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AbstractThis thesis focuses on the problem of �nding a suitable query language for hierarchically structured textualdatabases.The problem about current approaches is that there is no consensus on how the structuring model and thequery language should be, and that they focus strongly either on expressivity or on e�ciency issues, but noton both at the same time. The approaches which are strong in one point are weak in the other. Moreover,there is no formal and complete foundation to analyze the expressivity of these languages.The goal of this thesis is to �nd a structural model and a query language that is expressive and e�cientlyimplementable, achieving a good compromise between the two extremes.In order to achieve this goal, a number of steps have been carried out. In the �rst place, a comprehensive studyand evaluation of previous work on the �eld has been done. Then, a structuring model and query languagewith the desired characteristics has been de�ned. Its expressivity has been compared against similar models,formally and practically. An informal framework to compare the expressivity of similar models has beende�ned. Then, we focused on implementation. Algorithms have been de�ned and their worst-case spaceand time complexity analyzed for all operations, in many di�erent versions for implementing indices andoperations. Finally, a real prototype has been developed implementing the proposed model, to evaluateheuristics and draw average running times.This work leads to the conclusion that a set-oriented query language based on operations on nearby structureelements of one or more hierarchies is quite expressive and e�ciently implementable. It also gives an idea ofup to where the expressivity can be enriched without degrading the performance. Finally, it suggests someresearch directions.This work makes a step in the direction of obtaining a unifying perspective on how a query language fortextual databases should be, what expressive power should it have and how well can it be implemented. Allthis is necessary to put the emerging area of textual databases in the place it deserves in Computer Science.
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Chapter 1IntroductionTextual databases are deserving more and more attention, due to their multiple applications: libraries, o�ceautomation, software engineering, automated dictionaries and encyclopedias, and in general any problembased on keeping and retrieving textual information [FBY92, chapter 1].The purpose of a textual database is to store textual documents, structured or not. A textual database iscomposed by two parts: contents and structure (if present). The content is the text itself, while the structurerelates di�erent parts of the database by some criterion.The purpose of any system related to information retrieval is to help the users of a database to �nd what theyneed. Textual database are not as relational databases [Dat95], in which the information is already formattedand meant to be retrieved by a \key". The information is there, but there is no easy way to extract it. Theuser must specify what he/she wants, see the results, then reformulate the query, and so on, until is satis�edwith the answer. Anything we can do to help users to �nd what they want is worth considering.Traditionally, textual databases have allowed to search their contents (words, phrases, etc.) or their structure(e.g. by looking at a table of contents), but not both at the same time.An interesting fact is that human beings have \visual memory", e.g. they may remember that what theywant was typed in italics, short before a �gure that said something about \earth". Searching for the word\earth" may not be a good idea, as well as searching all �gures or all the text in italics. What really wouldhelp to exploit visual memory would be a language in which we can say \I want a text on italics, near a�gure containing the word `earth' ". This query mixes content and structure of the database.Mixing contents and structure in queries allows us to pose very powerful queries, being much more expressivethan each mechanism by itself. By using a query language that integrates both types of queries, we canpotentiate the retrieval quality of textual databases.This way, we have that the information model of textual databases comprises both content and structure,and that we want to be able to query both aspects of the database. However, both aspects present their ownspecial features.On one hand, the \contents" of the database is not formatted, but appears in natural language form. Thismeans that no traditional methodology relying on formatted data (e.g. the relational model) is suitable forextracting the desired information; and that no methodology assuming uninterpreted data objects and relyingonly on their (formatted) attributes (e.g. multimedia databases [BRG88]) is powerful enough to express therich information model represented by text. The required information has to be extracted from the text, butnot in a rigid way (see also [SDAMZ94]).On the other hand, there is no consensus on how the structuring model of a database should be. There are anumber of possible models, ranging from no structuring at all to complex interrelation networks. Deciding touse a structuring model involves choosing also what kind of queries about the structure can be done. Thereis a tradeo� between providing a powerful structuring model and implementing it e�ciently.Any information model for a text database should comprise three parts: text, structure, and query language.1



It must specify how is the text seen (i.e. character set, synonyms, stopwords, hidden portions, etc.), thestructuring mechanism (i.e. markup, index structure, type of structuring, etc.), and the query language (i.e.what things can be asked, what the answers are, etc.).The aim of this work is to present a model to structure and query textual databases, which is expressive ande�ciently implementable. There is not at this time, to the best of our knowledge, any approach satisfying bothgoals. In order to compare expressivity, it is necessary to draw a framework in which to situate all approaches,which does not exist yet. In order to compare e�ciency, it is necessary to describe the algorithms to buildthe indices and to process queries, to analyze their worst-case behavior in terms of space and time, and todraw experimental results from an implementation of the model.The query language we present is not necessarily intended for �nal users, rather it is an operational algebraonto which one can map a more user-oriented query language.This thesis is organized as follows. In Chapter 2, related work is reviewed. In Chapter 3, our model isinformally presented, in terms of the data model and the operations allowed for queries. In Chapter 4, weanalyze the expressivity obtained by the de�ned operators: we de�ne the operations formally, compare thismodel against each similar model we reviewed, and draw a framework on expressivity to situate similarmodels. In Chapter 5, we outline algorithms and data structures to e�ciently implement this model, andanalyze its worst-case behavior in terms of time and space. In Chapter 6, a real implementation is presented,which is used to draw real numbers on average times to solve sample queries, and to evaluate heuristics.Finally, in Chapter 7, our conclusions and future work directions are outlined.
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Chapter 2Related WorkIn this chapter we cover previous approaches to the problem of querying a textual database. We �rst reviewthe traditional ones, and then cover more in depth novel ideas.2.1 Traditional ApproachesThis chapter presents briey the classical approaches. In these, no consensus on the structuring model exists,and the querying on contents is divorced from the querying on structure.The Relational Model: The relational model [Dat95] expresses the relationships present in a database bya �xed structure of tables, in which the data is organized. By developing an e�cient and versatile setof operators to manipulate those tables, this model has successfully been applied to a wide range ofinformation management problems.However, this model is not suitable for expressing the fuzzy, complex and highly variable structuringpresent in a textual database [GT87, KM93] (e.g. a concept as basic in a hierarchical structure asancestorship involves transitive closure, which the relational model cannot express), not to mention theextraction of information from contents, which lies completely outside the scope of this informationmodel. Some proposals for integrating the relational model with a textual query language can be foundin [SSL+83, DGS86].The Traditional IR Model: The traditional IR (Information Retrieval) model [SM83, Sal86, SM89] wasthe �rst in recognizing the particular information requirements posed by textual databases, and theneed to create a model oriented to text. In this model, a database is organized as a set of documents,which are assigned keywords, that is, words or phrases meant to describe the semantic contents ofthe document. Queries are in terms of those keywords, and by examining the correlation between thewords of the query and the keywords of the document, the relevance of the document for that query isestablished. Therefore, the answer to the query consists of a sequence of documents (ranked accordingto the computed relevance). There are many variations on this topic, for example relevance ranking,the boolean model, the probabilistic model, the vector model, etc. [FBY92, chapters 11, 12, 14 and 15].Along with queries about keywords, we can also query on contents. The only structure allowed oncontents consists of non-nested, non-overlapped \�elds", regions which cover the whole document.Those �elds can only be used to restrict the areas in which match points are to be found. The problemwith this approach is that the �ne structure of documents is lost, since they are seen as \black boxes"whose only description are their keywords, their (restricted) �elds and their content. This approach isacceptable in multimedia databases [BRG88], in which objects as audio segments, video clips or imagesare assigned descriptors, to which the query can refer; but the text has a much richer structure, whichwith this approach is lost. 3



The Full Text Model: Another approach consists of querying only by contents, in which a query is apattern, which is searched in the whole database, answering with the documents and the text positionsin which the pattern matches the text [FBY92, chapter 10] and [BY94]. This search may not use anyadditional index, in which case the search has to traverse the whole text database; or it may use somekind of index (e.g. inverted �les [FBY92, chapter 3], signature �les [FBY92, chapter 4], etc.). If thedatabase is large, the last option is the only acceptable. A novel index is the \su�x array" or \PATarray", which allows, among other things, to �nd any pre�x in a time which is logarithmic on the sizeof the database [FBY92, chapter 5] and [MM90]. The problem with this search by contents is that itis not possible to query on the structure of documents. Most commercially available products combinefull text retrieval with the IR model.Hypertext: In hypertext [Con87], the database is organized as a graph where nodes are small portions ofthe database, and edges connect nodes which are related by some design criterion. In this case, theidea is not to use querying but a navigational mechanism across the database, with some associationsemantics. Edges may not only express associations by semantic similarity, but also the structure of thetext, cross references, etc. Hypertexts model query by structure well, but not by contents; moreover,not always a navigational approach is acceptable. Recently, some models combining a semantic network[HK87] with structured text have appeared [TSM91], resulting in a hypertext with some facilities toquery on the text and its structure.Related to this we can mention also graph query languages [CM93] and object-oriented databases[KL89]. Some attempts have been made to integrate structured text searching into object-orienteddatabases (e.g. [CACS94]), which generally result in expressing the structure as a (hierarchical) network,linked by part-of attributes. Queries are expressed as path expressions in the general language of thedatabase. This approach, although powerful, results in ine�ciencies generated by not fully consideringthe semantics of inclusion (see [CM94] for an excellent discussion on this problem).Although these models are not powerful enough to extract the information we want from textual databases,they address di�erent problems that pure textual database models oriented to structure do not address ingeneral (e.g. tuples and joins, attributes, etc.). We do not compare our model to these, because they addressdi�erent goals.In [SDAMZ94] it is argued that is better to put a layer integrating a traditional database system with atextual one, than trying to design a language comprising all the features. For example, in [CM94] it isshown that structure-related queries are handled better by a query engine that knows about the semanticsof hierarchies than by a general-purpose object-oriented database language.We rely on this approach. We design a language which is focused on exploiting the structure- and text-relatedfeatures. Other features, such as tuples and joins, should be added by integrating this language with anotherone oriented to that kind of operations, e.g. a relational database.On the other hand, we do not address the issue of merging structural queries with those involving operationssuch as relevance ranking (e.g. the sections or titles where the word \computer" is relevant). See [SDAMZ94]for some ideas on this subject.2.2 Novel ApproachesThese approaches are characterized by two important facts.First, the structure of documents is assumed to be more or less hierarchical; this in part imposes a minimumlevel of structuring power to a model to be considered acceptable (e.g. the traditional IR model would notqualify), and in part restricts the number of alternatives, by avoiding extremely powerful approaches, as itwould be the hypertext model. This restriction seems reasonable, since up to now even this simpler problemhas not been solved satisfactorily.Second, the query language is required to integrate in a uniform syntax the queries on contents and onstructure. The structure of text must be stored in some way, for example by marks embedded in the same4



