empty.Adding up, we obtain the equation4 logn +
kn log k + log In;
k + 2(1�
k)n log(k � 1) � (2n� 3 logn) log k :Dividing the equation by n, all sublinear terms vanish asymptotically, so we obtain:log In;
kn + 2(1�
k) log(k � 1) � (2�
k) log k : (1)10

2 182 6 10 14 180.0
1.0
0.00.10.20.30.40.50.60.70.8
0.9

k
k
Figure 7: Lower and upper bounds on
k for each alphabet size k. In between we show experimentalresults for n = 100; 000. x[i] x[i+1]y[i] y[i+1]z xy y : : :: : :xx[i+2]y[i+2]: : :: : : zFigure 8: Forbidden case for an LCS with k = 2, and counting variables used.A �rst upper bound on In;
k is the number of all subsets of f1 : : :ng with
kn elements, squared (oncefor choosing in x, times the choice for y). By Stirling's approximation, log � n
kn� = nH(
k)(1+o(1)),whereH(x) = �x log(x)�(1�x) log(1�x) is the binary entropy function. So we obtain the equation2H(
k) + 2(1�
k) log(k � 1) � (2�
k) log k :For every k, solving this equation numerically gives a feasible range for
k. For example, for k = 2it gives 0:282 �
2 � 0:867. Figure 7 plots the values of
k up to k = 18, as well as experimentalresults for n = 100; 000 (average taken over ten trials). Table 3 gives some exact values. By takingthe limit on k, we obtain the already known result
k � e=pk.For k = 2 this is the result obtained in [LV93]. We obtain a better bound for k = 2 by estimatingmore accurately the number of positions In;
k .Consider the example given in Figure 8. If letters x[i + 1] and y[j + 1] are equal, we canmatch them and obtain a longer common sequence. If they are di�erent, one of them equalsx[i+2] = y[i+ 2], so we can match it with either x[i+2] or y[j+ 2] and obtain a lexicographicallysmaller set of positions. So we have to count sets of positions that do not leave gaps simultaneouslyon the upper and lower strings.As we will take the log of the number of strings divided by n for large n, we disregard smallerterms such as leading polynomials, etc., without further notice. In particular, we count only thosestrings that end with a match; it is not hard to see that this does not a�ect the base of theexponential. 11

To count the number of strings in the language de�ned, we use generating functions. LetG(x; y; z) be G(x; y; z) =Xi;j;`Gi;j;`xiyjz` :where Gi;j;` is the number of LCSs which have `cs of length ` with i+1 symbols in the upper stringand j+1 symbols in the lower string. That is, x is a symbolic variable associated to movements inthe upper string, y to movements in the lower string, and z counts the edges between both strings(it may seem awkward to count movements and edges separately, but this makes possible to usethe same approach for the LCF). The counting model is depicted in Figure 8. So, we are interestedin Gn�1;n�1;n
 .In our case we have,G(x; y; z) = � 11� y + x1� x� yxzG(x; y; z) + 1 = 11� � 11�y + x1�x�xyz :That is, all strings are obtained by all possible ways to have zero or more y's (1=(1� y)) or zero ormore x's, not counting twice the case of no letters in both strings (1=(1�x)� 1) and then a matchxyz; concatenated with a string of the same form, that is G(x; y; z). ThenG`(x; y) = (xy)`� 11� y + x1� x�` =Xi ì! xi+`y`(1� x)i(1� y)`�iand Gm1;m2;` =Xi ì! m1 � `� 1i� 1 ! m2 � i� 1`� i� 1 !which when expressed in terms of the original n becomesGn�1;n�1;` =Xi ì! n� `i� 1! n� i`� i� 1! :We do not need the exact solution to the above sum, just its logarithm divided by n, for largen. Call Mm;` the maximum term of the summation. Then we haveMn;` � Gn;` � `Mn;`log(Mn;`)=n � log(Gn;`)=n � log(Mn;`)=n+ O� lognn � ;which shows that the larger term dominates the result. Moreover, we can maximize the logarithmof the term and use Stirling as before. Let i = wn, take the logarithm of the term i of the sum,divide by n and maximize with respect to w. We obtain that the maximum is reached forw(
) = 2�
 �p5
2 � 8
 + 42that satis�es the constraints of the sum, namely 0 � w(
)� min(
; 1�
). By using this maximumterm instead of the whole sum, and using the asymptotic formula log ��n�n� = �nH(�=�)+O(logn),we have
H(w(
)=
)+ (1�
)H(w(
)=(1�
)) + (1� w(
))H((
� w(
))=(1� w(
))� 2�
12

