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On the Approximation Ratio of Ordered Parsings
Gonzalo Navarro, Carlos Ochoa, and Nicola Prezza

Abstract

Shannon’s entropy is a clear lower bound for statistical compression. The situation is not so well understood for dictionary-
based compression. A plausible lower bound is b, the least number of phrases of a general bidirectional parse of a text, where
phrases can be copied from anywhere else in the text. Since computing b is NP-complete, a popular gold standard is z, the number
of phrases in the Lempel-Ziv parse of the text, which is computed in linear time and yields the least number of phrases when those
can be copied only from the left. Almost nothing has been known for decades about the approximation ratio of z with respect to
b. In this paper we prove that z = O(b log(n/b)), where n is the text length. We also show that the bound is tight as a function of
n, by exhibiting a text family where z = Ω(b logn). Our upper bound is obtained by building a run-length context-free grammar
based on a locally consistent parsing of the text. Our lower bound is obtained by relating b with r, the number of equal-letter runs
in the Burrows-Wheeler transform of the text. We continue by observing that Lempel-Ziv is just one particular case of greedy
parses–meaning that it obtains the smallest parse by scanning the text and maximizing the phrase length at each step–, and of
ordered parses–meaning that phrases are larger than their sources under some order. As a new example of ordered greedy parses,
we introduce lexicographical parses, where phrases can only be copied from lexicographically smaller text locations. We prove
that the size v of the optimal lexicographical parse is also obtained greedily in O(n) time, that v = O(b log(n/b)), and that there
exists a text family where v = Ω(b logn). Interestingly, we also show that v = O(r) because r also induces a lexicographical
parse, whereas z = Ω(r logn) holds on some text families. We obtain some results on parsing complexity and size that hold on
some general classes of greedy ordered parses. In our way, we also prove other relevant bounds between compressibility measures,
especially with those related to smallest grammars of various types generating (only) the text.

Index Terms
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I. INTRODUCTION

Shannon [55] defined a measure of entropy that serves as a lower bound to the attainable compression ratio on any source
that emits symbols according to a certain probabilistic model. An attempt to measure the compressibility of finite texts T [1 . . n],
other than the non-computable Kolmogorov complexity [38], is the notion of empirical entropy [10], where some probabilistic
model is assumed and its parameters are estimated from the frequencies observed in the text. Other measures that, if the text
is generated from a probabilistic source, converge to its Shannon entropy, are derived from the Lempel-Ziv parsing [41] or the
grammar-compression [35] of the text.

Some text families, however, are not well modeled as coming from a probabilistic source. A case that has been gaining
attention is that of highly repetitive texts, where most of the text can be obtained by copying long blocks from elsewhere
in the same text. Huge highly repetitive text collections are arising from the sequencing of myriads of genomes of the same
species (e.g., the 100K Genome Project1), from versioned document repositories like Wikipedia, from source code repositories
like GitHub, etc. Their growth is outpacing Moore’s Law by a wide margin [56]. Understanding the compressibility of highly
repetitive texts is important to properly compress those collections.

Lempel-Ziv and grammar compression are particular cases of so-called dictionary techniques, where a set of strings is
defined and the text is parsed as a concatenation of those strings. On repetitive collections, the empirical entropy ceases to be a
relevant compressibility measure; for example the kth order per-symbol entropy of TT is the same as that of T , if k � n [40,
Lem. 2.6], yet this entropy measure is generally meaningless for k > log n [17]. Some dictionary measures, instead, capture
much better the compressibility of repetitive texts. For example, while an individual genome can rarely be compressed to much
less than 2 bits per symbol, Lempel-Ziv has been reported to compress collections of human genomes to less than 1% [16].
Similar compression ratios are reported in Wikipedia.2

Despite the obvious practical relevance of these compression methods, there is not a clear entropy measure useful for highly
repetitive texts. The number z of phrases generated by the Lempel-Ziv parse [41] is often used as a gold standard, possibly
because it can be implemented in linear time [51] and is never larger than g, the size of the smallest context-free grammar
that generates the text [52], [8]. However, z is not so satisfactory as an entropy measure: the value may change if we reverse
the text, for example. A much more robust lower bound on compressibility is b, the size of the smallest bidirectional (macro)
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TABLE I
NOTATION ASSUMED ALL ALONG THE PAPER, INCLUDING THEOREMS.

Symbol Meaning
T Text to be parsed or compressed
n Text length
σ Text alphabet size
f Target-to-source mapping in a parsing of T
Hk Per-symbol kth order empirical entropy of T
b Size of smallest bidirectional scheme for T
z Size of Lempel-Ziv parse for T
zno Size of Lempel-Ziv parse for T not allowing overlaps
g Smallest size (number of rules) of an SLP generating T
grl Smallest size (number of rules) of an RLSLP generating T
c Smallest size (number of rules) of an internal collage system generating T
r Number of runs in the BWT of T
u Smallest size of an ordered parse for T
v Size of the lex-parse for T
fk kth Fibonacci number
Fk kth Fibonacci word

scheme [57]. Such a scheme parses the text into phrases such that each phrase appears somewhere else in the text (or it is
a single explicit symbol), in a way that makes it possible to recover the text by copying source to target positions in an
appropriate order. This is arguably the strongest possible dictionary method, but finding the smallest bidirectional scheme is
NP-complete [21]. A relevant question is then how good is the Lempel-Ziv parse as an efficiently implementable approximation
to the smallest bidirectional scheme. Almost nothing is known in this respect, except that there are string families where z is
as large as nearly 2b [57].3

In this paper we finally give a tight approximation ratio for z, showing that the gap is larger than what was previously
known. We prove that z = O(b log(n/b)), and that this bound is tight as a function of n, by exhibiting a string family where
z = Ω(b log n). To prove the upper bound, we show how to build a run-length context-free grammar [47] (i.e., allowing
constant-size rules of the form X → Y t) of size grl = O(b log(n/b)). This is done by carrying out several rounds of locally
consistent parsing [27] on top of T , reducing the resulting blocks to nonterminals in each round, and showing that new
nonterminals appear only in the boundaries of the phrases of the bidirectional scheme. We then further prove that z ≤ 2grl for
any run-length grammar of size grl, by extending a classical proof [8] that relates grammars with Lempel-Ziv compression.
To prove the lower bound, we consider another plausible compressibility measure: the number r of equal-symbol runs in the
Burrows-Wheeler transform (BWT) of the text [7]. We prove that the BWT induces a bidirectional scheme, and thus r = Ω(b).
The bound follows from the family of Fibonacci words, where z = Θ(log n) [14] and r = O(1) [44]. The latter result, however,
assumes that lexicographical comparisons regard the strings as cyclic, instead of the more natural notion we use here. We then
study the Fibonacci words under our model, to show that r = O(1) still holds for the even Fibonacci words.

We then show that Lempel-Ziv is just one valid example of interesting parses fulfilling that (i) they can be efficiently
computed with a greedy algorithm, and (ii) they impose an increasing order between sources and targets. We define a weak
and a strong notion of order, which coincide in the case of the text-precedence order used by Lempel-Ziv. We design a greedy
polynomial-time algorithm that always finds the optimum parse that strongly satisfies a given order. We also prove that the
optimum parse weakly satisfying a given order is of size O(g), and even O(grl) ⊆ O(b log(n/b)) if sources can overlap targets.

We then give a concrete parsing arising from our generalization. We define v, the size of the optimal lexicographic parse
of the text, where each phrase must point to a lexicographically smaller one (both seen as text suffixes). In such an order,
the weak and strong versions are also equivalent. Thus, it holds that v = O(grl) ⊆ O(b log(n/b)). Further, we show that v
can be computed in linear time, with a very practical algorithm. We also show that r induces a lexicographical parse, thus
v = O(r). Since, instead, z can be Ω(r log n), our new greedy parse asymptotically improves the Lempel-Ziv parse on some
string families. We also show that b = O(1) and v = Θ(log n) (and thus v = Ω(b log n)) on the odd Fibonacci words, but we
have not found a family where z = o(v). We show that v and z perform comparably on a benchmark of repetitive texts.

Finally, we consider the size c of the smallest collage system [34], which adds to run-length context-free grammars the power
to truncate a prefix or a suffix of a nonterminal. Little was known about this measure, except that c = O(min{grl, z log z}).
By extending the ideas of the article, we prove that c = O(z) and that there exists string families where c = Ω(r log n). For
a subclass we call internal collage systems, where all the productions appear in T , we also prove that b = O(c).

II. BASIC CONCEPTS

We review basic concepts about strings, compression measures, and others. Table I summarizes our notation along the article.

3An article implying z = Ω(b logn) [24, corollary in 3rd page] has a mistake: their string D is also parsed in Θ(N) phrases by LZ76, not Θ(N logN).
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A. Strings and String Families

A string (or word) is a sequence S[1 . . `] = S[1]S[2] · · ·S[`] of symbols, of length |S| = `. A substring (or factor)
S[i] · · ·S[j] of S is denoted S[i . . j]. A suffix of S is a substring of the form S[i . . `] = S[i . .], and a prefix is a substring of the
form S[1 . . i] = S[. . i]. The juxtaposition of strings and/or symbols represents their concatenation; the explicit infix operator
“·” can also be used.

We will consider parsing or compressing a string T [1 . . n], called the text, over the alphabet [1 . . σ]. We assume that T is
terminated by the special symbol T [n] = $, which is lexicographically smaller than all the others. This makes any lexicographic
comparison between suffixes well-defined: when a suffix is a prefix of another, the prefix is lexicographically smaller. We use
S < S′ to indicate that S is smaller than S′ in lexicographic order.

We use various infinite families of strings along the article, to prove lower and upper bounds. An important family we use
are the Fibonacci words, defined as follows.

Definition 1. The Fibonacci word family is defined as F1 = b, F2 = a, and for all k > 2, Fk = Fk−1 · Fk−2. The length of
Fk is fk, the kth Fibonacci number, defined as f1 = f2 = 1 and, for k > 2, fk = fk−1 + fk−2.

To obtain results compatible with the usual convention that a prefix of a suffix is lexicographically smaller than it, we will
use a variant of the family that has the terminator $ (virtually) appended.

Another family we will use is the de Bruijn sequence of order k on an alphabet of size σ. It contains all the distinct
substrings of length k over [1 . . σ], and it is of the minimum possible length, σk + σ − 1.

B. Bidirectional Schemes (b)

A bidirectional scheme [57] partitions T [1 . . n] into b phrases B1, . . . , Bb, such that each phrase Bi = T [ti . . ti + `i − 1]
is either (1) copied from another substring T [si . . si + `i − 1] (called the phrase source) with si 6= ti and `i ≥ 1, which may
overlap T [ti . . ti + `i − 1], or (2) formed by `i = 1 explicit symbol. The phrases of type (1) are also called targets of the
copies. The bidirectional scheme is valid if there is an order in which the sources si + j can be copied onto the targets ti + j
so that all the positions of T can be inferred.

A bidirectional scheme implicitly defines a function f : [1 . . n]→ [1 . . n] ∪ {0} so that,{
f(ti + j) = si + j, if T [ti . . ti + `i − 1] is copied from T [si . . si + `i − 1] and 0 ≤ j < `i (case 1),
f(ti) = 0, if T [ti] is an explicit symbol (case 2).

Being a valid scheme is equivalent to saying that f has no cycles, that is, there is no k > 0 and p such that fk(p) = p.
Equivalently, for each p there exists k ≥ 0 such that fk(p) = 0. We can then recover each non-explicit text position p from
the explicit symbol T [fk−1(p)].

We use b to denote the smallest bidirectional scheme, which is NP-complete to compute [21].

Example: Consider the text T = alabaralalabarda$. A bidirectional scheme of 10 phrases is ala|b|a|r|a|l|alabar|d|a|$,
where we have underlined the explicit symbols (so b ≤ 10 for T ). A possible function corresponding to this parse is

f [1 . . 17] = 〈7, 8, 9, 0, 3, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 11, 0〉.

For example, the source of phrase B1 = T [1 . . 3] = ala is T [7 . . 9], and the source of phrase B7 = T [9 . . 14] = alabar is
T [1 . . 6]. To extract T [11], we follow the chain f(11) = 3, f(3) = 9, f(9) = 1, f(1) = 7, and f(7) = 0 because it is an
explicit symbol. We then learn that T [11] = T [3] = T [9] = T [1] = T [7] = a.