text (SGML, for example [ISO86, Gol90, RTW93]), or by keeping auxiliary indices.We present a sample of novel models, which cover the di�erent approaches to solve this problem under thestated conditions. See [Loe94] for another survey.2.2.1 A Simple Model: Flat Structure + Full Text RetrievalPerhaps one of the simplest approaches is [BY94], which has been partially implemented in SearchCity [Ars92].The idea is to have a database composed of a set of documents (or �les, if no structure is de�ned), which mayhave �elds. Those �elds need not cover all the text of the document, and can nest and overlap. The subject ofhow to parse a document to get the index points is also considered. Finally, the query language is an algebraover pairs (D;M ), where D is a set of documents and M is a set of match points in those documents. Thereis a number of operations for obtaining match points: pre�x search, proximity, etc. There are operations forunion, intersection, di�erence and complement of both documents and match points; for restricting matchesto only some �elds, and to retrieve �elds owning some match point. Since it is not possible to determinewhether a �eld is included in another (except under certain assumptions on the hierarchy), and it is notpossible to make certain compositions of expressions involving �elds, we say that this model is \at". Wepresent more details on this language later, when we compare expressivity.This model is more expressive than traditional ones, mixing the best of document retrieval [SM83] and full textretrieval. Although we are not interested in how the indexing is performed nor on the matching sublanguage,the model makes a �rst incursion on the problem of mixing queries on structure and contents; we take onlythis aspect into account to situate it in the framework of expressivity. This model can be implemented verye�ciently.2.2.2 A Model of Structuring Based on MatchesAnother approach is PAT expressions [ST92], a model that has been implemented in the PAT Text SearchingSystem [Faw89]. Again, there is a lot of concern on the mechanism to index the database, which we areignoring here. The only index is on match points, there is no indexing on structure. For this purpose,the language allows dynamic de�nition of structures, based on match point expressions for the beginningand end of regions. It also allows to use externally computed regions. Although the dynamic de�nitionapproach is exible, it relies on speci�c markup requirements: it must be possible to express regions bysimple expressions on match points. For example, it does not allow to recognize the structure of \C" code.This idea has been applied successfully to the computerization of the Oxford English Dictionary (the OEDproject [BGT91, Gon87]), because it uses an SGML-like markup. It is di�cult to imagine other type ofstructuring where this approach works.Structures can have substructures; this fact is not explicit, but derived from the inclusion relationship betweenregions. By the form of de�nition of structures, it follows that recursive structures are not allowed, eachstructure owns a set of non-overlapping areas of the text.Although it is not supposed to depend on the underlying implementation of the index, the operations de�nedon the text are oriented to the use of a PAT array. Indeed, some operations are included mainly becausethey are easy to implement with a PAT array, although, as it is pointed out in [ST92], they are rarely usedand di�cult to grasp and even to specify (e.g. lrep).Another characteristic of this language is that it mixes the concept of match point with the concept of region.This distinction is perhaps inherited from the way the PAT array works, and causes a lot of troubles and lackof orthogonality and compositionality in the language, as is pointed out in [ST92] (e.g. signif). Sometimes,it is even impossible to determine statically whether the result of an expression is of type \matches" or oftype \regions" (e.g. the +,� and fby operators).Despite these drawbacks, the model is a good example of structuring documents and querying them by mixingcontents and structure. What is most important, since all operations are based on the PAT array, they areextremely fast. Operations on areas are also fast, thanks to the restrictions imposed on structures: non-overlapping and non-recursive. Finally, the space requirement is low if the structure is dynamically extracted5



from match expressions on the text. Thus, it achieves high e�ciency at the cost of some restrictions, whichfor some applications are reasonable. This is an example for a model based on a pre-de�ned index on thetext.2.2.3 A Model Based on Overlapped ListsAnother approach quite similar to PAT expressions but less powerful is [Bur92a, Bur92b], which also has atlists of disjoint segments, originated by textual searches or by \regions" like chapters, for example. The ideais to unify both searches by using an extension of inverted lists [FBY92, chapter 3], where areas are indexedthe same way as words are. The operations are simple: select regions containing or not containing otherregions; select regions contained or not contained in other regions; select a given region or a given word; andother operations more close to traditional IR (e.g. relevance ranking).A recent work extending this idea is [CCB95a, CCB95b], which enhances the algebra with overlappingcapabilities, some new operators and a framework for an implementation.The new operators are: union (one-of), followed-by, both-of and n-words. In fact, both-of is just a symmetricfollowed-by (i.e. (A followed-by B) + (B followed-byA)). n-words returns all (overlapping) segments containingn words.An interesting feature of followed-by is that it selects the whole segment between the matched operands, notone of them. Another interesting feature is that, although the model does not allow inclusion between regionsof the same kind, it allows overlaps. This is obtained for example by the de�nition of both-of, since in case ofa text of the form \aba", the query (\a" both-of \b") returns two overlapping segments: \ab" and \ba". It isnot clear whether this feature is good or not to capture the structural properties that structured informationhas in practice.The implementation relies in four primitives, that are used to iterate on the operands to produce the result.Since both the operands and the result are at lists, the implementation can be very e�cient.2.2.4 A Model Based on Lists of ReferencesIn [Mac91, Mac90], a model is proposed to uniform de�nition and querying of structured databases, by meansof a common language. It is strongly based on SGML [ISO86], although not dependent on it.The language is somewhat outside the scope that we have proposed for similar models, since it does not onlyinclude data de�nition features, but also hypertext-like linkages and some operations closer to object-orienteddatabases (by means of allowing nodes to have attributes that can also be queried). It is also possible toincorporate \external procedures" to the query language, much as in object-oriented databases.Although the structure of documents can be hierarchical (with only one strict hierarchy), answers to queriesare at (only the top-level elements qualify), and all elements must be from the same type (e.g. only sections,or only paragraphs).Answers to queries are seen as lists of references. This allows to integrate in an elegant way answers to queriesto hypertext links, since all are seen as lists of references. The model has also some navigational featuresthat allow traversing those lists of references.The structuring mechanism is also complex, since some storage organization facts are expressed as structure.The top-level of the hierarchy has archives, which comprise a set of groups. Each group have a set ofdocuments, references and more groups. Each document has a hierarchy of elements. The references canbe retrieved and treated the same way as the result of a query (which is in fact a list of references).This model is very powerful, and because of this, has e�ciency problems in its implementation [Mac91]. Tomake the model suitable for our comparisons, we consider only the portion related to querying structures.Even this portion is quite powerful. A related, although more navigational model is presented in [DWL92].6



2.2.5 A Model Based on Manipulating Parsed StringsThis approach has also been used for the OED project [BGT91], but in di�erent problems [GT87]. Thoseproblems are related to transforming a database, or to generating new views by means of processing the dataand structure. It has been successfully applied to the Short OED (SOED) project [BBT92], for example, inwhich the goal is to extract a shorter version from the original dictionary.Since it has to be a data manipulation language rather than a plain query language, the approach is quitedi�erent. The language used to express database schemas is a grammar (regular, context-free or context-sensitive), that is, the database is structured by giving a grammar to parse its text. The fundamental datastructure is the p-string, or parsed string, which is composed of a derivation tree plus the underlying text(only context-free grammars are considered). The parsing process implicitly comprises the work of pattern-matching, since there are no further operations to express text matching. The language also relies on thefacilities of its host language, G�odel, based on Maple [CGG+88].There are a number of powerful operations that can be performed to manipulate parsed strings: they can bereparsed by another grammar, some nonterminals can be hidden, etc. Since those operations are the usualones, we can infer that reindexing, if done, must be carried out very e�ciently. With those operators, the jobof taking into account all the complex variations that appear in the structure of the dictionary is simpli�ed,although not eliminated. There are also querying operations. The approach is extremely powerful, and it isshown to be relationally complete.The problem is e�ciency. Being such a dynamic approach, it is hard to implement it e�ciently. Someconsiderations are made about e�ciency, but there are no good solutions yet. In [BBT92], we can see thatthat operations are really slow, although this was not a concern for the SOED project.A formalization of a data manipulation model based on grammars, quite similar to this approach, can befound in [GPG89].2.2.6 A Query Language Based on Tree MatchingIn [Kil92, KM93] a model relying on a single primitive, tree inclusion, is proposed. The idea of tree inclusionis, seeing both the structure of the database and the query (a pattern on structure) as trees, to �nd anembedding of the pattern into the database which respects the hierarchical relationships between nodesof the pattern. The approach is not meant to be comprehensive in expressivity, but to deeply study theproperties of that primitive.The main idea of tree inclusion is that it is a way to query on structural properties in which the user doesnot need to be aware of all the details of the structure, but only on what he/she is interested. This standsfor data independence.Simple queries return the roots of the matches, and the language is enriched by Prolog-like variables, whichcan be used to express requirements on equality between parts of the matched substructure, and to retrieveanother part of the match, not only the root.Although the language is set-oriented, the algorithms work by sequentially obtaining each match. The use oflogical variables makes the problem intractable (NP-hard in many cases), and even without them, unorderedtree inclusion is NP-complete. Ordered tree inclusion of a pattern P into a textual database T takes O(jP jjT j),and O(jT j) if the structure is not recursive (i.e. no node can be the ancestor of an equally labeled node). See[Kil92, KM92, KM95] for this study of complexity.Finally, the paper suggests that since the leaves of the pattern can be text matching expressions, a goodquery plan consists of �rst searching for those text matches, and then trying to match the pattern only onthose positions, this way using a bottom-up heuristic rather than a top-down approach. We pursue that ideamuch further to achieve practical solutions to the problem.7