whose numerical solution is
2 � 0:86019, which is still larger than what other more complicatedtheoretical models provide [Dan94], although quite close. Also, with this technique it is possible toobtain asymptotic results on k, which are not possible with ad-hoc methods.Let us now consider the longest common forest problem. The LCF allows a better letterrepresentation, since in this case not only each not connected letter must be di�erent than that ofthe next alignment. The letters corresponding to each tree of the forest must be di�erent than thatof the next tree (otherwise we could join both trees). Hence, we need log(k � 1) bits for all letters(connected and not connected), except the �rst one. For example, we need only one bit for k = 2.Therefore, our inequality is log In;fkn + (2� fk) log(k� 1) � 2 logk : (2)The next step is to obtain a bound for In;fk , the number of con�gurations for the forest. Inthis case, a single letter can be matched to many, so we drop the requirement for at least one gapbetween two edges. However, not both gaps can be zero. Hence,G(x; y; z) = � 1(1� x)(1� y) � 1� zG(x; y; z) + 1 = 11� � 1(1�x)(1�y) � 1� zComputing the inverse in z we haveG`(x; y) = X̀ (x+ y � xy)`((1� x)(1� y))`= Xi;j (�1)`�i�j ì! ` � ij ! xiyj(xy)`�i�j((1� x)(1� y))`Now we invert in x and y to getGm1;m2;` = Xi;j (�1)`�i�j ì! `� ij ! m1 + j � 1`� 1 ! m2 + i� 1`� 1 != Xi (�1)`+i ì! m2 + i� 1`� 1 !Xj (�1)j `� ij ! m1 + j � 1`� 1 != Xi (�1)`+i ì! m2 + i� 1`� 1 !(�1)`�i m1 � 1i� 1 !and by expressing it in terms of the original n we haveGn�1;n�1;` =Xi ì! n + i`� 1! ni� 1! :Using the same maximizing technique as before (i = wn), we havew(f) = �1 +p1 + 4f2 :This maximum value for i = w(f)n is always in the bounds of the summation (i.e. max(f � 1; 0) �w(f) � min(f; 1)). Then, we havefH(w(f)=f) + (1 + w(f))H(f=(1+ w(f)) +H(w(f)) � 2 logk � (2� f) log(k � 1) :13

2 182 6 10 14 180.0
2.0
0.00.20.40.60.81.01.21.41.6
1.8

kfk
Figure 9: Lower and upper bounds for fk , for each alphabet size k. In between we show experimentalresults for n = 100; 000.k
k Our
k Previous
k fk fk (New)(Exper.) Upper bound [PD94, Dan94] (Exper.) Upper bound2 0.8118 0.86019 0.83763 1.4998 2.000003 0.7172 0.78647 0.76581 1.2969 1.767044 0.6537 0.72971 0.70824 1.1426 1.565945 0.6069 0.68612 0.66443 1.0281 1.412896 0.5701 0.65098 0.62932 0.9403 1.293847 0.5399 0.62172 0.60019 0.8714 1.198558 0.5146 0.59676 0.57541 0.8143 1.120339 0.4931 0.57507 0.55394 0.7668 1.0547810 0.4741 0.55597 0.53486 0.7264 0.99890Table 3: Upper bounds for LCS and LCF (new results in boldface),and experimental results for n = 100; 000.We can now numerically solve this inequality for each alphabet size k. Figure 9 plots the valuesof fk up to k = 18 as well as experimental results for n = 100; 000 (average taken over ten trials),and Table 3 shows some exact values. These are the �rst theoretical upper bounds for the LCFproblem. Taking the limit on k, we obtainfk � epk + O(1=k) :5 Further ResearchAlgorithms to �nd a long CS of two sequences can be considered as approximation algorithms forthis problem (they can also be seen as on-line algorithms with restricted memory). The complexityof these algorithms is in general O(n), which compares favorably with O(n2).The general case, �nding the LCS of m sequences of length n can be solved in time O(n`)using dynamic programming. If ` is not �xed, this problem is NP-complete [Mai78]. Jiang and Li14