C. Lempel-Ziv Parsing (z, zno)

Lempel and Ziv [41] define a parsing of T into the fewest possible phrases, T = Z1 · · ·Zz , so that each phrase Zi occurs
as a substring (but not a suffix) of Z1 · · ·Zi, or is an explicit symbol. This means that the source T [si . . si + `i − 1] of the
target Zi = T [ti . . ti + `i − 1] must satisfy si < ti, but sources and targets may overlap. A parsing where sources precede
targets in T is called left-to-right. It turns out that the greedy left-to-right parsing, which creates the phrases from Z1 to Zz
and at each step i maximizes `i (and inserts an explicit symbol if `i = 0), indeed produces the optimal number z of phrases
[41, Thm. 1]. Further, the parsing can be obtained in O(n) time [51], [57]. We call this the Lempel-Ziv parse of T .

If we disallow that a phrase overlaps its source, that is, Zi must be a substring of Z1 · · ·Zi−1 or a single symbol, then we
call zno the number of phrases obtained. In this case it is also true that the greedy left-to-right parsing produces the optimal
number zno of phrases [57, Thm. 10 with p = 1]. Since the Lempel-Ziv parsing allowing overlaps is optimal among all
left-to-right parses, we also have that zno ≥ z. This parsing can also be computed in O(n) time [11]. Note that, on a text
family like T = an, it holds that z = 2 and zno = Θ(log n), and thus it holds that zno = Ω(z log n).

Little is known about the relation between b and z except that z ≥ b by definition (z is the smallest left-to-right parsing)
and that, for any constant ε > 0, there is an infinite family of strings for which b < ( 1

2 + ε) ·min(z, zR) [57, Cor. 7.1], where
zR is the z value of the reversed string.
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Fig. 1. The parse tree (left) and the grammar tree (right) of an example text. Only the black elements on the right form the grammar tree; the text coverage
is conceptual.

Apart from being used as a gold standard to measure repetitiveness, the size of the Lempel-Ziv parse is bounded by the
statistical entropy [41]. In particular, if Hk denotes the per-symbol k-th order empirical entropy of the text [45], then it holds
that zno log2 n ≤ nHk + o(n logσ n) whenever k = o(logσ n) [39] (thus, in particular, zno = O(n/ logσ n)).

Example: Consider again the text T = alabaralalabarda$. The Lempel-Ziv parse (with or withour overlaps) has z = zno = 11
phrases, a|l|a|b|a|r|ala|labar|d|a|$, where we have underlined the explicit symbols. A corresponding function is

f [1 . . 17] = 〈0, 0, 1, 0, 3, 0, 1, 2, 3, 2, 3, 4, 5, 6, 0, 13, 0〉.

For example, the source of phrase Z7 = T [7 . . 9] = ala is T [1 . . 3], and the source of phrase B8 = T [10 . . 14] is T [2 . . 6].

D. Grammar Compression (g, grl)

Consider a context-free grammar that generates T and only T [35]. For simplicity we stick to the particular case of straight-
line programs (SLPs), which are sequences of rules of the form A → a or A → BC, where a is a terminal and A,B,C
are nonterminals. Each nonterminal is defined as the left-hand side of exactly one rule, and the right-hand nonterminals must
have been defined before in the sequence. The expansion of each nonterminal is the string it generates, that is, exp(A) = a if
A→ a and exp(A) = exp(B) · exp(C) if A→ BC. The initial symbol of the SLP is the last nonterminal S in the sequence,
so that the SLP generates the text T = exp(S). The size of the SLP is its number of rules; it is assumed that every nonterminal
is reachable from the initial symbol. We can stick to SLPs to obtain asymptotic results because any context-free grammar with
size g (sum of lengths of right-hands of rules) can be easily converted into an SLP of at most g rules. In general, we will use
g to denote the minimum possible size of an SLP that generates T , which is NP-complete to compute [52], [8].

If we allow, in addition, rules of the form X → Y t for an integer t > 0, the result is a run-length SLP (RLSLP) [47]. The
rule, assumed to be of constant size, means that X expands to t copies of Y , exp(X) = exp(Y )t. We will use grl to denote
the number of rules of the smallest RLSLP that generates T . Thus, it is clear that grl ≤ g. Further, on the string family T = an

it holds that grl = 2 g = Θ(log n), and thus it holds that g = Ω(grl log n) (as well as zno = Ω(grl log n)).
A well-known relation between zno and g is zno ≤ g = O(zno log(n/zno)) [52], [8]. Further, it is known that g =

O(z log(n/z)) [22, Lem. 8]. Those papers, as well as several others [54], [27], [28], exhibit O(log n)-approximations to the
smallest grammar. A negative result about the approximation are string families where g = Ω(zno log n/ log logn) [8], [25]
and even grl = Ω(zno log n/ log log n) [5]. The size g is also bounded in terms of the statistical entropy [35] and of the
empirical entropy [48], thus it always holds that g = O(n/ logσ n).

The parse tree of an SLP has a root labeled with the initial symbol and leaves labeled with terminals, which spell out T
when read left to right. Each internal node labeled with A has a single leaf child labeled with a if A → a, or two internal
children labeled with B and C if A → BC. The grammar tree (cf. partial parse tree [52]) prunes the parse tree by leaving
only one internal node labeled with X for each nonterminal X; all the others are pruned and converted to leaves. Then, for an
SLP of size g, the grammar tree has exactly g internal nodes. Since the right-hand sides of the rules are of size 1 or 2, each
internal node has 1 or 2 children, but there is at least one with 1 child (the grammar must mention some terminal symbol).
Thus, the total number of nodes is at most 2g, and then the grammar tree has at most g leaves.

Example: We can generate the text T = alabaralalabarda$ with an SLP of 16 rules (so g ≤ 16): A→ a, B → b, D → d,
L → l, R → r, Z → $, C → AL, E → AB, F → AR, G → DA, H → CE, I → HF , J → IC, K → IG, M → JK,
N →MZ. The nonterminal N is the initial symbol. Figure 1 illustrates the parse and the grammar trees.
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E. Collage Systems (c)

Collage systems [34] are a generalization of RLSLPs that also support truncation. Specifically, nonterminals can be of
the form A → a for a terminal a, A → BC for previous nonterminals B and C, or A → Bk, A → B[t] or A →[t]B
for a previous nonterminal B and positive integers k and t. The last two rules mean that exp(A) = exp(B)[1 . . t] and
exp(A) = exp(B)[|exp(B)| − t+ 1 . . |exp(B)|], respectively (it must hold that t ≤ |exp(B)|). We denote by c the number of
rules of the smallest collage system generating (only) a text T .

Few relations are known between c and other repetitiveness measures, other than c ≤ grl and c = O(z log z) [34].

Example: The following collage system to generate the text T = alabaralalabarda$ is actually less efficient than the SLP
of the previous example (it uses 17 rules), but it illustrates all the operations: A→ a, B → b, D → d, L→ l, R→ r, Z → $,
C → AL, E → C3, F → BA, G→ FR, H → DA, I → HZ, J → E[5], K → JG, M → [6]K, N →MK, O → NI . The
nonterminal O is the initial symbol. This example also illustrates that the concepts of parse and grammar tree do not apply to
collage systems; for example the nonterminal E expands to alalal, which does not appear in the text.

In this article we will be interested in a subclass we call internal collage systems, where there is a path of non-truncation
rules from the initial symbol to every nonterminal. This implies that, every time we use a truncation rule on a nonterminal
A, the whole exp(A) appears somewhere else in T . Since, in internal collage systems, we might not always be allowed to
use a prefix plus a suffix truncation to extract a substring of another rule, we explicitly allow in internal collage systems for
substring truncation rules A→ B[t,t′], with 1 ≤ t ≤ t′ ≤ |exp(B)|, meaning that exp(A) = exp(B)[t . . t′].

Note that any upper bound we prove for the size c of the smallest internal collage system also holds for the smallest general
collage system. In particular, we prove c = O(z), which is an improvement upon the previous result c = O(z log z) that
holds for the smallest general collage system [34]. Instead, an existing lower bound on c of the form γ = O(c), where γ is
the size of the smallest “attractor” for T [33, Thm. 3.5], holds in fact only for internal collage systems, because it assumes,
precisely, that the expansion of every nonterminal appears in T .4 We also prove that b = O(c) for internal collage systems,
which improves upon their result because γ = O(b) [33].

F. Suffix Arrays and Runs in the Burrows-Wheeler Transform (r)

The suffix array [43] of T [1 . . n] is an array SA[1 . . n] storing a permutation of [1 . . n] so that, for all 1 ≤ i < n, the
suffix T [SA[i] . .] is lexicographically smaller than the suffix T [SA[i + 1] . .]. Thus SA[i] is the starting position in T of the
ith smallest suffix of T in lexicographic order. The suffix array can be built in O(n) time [36], [37], [30].

The inverse permutation of SA, ISA[1 . . n], is called the inverse suffix array, so that ISA[j] is the lexicographical position
of the suffix T [j . . n] among the suffixes of T . It can be built in linear time by inverting the permutation SA.

The longest common prefix array, LCP [1 . . n], stores at LCP [i] the length of the longest common prefix between T [SA[i] . .]
and T [SA[i− 1] . .], with LCP [1] = 0. It can be built in linear time from T and ISA [31].

The Burrows-Wheeler Transform of T , BWT [1 . . n] [7], is a string defined as BWT [i] = T [SA[i] − 1] if SA[i] > 1, and
BWT [i] = T [n] = $ if SA[i] = 1. That is, BWT has the same symbols of T in a different order, and is a reversible transform.

The array BWT can be easily obtained from T and SA, and thus it can also be built in linear time. To obtain T from
BWT in linear time [7], one considers two arrays, L[1 . . n] = BWT and F [1 . . n], which contains all the symbols of L (or
T ) in ascending order. Alternatively, F [i] = T [SA[i]], so F [i] follows L[i] in T . We need a function that maps any L[i] to the
position j of that same symbol in F . The function is

LF (i) = C[c] + rank[i],

where c = L[i], C[c] is the number of occurrences of symbols less than c in L, and rank[i] is the number of occurrences
of symbol L[i] in L[1 . . i]. Once C and rank are computed, we reconstruct T [n] = $ and T [n − k] ← L[LF k−1(1)] for
k = 1, . . . , n− 1. Note that, if L[i− 1] = L[i], then LF (i− 1) = LF (i)− 1; this result will be relevant later.

The number r of equal-symbol runs in the BWT of T can be bounded in terms of the empirical entropy, r ≤ nHk + σk

[42]. However, the measure is also interesting on highly repetitive collections (where, in particular, z and zno are small). For
example, it holds that z = Ω(r log n) on the Fibonacci words [50]. However, this result assumes that T is not $-terminated,
but that lexicographical comparisons take T as a circular string. We will obtain similar results on our $-terminated model,
which is compatible with the use of r in compressed text indexes. On the de Bruijn sequences on binary alphabets, instead,
it holds that r = Ω(zno log n) [1], [50]: we have r = Θ(n), whereas zno is always O(n/ log n) on binary strings. A recent
result [32] is that r = O(z log(n/z) log z).

Example: The BWT of T = alabaralalabarda$ is L = adll$lrbbaaraaaaa, which has r = 10 runs.

4For example, with the collage system A→ a, B → b, A′ → A5, B′ → B5, C → AB, D → C[9], and the initial symbol E →[8]D, we generate the
text T = a4b4. However, because C does not appear in T , they fail to place an attractor element inside the substring ab.
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G. Locally consistent parsing

A string can be parsed in a locally consistent way, which means that equal substrings are largely parsed in the same form.
We use a variant of locally consistent parsing due to Jeż [27], [26].

Definition 2. A repetitive area in a string is a maximal run of the same symbol, of length 2 or more.

Definition 3. Two intervals contained in [1 . . n] overlap if they are not disjoint nor one contained in the other.

Definition 4. A parsing of a string into blocks is defined by, first, creating new symbols that represent the repetitive areas. On
the resulting sequence, the alphabet (which contains original symbols and created ones) is partitioned into two subsets, left-
and right-symbols. Then, every left-symbol followed by a right-symbol are paired in a block. The other isolated symbols form
a block on their own.

Jeż [27] shows that those blocks define a locally consistent parsing and that they shorten the string by a constant factor.

Lemma 1 ([27]). We can choose left- and right-symbols so that Def. 4 partition a string S[1 . . `] into at most (3/4)` blocks.