2.3 A Formal Study on ExpressivityIn [CM95], a simpli�cation of PAT expressions [ST92] is used to formally analyze its expressive power. It usesa single hierarchy and a set-oriented query language, with set operators for union, intersection and di�erence,operators to select elements including or included in others, and operators to select elements before or afterothers.The paper relates this algebra with monadic tree theory, which provides an alternative point of view onthe expressive power of the language. It is found that it is not possible to express direct ancestorship (i.e.ancestorship without intermediate nodes) nor both-included in the algebra. both-included is a ternary operatorde�ned as follows: both-included(A;B;C) i� there is a node A ancestor of nodes B and C such that B isbefore C. Another restriction of the algebra is that it cannot join on contents, e.g. select chapters whosetitle appears in a given list of titles (which is also in the text).The paper shows that by extending the language to manipulate tuples (e.g. it currently can select A nodesincluding a B node or B nodes included in an A node, but not pairs (A;B) such that A includes B), andallowing joins by identical nodes, the algebra can express direct ancestorship and both-included, and suggeststhat n-included cannot be solved with a 1-tuple algebra (since the demonstration that shows the inabilityto express both-included(A;B;C) can be extended to show the inability of this operator to express three-included(A;B;C;D), and so on). On the other hand, it shows that allowing joins by text contents makeoptimization problems much harder.Observe that the language of [CCB95a] is a 1-tuple algebra and allows to solve the n-included problem.n-included(c; a1; :::; an) is equivalent to c including (...(a1 followed-by a2)... followed-by an). This is becausethe followed-by operator does not return elements from its operands, but create new segments that includespairs of elements from its operands. This is a way to \codify" a tuple, but it cannot be used beyond thescope of at hierarchies, since it would produce overlapping elements. In fact, we will show that our modeldoes not solve the general n-included problem, and however includes this feature of [CCB95a].Returning to [CM95], this paper (and a related one, [CM94]), focuses also on optimization problems. Itde�nes a Region Inclusion Graph, where the nodes are the di�erent labels of the nodes of the hierarchy andthe edges represent the possibility of direct ancestorship between nodes labeled that way. It also de�nes aRegion Ordering Graph, representing the possibility of nodes appearing in a given order. Both graphs areused to detect redundant work in the query plans. A study on the complexity of optimization algorithms isalso presented.[CM94] also integrates the presented textual database engine with a classical database, by seeing the textualdatabase as a classical one and translating the classical query operations into the language of the underlyingtext engine, and applying the optimization techniques. Some operations are much more e�cient implementedthis way.
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Chapter 3A New Model for QueryingStructured TextIn this chapter we present our model. A model must include both the type of structuring allowed forthe database, and the language to query on that structure and on the contents. We �rst point out someconsiderations about the problem, and then present our model.� There are di�erent ways to express structure, e.g. SGML markup, grammars for parsing, etc.� There may be parts (or the whole) of the text with no structure, e.g. a highly structured form mayhave a place for free annotations, which has no internal structure.� We are focusing on hierarchical structures, e.g. a book has an introduction and a set of chapters, whichmay have sections, subsections, etc. which are composed from paragraphs.� We do not restrict ourselves to strictly hierarchical structures, e.g. the same book may also havevolumes, pages and lines, which overlap with the previous structure.� It is not normally possible to impose a priori limits on the complexity of the structure, since it may berecursive, e.g. the structure of \C" code has no limits on nesting.� The structure may be coarse- or �ne-grained, depending on the problem, e.g. a book vs \C" code.� It is not possible to establish general criteria for the distribution or shape of structures, e.g. declarationson \C" code are concentrated on the beginning, most formulas may be in a single chapter of a book,etc. This means that a meaningful study on the average running times of our algorithms is not possiblein general.All these facts need to be taken into account at the time of designing a structuring model. We present nowan informal description of our model, to enhance intuitiveness. We formalize these notions in a later chapter.3.1 Main ConceptsIn this section we expose our general ideas on how a structuring model and a query language can be de�nedto achieve the goals of e�ciency and expressivity simultaneously. Later, we draw the model following theselines.Our main goal is to de�ne powerful operations that allow matching on the structure of the database, butavoiding algorithms that match \all-against-all" (e.g. [KM92]), searching what we want across the whole treeof the structure. 9



Since we want to de�ne a fully compositional query language, we can consider query expressions as syntaxtrees, where the nodes represent operations to perform and the subtrees their operands.A �rst point is that we want a set-oriented language, because they have been found successful in other areas(such as the relational model), and because if we have to extract the whole set of answers, it is possible to�nd algorithms that retrieve the elements at a very low cost per element.To obtain the set of answers we want to avoid a \top-down" approach, where the answers are searched in thewhole tree. We rather prefer a \bottom-up" strategy. The idea is that we should be able to quickly �nd asmall set of candidates for our answers, and then delete those not meeting the search criterion.Our solution is a language oriented to sets of nodes. That means that the operations take sets of nodes andreturn a set of nodes. These sets of nodes are subsets of the set of all nodes of the tree of the database. Theonly place in which we pose a text matching query or name a structural component should be at the leavesof the syntax tree of queries. These leaves must be solved with some sort of index, and converted to a setof nodes. Thereafter, all operators deal with sets of nodes and produce new sets of nodes. Figure 3.1 showsthe main concepts, and will be re�ned along the work, to detail the query language and to draw a generalsoftware architecture comprising this model.
Structure index

Operators

Composition

Basic Text

OperatorsOperators

Basic Structure

Query
Language

Text indexFigure 3.1: Initial diagram of how our model operates.With this approach, we use indices to retrieve the nodes that satisfy a text matching query, or the nodescorresponding to a given structural component, also called \constructor" (e.g. chapters). These sets must beobtained without traversing the whole database.Once we have converted the leaves of the query syntax tree into sets, all the other operations take the sets ofnodes and operate them. Normally one set will hold the candidates for the result of the operations. Observethat, this way, we never have to traverse the structure when searching.We need still another piece to complete the picture, since at this point the operations between sets can be astime-consuming as matching against the database.This piece is the coupling between nodes and segments. The segments are pairs of numbers representing10



contiguous portions of the text. This coupling allows us to use e�cient data structures to arrange the nodesby looking at their segments (for example, forming a tree). In other approaches [KM93, GT87], there is aweak binding between nodes and the segment they own in the text, and thus they need to search in the wholetree to �nd what they need.In order for this arrangement to be e�cient, the operations should be de�ned in such a way that they onlyneed to match nodes from both operands that are more or less proximal. When this happens, we can easilyapply divide-and-conquer techniques to drastically limit the area in which we must search for matching nodes.If we can e�ciently convert text matching and named structural components into well-arranged sets of nodes,and all operators can e�ciently work with the arranged sets and produce arranged sets, then we will havean e�cient implementation.This schema allows us to have more than one structure hierarchy, if they are independent.On the other hand, we must show that many interesting operators are in fact of the kind we need, i.e. theyoperate on nearby nodes and all what they need to operate is the identity of the nodes and their correspondingsegment.Our point is then twofold: �rst, we must show that a language in which all operations work on nearby nodescan be e�ciently implemented by using adequate data structures; and second, we must show that it is possibleto obtain a quite expressive query language by using only that kind of operations.3.2 Data ModelA text database is composed of two parts:� Text, which is seen as a (long) sequence of symbols. Whether this text is stored as it is seen, or it is�ltered to hide markup or uninteresting components, is not important for the model, since we use thelogical view of the text. Additionally, symbols may be characters, words, etc.� Structure, which is organized as a set of independent (orthogonal) hierarchies. Each hierarchy has itsown types of nodes, and the areas covered by the nodes of di�erent hierarchies can overlap, althoughthis cannot happen inside the same hierarchy.Removing markup from the document is important, though. The user should not be aware of details abouthow the structure of the document is internally represented, or if it is obtained by parsing, etc. He/sheshould be able to query the document as it is seen in the display device. If two words are contiguous in thelogical view, the user should not be aware about that there may be markup between them if, for example, isasking for proximity. It may be argued that including the markup in the text allows the user to query on themarkup by text matching. However, we believe that this work must be carried out by the implementation.Any query about markup is probably a query about structure, and we have a query language for that. Theuser should not query the structure in such a low-level fashion, he/she should use the content query languageto query on contents and the structure query language to query on structure.The text is considered static, and the structure built on it quite static also. That is, although we allow tobuild new hierarchies, delete and modify them, our aim is not to make heavy and continued use of thoseoperations. We are not striving for e�ciency in those aspects, our model of usage is: the text is static, thehierarchies are built only once (or sparingly), and querying is frequent.Each hierarchy (or tree) is called a view, which as its name suggests, is an independent way to see the text(recall the example on chapters and pages, or see [SW87] for an example of what could be a view to indexonly to presentation structures). Although views are strict hierarchies (no overlaps), they do not have tocover the whole text, some portions may not be reachable through a particular view. The root of each viewis a special node considered to comprise the whole database.Each view has a set of constructors, which denote types of nodes of the corresponding tree. Examples ofconstructors are page, chapter and section. The sets of constructors of di�erent views are disjoint.11



Each node of the tree corresponding to a view has an associated constructor, and a segment, which is a pairof numbers representing a contiguous portion of the underlying text. The segment of a node must include thesegments of its children in the tree (this inclusion needs not to be strict). The correspondence between nodesand segments is important, since (unlike p-strings [GT87]) a node cannot be dissociated from its segment.Any set of disjoint segments can be seen as belonging to a special text view, where the nodes belong to a textconstructor and have at structure (all nodes at the second level of the tree). Thus, the text view has one nodefor each possible segment of the text. The idea is to use that view to model pattern-matching queries, whichwe impose to have at structure. This imposition is not essential, since those pattern-matching expressionscould perfectly well generate a nested structure. However, we assume that the structure is at for someoperations on pattern-matching queries, which would not be applicable if the structure is not at.3.3 Query LanguageIn this section, we de�ne a query language to operate on the structure de�ned previously, including alsoqueries on contents.We do not intend to de�ne a monolithic, comprehensive, query language, since the requirements vary greatlyfor each application. Including all alternatives in a single query language would make it too complex.Instead, we point out a number of features that may be useful, in order to select an appropriate subset foreach application.We would like to be able to express� Pattern-matching expressions on the contents of the text; we prefer to be independent of the pattern-matching sublanguage. It could be as simple as single-word matching or as complex as regular expres-sions with proximity operators, etc. Appropriate pattern-matching languages already exist.� Operations on those matches: collapse, intersect or shift segments, seeing the top-level nodes of a queryas the result of pattern-matching, etc. These operations are to be considered, together with the previousone, as part of the pattern-matching sublanguage.� All the nodes which belong to some constructor, e.g. all chapters.� Things which include or are included in others (segment inclusion), e.g. chapters including a �gure, or�gures included in a section.� Things preceding or following others, both included in some other structure, e.g. \computer" preceding\architecture", in the same paragraph.� Things which are at a given position inside others, e.g. the second paragraph of all chapters.� Direct ancestors or descendants in the tree, e.g. sections with three or more top-level paragraphs (notincluded in a subsection).� Things whose contents are the same than others, e.g. the chapter whose title is \Introduction".� Union, di�erence and intersection of queries.It is still possible to add a number of requirements to the query language, but we have to take care on thatthe operations proposed operate with nearby nodes. Operations not satisfying this cannot be implementede�ciently (see later a discusion about semijoin).We de�ne a set-at-a-time algebra, following [ST92, GT87], and to mimic the idea of the relational model,which has shown that a set-oriented language is in general much better than a navigational one. Each setproduced by evaluating a query is a subset of some view. Each element of this set is a single node, representinga single segment. Thus, a query returns a set of nodes of some view, not a subtree, so it is not possible to12