[JL95] show that it is di�cult to �nd good approximation algorithms in the worst case for the LCS,because if there is a polynomial time approximation algorithm with performance ratio n� (� > 0),then P = NP. For that reason, it is better to look at good approximation algorithms for randominputs. For the case of ` sequences of length n, with ` a polynomial in n, simple greedy algorithmsapproximate the LCS of the sequences with an expected additive error of size O(pn1+�) [JL95].The expected length of the sequence in this case is n=k for an alphabet of size k. That is,
k ! 1=kwhen ` = O(n). Note that for ` = 2,
k = O(1=pk). Dan�c��k [Dan94] has proved that in the caseof ` sequences 1 �
kk1�1=` � e :The approximation ratio of our algorithms for two sequences in the worst case is unbounded. Onaverage, CSS machines are approximation algorithms with expected additive error at most O(n=k),but the exact complexity is not known. One possible measure is the ratio between the exact valueof
k and the expected length of the CS obtained by the algorithm. In our case, because the exactvalue is not known, we can use an upper bound. For example, for k = 2 we have
2 < 0:838[DP95]. So, the automaton given for the case m = 1 would be at most 1.22-sub-optimal for randomsequences. For larger k, the ratio is at most e=3pk for the case m = 1. We are currently extendingour CSS machines to the case of multiple sequences to improve the lower bounds between the case` = 2 and the case ` polynomial in n, in particular for ` < n.We are currently trying to improve the generation algorithm to produce larger CSS machinesand obtain tighter lower bounds also for larger k. We are also working on relating the values of fkand
k to obtain upper bounds for fk indirectly.We are also working on upper bounds, re�ning the codi�cation methods to improve the Kol-mogorov bounds. For example, one can take pairs of letters and observe that some con�gurationsare in fact not possible, thus reducing the number of alternatives to represent and hence improvingthe bound. However, the analysis becomes much more complex.AcknowledgementsSome ideas for this work originated while the second author was visiting the University of Chilein Santiago during 1995 and attending the XV Conference of the Chilean CS Society (SCCC) inArica. He is grateful to Eric Goles and Mart��n Matamala for inviting him to the �rst, and to theSCCC and particularly Ricardo Baeza-Yates for inviting him to the second. This work continuedthanks to the kind invitation of Josep Diaz to the �rst author to do a sabbatical at the TechnicalUniversity of Barcelona and to the third author to visit the same place during February of 1996.References[BYGN96] R. Baeza-Yates, R. Gavald�a, and G. Navarro. Bounding the expected length of longestcommon subsequences and forests. In R. Baeza-Yates N. Ziviani and K. Guimar~aes,editors, Proc. of WSP'96, pages 1{15, Recife, Brazil, August 1996.[BYS95] R. Baeza-Yates and R. Scheihing. New lower bounds for the expected length of longestcommon subsequences and forests. In XV International Conference of the ChileanComputer Science Society, pages 48{58, Arica, Chile, November 1995.[CGG+91] B. Char, G. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt. MAPLE VLanguage and Library Reference Manual. Springer-Verlag, 1991.15

[CM65] D. Cox and H. Miller. The Theory of Stochastic Processes. Chapman and Hall, London,1965.[CS75] V. Chvatal and D. Sanko�. Longest common subsequences of two random sequences.Journal of Applied Probability, 12:306{315, 1975.[Dan94] V. Dan�c��k. Expected Length of Longest Common Subsequences. PhD thesis, CS Dept,Univ. of Warwick, Warwick, UK, 1994.[Dek79] J. Deken. Some limit results for longest common subsequences. Discrete Mathematics,26:17{31, 1979.[DP95] V. Dan�c��k and M. Paterson. Upper bounds for the expected length of a longest commonsubsequence of two binary sequences. Random Structures & Algorithms, 6:449{458,1995.[GBY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures - InPascal and C. Addison-Wesley, Wokingham, UK, 1991. (second edition).[JL95] T. Jiang and M. Li. On the approximation of shortest common supersequence andlongest common subsequences. SIAM Journal on Computing, 24(5):1112{1139, Oct1995.[LV93] Ming Li and Paul Vit�anyi. An Introduction to Kolmogorov Complexity and Its Appli-cations. Springer-Verlag, New York, 1993.[Mai78] D. Maier. The complexity of some problems on subsequences and supersequences.J.ACM, 25:322{336, 1978.[PD94] M. Paterson and V. Dan�c��k. Longest common subsequences. In B. Rovan I. Privaraand P. Ruzicka, editors, 19th MFCS'94, LNCS 841, pages 127{142, Kosice, Slovakia,August 1994. Springer Verlag.[PW93] P. Pevzner and M. Waterman. Generalized sequence alignment and duality. Advancesin Applied Mathematics, 14:139{171, 1993.[Ric95] Claus Rick. A new
exible algorithm for the longest common subsequence problem. InCPM'95, 6th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes inComputer Science 937, pages 340{351, Espoo, Finland, 1995. Springer-Verlag.
16