Example: A locally-consistent parsing of T = alabaralalabarda$ can be obtained by considering a to be a left-symbol and
all the others to be right-symbols. The resulting parsing into blocks is then T = al|ab|ar|al|al|ab|ar|d|a$, where for example
in the two occurrences of alabar, the sequence of blocks covering laba are identical, al|ab|ar.

III. UPPER BOUNDS

In this section we obtain our main upper bound, z = O(b log(n/b)), along with other byproducts. To this end, we first
prove that grl = O(b log(n/b)), and then that z ≤ grl. To prove the first bound, we build an RLSLP on top of a bidirectional
scheme. The grammar is built in several rounds of locally consistent parsing on the text. In each round, the blocks of the locally
consistent parsing are converted into nonterminals and fed to the next round. The key is to prove that distinct nonterminals
are produced only near the boundaries of the phrases of the bidirectional scheme. The second bound is an easy extension of
the known result zno ≤ g.

Example: Let us show how this works on the bidirectional scheme example of Section II-B, ala|b|a|r|a|l|alabar|d|a|$. We
have selected (in bold) one of each of the different blocks created in the example of Section II-G. Note that we do not need
to select any block that is completely inside a phrase. The next lemma proves that the general case is only slightly worse.

Lemma 2. Let a string W have a bidirectional macro scheme of size b. Then, if we cut it into blocks as per Def. 4, there will
be at most 4b different blocks.

Proof. Recall from Section II-B that our bidirectional scheme represents W as a sequence of phrases, by means of a function
f . To count the number of different blocks produced, we will pessimistically assume that the first two and the last two blocks
intersecting each phrase are all different. The number of such bordering blocks is then at most 4b. On the other hand, we will
show that non-bordering blocks do not need to be considered, because they will be counted somewhere else, when they appear
near the border of a phrase.

We consider both types of non-bordering blocks resulting from Def. 4. Figure 2 illustrates both cases.
1) The block is a pair of left- and right-alphabet symbols.5 As these symbols can be an original symbol or a repetitive area,

let us write the pair generically as X = a`ab`b , for some `a, `b ≥ 1, and let ` = `a + `b be the length of the block X . If
W [p . . p + ` − 1] = X is not bordering, then it is strictly contained in a phrase. Thus, by the definition of a phrase, it
holds that [f(p− 1) . . f(p+ `)] = [f(p)− 1 . . f(p) + `], and that W [f(p)− 1 . . f(p) + `] = W [p− 1 . . p+ `]. That is,
the block appears again at [f(p) . . f(p) + `− 1], surrounded by the same symbols. Since Def. 4 first compacts repetitive
areas, it must be W [f(p) − 1] = W [p − 1] 6= a and W [f(p) + `] = W [p + `] 6= b. Further, since Def. 4 pairs left-
with right-symbols, a`a must be a left-symbol and b`b must be a right-symbol. The locally consistent parsing must then
also form a block W [f(p) . . f(p) + ` − 1] = X . If this block is bordering, then it will be counted. Otherwise, by the
same argument, W [f(p) − 1 . . f(p) + `] will be equal to W [f2(p) − 1 . . f2(p) + `] and a block will be formed with
W [f2(p) . . f2(p) + `− 1]. Since f has no cycles, there is a k > 0 for which fk(p) = 0. Thus for some l ≤ k it must
be that X = W [f l(p) . . f l(p) + `− 1] is bordering. At the smallest such l, the block W [f l(p) . . f l(p) + `− 1] will be
counted. Therefore, X = W [p . . p+ `− 1] is already counted somewhere else.

2) The block is a single (original or maximal-run) symbol W [p . . p+ `− 1] = a` = X , for some ` ≥ 1. It also holds that
[f(p−1) . . f(p+ `)] = [f(p)−1 . . f(p)+ `] and W [f(p)−1 . . f(p)+ `] = W [p−1 . . p+ `], because a` is strictly inside
a phrase. Since W [f(p)− 1] = W [p− 1] 6= a and W [f(p) + `] = W [p+ `] 6= a, the parsing forms the same maximal
run X = a` = W [f(p) . . f(p) + `− 1]. Moreover, since W [p . . p+ `− 1] is not bordering, the previous and next blocks
produced by the parsing, Y = W [p′ . . p− 1] and Z = [p+ ` . . p′′], are also strictly inside the same phrase, and therefore

5For this case, we could have defined bordering in a stricter way, as the first or last block of a phrase.
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... baa...a bb ... d...c

p p+l

W ... baa...a bb ... d...c ... baa...a bb ... d...c

f(p) f(p)+l f(f(p)) f(f(p))+l

f f

f f

W aa...ac... d ... aa...ac... d ...

f(p) f(p)+l f(f(p)) f(f(p))+l

aa...ac... d ...

p p+l p’’p’ f(p’) f(p’’) f(f(p’)) f(f(p’’))

Fig. 2. The two cases of Lemma 2. Case 1 is shown on top, where a block X = W [p . . p + ` − 1] = a`ab`b is formed because they are left- and
right-symbols surrounded by c 6= a and d 6= b. Since all the symbols are strictly inside a phrase because X is non-bordering, function f maps them together
elsewhere in W preserving their contents, so the same block is formed at W [f(p) . . f(p) + ` − 1] = X . This is repeated until a phrase boundary (thick
vertical line) appears near X (so that the occurrence of X is bordering). Case 2 is shown on the bottom, where X = W [p . . p+ `− 1] = a` is not paired
and thus forms a single block surrounded by c, d 6= a. Again, the same contents are found, and the same blocks are formed, at W [f(p) . . f(p) + `−1] = X
because the blocks Y = W [p′ . . p− 1] and Z = W [p+ ` . . p′′] are strictly inside a phrase. Again, this is repeated until hitting a phrase boundary nearby.

they also appear preceding and following W [f(p) . . f(p)+`−1], at Y = W [f(p′) . . f(p)−1] and Z = [f(p)+` . . f(p′′)].
Since a` was paired neither Y nor Z at W [p . . p+ `− 1], the parsing will also not pair them at W [f(p) . . f(p) + `− 1].
Therefore, the parsing will leave a` as a block also in [f(p) . . f(p) + ` − 1]. If W [f(p) . . f(p) + ` − 1] is bordering,
then it will be counted, otherwise we can repeat the argument with W [f2(p)− 1 . . f2(p) + `] and so on, as before.

Lemma 2 shows that the number of different blocks we form with the locally consistent parsing of Def. 4 is O(b). We now
show that the sequence of blocks obtained has a bidirectional macro scheme of size O(b).

Lemma 3. If W has a bidirectional macro scheme, we can define one on the sequence W ′ of blocks obtained in Lemma 2,
by adding at most two new explicit symbols at the beginning and two at the end of each non-explicit phrase.

Proof. We define a bidirectional scheme on W ′ as follows:
1) For each bordering block in W , its nonterminal symbol position in W ′ is made explicit in the bidirectional scheme of

W ′. Note that this includes the blocks covering the explicit symbols in the bidirectional scheme of W . This creates at
two new explicit symbols at the beginning and two at the end of each non-explicit phrase in W .

2) For the phrases Bi = W [ti . . ti + `i− 1] of W containing non-bordering blocks (note Bi cannot be an explicit symbol),
let B′i be obtained by trimming from Bi the bordering blocks near the boundaries of Bi. Then B′i appears inside
W [si . . si + `i − 1] (with si = f(ti)), where the same sequence of blocks is formed, as shown for each such block in
Lemma 2. We then form a phrase in W ′ with the sequence of blocks in B′i (all of which are non-bordering), with the
function f ′ of W ′ pointing to the identical sequence of blocks that appear inside W [si . . si + `i − 1].

It is easy to see that f ′ is acyclic. Let m(i) be the position of W ′ where the block containing W [i] is mapped. Then, if
W [p . . p+`−1] is a block inside some B′i, and it points to W [s . . s+`−1] with s = f(p), we have that f ′(m(p+t)) = m(s+t′)
for all 0 ≤ t, t′ < `. Thus, if there is a cycle in f ′, there must be a cycle in f .

Example: On our preceding example, ala|b|a|r|a|l|alabar|d|a|$, we define the blocks A = ab, B = ar, C = al, and
D = a$. We then create W ′ = C|A|B|C|CAB|d|D, where we show the derived bidirectional scheme and underline the
explicit symbols. The corresponding function is f ′[1 . . 9] = 〈4, 0, 0, 0, 1, 2, 3, 0, 0〉, obtained by projecting the function f of
the example in Section II-B. Recall that, to make this small example interesting, we have been stricter about which blocks are
bordering.

We now have all the elements to define our RLSLP grammar of size O(b log(n/b)).

Theorem 4. There always exists an RLSLP of size grl = O(b log(n/b)) that generates T .

Proof. We create the grammar by various rounds of parsing, starting from the string W0 = T and obtaining string Wk from
Wk−1 in the kth round. Let b0 = b the size of the smallest bidirectional macro scheme of T , and bk be the size of the one we
build on Wk for k > 0. In the kth round, we first apply Lemma 2 on Wk−1, producing at most 4bk−1 distinct blocks. We then
associate a nonterminal with each distinct block, and create a reduced sequence Wk from Wk−1 by replacing all the blocks
of length 2 or more by their corresponding nonterminals. The new sequence has length |Wk| ≤ (3/4)|Wk−1| by Lemma 1.
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W0

W1

W2

.  .  .  .  .

..... .....

. . . . . . . . . .

.  .  .  .  .

Fig. 3. Illustration of Theorem 4. On top we see the border between two long phrases of W0. In this example, the blocks always pair two symbols. We show
below W0 the 4 bordering blocks formed with the symbols nearby the boundary. Below, in W1, those blocks are converted into 4 explicit symmbols. This
region of 4 symbols is then parsed into 2 blocks. The parsing also creates 4 new bordering blocks from the boundaries of the long phrases. In W2, below,
we have now a region of 6 explicit symbols. They would have been 8, but we created 2 distinct blocks that reduced their number to 6.

In turn, Lemma 3 shows that we can create a bidirectional macro scheme for Wk from that of Wk−1, adding at most 2
new explicit symbols at the beginning and 2 at the end of each non-explicit phrase. The structure of these macro schemes
then consists of growing regions of explicit symbols at the boundaries of the same b phrases. Consider a phrase X0 in W0. In
W1, there may appear at most two explicit symbols at the beginning and two at the end of X0 (coming from the bordering
blocks). Let X1 be the remainder of X0, projected to W1. Then, when forming W2, two new explicit symbols may appear at
the beginning and two at the end end of X1, and so on. Therefore, if we call ek the number of explicit symbols in Wk, we
have that e0 = 0 and ek ≤ 4bk for every round k > 0.

To count how many distinct blocks (and hence nonterminals) are produced, we only have to consider the bordering blocks,
as shown in Lemma 2. As discussed above, those bordering blocks are at most 4bk in Wk (they correspond to the explicit
symbols). However, the parsing of the regions themselves may also produce new distinct blocks. Our aim is to show that
the number of those blocks is also bounded because they reduce the length of the regions, which only grow by 4b (explicit
symbols) per iteration. Intuitively, each block created inside a region decreases its length, and thus both numbers cancel out.

To make the argument more precise, let nk be the number of new distinct blocks produced when parsing the regions of
Wk−1. Therefore it holds that the number dk of distinct blocks produced in the kth iteration is at most 4b+ nk, and the total
number of distinct blocks created up to building Wk is

k∑
i=1

di ≤ 4bk +

k∑
i=1

ni.

On the other hand, for each of the nk blocks created when parsing a region of Wk−1, the length of the region decreases at
least by 1 in Wk, that is, there is one less explicit symbol in Wk. Then it holds that ek ≤ ek−1 + 4b− nk, and thus

0 ≤ ek ≤ 4bk −
k∑
i=1

ni.

It follows that
∑k
i=1 ni ≤ 4bk, and thus

k∑
i=1

di ≤ 8bk.

The idea is illustrated in Figure 3.
We may need up to 3 rules to represent each distinct block: for X = A`aB`b , if `a, `b > 1, we need rules A′ → A`a ,

B′ → B`b , and C → A′B′, assuming a and b are already nonterminals. In addition, we may need σ rules of the form A→ a
for terminals a. In total, since there are at most 8bk distinct blocks, we need at most 3 · 8bk + σ ≤ 25bk rules.