manipulate subtrees nor use queries as \views" (in the relational sense). In this sense, this approach is weakerthan [GT87].We decided not to merge nodes from di�erent views in a single result for two reasons: �rst, it is not clear,views being di�erent and independent ways to see the same text, whether this could make sense (e.g. pagesor chapters with a �gure); second, the implementation is much more e�cient if every set presents a stricthierarchy. In the approach of [CCB95a], the other choice is selected, i.e. overlaps are allowed in answers, butnot nested components.Although it is not possible to retrieve subtrees, the algebra allows to select nodes on the basis of their contextin the view tree, or the trees of the operands, much like in [KM93].This language is an operational algebra, not necessarily intended to be accessed by the �nal user, as therelational algebra is not used by the users of a relational database. It serves as an intermediate representationof the operations.3.3.1 OperationsWe list now the operations we consider are enough for a large set of applications, and suitable to be e�cientlyimplemented. As we said before, this set is not exclusive nor essential.
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elements, nearby elements, to manipulate sets and by direct structural relationships.Matching sublanguage: Is the only one which accesses the text contents of the database, and is orthogonalto the rest of the language.Matches: The matching language generates a set of non-overlapping segments, which are introduced inthe model as belonging to the text view, as explained before. For example, "computer" generatesthe at tree of all segments where that word appears in the text. Note that the matching languagecould allow much more complex expressions.Operations on matches: Are applicable only to subsets of the text view, and make transformationsto the segments. We see this point and the previous one as the mechanism for generating matchqueries, and we do not restrict our language to any sublanguage for this. However, we show anumber of good candidates for this set.M collapse M': Is the set of segments obtained by superimposing both sets of matches; whenan overlap results, they are merged. For example, "John Smith" collapse "J. Smith" getsthe apparitions of John Smith in a text, in both forms.join M: Pairs of segments of M touching each other are merged. For example, join ">*\n" getsall referenced lines in an e-mail �le (that follows that commonplace convention) and packscontiguous referenced line, this way getting referenced paragraphs.M subtract M': From the segments of M , we delete the points which are in a segment of M 0.Resulting empty segments are also deleted. For example "Name: *\n" subtract "Name:"isolates the names following \Name:".M intersect M': Is the set of segments of M , deleting points which are not in a segment of M 0.For example, "Chapter 8 * Chapter 9" intersect "Page 5 * Page 6" selects the text ofchapter 8 which is in page 6 (assuming that sui generis notation).complement M: Is the set of segments comprising all points which are not in a segment of M ,making segments as large as possible. For example, complement "^>*\n" gets the portionsof a mail �le that do not reference other mail messages.move(n,m) M (C): All segments of M are displaced, n positions the left point, m the right one(n and m can be negative). The movement is limited to avoid a segment getting out of thesmallest segment of C which previously included it. C is any query from any view (not onlytextual). For example, move(2; 0) "19??" (none) could get the last two digits of years fromthis century appearing in the text.M to M' (C): Is the set of segments that extend from the start point of a segment of M to theend point of a segment of M 0, for the closest pairs of segments of M and M 0. That meansthat a segment is in the result only if no segment included in it has quali�ed. C can be anyquery (not only textual), and is used to restrict pairs: a pair (m;m0) can be selected only ifthe minimal segment of C including m and m0 is the same or does not exist in both cases.For example, "<section>" to "</section>" (chapter) selects inner sections in a SGML-liketagged document. This allows a restricted version of both-included, as we see later. Observethat this operator cannot produce overlaps, since if two segments (a1; b1) and (a2; b2) aregenerated such that a1 < a2 � b1 < b2, then none of them should have been generated,(a2; b1) should.toplevel P: Is the set of segments comprising all points which are in a segment of P (note thatP is any expression, not only of matches), making segments as large as possible. For example,one can get the text of chapters without �gures with (toplevel chapter) subtract (toplevelfigure). This can be done only by seeing chapters and �gures as text segments.beginnings/ends P: Is the set of all points beginning/ending some segment of P . Each resultingpoint is considered a separate segment. For example, one may want to say beginnings/endsitalics to know where to send the appropriate commands to the printer.Basic structure operators: Are the other kind of leaves of the syntax tree, which refer to basic structuralcomponents. 14



Name of constructor: (\Constr" queries). Is the set of all nodes of the given constructor. Forexample, chapter retrieves all chapters in a book.Name of view: (\View" queries). Is the set of all nodes of the given view. For example, Formattingretrieves the whole view related to formatting aspects. The same e�ect can be obtained by summingup (\+" operator) all the constructors of the view.Included-In operators: Select elements from the �rst operand which are in some sense included in one ofthe second.Free inclusion: Select any included element.P in Q: Is the set of nodes of P which are included in a node of Q. For example, citation intable selects all citations made from inside a table.P beginin/endin Q: Is the set of nodes of P whose initial/�nal position is included in a node ofQ. For example, chapter beginin italics are the chapters that begin when the italic fontis active.Positional inclusion: Select only those elements included at a given position. In order to de�neposition, only the top-level included elements for each including node are considered.[s] P in Q: The same as in, but only qualifying the nodes which descend from a Q-node in aposition (from left to right) considered in s. In order to linearize the position, for each node ofQ only the top-level nodes of P not disjoint with the Q-node are considered, and those whichoverlap are discarded, along with their descendants. The language for expressing positions(i.e. values for s) is also independent. We consider that expressing �nite unions of i..j,last� i..last� j, and i..last� j would su�ce for most purposes. The range of possible valuesis 1..last. For example, [3..5] paragraph in page retrieves the 3rd, 4th and 5th paragraphsfrom all pages. If paragraphs included other paragraphs, only the top-level ones would beconsidered, and those partially included in a page would be discarded.[s] P beginin/endin Q: The same as beginin/endin, but using s as above. For example,[last] page beginin chapter selects the last pages of all chapters (which normally arenot wholly included in the chapter).Including operators: Select from the �rst operand the elements including in some sense elements from thesecond one.P with(k) Q: Is the set of nodes of P which include at least k nodes of Q. If (k) is not present,we assume 1. For example, section with(5) "computer" selects the sections in which the word\computer" appears �ve times or more.P withbegin/withend(k) Q: Is the set of nodes of P which include at least k start/end points ofnodes of Q. If (k) is not present, we assume 1. For example, chapter withbegin(10) page selectschapters which extend for ten pages or more (assuming each chapter begins at a new page).Direct structure operators: Select elements from the �rst operand based on direct structural criteria, i.e.by relationships of direct parentship in the tree of the view. Both operands must be from the sameview, which cannot be the text view.[s] P child Q: Is the set of nodes of P which are children (in the view tree) of some node of Q, ata position considered in s (that is, s-th children). If [s] is not present, we assume 1::last. Forexample, title child chapter retrieves the titles of all chapters (and not titles of sections insidechapters). Note that child is not essential, since [s] P child Q = P is ([s] View in Q), but thisalternative is much more expensive, as we see in the implementation.P parent(k) Q: Is the set of nodes of P which are parents (in the view tree) of at least k nodes ofQ. If (k) is not present, we assume 1. For example, chapter parent(3) section selects chapterswith three or more top-level sections. 15



Positional operators: Select from the �rst operand elements which are at a given distance of some elementof the second operand, under certain additional conditions.P after/before Q (C): Is the set of nodes ofP whose segments begin/end after/before the end/beginningof a segment in Q. If there is more than one P -candidate for a node of Q, the nearest one to theQ-node is considered (if they are at the same distance, then one of them includes the other andwe select the higher one). In order for a node of P to be considered a candidate for a Q-node,the minimal node of C that contains it must be the same than that of the Q-node, or must notexist in both cases. This appears to solve the problem of both-included, but it does not, as we seelater. For example, table after figure (chapter) retrieves tables which are nearest to a �gurepreceding them, inside the same chapter.P after/before(k) Q (C): Is the set of all nodes of P whose segments begin/end after/before theend/beginning of a segment in Q, at a distance of at most k text symbols (not only the nearestones). C plays the same role as above. For example, "computer" before(10) "architecture"(paragraph) selects the words \computer" that are followed by \architecture" at a distance ofat most 10 characters (or words, depending on the view we have on the text), inside the sameparagraph. Recall that this distance is measured in the �ltered �le (e.g. with markup removed).Set manipulation operators: Manipulate both operands as sets, implementing union, di�erence, and in-tersection under di�erent criteria. Except for same, both operands must be from the same view (whichmust not be the text view).P + Q: Is the union of P and Q. For example, small + medium + large is the set of all size-changingcommands. To make a union on text segments, use collapse.P � Q: Is the set di�erence of P and Q. For example, chapter � (chapter with figure) are thechapters with no �gures. To subtract text segments, use P subtract (P same Q).P is Q: Is the intersection of P and Q. For example, ([1] section in chapter) is ([3] section inpage) selects the sections which are �rst (top-level) sections of a chapter and at the same timethird (top-level) section of a page. To intersect text segment use same.P same Q: Is the set of nodes of P whose segment is the same segment of a node in Q. P and Qcan be from di�erent views. For example, title same "Introduction" gets the titles that say(exactly) \Introduction".Observe that all operations related with beginnings and endings make sense only if the operands are fromdi�erent views, since otherwise they are the same as their full segment counterparts.Except for child and View, the operators are not redundant. One can consider that there are too manyoperands, but recall that we do not propose a speci�c query language, rather we point out a number ofoperators that are e�ciently implementable within our approach.Note that the only moment in which we access the text is in pattern-matching subqueries, which are leaves ofthe syntax tree of the query expression, and that names of nodes are converted to the set of their segments.From then on, the rest of the operations manipulate nodes based on their identity and their segment, not textcontents nor structures. By only manipulating nodes with a suitable data structure to combine them and toeasily obtain the set of segments of a given constructor, a quite expressive language can be obtained, whichis at the same time e�ciently implementable, since we know from the start where to combine the elementsfor matching structures.At this point, we could consider a \semijoin" operation (since the full join needs tuples and is completelyoutside the style of the algebra). A semijoin selects from one set the elements that would participate in ajoin with other set. For example, suppose that we have an operator P says Q (where P and Q are from thetext view), which selects the elements of P whose text is equal to the text of some element of Q. This is notlike same, that compares segments, in this case we compare contents.A constructor like this one would allow us to express queries like \give me the books that are referenced inthis list" (think of hypertext, for example). 16



Many implementations are possible. For example, we could read all segments of Q from the text �le (in asingle pass, if we have the set sorted by segment position), build an automaton [HU79] to recognize any ofthe strings, and then passing the automaton on the segments of P (another single pass on the text), selectingthose segments where the automaton recognizes exactly the segment. This solution is time-e�cient, but hasto store all the strings of Q.Another possibility is to store hash values of the strings, and then traversing P doing the same. If we �ndthat the hash value of a P segment is equal that of a Q segment, we read again the Q segment to make theexact comparison. As it can be seen, less space but more seeks are needed.Still a third possibility is to use a PAT array to search for each Q segment. Each search returns an area of thePAT array with all the points of the database where the text begin like the Q segment. Then, we search eachP segment into the set of all match points returned by the PAT, selecting those which are found. Observethat we only have to read the contents of Q segments, not P segments. This approach is O(n log2 T ) time(where n is the size of the operands and T is the length of the text of the database) and makes no seeks,although it may require to store a lot of match points (a word each) if the words of Q are too frequent. Wecan store the areas of the PAT array instead of each of their segments, making the algorithm O(n) space,but then each P element has to be sequentially searched in each area, thus adding n� matches to the timecomplexity.The problems are many. First, it is no longer true that the text is only accessed at the leaves of the querysyntax tree. This, on the one hand, does not help to isolate the text search engine from the rest of thesystem, since we have to access the database from our own. On the other hand, can make text managementmuch more ine�cient, since a good text search engine can answer the normal questions about text with littleaccess to the real database, by using indexing.It is because of this that we prefer to have an algebra oriented to node proximity. Our point is that thatalgebra is much more e�cient if we do not have operators like semijoin. Although we lose some expressivityby eliminating it, we prefer to sacri�ce that expressivity in terms of e�ciency and purity of the model.3.3.2 ExamplesWe present some interesting examples of the use of these operators.Suppose we have a view V with constructors book, introduction, bibliography, chapter, appendix,section, paragraph and formula. A book has an introduction, a number of chapters, a bibliographyand an appendix that has sections. chapters also have sections and sections have more sectionsinside them, and paragraphs. We also have figure and table, which can be children of a section or achapter. A table is divided in rows, and these in columns. The following elements have always a title:book, chapter, section, figure and table. Finally, we have citations which references other books, listedunder bibliography.We have another view V 0 with volume, page and line. We have still another view VP for presentationaspects, e.g. underline, emphasize, font, etc.Suppose also that we have a simple matching language, in which it is only possible to �nd a given word.� italics before(100) (figure with "earth") (page) is the query we wanted in the Introduction.� chapter parent (title same "Architecture"), is the set of all chapters of all books titled \Ar-chitecture". Here, "Architecture" is an expression of the pattern-matching sublanguage.� [last] figure in (chapter with (section with (title with "early"))), is the last �gure ofchapters in which some section (or subsection, use parent if you want top-level sections) has a titlewhich includes the word \early". This example is illustrated in Figure 3.3.� paragraph before (paragraph with ("Computer" before(10) "Science" (paragraph))) (page),is the paragraph preceding another paragraph where the word \Computer" appears before (at 10 sym-bols or less) the word \Science". Both paragraphs must be in the same page.17



� VP with (Q) solves the problem of [SW87], by giving the sequence of presentation commands to followin order to present matches from query Q. Those commands are obtained by traversing the tree indepth-�rst order.� [3] column in ([2] row in (table with (title same "Results"))), extracts the text in posi-tion (2; 3) of tables titled \Results".� (citations in ([2..4] chapter in book)) with "Knu*", selects references to Knuth's books inchapters 2-4.� (section with formula) � (section in appendix), selects sections with mathematical formulasthat are not appendices.� introduction + (chapter parent (title with "Conclusions")) + bibliography, can be a goodabstract of books.
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.  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  ..  .  .  .  .Figure 3.3: Illustration of the e�ect of the query [last] figure in (chapter with (section with(title with "early"))). Bold circles are selected nodes.3.4 A Software ArchitectureIn this section we outline a possible software architecture for a system based on our model. Later, we showhow the prototype follows these lines.Our language is not intended to be accessed by �nal users. Rather, it presents an operational algebra ontowhich a user-oriented query language can be mapped.Users should interact with our system via an interface, in which they de�ne what they want in a friendlylanguage (see [KM93] for an example of a friendly language oriented to querying structured databases). That18



interface should then convert that query into a query syntax tree, i.e. the language we present here. Thistree is then submitted to the query engine.The query engine optimizes the query and generates a smart query plan to evaluate it (i.e. linearizes thetree into a sequence of operations to perform). The leaves of the query tree involve extracting componentsof the hierarchy by name (constructors), and text matching subexpressions. The �rst ones are solved byaccessing the index on structure to extract the whole set of nodes from that constructor (i.e. a set of nodeids and their segments). The second ones are submitted to the text search engine, which returns a list ofsegments corresponding to matched portions of the text. Thereafter, the rest of the operations are performedinternally, until the �nal result (a set of nodes) is delivered to the interface.The interface is in charge of providing visualization of results. To accomplish that, it must access the contentsof the database, at the portions dictated by the retrieved segments. This is also done via a request to thetext engine, since only it knows how to access the text.We pose some requirements to the text engine. The minimum that we need is a subsystem o�ering us apattern matching language, to which we can submit a query in that language and it returns a set of (non-nested and non-overlapped) segments of the text that match the query. The subsystem is the only responsiblefor the view we have on the text, and which can perform markup �ltering, stopword elimination, synonymsubstitution, use a thesaurus, etc. We access the text only through this engine, which is also responsible forindexing the text for its operation. Finally, it must provide a means to retrieve �ltered text upon submissionof a segment. Notice that if the text subsystem makes any kind of �ltering or if it partitions documents intomultiple �les, it is responsible for keeping consistency between positions in the �ltered �le (as the upper layersees it) and positions in the real �le. These positions can be word positions, character positions, etc.See Figure 3.4 for a diagram of how a complete system based on this schema should be. The �gure does notillustrate the indexing process. The \document layer" is intended to support more sophisticated documentmanagement, such as collections of documents, etc. It translates all references to collections (as the user seesthem) to references to documents (as they are indexed in lower levels).
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The indexing process is presented in Figure 3.5. If the text engine is a completely separate subsystem, twoseparate indexing processes can exist. One of them indexes the text to answer text pattern-matching queries(this indexing is performed by the text engine). The other extracts the structure in some way from the text(parsing, recognizing markup, etc.), and creates the structure index, which is later accessed by the queryengine. This is the only time when the text can be accessed directly from outside the text engine.
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Chapter 4ExpressivityThe aim of this chapter is to study the expressivity of our model. We begin with a formalization of thedescription of Chapter 3, then we formally compare our model against each one of the similar models and�nally we draw an informal framework to situate the expressivity of any similar model.We are not going to treat our proposal as a complete language. The idea is to make an operator-wisecomparison, i.e. which operators we need to represent each of the similar models, and vice versa.4.1 Formal ModelA text database is a tuple (T ;V; C;N;R;Constr; Segm), where� � = I(T ) is the alphabet of the text (I(f) denotes the image of function f).� T : [1::T ]! � is the text array. T is the size of the database (number of symbols).� V is the �nite set of views over the text, with a distinguished element Vt 2 V (the text view).� C = I(C) is the �nite set of constructors, with a distinguished element Ct 2 C (the text constructor).� N = I(N ) is the �nite set of nodes, including special text nodes ta;b for each 1 � a � b � T (the textnodes).� C : V ! }(C) is the set of constructors of each view, we also write C(V ) as CV . It holds 8V1 6= V2 2V; CV1 \CV2 = ;. Also, CVt = fCtg.� N : V ! }(N ) is the set of nodes of each view, we also write N (V ) as NV . It holds 8V1 6= V2 2V; NV1 \NV2 = ;. Also, NVt = fta;b=1 � a � b � Tg.� R : V ! }(N �N ) is the binary relationship which de�nes the tree of each view, we also write R(V )as RV . It holds 8V 2 V; RV � (NV �NV ). Also, R(Vt) = ;.� Constr : N ! C is the constructor of each node. It holds 8V 2 V; 8x 2 NV ; Constr(x) 2 CV . Thisimplies that 8a; b=1 � a � b � T;Constr(ta;b) = Ct.� Segm : N ! [1::T ]�[1::T ] is the segment of each node. It holds 8x 2 N ; Segm(x) = (a; b)) a � b. Wealso de�ne From and To to satisfy Segm(x) = (From(x); T o(x)). Finally, we de�ne Segm(ta;b) = (a; b),as expected.We de�ne a binary relationship �! as the union of RV , for all V 2 V, that is �!= SV 2V RV . We imposethe following conditions on �!: 21



� 8x; y 2 N ; x �!+ y ) :y �! x, that is, loops are not allowed. Here, �!+ is the transitive closure of�!.� 8V 2 V; 9! rV 2 NV = 6 9x 2 NV =x �! rV , that is, each view has a single root.� 8x; y 2 N ; x �! y )6 9z 6= x=z �! y, that is, any node has at most one parent.� 8x; y 2 N ; x �! y ) Segm(y) � Segm(x). When we operate segments as sets we interpret Segm(x) =fn 2 Nat=From(x) � n � To(x)g. That is, the segment of a node includes the segment of itsdescendants.� 8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) � Segm(y) ) x �!+ y, that is, except in the text view, if twosegments of the same tree are included one into the other, then the including one is ancestor of theincluded.� 8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) = Segm(y) ) x �!� y _ y �!� x, that is, except in the textview, if two segments of the same tree are equal, then they are in a single path of the tree. Here, �!�is the Kleene (transitive and reexive) closure of �!.� 8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) � Segm(y) _ Segm(y) � Segm(x) _ Segm(x) \ Segm(y) = ;,that is, there is a strict hierarchy of segments (except in the text view).Finally, we de�ne a binary relation in N �N , called �, to mean that the �rst node includes the other (do notconfuse with segment inclusion). If both nodes are from the same view then the second must descend fromthe �rst one; otherwise we test for segment inclusion. Thus, x � y , (9V 2 V �fVtg=fx; yg � NV ) ? y �!+x : Segm(x) � Segm(y). Observe that x � y ) Segm(x) � Segm(y), but the reciprocal is not true.We are now in position to de�ne the semantics of the de�ned operations. We do so by de�ning a functionI : Expr! }(N ), which interprets each expression in terms of a set of nodes. In Appendix A we de�ne Expr(our language syntax) by an annotated abstract syntax, and then de�ne I. With that formal de�nition, wecan compare our model against others.It is important to note that our model includes all operators proposed in [CM95] and more, so its positiveresults about expressivity apply also to us, while some negative results do not (e.g. we can express directancestorship, but not both-included nor joins on contents).4.2 Comparison with Similar ModelsIn this section we compare our model against those which are close to it, namely the novel approaches.We compare �rst our model against the hybrid model [BY94], PAT expressions [ST92], overlapped lists[CCB95a], lists of references [Mac91] and the tree matching model [KM93]. We determine which aspects ofone model can be represented in another one.The p-strings model [GT87] lies outside this comparison, since it is a data manipulation rather than a querylanguage. We can say, intuitively, that it is very expressive. Recall also that we compare only the portion oflists of references [Mac91] related to querying structures.Before entering into the details of each case, we de�ne here the overhead of a representation, as the ratiobetween the translated query length over the original one. This is de�ned as if only one translation rule wereto be applied, for example if a translation rule duplicates an operand, we say that the overhead is 2, althougha formula with n operators like that one will be 2n times longer when translated.4.2.1 The Hybrid ModelWe show that our model subsumes this simple model. Some observations follow.22