After k rounds, the sequence is of length at most (3/4)kn and we have generated O(bk) nonterminals. Therefore, if we
choose to perform k = log4/3(n/b) rounds, the sequence will be of length at most b and the RLSLP size will be O(b log(n/b)).
To complete the process, we add O(b) nonterminals to reduce the sequence to a single initial symbol.

With Theorem 4, we can also bound the size z of the Lempel-Ziv parse [41] that allows overlaps. The size without allowing
overlaps is known to be bounded by the size of the smallest SLP, zno ≤ g [52], [8]. We can easily see that z ≤ grl also holds
by extending an existing proof [8, Lem. 9] to handle the run-length rules. We call any parsing of T where every new phrase
is a symbol or it occurs previously in T a left-to-right parse.

Theorem 5. The Lempel-Ziv parse (allowing overlaps) of T always produces z ≤ grl phrases.

Proof. Consider the grammar tree of T (Section II-D), where only the leftmost occurrence of each nonterminal X is an internal
node. Our left-to-right parse of T is a sequence Z obtained by traversing the leaves of the grammar tree left to right. For a
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y
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x−1

y−1

p−1

p−1

y−1

LF

φ

Fig. 4. Illustration of Lemma 8.

terminal leaf, we append the explicit symbol to Z. For a leaf representing nonterminal X , we append to Z a reference to the
area T [x . . y] expanded by the leftmost occurrence of X .

To extend grammar trees to RLSLPs, we handle rules X → Y t as follows. First, we expand them to X → Y ·Y t−1, that is,
the node for X has two children for Y , the second annotated with t− 1. Since the right child of X is not the first occurrence
of Y , it must be a leaf. The left child of X may or may not be a leaf, depending on whether Y occurred before or not. Since
run-length rules become internal nodes with two children, it still holds that the grammar tree has at most grl leaves.

Now, when our leaf traversal reaches the right child Y of a node X indicating t− 1 repetitions, we append to Z a reference
to T [x . . y+(t−2)(y−x+1)], where T [x . . y] is the area expanded by the first child of X . Note that source and target overlap
if t > 2. Thus a left-to-right parse of size grl exists, and the result follows because Lempel-Ziv is the optimal left-to-right
parse [41, Thm. 1].

By combining Theorems 4 and 5, we obtain a result on the long-standing open problem of finding the approximation ratio
of Lempel-Ziv compared to the smallest bidirectional scheme.

Theorem 6. The Lempel-Ziv parsing of T allowing overlaps always has z = O(b log(n/b)) phrases.

We can also derive upper bounds for g and zno. It is sufficient to combine Theorem 6 with the facts that g = O(z log(n/z))
[22, Lem. 8] and zno ≤ g [52], [8].

Lemma 7. It always holds that g, zno = O(b log2(n/b)).

IV. LOWER BOUNDS

In this section we prove that the upper bound of Theorem 6 is tight as a function of n, by exhibiting a family of strings
for which z = Ω(b log n). This confirms that the gap between bidirectionality and unidirectionality is significantly larger than
what was previously known. The idea is to define phrases in T according to the r runs in the BWT, and to show that these
phrases induce a bidirectional scheme of size 2r. This proves that r = Ω(b). Then we resort to a well-known family of strings
where z = Ω(r log n).

Definition 5. Let p1, p2, . . . , pr be the positions that start runs in the BWT, and let t1 < t2 < . . . < tr be the corresponding
positions in T , {SA[pi] | 1 ≤ i ≤ r}, in increasing order. Note that t1 = 1 because BWT [ISA[1]] = $ is a size-1 run, and
let tr+1 = n + 1, so that T is partitioned into phrases T [ti . . ti+1 − 1]. Let also φ(p) = SA[ISA[p] − 1] if ISA[p] > 1 and
φ(p) = SA[n] otherwise. Then we define the bidirectional scheme of the BWT:

1) For each 1 ≤ i ≤ r, T [ti . . ti+1 − 2] is copied from T [φ(ti) . . φ(ti+1 − 2)].
2) For each 1 ≤ i ≤ r, T [ti+1 − 1] is an explicit symbol.

Example: The BWT runs of the example of Section II-F induces the bidirectional scheme a|l|a|b|a|r|a|l|alaba|r|d|a|$, with
function f [1 . . 17] = 〈0, 0, 0, 0, 7, 0, 9, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0〉.

We build on the following lemma, illustrated in Figure 4. We make use of the function LF defined in Section II-F. Note
that LF (x) = ISA[SA[x] − 1] if SA[x] > 1 and LF (x) = ISA[n] = 1 if SA[x] = 1. That is, LF moves in SA to the suffix
preceding the current one in T . The analogous function moving in T to the suffix preceding the current one in SA is φ.

Lemma 8. Let [q − 1 . . q] be within a phrase of Def. 5. Then it holds that φ(q − 1) = φ(q)− 1 and T [q − 1] = T [φ(q)− 1].

Proof. Consider the pair of positions T [q − 1 . . q] within a phrase. Let them be pointed from SA[x] = q and SA[y] = q − 1,
therefore ISA[q] = x, ISA[q − 1] = y, and LF (x) = y. Now, since q is not a position at the beginning of a phrase, x is
not the first position in a BWT run. Therefore, BWT [x − 1] = BWT [x]. Recalling the formula of Section II-F to compute
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LF (x) = C[c] + rank[x], where c = BWT [x], it follows that LF (x− 1) = LF (x)− 1 = y − 1. Now let SA[x− 1] = p, that
is, p = φ(q). Then,

φ(q − 1) = SA[ISA[q − 1]− 1] = SA[y − 1] = SA[LF (x− 1)] = SA[x− 1]− 1 = p− 1 = φ(q)− 1.

It also follows that
T [q − 1] = BWT [x] = BWT [x− 1] = T [p− 1] = T [φ(q)− 1].

Example: The suffix array of T = alabaralalabarda$ is SA = 〈17, 16, 3, 11, 1, 9, 7, 5, 13, 4, 12, 15, 2, 10, 8, 6, 14〉 and the
φ function is φ = 〈11, 15, 16, 13, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 12, 17, 14〉. For example, φ(1) = 11 because the suffix lexico-
graphically preceding T [1 . .] is T [11 . .]. Now, let q = 10, which is inside the same phrase of q − 1 = 9 in the parse
a|l|a|b|a|r|a|l|alaba|r|d|a|$ induced by the run heads of the BWT of T , BWT = adll$lrbbaaraaaaa. Position T [q = 10]
is pointed from SA[x = 14], whereas T [q − 1 = 9] is pointed from SA[y = 6]. Thus LF (x = 14) = C[BWT [14] =
a] + rank[14] = 1 + 5 = 6 = y. Since q = 10 does not start a phrase in T , BWT [x = 14] does not start a run,
thus BWT [x − 1 = 13] = a. It then holds that LF (x − 1 = 13) = C[BWT [13] = a] + rank[13] = 1 + 4 = 5 =
y − 1 = LF (x = 14) − 1. Further, if we call p = SA[x − 1 = 13] = 2, it holds that p = 2 = φ(q = 10). One
can then verify that φ(q − 1 = 9) = SA[y − 1 = 5] = 1 = SA[x − 1 = 13] − 1 = φ(q = 10) − 1, and that
T [q − 1 = 9] = a = BWT [x = 14] = BWT [x− 1 = 13] = T [p− 1 = 1] = T [φ(q = 10)− 1].

Theorem 9. The bidirectional scheme of the BWT is a valid bidirectional scheme, thus it always holds b ≤ 2r.

Proof. By Lemma 8, it holds that φ(q − 1) = φ(q) − 1 if [q − 1 . . q] is within a phrase, and that T [q − 1] = T [φ(q) − 1].
Therefore, we have that φ(ti + k) = φ(ti) + k for 0 ≤ k < `i = ti+1 − ti − 1, and then T [φ(ti) . . φ(ti+1 − 2)] is indeed a
contiguous range of length `i. We also have that T [φ(ti) . . φ(ti+1 − 2)] = T [ti . . ti+1 − 2], and therefore the copy is correct.

It is also easy to see that we can recover the whole T from those 2r phrases. We can, for example, follow the cycle φk(n),
k = n−1, . . . , 1, and copy T [φk(n)] from T [φk+1(n)] unless the former is explicitly stored (note that T [φn(n)] = T [φ0(n)] =
T [n] is stored explicitly). By Lemma 8, it is correct to copy from T [φ(p)] to T [p] whenever p (which is q − 1 in Lemma 8)
is not at the end of a phrase; this is why we store the explicit symbols at the end of the phrases.

Since the bidirectional scheme of the BWT is of size 2r, it follows by definition that 2r ≥ b.

Example: We can recover T from our bidirectional scheme a|l|a|b|a|r|a|l|alaba|r|d|a|$ by following positions φn−1(n), . . . ,
φ(n) and copying the last explicit symbol seen onto each new position. The sequence, where we indicate in parentheses the
explicit symbols visited, is 16(a), 3(a), 11, 1(a), 9, 7, 5, 13, 4(b), 12, 15(d), 2(l), 10, 8(l), 6(r), 14(r). For example, the explicit
a collected at T [1] is copied onto T [9], T [7], T [5], and T [13].

We can now prove the promised separation betweeen z and b. Before, we prove a further property of the cyclic rotations of
the Fibonacci words we make use of.

Lemma 10. In every even Fibonacci word Fk, the lexicographically smallest cyclic rotation is the one that starts at the last
character.

Proof. Mantaci et al. [44] give a characterization of the cyclic rotations of the kth Fibonacci word Fk by defining two functions:
% : [0 . . fk − 1]→ [0 . . fk − 1], defined as

%(x) = x+ fk−2 (mod fk),

and ϕ : [0 . . fk − 1]→ {a, b}, defined as

ϕ(x) =

{
a, if x < fk−1

b, if x ≥ fk−1,

where they index the strings from position 0. They proved that the cyclic rotations of Fk are the words Rx = r0r1 · · · rfk−1,
where ri = ϕ(%i(x)), for 0 ≤ x ≤ fk−1. If k is even, then Fk = Rfk−2

[44, Thm. 6]. Since Fk[i] = Rfk−2
[i] = ϕ(%i(fk−2)) =

ϕ(%i+1(0)) = R0[i+ 1], for 1 ≤ i ≤ fk − 1, it holds that R0[2 . . fk] = Fk[1 . . fk − 1]. Combining that R0 is a cyclic rotation
of Fk and R0[2 . . fk] = Fk[1 . . fk − 1], we have that R0 = Fk[fk]Fk[1 . . fk − 1]. The ordering of the cyclic rotations of
Fk is R0 < R1 < · · · < Rfk−1 [44, proof of Thm. 9]. R0 is the lexicographically smallest cyclic rotation. That proved
that the lexicographically smallest cyclic rotation of Fk starts at its last position, fk. Formally, Fk[fk]Fk[1 . . fk − 1] is the
lexicographically smallest cyclic rotation of Fk, for all even k.

Theorem 11. There is an infinite family of strings over an alphabet of size 2 for which r = O(1) and z = Θ(log n), and thus
z = Ω(r log n) and z = Ω(b log n).

Proof. As observed by Prezza [50, Thm. 25], for all Fibonacci words we have r = O(1) [44, Thm. 9]. Combining it with the
fact that, in all Fibonacci words, it holds z = Θ(log n) [14], yields z = Ω(r log n).
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Note, however, that the result r = O(1) is proved under a BWT definition that is different from ours [44]. Namely, the
Fibonacci words are not terminated with $, but instead the suffixes are compared cyclically, as if Fk were a circular word.

By Lemma 10, however, in each even Fibonacci word Fk, the lexicographically smallest cyclic suffix is the one that starts at
the last character. From this observation we have that, in every even Fibonacci word Fk, the relative order of the cyclic suffixes
is the same as the relative order of the suffixes terminated in $. Formally, Fk[i . . fk]Fk[1 . . i− 1] < Fk[j . . fk]Fk[1 . . j − 1] if
and only if Fk[i . . fk]$ < Fk[j . . fk]$, for all i 6= j, and k even. Thus, in the even Fibonacci words, we have r = O(1), and
thus z = Ω(r log n). The result z = Ω(b log n) then follows from the fact that b = O(r), by Theorem 9.

Finally, by relating g with the empirical entropy of T , we can also prove a separation between r and g.

Lemma 12. It always holds that g log2 n ≤ nHk + o(n log σ) for any k = o(logσ n), thus g = O(n/ logσ n).