This model consists of documents, �elds and match points. Fields can overlap freely. Thus we have a viewof documents (called DV ) and a number of views for �elds, as many as necessary to avoid overlapping nodesinside a single view. We represent a �eld f by the constructors f1::fr, where r > 1 if we need to split theview of that �eld because of overlaps.Answers in the model are pairs (D;M ), where D is a set of documents and M a set of match points, so werepresent each query of this model with two of ours, one for D and another for M .Finally, we do not compare the matching sublanguage, since our interest is not there.We de�ne two functions, D to represent the D component andM to represent the M component. AlwaysD() � DV and M() � Vt (in fact, size-1 segments). For a formal de�nition of the semantics of the hybridmodel, see [BY94]. The de�nition of the D andM functions is depicted in Appendix B.1.From the de�nition follows that we can represent all the model, although with some overhead: O(m2m) ifsome(q1::qm) is involved, max(2; r) otherwise.The converse of this representation is weak. The hybrid model can represent little from ours, becauseof its poor structuring power. It can de�ne all our hierarchies, but without obtaining information aboutancestorship.Suppose we have a single document comprising all the database, and all the constructors from all views arerepresented as �elds (we cannot use documents because they are too strict, thus we can only use matchpoints). We represent the beginnings of the segments, so suppose there are no two segments with the samestarting point (which is a restriction). We use a function R to denote the translation, which is de�ned inAppendix B.1.As the de�nition of the function shows, little can be represented in this model. There is no overhead in thesubset that can be represented.4.2.2 PAT ExpressionsThis approach does not have a very powerful structure, albeit it has good pattern matching primitives. Webegin by showing that we can represent this model almost completely (disregarding text matching and someundesirable complications).Since each region de�nition is a set of non-overlapping (and, in fact, non-nesting) segments, we use a viewVreg for each region reg, and our answers are text segments with the resulting areas. The language is quitecomplicated with respect to the conversion between regions and match points, and this is in fact not good,so we disregard this subject as long as we can, assuming we deal with regions (� segments). In any placewhere a conversion from regions to match points is needed, we can apply the beginnings operator. Thisconversion cannot be syntactically determined, so we cannot represent it. However, these conversions aremore a problem of the model than a powerful feature we would like to represent in ours.We de�ne a function I to represent the translation. For a description of the semantics of the language, see[ST92]. The I function is de�ned in Appendix B.2.As it can be seen from the de�nition of the function, most of the model can be represented in our terms. Theoverhead is no more than 2.Now the converse. A strong restriction is that our views have to be at. We suppose we have a region regcfor each constructor c, and we return segments from regions. We use a function P to denote the translation.P is de�ned in Appendix B.2. From its de�nition follows that we have to lose a lot of structuring power totranslate our model into this one. The subset that can be translated has no overhead.4.2.3 The Overlapped Lists ModelThe structuring mechanism of this approach is quite similar to PAT Expressions, so the comparison isanalogous. We show that, except for overlapping regions, our model subsumes this one.23



We use views Vreg and the rest as before. We cannot represent overlapping regions, so this is a restriction. Fora description of the semantics of the language, see [CCB95a]. The H function representing the translation isde�ned in Appendix B.3. Since we cannot represent overlaps, we return the collapsed version of the originalanswer.As it can be seen from the de�nition of the function, all the model except the overlapping feature can berepresented in our terms. The overhead is no more than 2.Now the converse. A strong restriction is that answers are at (although they can overlap). We suppose wehave a region regc for each constructor c, and we return segments from regions. We use a function W todenote the translation.W is de�ned in Appendix B.3. From its de�nition follows that, if we disregard the problem of at answers(which is important), a signi�cant part of the query operations can be translated. The overhead is no morethan 2, except for with(k), where the overhead is k (i.e. the overhead is exponential, because the operand isrepeated k times, while the original formula needs logk bits to represent k).4.2.4 The Lists-of-References ModelThis model allows the structures to be hierarchical, but it does not retrieve sets with nested elements or setswith elements from di�erent constructors.We initially discuss how to represent this model. It has just one (strict) hierarchy, so we have a single viewV . We de�ne a function X to represent the translation. For a description of the semantics of the language,see [Mac91]. The X function is de�ned in Appendix B.4.As it can be seen from the de�nition of the function, all the (selected portion of the) model can be representedin our terms. The overhead is no more than 5 (because of not having all n).Now the converse. A strong restriction is that only one hierarchy can be represented, and that the answershave to be at and from the same constructor, so only the top-level of our answers can be represented, andunions can be done only in the same constructor. We use a function Y to denote the translation.Y is de�ned in Appendix B.4. From its de�nition follows that an interesting part of our model can beexpressed with this one, if we disregard the mentioned limitations. The subset that can be translated has nooverhead.4.2.5 The Tree Matching ModelThis model is quite expressive in terms of structure, but weak with respect to the relationship betweenstructure and text.We begin analyzing how can we represent this model. It has just one (strict) hierarchy, so we have a singleview. To represent a single leaf c we use Constr(c). To represent constr(T1; :::; Tk) (i.e. a tree labeled constrwith subtrees T1; :::; Tk), we could in principle use (:::(( Constr(constr) with T1) with T2)::: with Tk), butthat is not exactly the same. The reason is that, as [KM93] speci�es, a structural property (e.g. ancestorship)must hold in the target if and only if it holds in the pattern, so our query translating a(b; c) (i.e. (a with b)with c) could return the root of a tree a(b(c)), in which holds that c descends from b, which is not true inthe pattern. We have not been able to express this restriction in our language. We can use after/before toexpress that they should not descend from one another, but we cannot say that both of them should descendfrom a (i.e. a with (b before c (none)) will retrieve a from the target d(a(b); c), which is not desired).This problem is exactly the n-included problem mentioned when we surveyed [CM95], which we are con�dentthat cannot be solved with a 1-tuple algebra like ours. Observe that the source of this problem is that it isnot possible to express that a constructor appearing in two parts of an expression should denote the samenode, and that is exactly what an equijoin would do. We could add a ternary operator both-included(A;B;C)to solve the a(b; c) problem, but we could not solve the a(b; c; d) problem, and so on.By looking at our representation of the overlapped lists model, we can attempt to solve the problem for24



a restricted case. Suppose we translate a(b1; :::; bn) as (a with ((toplevel b1) to ... to (toplevel bn)(none):::(none))). It works if there are no solutions at a deeper level, for example a(b; c) would not be foundin a(b(b; c)). But it works for certain restricted cases, namely when for each of the bi there is a bj such thatbi cannot include bj (we can achieve this by partitioning the constructor sets). With this restriction we canrepresent tree patterns, by recursively applying the translation to each of the bi subtrees. Observe that theoverlapped lists model handles this situation more easily.Before referring to logical variables, which make this model much more powerful but more intractable fromthe point of view of the algorithms, we should consider that tree pattern-matching alone, as de�ned, cannotexpress our inclusion semantics, except by a union of a combinatorial number of alternatives. That meansthat each model has a di�erent conception of how an inclusion pattern should be understood. While thismodel interprets that an ancestorship relation should hold in the target if and only if it holds in the pattern,our model interprets that the relation should hold in the target if it holds in the pattern, but more relationscan hold. The subject of why cannot we represent the alternative semantics or how can logical variables beused to reasonably represent our semantics should not distract us from the fact that both models have abasically di�erent conception of what an inclusion pattern is. It is hard to decide which conception is betterin practice.On the other hand, the model has logical variables, which we cannot express at all. They are used to extractother parts of the matching subtree, not only the root (we can do this with other mechanisms implicit in ourlanguage, since we express the context to search and at the same time what node we want from the context);and to express that two parts of the match must be identical (what we cannot express at all).We now consider what in our model can be expressed by the tree matching model. A �rst restriction is thatthere is only one view. We use the Prolog-like syntax of [KM93], and a function KX to denote the translation,which leaves the result in the Prolog variable X. Suppose the view is called V and the constructors arec1; :::; cr. The function KX is de�ned in Appendix B.5.As it can be seen, an interesting part of our model can be expressed with tree pattern matching, being theweakest part those operators related with the textual contents of the database. The overhead is exponential,because of the with(k) operator, where the overhead is k (and we need log k bits to represent k). With theexception of this operator, there is no overhead.4.3 A Comparison FrameworkTable 4.1 summarizes the primitives o�ered by each model to deal with the many aspects of a query languagefor structured text. We do not include considerations about the matching sublanguage, which is anotherimportant subtopic in practice.We situate the similar models in a common framework, and use this framework to compare the distinguishingfeatures of each model.Finding a model of expressivity as it could be the hierarchy of grammars in formal languages [HU79] iscertainly an ambitious goal (a �rst step in this direction could be [CM95]). We content ourselves withpointing out a number of aspects in which (at least) a model should be examined in order to analyze itsexpressivity. Later, we draw an informal graphical representation of the expressive power of these languages.In [SDAMZ94], a number of queries that this kind of language should be able to answer are pointed out. Wesummarize them here to show that we can express all in the areas we are interested in (i.e. we exclude thefeatures related to relevance ranking and connection to relational databases, which we do not address in thiswork).� Word-by-word access, e.g. \�nd hdocis containing `parallel' and (`computing' or `processing')" can beexpressed as (doc with \parallel") with (\computing" collapse \processing").� Query scope restricted to sub-documents, e.g. \�nd hdocis with htitlei containing `parallel' and `pro-cessing' " can be expressed as doc parent ((title with \parallel") with \processing"). The other25



Operation Set Inclusion Distances Othermanipulation featuresOur +,�, with*(k), *in after[(k)](C) powerful in bothmodel is,same parent(k), [s] child before[(k)](C) aspects: structure[s] *in and contents.Hybrid +,�,&,� �eld with both documentalmodel or, butnot, in �eld only in matches and textual[BY94] and, not queries.PAT +,�,^ including:n powerful matchingexpressions not op within fby,near language; dynamic[ST92] regions de�nition.Overlapped >; 6> n words combinationlists 5 <; 6< 3;4 operators and[CCB95a] overlapsReference union of, from also hypertextlists intersection in none and attribute[Mac91] di�erence having any k managementTree tree patterns powerfulmatching , ; + variables none structural[KM93] queries.Table 4.1: A comparison of the operators of the novel models.example in the paper is \�nd hdocis with 1st hparai containing `parallel' and `processing' ", that canbe expressed as doc with ((([1] para in doc) with \parallel") with \processing").� Retrieval of sub-documents, e.g. \�nd hsectionis with hparais containing `parallel' and `processing' "can be expressed as section with ((para with \parallel") with \processing").� Access by structure of documents. Many examples are presented here:{ \Find elements with parent of type harticlei" can be expressed as View child article.{ \Find elements with children" can be expressed as View parent View.{ \Find elements where the �rst child is htitlei" can be expressed as View parent ([1] title childView).{ \Find elements within a hsectioni" can be expressed as View in section.{ \Find hdocis that contain a hcorresi can be expressed as doc with corres.{ \Find hsectionis that contain a hsectioni" can be expressed as section with section.� Access to di�erent types of document, e.g. \Find articles, papers and books with `parallel' and `com-puting' in the title" can be expressed as (article + paper + book) with ((title with \parallel")with \computer"). This issue is more concerned with the problem of having the di�erent constructorsstanding for \title" in each type of document, but this is also easily handled: (book with booktitle...) + (article with articletitle...) + ...� Access by attributes, e.g. \�nd hcorresis with attribute `con�dential' = yes". If we have those attributesas constructors children of the node and their values in the text, we can answer simple queries, in thiscase we express it as corres parent (condifential same \yes").Another attempt to classify these kind of models is made in [Loe94], which surveys a number of approachesto structured text retrieval. 26