Proof. Let z78 be the size of the Lempel-Ziv 1978 (LZ78) parsing [59] of T . Then, it holds that z78 log2 n ≤ nHk+o(n log σ)
for k = o(logσ n) [39, Thm. A.4] (noting that their c is O(n/ logσ n) and assuming k = o(logσ n)). Since this parsing can be
converted into an SLP of size z78, it holds that g ≤ z78 and the result follows. The final claim is a consequence of the fact
that Hk ≤ log σ for all k.

Theorem 13. There is an infinite family of strings over an alphabet of size 2 for which r = Ω(g log n).

Proof. By Lemma 12, the smallest SLP on a binary alphabet is always of size g = O(n/ log n). On a de Bruijn sequence of
order k on a binary alphabet we have r = Θ(n) [1]. The result follows.

V. GREEDY AND ORDERED PARSES

In this section we extend the Lempel-Ziv parse, where sources must start before targets in the text, to the more general
concepts of ordered parsings, and prove some general results on them.

Definition 6. An ordered parse of T [1 . . n] is a partition of T into u phrases B1, . . . , Bu, such that each phrase Bi =
T [ti . . ti + `i − 1] either is an explicit symbol or it is copied from a source T [si . . si + `i − 1], such that si 6= ti and
T [si + j . .] ≺ T [ti + j . .] for all 0 ≤ j < `i, for some suitable total order � on the suffixes of T .6

By the way we define them, ordered parses are bound to be bidirectional schemes, and bidirectional schemes are ordered
parses under some suitable order.

Lemma 14. Every ordered parse is a bidirectional scheme.

Proof. Let f be the function associated with the ordered parse, that is, f(ti + j) = si + j for all 0 ≤ j < `i if phrase
Bi = T [ti . . ti+`i−1] is copied from T [si . . si+`i−1]. There cannot be a cycle in f because, by definition, T [f(p) . .] ≺ T [p . .]
for every position p inside every such phrase Bi.

Lemma 15. Every bidirectional scheme is an ordered parse under some suitable order �.

Proof. Let f be the function associated with the bidirectional scheme. Let us assign to every suffix T [p . .] the value h(p) =
min{k ≥ 0 | fk(p) = 0}. Now � can be any total order on [1 . . n] compatible with h(p), that is, such that if h(p′) < h(p)
then T [p′ . .] ≺ T [p . .] (e.g., topological sorting produces a valid order �). Since the bidirectional scheme copies T [p] from
T [f(p)] and h(p) = 1 +h(f(p)) > h(f(p)), it holds that T [f(p) . .] ≺ T [p . .]. The parsing is then ordered under order �.

We are interested in parses that, while respecting a given order �, produce the smallest number of phrases.

Definition 7. A parse is ordered-optimal with respect to a total order � if no other ordered parse respecting the order � has
fewer phrases on any text T [1 . . n]. We may or may not allow that sources and targets overlap to define optimality.

Lempel-Ziv is an ordered parse with respect to the order T [si . .] ≺ T [ti . .] iff si < ti. The parses that respect this order are
called left-to-right parses. As we have seen, then, Lempel-Ziv is ordered-optimal, either with or without overlaps [41], [57].
Further, the methods that obtain those optimal parses [51], [11] are greedy, under the following definition.

Definition 8. A method to obtain an ordered parse of T [1 . . n] is greedy if it proceeds left to right on T producing one phrase
at each step, and such phrase is the longest possible one that starts at that position and has a smaller source in T under the
order �. If the longest possible phrase is of length 0 or 1, the parse may use an explicit symbol.

Greedy methods are attractive on ordered parses because they produce the ordered-optimal parse and can be computed in
polynomial time.

Theorem 16. Every greedy parse is ordered-optimal.

6The order is called � because it must be reflexive, yet we use x ≺ y to indicate x � y and x 6= y, that is, x is strictly smaller than y under order �.
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Proof. Let B1, . . . , Bu be the result of the greedy parsing of T under order �. Since the first phrase always starts at position 1,
if there is another ordered parse B′1, . . . , B

′
u′ , where u′ < u and B′i = T [t′i . . t

′
i+`

′
i−1] for 1 ≤ i ≤ u′, then there must be a first

phrase where t′i+1 > ti+1. Since it is the first, it must hold that t′i ≤ ti < ti+1 < t′i+1. Let us call δ = ti− t′i < `′i = t′i+1− t′i.
Therefore, there is a source T [s′i . . s

′
i+ `′i−1] = T [t′i . . t

′
i+ `′i−1] such that T [s′i+ j . .] ≺ T [t′i+ j . .] for all 0 ≤ j < `′i. Then

it also holds that T [s′i + δ . . s′i + `′i − 1] = T [ti . . t
′
i+1 − 1] and that T [s′i + δ + j . .] ≺ T [ti + j . .] for all 0 ≤ j < t′i+1 − ti.

Therefore, there exists a suffix T [s′i + δ . .] that shares with T [ti . .] a prefix of length t′i+1 − ti > ti+1 − ti = `i and it can
be used under order �. This is impossible because our parsing is greedy and it did not choose that suffix when producing the
phrase T [ti . .].

Theorem 17. The greedy parse of any ordered parse can be obtained in O(n3) evaluations of ≺.

Proof. We obtain the phrase lengths `i left to right, so that their starting points are s1 = 1 and si+1 = si + `i. To find the
length `i of each new phrase T [si . . si + `i − 1], we compare the suffix T [si . .] with every other suffix T [p . .] symbol by
symbol, until we find the smallest jp ≥ 0 such that T [p + jp] � T [si + jp] or p + jp > n or si + jp > n. We then have
`i = maxp 6=si jp. If ji = 0 we create an explicit symbol in the parse.

Of course, particular greedy parses, like Lempel-Ziv, can be obtained faster, in this case in time O(n) [51], [11]. Interestingly,
the fact that ordered-optimal parses are computed easily implies that we cannot efficiently find the order � that produces the
smallest ordered parse.

Lemma 18. Finding the order � that produces the smallest ordered parse on T is NP-hard.

Proof. One of those orders � yields the smallest bidirectional scheme, by Lemma 15. Once we have the best order �, we
find the parse itself greedily in time O(n3), by Theorems 16 and 17. Thus we obtain the smallest bidirectional scheme, which
is NP-hard to find [21].

On the other hand, we now show that, under certain favorable kinds of orders �, the size of the ordered-optimal parses is
upper bounded by the size of the smallest grammar. In particular, ordered-optimal parses that let sources and targets overlap
are of size O(b log(n/b)).

Definition 9. A total order� on text suffixes is extensible if T [s . .] ≺ T [t . .] and T [s] = T [t] implies that T [s+1 . .] ≺ T [t+1 . .].

For example, the order of left-to-right parses, T [s . .] ≺ T [t . .] iff s < t, is extensible.

Theorem 19. Any ordered-optimal parse of T , for any extensible order �, produces u ≤ g phrases. Thus, u log2 n ≤
nHk + o(n log σ) for any k = o(logσ n), u = O(n/ logσ n), and there are string families where r = Ω(u log n).

Proof. It suffices to show how to build an ordered parse of size at most g. Analogously to the proof of Theorem 5, consider
a variant of the grammar tree of T where the only internal node labeled X and expanding to T [xi . . zi] is the one with the
smallest suffix T [xi . .] under order �. This tree has up to g leaves, just like the original grammar tree. We then define an
ordered parse of T by converting every terminal leaf to an explicit symbol, and every leaf covering T [x′i . . z

′
i], labeled by

nonterminal X , to a phrase that points to the area T [xi . . zi] corresponding to the only internal node labeled X . Such a parse
is of size u ≤ g and is ordered because the order is extensible: since T [x′i . . z

′
i] = T [xi . . zi] and T [xi . .] ≺ T [x′i . .], it follows

that T [xi + j . .] ≺ T [x′i + j . .] for all 0 ≤ j ≤ zi − xi.
Since this is an ordered parse, the ordered-optimal parse is also of size u ≤ g. The other results are immediate consequences

of Lemma 12 and Theorem 13.

Theorem 20. Any ordered-optimal parse of T that allows sources and targets overlap, under any extensible order �, produces
u ≤ grl phrases. Thus it holds that u = O(b log(n/b)).

Proof. We extend the proof of Theorem 19 so as to consider the rules X → Y t. These can be expanded either to X → Y ·Y t−1
or to X → Y t−1 ·Y . In both cases, the child Y is handled as usual (i.e., pruned if its suffix is not the smallest one labeled Y , or
expanded otherwise). If we choose X → Y ·Y t−1, let Y expand to T [x . . y− 1] and Y t−1 expand to T [y . . z]. We then define
T [y . . z] as the target of the source T [x . . x+ z − y]. If we instead choose X → Y t−1 · Y , then we define T [x . . x+ z − y]
as the target of the source T [y . . z]. In both cases, the target overlaps the source if t > 2.

Note that one of those two cases must copy a source to a larger target, depending on whether T [x . .] ≺ T [y . .] or T [y . .] ≺
T [x . .]. Further, the argument used in the proof of Theorem 19 to show that the copy is valid when the order is extensible, is
also valid when source and target overlap. Thus, we obtain an ordered parse. Since we have at most grl leaves in the grammar
tree, the ordered parse is of size at most grl, and therefore the optimal one is also of size u ≤ grl. By Theorem 4, we also
have u = O(b log(n/b)).

Finally, we show that greedy parsings can be computed much faster on extensible orders.

Theorem 21. Any ordered parse, under any extensible order�, can be computed greedily in O(n) expected time or O(n log log σ)
worst-case time, and O(n) space, given an array O[1 . . n] with the suffixes of T sorted by �.
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Proof. We first compute the suffix array SA of T in O(n) time (recall Section II-F), and from it, the suffix tree of T [58] can
also be built in O(n) time [31]. The suffix tree is a compact trie storing all the suffixes of T , so that we can descend from
the root and, in time O(m), find the interval SA[sp . . ep] of all the suffixes starting with a given string of length m.

We also create in O(n) time the inverse permutation IO[1 . . n] of O[1 . . n], that is, IO[p] is the rank of T [p . .] among
all the other suffixes, in the order �. With it, we build in O(n) time a range minimum query data structure on the array
K[k] = IO[SA[k]], so that RMQ(i, j) = arg mini≤k≤j K[k] is computed in constant time [15]. Therefore, if SA[sp . . ep] is
the suffix array interval of all the suffixes T [p . .] starting with a string S, then RMQ(sp, ep) gives the suffix starting with S
with the minimum rank in the order �.

We now create the parse phrase by phrase. To produce the next phrase T [p . .], we enter the suffix tree from the root with
the successive symbols T [p+ j], for j ≥ 0. At each step, the suffix tree gives us the range SA[spj , epj ] of the suffixes of T
starting with T [p . . p+ j]. We then find K[RMQ(spj , epj)], which is the smallest rank of any occurrence of T [p . . p+ j] in
T . If this is less than IO[p], then there is a smaller occurrence of T [p . . p+ j] and we continue with the next value of j. The
process stops when K[RMQ(spj , epj)] = IO[p], that is, T [p . . p+ j] is its smallest occurrence, so we cannot copy it from a
smaller one. At this point, the new phrase is T [p . . p+ j − 1] if j > 0, or the explicit symbol T [p] if j = 0.

Since we descend to a suffix tree child for every symbol of T , the total traversal time is O(n) as well. There is a caveat,
however. To provide constant-time traversal to children, the suffix tree must implement perfect hashing on the children of
each node, which can be built in constant expected time per element. In this case, the whole parsing takes O(n) expected
time. Alternatively, each node can store its children with a predecessor data structure, so that each traversal to a child costs
O(log log σ) time, and the structure can be built in worst-case time O(n log log σ) [3, Sec. A.1 & A.2], which dominates the
total worst-case time of the parsing. The total space used is O(n) in both variants. If array O[1 . . n] is not given, we can
compute it with a classical sorting algorithm in O(n log n) evaluations of ≺.

VI. LEXICOGRAPHIC PARSES

In this section we study a particularly interesting ordered parse we call lexicographic parse.

Definition 10. A lexicographic parse of T [1 . . n] is an ordered parse where T [si . .] ≺ T [ti . .] iff the former suffix is smaller
than the latter in lexicographic order, or which is the same, if ISA[si] < ISA[ti].

We first note that the order we use is extensible.

Lemma 22. The order T [s . .] ≺ T [t . .] iff the suffix T [s . .] lexicographically precedes T [t . .], is extensible.

Proof. If T [s . .] lexicographically precedes T [t . .] and T [s] = T [t], then by definition of lexicographic order, T [s + 1 . .]
lexicographically precedes T [t+ 1 . .].

By Lemma 14, then, any lexicographic parse is a bidirectional scheme. One example of a lexicographic parse is the
bidirectional scheme based on the BWT we introduced in Section IV.

Lemma 23. The bidirectional scheme induced by the BWT in Def. 5 is a lexicographic parse of size 2r.

Proof. The definition uses the function f(p) = φ(p) = SA[ISA[p]−1] to copy from T [φ(ti) . . φ(ti)+`i−1] to T [ti . . ti+`i−1],
where `i = ti+1 − ti − 1 (recall Theorem 9). Therefore it holds that ISA[si] = ISA[φ(ti)] = ISA[ti]− 1 < ISA[ti].

Another lexicographic parse is lcpcomp [12]. This algorithm uses a queue to find the largest entry in the LCP array (recall
Section II-F). This information is then used to define a new phrase of the factorization. LCP entries covered by the phrase
are then removed from the queue, LCP values affected by the creation of the new phrase are decremented, and the process
is repeated until there are no text substrings that can be replaced with a pointer to lexicographically smaller positions. The
output of lcpcomp is a series of source-length pairs interleaved with plain substrings (that cannot be replaced by pointers).

Lemma 24. The lcpcomp factorization [12] is a lexicographic parse.

Proof. The property can be easily seen from step 2 of the algorithm [12, Sec. 3.2]: the authors create a phrase (i.e., source-
length pair) (SA[i − 1],LCP ′[i]) expanding to text substring T [SA[i] . .SA[i] + LCP ′[i] − 1]. We write LCP ′[i] because
entries of the LCP array may be decremented in step 4, therefore LCP ′[i] ≤ LCP [i] at any step of the algorithm for
any 1 ≤ i ≤ n. This however preserves the two properties of lexicographic parsings: T [SA[i] . .SA[i] + LCP ′[i] − 1] =
T [SA[i−1] . .SA[i−1]+LCP ′[i]−1] (phrases are equal to their sources) and, clearly, i−1 < i (sources are lexicographically
smaller than phrases).

Since the lexicographic order is extensible, we can find the optimal lexicographic parse greedily, in O(n log log σ) time, by
Theorem 21. We now show that, just as Lempel-Ziv, it can be found in O(n) time, in a surprisingly simple way.

Definition 11. The lex-parse of T [1 . . n], with arrays SA, ISA, and LCP , is defined as a partition T = L1, . . . , Lv such that
Li = T [ti . . ti + `i− 1], satisfying (1) t1 = 1 and ti+1 = ti + `i, and (2) `i = LCP [ISA[ti]], with the exception that if `i = 0
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we set `i = 1 and make Li an explicit symbol. The non-explicit phrases T [ti . . ti + `i− 1] are copied from T [si . . si + `i− 1],
where si = SA[ISA[ti]− 1].

Example: The lex-parse of our example string is a|l|a|b|a|r|ala|labar|d|a|$, where we underlined the explicit symbols. The
corresponding function is f [1 . . 17] = 〈11, 0, 16, 0, 7, 0, 9, 10, 11, 2, 3, 4, 5, 6, 0, 0, 0〉.

Since ISA and LCP can be built in linear time, it is clear that the lex-parse of T can be built in O(n) time. Let us show
that it is indeed a valid lexicographic parse.

Lemma 25. The lex-parse is a lexicographic parse, thus b ≤ v.

Proof. First, the parse covers T and it copies sources to targets with the same content: Let x = ISA[ti] and y = ISA[ti]− 1.
Then `i = LCP [x] is the length of the shared prefix between the suffixes starting at ti = SA[x] and si = SA[y]. Therefore
we can copy T [si . . si + `i − 1] to T [ti . . ti + `i − 1]. Second, the parse is lexicographic: ISA[si] = ISA[ti] − 1 < ISA[ti].
Since lexicographic parses are ordered parses, we have b ≤ v by Lemma 14.

From now on we will use v as the size of the lex-parse. Let us show that the lex-parse is indeed ordered-optimal.

Theorem 26. The lex-parse is the smallest lexicographic parse. Thus, v ≤ 2r, v ≤ |lcpcomp|, v = O(b log(n/b)), v log2 n ≤
nHk + o(n log σ) for any k = o(logσ n), v = O(n/ logσ n), and there are text families where r = Ω(v log n).

Proof. By Theorem 16, it suffices to show that Def. 11 defines a greedy parse under lexicographic ordering. Indeed, `i =
LCP [ISA[ti]] is the longest prefix shared between T [ti . .] and any other suffix that is lexicographically smaller than it.

The other results are immediate consequences of Lemmas 23 and 24, Theorem 20, Lemma 12, and Theorem 19.

Note that, unlike v, z can be Ω(r log n), as shown in Theorem 11. Thus, v offers a better asymptotic bound with respect to
the number of runs in the BWT. The following corollary is immediate.

Theorem 27. There is an infinite family of strings over an alphabet of size 2 for which z = Ω(v log n).

We now show that the bound v = O(b log(n/b)) is tight as a function of n.

Theorem 28. There is an infinite family of strings over an alphabet of size 2 for which v = Ω(b log n).

Proof. We first prove that b ≤ 4 for all Fibonacci words, and then that v = Ω(log n) on the odd Fibonacci words (on the even
ones it holds v = O(1), by Theorem 11). The proof is rather technical, so we defer it to Appendix A.

An interesting remaining question is whether v is always O(z) or there is a string family where z = o(v). While we have
not been able to settle this question, we can exhibit a string family for which z < 3

5v.

Lemma 29. On the alphabet {1, . . . , σ+ 1}, where σ is not a multiple of 3, consider the string S1 = (2 3 . . . σ 1)3. Then, for
i = 1, . . . , σ − 1, string Si+1 is formed by changing Si[3σ − 3i] to σ + 1. Our final text is then T = S1 · S2 · · ·Sσ , of length
n = 3σ2. In this family, z = 3σ − 2 and v = 5σ − 2.

Proof. In the Lempel-Ziv parse of T , we first have σ + 1 phrases of length 1 to cover the first third of S1, and then a phrase
that extends in T until the first edit of S2. Since then, each edit forms two phrases: one covers the edit itself (since σ is not
a multiple of 3, each edit is followed by a distinct symbol), and the other covers the range until the next edit. This adds up
to z = 3σ − 2.

A lex-parse starts similarly, since the Lempel-Ziv phrases indeed point to lexicographically smaller ones. However, it needs
2σ further phrases to cover Sσ = 2 3 (σ+1) 5 6 (σ+1) . . . with phrases of alternating length 2 and 1: each such pair of suffixes
Sσ[3i + 1 . .] and Sσ[3i + 3 . .], for i = 0, . . . , σ − 1, do appear in previous substrings Sj , but all these are lexicographically
larger (because σ is not a multiple of 3, and thus symbols 1 are never replaced by σ + 1). Therefore, only length-2 strings of
symbols not including σ + 1 can point to, say, S1 (this reasoning has been verified computationally as well). This makes a
total of v = 5σ − 2 phrases.

A. Experimental Comparison with Lempel-Ziv

As a test on the practical relevance of the lex-parse, we measured v, z, and r on various synthetic, pseudo-real, and real
repetitive collections obtained from PizzaChili (http://pizzachili.dcc.uchile.cl) and on four repetitive collections
(boost, bwa, samtools, sdsl) obtained by concatenating the first versions of github repositories (https://github.com)
until obtaining a length of 5 · 108 characters for each collection.

Table II shows the results. Our new lex-parse performs better than Lempel-Ziv on the synthetic texts, especially on the
Fibonacci words (fib41), the family for which we know that v = o(z) (recall Theorems 11 and 27).7 On the others (Run-
Rich String and Thue-Morse sequences), z is about 30% larger than v.

7The file fib41 uses a variant where F1 = a, F2 = ba, and Fk = Fk−2Fk−1.
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file n r z v z/v r/v
fib41 267,914,296 4 41 4 > 10 1.000
rs.13 216,747,218 77 52 40 1.300 1.925
tm29 268,435,456 82 56 43 1.302 1.907
dblp.xml.00001.base 104,857,600 172,489 59,573 59,821 0.996 2.883
dblp.xml.00001.prev 104,857,600 175,617 59,556 61,580 0.967 2.852
dblp.xml.0001.base 104,857,600 240,535 78,167 83,963 0.931 2.865
dblp.xml.0001.prev 104,857,600 270,205 78,158 100,605 0.777 2.686
sources.001.prev 104,857,600 1,213,428 294,994 466,643 0.632 2.600
dna.001.base 104,857,600 1,716,808 308,355 307,329 1.003 5.586
proteins.001.base 104,857,600 1,278,201 355,268 364,093 0.976 3.511
english.001.prev 104,857,600 1,449,519 335,815 489,034 0.687 2.964
boost 500,000,000 61,814 22,680 22,418 1.012 2.757
einstein.de 92,758,441 101,370 34,572 37,721 0.917 2.687
einstein.en 467,626,544 290,239 89,467 97,442 0.918 2.979
bwa 438,698,066 311,427 106,655 107,117 0.996 2.907
sdsl 500,000,000 345,325 113,591 112,832 1.007 3.061
samtools 500,000,000 458,965 150,988 150,322 1.004 3.053
world leaders 46,968,181 573,487 175,740 179,696 0.978 3.191
influenza 154,808,555 3,022,822 769,286 768,623 1.001 3.933
kernel 257,961,616 2,791,368 793,915 794,058 1.000 3.515
cere 461,286,644 11,574,641 1,700,630 1,649,448 1.031 7.017
coreutils 205,281,778 4,684,460 1,446,468 1,439,918 1.005 3.253
escherichia coli 112,689,515 15,044,487 2,078,512 2,014,012 1.032 7.470
para 429,265,758 15,636,740 2,332,657 2,238,362 1.042 6.986

TABLE II
VARIOUS REPETITIVENESS MEASURES OBTAINED FROM SYNTHETIC, PSEUDO-REAL, AND REAL TEXTS (EACH CATEGORY FORMS A BLOCK IN THE

TABLE).

Pseudo-real texts are formed by taking a real text and replicating it many times; a few random edits are then applied to the
copies. The fraction of edits is indicated after the file name, for example, sources.001 indicates a probability of 0.001 of
applying an edit at each position. In the names with suffix .base, the edits are applied to the base version to form the copy,
whereas in those with suffix .prev, the edits are cumulatively applied to the previous copy. It is interesting to note that, in
this family, v and z are very close under the model of edits applied to the base copy, but z is generally significantly smaller
when the edits are cumulative. The ratios actually approach the fraction 3

5 = 0.6 we obtained in Lemma 29 using a particular
text that, incidentally, follows the model of cumulative edits.

On real texts, both measures are very close. Still, it can be seen that in collections like einstein.de and einstein.en,
which feature cumulative edits (those collections are formed by versions of the Wikipedia page on Einstein in German and
English, respectively), z is about 8% smaller than v. On the other hand, v is about 3%–4% smaller than z on biological
datasets such as cere, escherichia_coli and para, where the model is closer to random edits applied to a base text.
The lex-parse is also about 1% smaller than the Lempel-Ziv parse on github versioned collections, except bwa.

To conclude, the comparison between r and v shows that the sub-optimal lexicographic parse induced by the Burrows-
Wheeler transform is often much larger (typically 2.5–4.0 times, but more than 7 times on the biological datasets) than the
optimal lex-parse. Interestingly, on Fibonacci words the optimal parse is already found by the Burrows-Wheeler transform.

VII. BOUNDS ON COLLAGE SYSTEMS

In this section we use our previous findings to prove that c = O(z), b = O(c), and that there exist string families where
c = Ω(b log n), where c is the size of the smallest (internal) collage system.

Theorem 30. There is always an internal collage system of c ≤ 4z rules generating T .

Proof. We proceed by induction on the Lempel-Ziv parse. At step i, we obtain a collage system with initial symbol Si that
generates the prefix T [1 . . pi] of T covered by the first i phrases. The initial symbol for the whole T is then Sz .

For the first phrase, which must be an explicit symbol a, we insert the rule S1 → a. Let us now consider the phrases i > 1.
If the ith phrase is an explicit symbol a, then we add rules Ai → a and Si → Si−1Ai.