4.3.1 A Methodology to Analyze a LanguageWe want to make a stricter analysis that the one done in [SDAMZ94], since its requirements are ful�lled bynot-so-powerful languages also. We divide our analysis in three main areas.Structuring mechanism: It refers to the capabilities of the language to express the structure of a textualdatabase. Some questions one should ask here are:� Is it possible to express a hierarchy? (e.g. some models impose a at structure).� Is there any limit on the hierarchy? (e.g. maximum depth, recursiveness, etc.).� Is the hierarchy strict or does it allow overlaps? (e.g. we allow overlaps only between di�erentviews).� Does it allow to express multiple hierarchies? (e.g. the tree matching model has only one hierar-chy).� Is there any limitation on the construction of the hierarchy? (e.g. PAT expressions has someparsing constraints that impose a nonrecursive structure).Query language for contents: It refers to the part of the query language related to the text of thedatabase, and especially the way to relate it to structure. Some important questions are:� How is the string matching sublanguage? (e.g. wildcards, proximity, matching with errors, ranges,regular expressions, etc.).� How is a matching subquery inserted in the context of a structural query? (e.g. we see text queriesas part of a special text view).� How can restrictions on distances be expressed? (e.g. after/before).� How is the text seen in the model? (e.g. we associate nodes with their segments, other models seealmost only text, and others almost do not see the text).� Is it possible to express relationships between the contents of di�erent parts of the text? (e.g.chapters whose title is listed elsewhere in the text).� How are the set manipulation features with respect to contents? (e.g. we use di�erent operators,as also does the hybrid model).� Are text segments �rst-class objects? (e.g. some models do not allow to retrieve text segments,or to test if a text segment includes something).Query language for structure: It refers to the part of the query language related to the structure of thedatabase. Important questions are:� How can ancestorship/descendantship be expressed? (e.g. in, with).� Can it distinguish between direct and transitive relations? (e.g. the tree matching model cannotdi�erentiate a child from a descendant).� Can it discriminate ordering or positions among siblings? (e.g. [s] in).� Can it express relationships between the structure of di�erent parts of a matching tree? (e.g. thetree matching model can select chapters having two sections with identical structure).� How are the set manipulation features with respect to structure? (e.g. union, di�erence, intersec-tion, complement, etc.). 27



Area Structuring Contents Structuralmechanism query language query languageA set of disjoint Text is a special view. Can express inclusion,strict trees (views), Nodes cannot be disso- positions, direct andwith no more ciated from segments. transitive relations;restrictions. Views Text queries are leaves discriminates orderingcan overlap. of query syntax trees. (with restrictions)There are powerful dis- and manipulates sets.Our model tance operators. Text Cannot express relation-content is accessed only ships between di�erentin matching subqueries, parts of the structure.thereafter it is seen Can express complexjust as segments. There context conditions,are special set operators but not everything.for text.IR-like documents Query = matches + Only to restrict match-+ �elds + text. documents. Almost all the ing points to be in aFields can nest and language is oriented to given �eld or to selectHybrid model overlap, but it is matches, which are seen �elds including match-[BY94] a at model. as their start point. Ex- ing points (selectedpresses distances. Has sep- �elds are then seen asarate set manipulation tools matching points).for matches and documents. Weak in general.Dynamic de�nition Powerful matching lang- Weak, since structuresof regions, by pattern uage. Has matching points are at. Can expressPAT expressions matching. Each and regions. Regions are inclusion, set[ST92] region is a at just segments. Has set manipulation and littlelist of disjoint manipulation operations. more.segments. Expresses distances.A set of regions, Not speci�ed. Words and Results are at, althoughOverlapped lists each one a at regions are seen in a they can overlap. Can[CCB95a] list of possibly uniform way, by an inverted express inclusion, unionoverlapping segments. list metaphor. and combinations (3;4).A single hierarchy Text queries can only be Results are at and fromReference lists with attributes in used to restrict other the same constructor. Can[Mac91] nodes and hypertext queries. express inclusions,links. complex context conditionsand set manipulation.A single tree, with Not speci�ed, orthogonal Powerful tree patternstrict hierarchy. to the model. Apparently matching language. CanNo more it can only be used to distinguish order butrestrictions. restrict sets of nodes of not positions nor dir-Tree matching the tree. Weak link between ect relationships. Can[KM93] contents and structure. express equality betweendi�erent parts of astructure, by usinglogical variables. Setmanipulation featuresvia logical connectives.Table 4.2: An analysis of similar models.28
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Figure 4.1: A graphical representation of the comparison made in the framework.4.3.2 A Brief AnalysisTable 4.2 informally compares the similar models (including ours) with regards to the structuring mechanism,and the query language for contents and for structure. We disregard matching sublanguages in this analysis.In Figure 4.1 we present a graphical version of the analysis done for similar models in the framework. Themain desirable features are presented, and each model is represented as a set of the features it supports.Recall that we only consider part of the lists-of-references model.From the �gure, we can see that the main features lacking in our model are tuples, semijoin by contents andthe possibility of having overlaps and combined nodes in the result set of a query.Regarding tuples, joins and semijoins, only the tree matching model can manage these features (and alsop-strings, in its own context of a data manipulation language). These two languages have not an e�cientimplementation. On the other hand, overlaps and combination of resulting nodes from a query are allowedby the overlapped lists model, but at the expense of not allowing them to form a hierarchy. We have notfound an e�cient implementation if we allow both features at the same time, and consider that the hierarchyis more important in real cases.This way, we have that our model has most of the features that are important in practice. Those whichare not present are not suitable of e�cient implementation (although some of them may be important inpractice, e.g. tuples and semijoin). We show later that the e�ciency of this model is similar to those of less29



expressivity.Finally, we draw an intuitive graphical representation of the expressive power of a language, in which wesituate the analyzed approaches. It consists of a three-dimensional space, representing more or less expressivepower in the three areas: structuring power (z axis), querying on contents (y axis) and querying on structure(x axis). The representation is depicted in Figure 4.2. The placement of each model is done by consideringmainly Figure 4.1, but being a quantization of concepts, it is, to a certain extent, subjective. It must be seenjust as an alternative description of the results of this analysis, easier to interpret but less formal.
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Figure 4.2: A graphical representation of the expressive power of similar models.4.3.3 Common LimitsFrom the analysis of a number of structuring models, it also emerges a set of commonplace limits in theirexpressivity. Although the formal study of these properties is still at the beginning (see [CM95] for someresults), we should point out a number of topics that limit most text retrieval query languages. We believethat further improvements on expressivity must begin by considering these features, and how to implementthem e�ciently.� Most languages cannot express tuples of values, nor join on their attributes. They are 1-tuple-valued,i.e. any answer from a query is a set of objects, never pairs. Exceptions to this are the p-strings modeland tree matching (via logical variables). Notice that both of them are quite ine�cient to evaluatequeries.� Most languages cannot do a semijoin on text values. We have decided also to avoid it (as we explainin the de�nition of our language). Again, the exceptions are p-strings and tree matching. Also the30



object-oriented part of the lists-of-references model can deal with attributes, that can address similarproblems.� The languages that do not have an explicit hierarchy cannot answer direct ancestorship questions, suchas �nding the immediate parents of a set of nodes. Our model can do this, as p-strings does. In thiscase, tree matching avoids it to encourage data independence (i.e. to avoid forcing the user to be awareof the full structuring details).� Finally, it is not possible to express both-included in most languages (see Section 2.3). The possibilityto express n-included is related to tuples, and hence can be expressed in the p-strings and the treematching model. An interesting exception is the overlapped list model, which does not allow tuplesbut allows combination operators, that together with a at hierarchy with overlaps, allows to expressn-included. Our model can express it only in restricted cases.
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Chapter 5Algorithms and Associated DataStructuresIn this chapter we explain the mechanisms to implement indexing and querying. We present a data structurethat allows us to e�ciently implement all the de�ned operations, and many others which are still to bedevised. We analyze our implementation in both time and space.Since our language is fully compositional, we are faced with the problem of, given the syntax tree of aquery, compute the set resulting from it. This must be done by recursively solving the subqueries, this wayobtaining the resulting sets, which are the operators of the operand at the root. Each operator implementsa manipulation of its operands (sets of nodes) to obtain a new set.A �rst concern is whether to use full or lazy evaluation. Full evaluation means completely computing theoperands before applying an operation, while lazy evaluation means trying to obtain result of the top-leveloperation element by element, where the extraction of each element triggers the need to obtain certainelements from the subtrees. This way, only the needed part of the operands is computed, which can be muchless than the total [GT87].Consider, for example, the query \section with(10) "Computer" ". If, instead of �rst computing the wholetree of sections and subsections and then deleting sections not containing ten \Computer" words, we �rstcompute the top-level sections, see which of them contain ten \Computer" words, and then follow expandingonly the subsections of sections that classify, we avoid expanding a lot of unnecesary nodes.On the other hand, lazy evaluation may force to use less e�cient algorithms for some operations, thus it isnot immediate which one is better. This has to be experimentally tested.For full evaluation, we propose two di�erent techniques, which we name search-operate and merge. The lasttechnique is modi�ed to use lazy evaluation, sometimes losing e�ciency as explained.On the other hand, we can use di�erent kinds of indices, each of them supporting some operations at thecost of some space requirements.We begin by describing the indexing mechanisms, and then the algorithms for implementing the operations.5.1 IndexingWe are not going to address the problem of generating the index, since it can be constructed from manydi�erent sources. In the prototype, we provide mechanisms for generating the index from a parse tree (whichis much simpler to generate), this way allowing any method which generates a parse tree from the sourcetext, to generate an index this way. This mechanism is quite general, since any hierarchical structuring ofthe text is naturally represented and obtained as a parse tree.32



We need indices for two di�erent tasks: for the matching language and for the structure language. Weare not going to innovate on the �rst one. Since it is an independent sublanguage, we also leave open itsimplementation. For our prototype, we use a matching sublanguage implemented by using a PAT or su�xarray [FBY92, chapter 5] and [MM90], but any matching sublanguage and any implementation of it can beused. Indeed, our �rst prototype used a sequential search engine, without indices.5.1.1 A Full IndexFor e�ciently answering queries on structure, we are going to implement each view as a general tree, whichembodies all its nodes. As we explain later, the sets of nodes resulting from query evaluation are representedas trees too.The tree has enough information to extract the nodes of each constructor in time proportional to the numberof nodes of the constructor, not the number of nodes of the whole view. That is, each node has pointers toits �rst child and next sibling in the tree of the nodes of its constructor (see Figure 5.1). Also, the wholeview can be transformed into the format of the result of a query in time proportional to its size, by a simplerecursive algorithm.
C1