Otherwise, let the ith phrase point to a source that is completely inside T [1 . . pi−1], precisely T [x . . y] with y ≤ pi−1. Then
we add rule Ni → S

[x,y]
i−1 , and then Si → Si−1Ni.

If, instead, the ith phrase points to a source that overlaps it, T [x . . y] with pi−1 < y < pi, then T [x . . y] is periodic with
period p = pi−1− x+ 1, that is, T [x . . y− p] = T [x+ p . . y]. Therefore, the new phrase is formed by q = by−x+1

p c copies of
T [x . . x+ p− 1] = T [x . . pi−1] plus T [x . . x+ ((y− x+ 1) mod p)− 1] if p does not divide y− x+ 1. This can be obtained
with Oi →[p]Si−1, O′i → O

[(y−x+1) mod p]
i , Ri → Oqi , Ni → RiO

′
i, and Si → Si−1Ni.

Figure 5 illustrates both cases schematically. It is easy to see that the collage system is internal: we apply truncation only
on the symbols Si and Oi, all of which are reachable from the initial symbol.
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Fig. 5. Conversion of a Lempel-Ziv parse into a collage system using Theorem 30. On the left, the nonoverlapping case. On the right, the overlapping case.
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Fig. 6. Creation of an internal collage system from the Lempel-Ziv parse of T = a|l|a|b|a|r|ala|labar|d|a|$, using Theorem 30.

Example: Consider the Lempel-Ziv parse T = a|l|a|b|a|r|ala|labar|d|a|$ of Section II-C, where we have underlined the
explicit symbols. Figure 6 illustrates the application of Theorem 30 to this parse.

Theorem 31. For any T with an internal collage system of size c there is a bidirectional scheme of size b ≤ c.

Proof. We extend the idea of Theorem 5 to handle substring rules. We draw the parse tree of T , starting from the initial
symbol. When we reach a nonterminal defined by a substring rule, we convert it into a leaf. Just as for grammar trees, we
also convert into leaves all but the leftmost occurrence of each other nonterminal in the parse tree. Analogously to grammar
trees, the resulting tree has at most c leaves, because we are just adding substring rules, each of which adds a new leaf.

We now generate a bidirectional macro scheme exactly as we defined the left-to-right parse in Theorem 5. Further, each
leaf representing a substring rule A→ B[t,t′] is converted into a single phrase pointing to T [x+ t− 1 . . x+ t′− 1], where the
leftmost occurrence of B in the parse tree covers the text T [x . . y]. Such occurrence always exists in internal collage systems.

The resulting parse may not be left-to-right anymore. However, it is a valid bidirectional scheme. To see this, let us label
each position p in T with the index in the sequence of rules of the leaf of the grammar tree covering T [p]. This means that the
labels of text positions descending from an internal node A are smaller than the index of A, because nonterminals are defined
in terms of earlier nonterminals. Any position p of T below a grammar leaf A or A[t,t′] is labeled with the index of A, and
f(p) has a smaller label: that of a grammar leaf descending from the internal node A.

Example: The following collage system to generate the text T = alabaralalabarda$ is an internal variant of the one given
in Section II-E: A → a, B → b, D → d, L → l, R → r, Z → $, C → AL, E → CC, F → BA, G → FR, H → DA,
I → HZ, J → EA, K → JG, M → [6]K, N →MK, O → NI . The corresponding bidirectional scheme induces the parse
T = alabar|a|l|al|a|b|a|r|d|a|$, with function f [1 . . 17] = 〈9, 10, 11, 12, 13, 14, 0, 0, 7, 8, 7, 0, 7, 0, 0, 7, 0〉.

Theorem 32. There exists an infinite family of strings over an alphabet of size 2 for which c = Ω(r log n), and thus also
c = Ω(b log n), for any general collage system of size c.
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Fig. 7. Previously known (left) and new (right) asymptotic bounds between repetitiveness measures. A solid arrow from x to y means that x = O(y) for
every string family. The arrow b → c holds for internal collage systems only. For most arrows, a logarithmic gap for some string family is known, except
c→ z. There are also logarithmic gaps for some incomparable measures, shown in dotted lines (one is less than logarithmic, grl = Ω(zno logn/ log logn)).

Proof. Fibonacci words do not contain 4 consecutive repetitions of the same substring [29]. Therefore, no internal collage
system generating a Fibonacci word contains run-length rules A → Bk with k > 3, because exp(A) does appear in T .
Run-length rules with k ≤ 3 can be replaced by one or two non-run-length rules. Therefore, if a Fibonacci word of length n
is generated by an internal collage system of size c, then it is also generated by an internal collage system of size at most 2c
with no run-length rules.

Just as with SLPs, no such collage system can generate a string of length more than 22c; the substring rules do not help in
obtaining long strings with fewer rules. As a consequence, it holds that c = Ω(log n). On the other hand, by Theorem 11, it
holds that even Fibonacci words have r = O(1) (and also v, b = O(1)).

We can extend the result to general collage systems by noting that every nonterminal A→ Bk with k > 4 must be shortened
via truncation by more than |exp(B)| symbols, so as to use it to form T . Thus, it can be replaced by A → B4, and then be
further replaced by two non-run-length rules.

VIII. CONCLUSIONS

We have essentially closed the question of what the approximation ratio of the (unidirectional, left-to-right) Lempel-Ziv parse
is with respect to the optimal bidirectional parse, therefore contributing to the understanding of the quality of this popular
heuristic that can be computed in linear time, while computing the optimal bidirectional parse is NP-complete. Our bounds,
which are shown to be tight, imply that the gap is in fact logarithmic, wider than what was previously known.

We have then generalized Lempel-Ziv to the class of optimal ordered parsings, where there must be an increasing relation
between source and target positions in a copy. We proved that some features of Lempel-Ziv, such as converging to the empirical
entropy, being limited by the smallest RLSLP, and being larger than the optimal bidirectional scheme by at most a logarithmic
factor, hold in fact for all optimal ordered parsings.

As an example of such a parse, we introduced the lex-parse, which is the optimal left-to-right parse in the lexicographical
order of the involved suffixes. This new parse is shown to be computable greedily in linear time and to have many of the
good bounds of the Lempel-Ziv parse with respect to other measures, even improving on some. For example, being an optimal
ordered parse, the lex-parse is upper-bounded by the smallest RLCFG and it is an approximation to the smallest bidirectional
parse with a logarithmic gap. In addition, the lex-parse is bounded by the number of runs in the BWT of the text, which is
not the case of the Lempel-Ziv parse. We exhibit a family of strings where the lex-parse is asymptotically smaller than the
Lempel-Ziv parse, and another where the latter is smaller than the lex-parse, though only by a constant factor. Experimentally,
the lex-parse is shown to behave similarly to the Lempel-Ziv parse, although it is somewhat larger on versioned collections
with cumulative edits.

Finally, we showed that the smallest collage systems are of the order of the Lempel-Ziv parse, and have a logarithmic gap
with the number of BWT runs on some string families. A restricted variant we call internal collage systems are shown to
asymptotically bound the smallest bidirectional scheme. Many other results are proved along the way.

Figure 7 illustrates the contributions of this article to the knowledge of the asymptotic bounds between repetitiveness
measures. Note that the solid arrow relations are transitive, because they hold for every string family. Dotted arrows, instead,
are not transitive because they hold for specific string families.

There are various interesting avenues of future work. For example, it is unknown if there are string families where z = o(v)
or c = o(z), nor if b = O(c) holds for general collage systems. We can prove the latter if it holds that b grows only by a
constant factor when we remove a prefix of T , but this is an open question. We can even prove z = O(c) for general collage
systems if it holds that there is only a constant gap between z for T and for its reverse, which is another open question. It
might also be that our Theorem 4 can be proved without using run-length rules, then yielding g = O(b log(n/b)).

Another interesting line of work is that of optimal ordered parses, which can be built efficiently and compete with z, which
has been the gold-standard approximation for decades. Are there other convenient parses apart from our lex-parse? In particular,
are there parses that can compete with z while offering efficient random access time to T ? Right now, only parses of size
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O(g) (and O(grl) [9]) allow for efficient (O(log n) time) access to T ; all the other measures need a logarithmic blowup in
space to support efficient access [2], [6], [4], [53], [18], [19], [20]. This is also crucial to build small and efficient compressed
indexes on T [46, Sec. 13.2].
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APPENDIX A
A SEPARATION BETWEEN b AND v

In this section we prove that b ≤ 4 for all Fibonacci words, and then that v = Ω(log n) on the odd Fibonacci words. We
first state a couple of results on Fibonacci words Fk.

Lemma 33. For each k ≥ 5, it holds that Fk−1Fk−2 = Hkba and Fk−2Fk−1 = Hkab if k is even, and Fk−1Fk−2 = Hkab
and Fk−2Fk−1 = Hkba if k is odd. Note that |Hk| = fk − 2.

Proof. It is easy to see by induction that Fk = Fk−1Fk−2 finishes with ab if k is odd and with ba if k is even. The fact that
Fk−1Fk−2 = Hkxy and Fk−2Fk−1 = Hkyx was proved by Pirillo [49, Lem. 1].

Lemma 34. Fk−1 only appears at position 1 in Fk.

Proof. Consider the following derivation (which is also used later), obtained by applying Def. 1 several times:

Fk = Fk−1Fk−2

= Fk−2Fk−3Fk−2 (1)
= Fk−2Fk−3Fk−3Fk−4 (2)
= Fk−2Fk−3Fk−4Fk−5Fk−4

= Fk−2Fk−2Fk−5Fk−4. (3)

Assume, by contradiction, that Fk−1 appears in two different positions inside Fk. From Eq. (3), we have that Fn =
Fk−2Fk−2Fk−5Fk−4. Also, no occurrence of Fk−1 can start after position fk−2 in Fk (because it would exceed Fk unless
it starts at p = fk−2 + 1, but this is also outruled because Fk = Fk−1Fk−2 6= Fk−2Fk−1 by Lemma 33). Thus, the second
occurrence of Fk−1 must start at a position p ≤ fk−2. Then, by Eq. (3) again, there is a third occurrence of Fk−2 within
Fk−2Fk−2, which means that Fk−2 appears twice in the circular rotations of Fk−2. Yet, this is a contradiction because all the
circular rotations on the Fibonacci words are different [13, Cor. 3.2].

Lemma 35. Every word Fk has a bidirectional scheme of size b ≤ 4.

Proof. Up to k = 4 we have |Fk| ≤ 3, so the claim is trivial. For F5 = abaab we can copy the last ab from the first to have
b = 4. For k ≥ 6, consider the following partition of Fk = Fk−1Fk−2 into 4 chunks:

1) The first chunk is B1 = Fk[1 . . fk−1 − 2] (i.e., all the symbols of Fk−1 except the last two).
2) The second and third chunks are explicit symbols (B2 = Fk[fk−1 − 1] = b and B3 = Fk[fk−1] = a, if k is even, and

B2 = Fk[fk−1 − 1] = a and B3 = Fk[fk−1] = b, if k is odd).
3) The fourth chunk is B4 = Fk[fk−1 + 1 . . fk] (i.e., all the symbols of Fk−2).
The source of the first chunk, B1, is Fk[fk−2 +1 . . fk−2], and the source of the fourth chunk, B4, is Fk[fk−2 +1 . . 2fk−2].

Note that the sources of B1 and B4 start at the same position. We now prove that this is a valid bidirectional scheme.
First, we prove that B1 and B4 are equal to their sources. By Eq. (3), Fk = Fk−2Fk−2Fk−5Fk−4, so there is an occurrence

of Fk−2 starting at position fk−2 + 1 of Fk. Hence, B4 = Fk[fk−2 + 1 . . 2fk−2]. Further, by Eq. (1), we have that Fk =
Fk−2Fk−3Fk−2, and from Lemma 33 we have that B1 = Hk−1 = Fk[fk−2 + 1 . . fk − 2].
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Thus, the sources of B1 and B4 are correctly defined. We now prove there are no cycles. Our bidirectional scheme defines
the function f : [1 . . fk]→ [1 . . fk] ∪ {0} as follows:

f(p) =


0, if p = fk−1 − 1 or p = fk−1

p+ fk−2, if p < fk−1 − 1

p− fk−3, if p > fk−1

Assume that f has cycles and that a shortest one starts at position p. Successive applications of f either increase the current
position by fk−2 or decrease the current position by fk−3. So, a cycle starting at position p means that p+xfk−2−yfk−3 = p,
where x+ y is the number of times f was applied; note x, y > 0 This is equivalent to xfk−2 = yfk−3. Since fk−2 and fk−3
are coprime8, fk−3 divides x and fk−2 divides y. Thus, x ≥ fk−3, y ≥ fk−2, and x + y ≥ fk−1. The number of positions
involved in a cycle is then at least fk−1, and they must all be different because the cycle is minimal. Yet, the first fk−2
positions of Fk cannot be involved in any cycle: once f is applied in one of the first fk−2 positions there is not way to get
back there. So, we are left with fk−1 − 2 positions to be involved in a cycle, because f(fk−1 − 1) = f(fk−1) = 0. That is a
contradiction.

Before delving into the proof of the lower bound that relates v and b, we prove two further properties of the Fibonacci
words we make use of.

Lemma 36. The strings bb, aaa, and ababab never occur within a Fibonacci word.

Proof. It is easy to see that all Fk, for k ≥ 3, start with ab. Further, by Lemma 33, they end with ab or ba. Then the lemma
for bb and aaa easily follows by induction because, when concatenating Fk = Fk−1Fk−2, the new substrings of length 3 we
create are substrings of abab or baab. For the third string we easily see that, for k ≥ 5, every Fk starts with abaa and ends
with baab (odd k) or baba (even k). Thus, as before, it is impossible to form ababab when concatenating any Fk−1 with
Fk−2.

Lemma 37. Given a Fibonacci word Fk, for all 4 ≤ i ≤ k, every factor Wi of Fk of length fi that begins with Fi−1 has only
two possible forms, Wi = Fi−1Fi−2 or Wi = Fi−2Fi−1.

Proof. We use strong induction on i. For the base cases i = 4 and i = 5, we use the substrings bb and aaa excluded by
Lemma 36: If i = 4, then f4 = 3, and F3 = ab. Then, any factor W4 of Fk of length 3 that begins with ab can only be
W4 = aba = F3F2. If i = 5, then f5 = 5, and F4 = aba. Then, any factor W5 of Fk of length 5 that begins with aba can
only be equal to W5 = abaab = F4F3 or W5 = ababa = F3F4.

Assume now by induction that, for all i ≥ 4, every factor Wi of Fk of length fi that begins with Fi−1 has only two possible
forms, Wi = Fi−1Fi−2 or Wi = Fi−2Fi−1. We now prove that every factor Wi+1 of Fk, of length fi+1 and beginning with
Fi, has only two possible forms, Wi+1 = FiFi−1 or Wi+1 = Fi−1Fi.

The factor Wi+1 is equal to FiGi−1, where Gx will stand for any string of length fx. Thus, Wi+1 = Fi−1Fi−2Gi−1. Since
|Fi−2Gi−1| = fi > fi−1, we can apply the induction hypothesis to the first fi−1 symbols of this substring. Two outcomes are
then possible: (i) Wi+1 = Fi−1Fi−2Fi−3Gi−2 or (ii) Wi+1 = Fi−1Fi−3Fi−2Gi−2.

Case (i) implies Wi+1 = Fi−1Fi−1Gi−2. By the induction hypothesis, Fi−1Gi−2 = Fi−1Fi−2 or Fi−1Gi−2 = Fi−2Fi−1.
This implies Wi+1 = Fi−1Fi or Wi+1 = FiFi−1. Thus, Wi+1 has the desired form.

In case (ii), the suffix Fi−2Gi−2 of Wi+1 has length over fi−1 and starts with Fi−2, so we can apply the induction hypothesis
to obtain subcases (a) Wi+1 = Fi−1Fi−3Fi−2Fi−3Gi−4 or (b) Wi+1 = Fi−1Fi−3Fi−3Fi−2Gi−4. We now show that neither
subcase is possible. In case (a), by Def. 1, it holds that

Wi+1 = Fi−1Fi−3Fi−2Fi−3Gi−4

= Fi−2Fi−3Fi−3Fi−2Fi−3Gi−4

= Fi−2Fi−3Fi−3Fi−3Fi−4Fi−3Gi−4.

If i+1 = 6 or 7, then Fi−3 = a or ab, and there would be 3 consecutive occurrences of a or ab in Fk, contradicting Lemma 36.
If i + 1 ≥ 8, then by Lemma 33, Fi−4Fi−3 begins with Fi−3, and then there would be 4 consecutive occurrences of Fi−3
within Fk, contradicting the fact that Fibonacci words do not contain 4 consecutive repetitions of the same substring [29]. In
case (b), by Def. 1, it holds that

Wi+1 = Fi−1Fi−3Fi−3Fi−2Gi−4

= Fi−2Fi−3Fi−3Fi−3Fi−2Gi−4

= Fi−2Fi−3Fi−3Fi−3Fi−3Fi−4Gi−4,

which also contains 4 occurrences of Fi−3 within Fk, a contradiction again [29].

8Applying Euclid’s algorithm, we have gcd(fk−2, fk−3) = gcd(fk−3, fk−2 − fk−3) = gcd(fk−3, fk−4), which is traced down to gcd(f2, f1) = 1.
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Theorem 28. There is an infinity family of strings over an alphabet of size 2 for which v = Ω(b log n).

Proof. Such a family is formed by the odd Fibonacci words, where b = O(1) by Lemma 35. Specifically, we prove that the
number of phrases in the lex-parse of the odd Fibonacci words forms an arithmetic progression with step 1.

Let Fk be an odd Fibonacci word with k ≥ 9. We first prove that the length `1 = LCP [ISA[1]] (see Def. 11) of the first
phrase of the lex-parse of Fk is fk−1 − 2. From Eq. (1), we have that Fk = Fk−2Fk−3Fk−2, and from Lemma 33, we have
that Fk = Hk−1baFk−2 = Fk−2Hk−1ab. Additionally, Hk−1ab is lexicographically smaller than Hk−1ba and they have a
common prefix of length fk−1 − 2. Thus, `1 ≥ fk−1 − 2. We prove that there are no common prefixes of length greater than
fk−1− 2 between Fk and any of its suffixes. Assume the prefix Pk−1 of length fk−1− 1 of Fk−1 appears in Fk. By the proof
of Lemma 36, Fk finishes with baab and Fk−1 finishes with baba. Then Pk−1 finishes with bab and Fk finishes with aab, so
Pk−1 is not a suffix of Fk. Also, b can only be followed by a within Fk, by Lemma 36. Hence, if there is an occurrence of
Pk−1 within Fk, then there is also an occurrence of Fk−1. Yet, the only occurrence of Fk−1 in Fk is at the beginning, by
Lemma 34. Therefore, it is also impossible to find an occurrence of length fk−1 or more.

Next, we prove that the length `2 = LCP [ISA[fk−1 − 1]] of the second phrase of the lex-parse of Fk is fk−4 + 2. By
Eq. (1), we have that Fk−2 = Fk−4Fk−5Fk−4. Since Fk−5 finishes with ba, baFk−4 is a prefix and a suffix of baFk−2. Since
the suffix is followed by $, it is lexicographically smaller than the prefix. Further, since the second phrase starts with the prefix
baFk−4, we have `2 ≥ fk−4 + 2. We now show that the second phrase is not longer.

By the characterization of the Fibonacci words of Mantaci et al. [44, Thm. 6], and the ordering of the cyclic rotations of
the Fibonacci words stated in there [44, proof of Thm. 9], the lexicographically smallest cyclic rotation of Fk is the one that
starts at position x + 1, where x < fk is the unique solution to the congruence equation fk−2 − 1 + xfk−2 ≡ 0 (modfk)9.
Using Cassini’s identity, fkfk−2 − f2k−1 = 1 [23], we replace fk = fk−1 + fk−2 to get fk−1fk−2 + f2k−2 − f2k−1 =
fk−1fk−2 + (fk−2 + fk−1)(fk−2 − fk−1) = fk−1fk−2 + fk(fk−2 − fk−1) = 1. This implies fk−1fk−2 ≡ 1 (modfk). Thus,
x is equal to fk−1 − 1, and the the lexicographically smallest cyclic rotation of Fk starts at position fk−1.

This means that the second phrase of the lex-parse of Fk starts one position before the lexicographically smallest cyclic
rotation of Fk. So, now considering the terminator $, if a suffix S of Fk is lexicographically smaller than Fk[fk−1 − 1 . .] =
baFk−2 (i.e., the suffix that starts at the beginning of the second phrase of the lex-parse of Fk) and both share a common
prefix P , then S = P and |S| < fk−2 +2. Let us prove that baFk−4 is the largest string that is a prefix and a suffix of baFk−2.

The string Fk−4 only occurs at positions 1, fk−4 + 1, and fk−3 + 1 within Fk−2: By Eq. (3), we have that Fk−2 =
Fk−4Fk−4Fk−7Fk−6. There are no occurrences of Fk−4 at positions 1 < p ≤ fk−4, by the same argument of Lemma 34. By
Eq. (2), we also have that Fk−2 = Fk−4Fk−5Fk−5Fk−6. There are no occurrences of Fk−4 at positions fk−4 + 1 < p ≤ fk−3,
because Fk−4 = Fk−5Fk−6 and then F5 would occur more than twice within F5F5, which is not possible again by the argument
of Lemma 34. The last occurrence of Fk−4 within Fk−2 = Fk−3Fk−4 must then be at position fk−3 + 1. By Lemma 33, the
only one of those three occurrences that is preceded by ba is the last one.

So the first two phrases of the lex-parse of Fk are of lengths `1 = fk−1 − 2, and `2 = fk−4 + 2, respectively. The rest
Rk of Fk is then of length fk−3. From Eq. (3), we have that Fk = Fk−2Fk−2Fk−5Fk−4, so Rk = Fk−5Fk−4 = Hk−3ab,
by Lemma 33. Since Rk starts with Hk−3, which starts with Fk−4 by Lemma 33, and it finishes with Fk−4, which is the
lexicographically smallest occurrence of Fk−4, we have `3 ≥ fk−4.

By Lemma 37, we have that all the suffixes of Fk that start at position 1 ≤ p ≤ 2fn−2, and begin with Fk−4, also begin
with Fk−4Fk−5 = Hk−3ba > Rk, by Lemma 33, or with Fk−5Fk−4 = Rk. Since the suffix Rk is followed by $, those suffixes
are lexicographically larger than Rk. Also, Fk−4 occurs only at the beginning and at the end of Rk = Hk−3ab: Fk−4 only
occurs at the beginning of Hk−3, by Lemmas 33 and 34, and because Rk and Fk−4 both finish with ab, Fk−4 does not occur
as a suffix of Hk−3a. So, the third phrase of the lex-parse of Fk is of length fk−4.

The new rest R′k is of length fk−5. Also, by Eq. (3),

Fk = Fk−2Fk−2Fk−5Fk−4

= Fk−2Fk−2Fk−5Fk−5Fk−6

= Fk−2Fk−2Fk−5Fk−6Fk−7Fk−6

= Fk−2Fk−2Fk−4Fk−7Fk−6.

Then Rk−1 = Fk−7Fk−6. Similarly as for Rk, by Lemma 37, all the occurrences of Fk−6 starting at positions 1 ≤ p ≤
2fk−2 + fk−4 are lexicographically larger than Rk−1. Also, Fk−6 occurs only at the beginning and at the end of Fk−7Fk−6.
We then have that the fourth phrase is of length fk−6.

The process continues in the same way up to f5. At this point, the rest of Fk is aab. We prove that the last three phrases
of the lex-parse of Fk are of length 1. First, the suffix aab is the lexicographically smallest suffix of Fk that begins with a,
by Lemma 36 and because Fk is terminated in $. Thus, the first a of aab is an explicit phrase of length 1. Then, the suffixes

9Using the notation of Lemma 10, Rfk−2−1 is the odd Fibonacci word Fk of length fk−1 + fk−2, and R0 is the smallest cyclic rotation of Fk . Thus,
after x applications of % starting at fk−2 − 1, we get the first symbol of R0 from the first symbol of Fk (i.e., %x(fk−2 − 1) = 0).
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that are lexicographically smaller than ab begin with aa. Thus, the length of the next phrase is also 1. Finally, the suffix b is
the lexicographically smallest suffix of Fk that begins with b. Thus, b is an explicit phrase of length 1.

Therefore, the lengths of the phrases of the lex-parse of Fk are

fk−1 − 1, fk−4 + 2, fk−4, fk−6, . . . , f5, 1, 1, 1

and the number of phrases is 5 + k−7
2 .