C1

C1

C1 C1

C2

C2

C2

C3

C3

C3

C1

C2

C3

Figure 5.1: An example of a view tree. Full lines are the whole tree. Dashed lines are the per-constructorparent-child relationship. Dotted lines are the per-constructor sibling relationship. Arrows go from the arrayof constructors to the �rst top-level node of that constructor.Memory RepresentationA space-e�cient way to store this view tree, both in memory and disk, is to store it in a breadth-�rst fashionon a long array, that is, all nodes from level i are before all nodes of level i + 1. Also, we need an array ofconstructors, where for each element, among other data, we have the position in the view tree of the rootof the �rst tree of nodes of that constructor (see Figure 5.2). This, combined with the mentioned child andsibling information, allows us to answer the query Constr(c) in time O(jcj) (where jcj stands for the numberof nodes of the c constructor).Note that the position of the parent of each node and of its �rst child is also stored in the array. The numberof children needs not to be stored if the layout is breadth-�rst, since it is first child(i + 1)� first child(i);in order for this formula to work, the �rst child of a leaf node must be the same as the �rst child of the next33
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segmentFigure 5.2: The same view of Figure 5.1 in array form. The tree is laid in a breadth-�rst fashion. Below, theschema of a node with its 7 words of data.non-leaf node, and we add a dummy �nal element whose �rst child is supposed to be itself. The array can betransformed into a tree (i.e. the format of answers to queries, as we see later) by a simple recursive algorithmthat traverses the array following the child information.Keeping the Index on DiskThe space requirement of this index is quite large, 7 words per node, so it is unlikely that it will �t inmemory for real applications. If the array is kept on disk, we can obtain the tree of the view, but this time itis preferable to use a breadth-�rst traversal, to make a single pass over the array on disk. It is also possibleto extract the tree of a constructor (query Constr(c)) by passing over (at worst all) the array and extractingin breadth-�rst the required tree (using a queue). Athough we pass over almost all the array, we read onlysectors containing a node of the tree. Note that the sibling chain needs not to be in ascending order on thearray (see C2 in Figures 5.1 and 5.2), so it is not possible to predict the amount of seeks necessary to retrievethe subtree of a constructor.In order to avoid this random access to the array, we need to store, for each node, the position of the nextnode (in the array) of the same constructor. With this information we can, in one pass over the array, readall nodes, store them in a hash table (accessing them by their position in the view array), and traverse theview as before, but searching the nodes in the hash table instead of randomly accessing the disk. The onlyproblem is that we do not want to add more data to the index.What we can do is to replace the two words that link the nodes of the same constructor by other two: thenext element (in the array) of the same constructor, and the �rst ancestor of the same constructor. The ideais to retrieve the nodes of a given constructor by following the next-element link (thus making a single passon the disk). We build the tree at the same time, and keep a hash table with the nodes, indexed by theirposition in the array. Each time a new element is needed from the disk, its �rst-ancestor (i.e. its parent inthe tree of the constructor) is searched in the hash table, to determine from which node must it descend inthe answer. This way we build the tree in expected linear time.A word can be eliminated from this index by noting that, in fact, the information of where the �rst child ofa node is can be eliminated at low cost. The only situation in which we need it is to answer the View query,but if the traversal is breadth-�rst, we can do it by using only the information on parent, with the same hashtable technique. 34



ReindexingAnother important problem of this schema is related to reindexing. The ideal is to be able to reindex withouthaving to rewrite the whole index, but only the modi�ed part. As it is, the index must be almost whollyrewritten even if we add text at the end (which results in adding a subtree somewhere at the extreme rightpath of the view tree), or if we delete something at the end. We can achieve the ideal of rewriting only themodi�ed part, but at the cost of incrementing seek time at query time. Since we are more interested onquerying than on indexing e�ciency, we prefer to keep the index more or less consecutive, and to search fora reasonable tradeo�.This tradeo� can be achieved by modifying the layout of the index on disk to have a di�erent (contiguous)�le per level of the tree. This way, adding a subtree at the end can be done by appending the necessary nodesat the �le of each level, and similarly to remove a subtree at the end. For adding or removing a subtree atthe middle, the amount of data we must move corresponds to the number of nodes at the right of the pathgoing from the root to the leaf of the modi�ed zone, while with the initial layout we must move almost all thearray (see Figure 5.3). We need to modify some parent/child pointers also, namely those of the parents ofthe moved nodes, which are the same nodes to move plus an additional path of the tree. While we move thenodes, we must update their parent/child information, and update the child information of the additionalpath.Note that pointers can point now to another level, and thus we use absolute positions. However, a singleword should still be enough to codify the level and position information.
separate filessingle fileFigure 5.3: Reindexing overhead. The triangle represents the whole view, and the shaded part is what needsto be rewritten when a modi�cation at the internal path occurs, under a single �le and separate �les policy,respectively.Finally, we do not consider the work needed to obtain the new tree from the modi�ed text, this is outsideour interest here.Avoiding Random Access to the DiskAnother problem is that some query operations need to access this index in unpredictable patterns, so thebigger the index, the more I/O needed to access arbitrary positions (be it due to paging or to accessingthe disk at random). The reason for this access pattern is that the sets of nodes manipulated by the queryalgorithms are just pointers to the index, to minimize space utilization, and sometimes it is necessary to askwhether a node is the parent of another.However, the parser of the query can sintactically determine which sets will need information on parentship,and for the sets that will need this information, read it to main memory at the time the sets are built (anyset construction which is not from the text view starts with a Constr query). This information consists ofthe parent of each node, and is to be gathered for all the nodes involved in the right hand side of a parentoperation, and in the left hand side of a child operation. This way, when those questions are made later, theinformation is already in main memory. 35



Favoring \Constr" Queries Against \View" QueriesConstr queries are much more common than View queries, while our index is more e�cient for View thanfor Constr.This problem can be overcome by having a separate index for each constructor, which is much like the indexfor the whole view we have been considering, but only the nodes of that constructor are stored. The di�erenceis that we do not need to store explicitly where the sibling of the same constructor is, since that informationis now implicit. We need instead to store where the �rst child and next sibling in the view are, and that maypoint to another �le. So the pointers are now of the form constructor:position, what should �t in a singleword. The parent pointer is as always, but in the constructor:position format.Solving Constr with this schema is as easy as it is to solve View with the other: we make a single passover the �le of the constructor and build the tree, with no additional seek. To solve View, we must processthe �les of all constructors in parallel, advancing sequentially in each one. By having a pointer to the �rsttop-level node of the view, we follow its pointers to its �rst child and next siblings, in the corresponsing �le.If we traverse the view in DFS, then we will progress sequentially in each �le. The change from �le to �leproduces the only seeks of the process, which are not few. In this case, since the view must anyway �t inmain memory, it is better to read all �les to main memory and merge them there, where there are no seekcosts.This approach is better when Constr is more frequent than View, which is normally the case.These �les can also be split at each level to improve reindexing e�ciency.An interesting idea is that, since the query is known in advance, all the constructor trees could be read in asingle pass over the disk, thus reducing the amount of disk I/O. This improvement can only be done if allleaves can be kept in memory at the same time and we are using full evaluation.Lazy EvaluationThe single-�le index is also suitable for lazy evaluation: if we need to expand only the �rst level of a givennode from the tree of a view, all we need is to store for this node the pointer to the view array where its �rstchild lies, and the number of children. This way, by using sequential disk access, we retrieve all its childrenfrom disk. If, instead, we need to expand a given node from the tree of a constructor, we store the pointer tothe �rst child of the same constructor of the node in the index array, and from then on follow its siblings. Ifthe constructor is spread along the view, this may take O(d) disk accesses, where d is the number of children.Observe that the solution we proposed for this problem does not work for lazy evaluation, since the whole�le has to be processed. The idea to eliminate a word from the index does not work either.If we use the multiple-�le index, then it becomes easy to expand the node of a Constr query, but hard toexpand the node of a View query. In this case, expanding a View node involves accessing multiple �les atrandom positions (and the solution of reading all into main memory does not work).The proposed techniques to handle reindexing can be used here too.5.1.2 A Partial IndexUnder certain conditions, it is possible to use a much simpler index, which takes much less space and isequally e�cient. Its problems are twofold: we cannot e�ciently answer parent/child questions (i.e. they areO(1) with the full index and O(jNV j) here), and we cannot allow two nodes to have the same segment, sincewe will not be able to distinguish which is ancestor of which. The idea is to store, for each constructor, twoarrays holding one of them the initial positions of all segments of this constructor, and the other the �nalpositions. Both of them are sorted by position (see Figure 5.4). Similar ideas are used in both the PAT textsearching system and in SearchCity [ST92, Ars92].The space utilization of this index is 2 words per node, so the whole space utilization is 2jNV j, much less36
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5 - 6 6 - 7Figure 5.4: An example of a partial index and its associated view tree.than the full index. To answer the query Constr(c), we select the �le of c and traverse both arrays at thesame time, in the same order as if we were merging the numbers of both �les (in case of equality, we givepreference to the �nal point). The output of this merge is manipulated as follows: we build the tree whilereading the nodes, each time we get an initial position, we create a child of the current point, whose initialposition is what we read; each time we get a �nal position, we complete the segment we have last opened,and we return to the previous level. This way, the tree is extracted from the two arrays in O(jcj) time, andby sequentially accessing the �les.If, instead, we have to create the tree of the whole view, we need to interpret View(V ) as Constr(C1) +:::+Constr(Ck), where CV = fC1; :::; Ckg are the constructors of V . We show when implementing the +operation that the cost to build Q1 + Q2 is O(jQ1j + jQ2j), so supposing that the size of each constructoris C = jNV j=k (which is the worst case if we sum up from smaller to larger constructs), to sum all the kconstructors until obtaining the whole view takes us(C + C) + (2C + C) + :::+ ((k � 1)C + C) = C�k(k + 1)2 � 1� � jCV jjNV j2which is reasonable if we consider that queries on the whole view are not frequent.Reindexing on this schema is quite easy: we take the new set of initial and �nal extremes and merge themwith the current set (additions), or we extract from the current set the removed nodes (removals). In bothcases, we must rewrite almost the whole tree.A possible alternative to partial indexing is to use a PAT array to comprise both indices. This only worksunder the assumption that we have the text with markup, and that the initial and �nal mark of eachconstructor have a unique pre�x (for example, the SGML-like <constr> and </constr>). In order to getthe tree of a constructor, we search for <constr> and for </constr>, sort both results (since in the PATarray the ordering is lexicographic and not positional), and then we are in the same position as if we had ourpartial index. Thus, if the number of index points is n, this method takes a factor O(2 logn+ 2jcj log jcj), ontop of ours. Moreover, since the PAT array stores one word per entry and we need two entries per segment,the space utilization is the same as our partial index, at no bene�t. Indeed, not having to index the markupreduces (slightly) the search time for normal matches. So this idea should be discarded.Lazy EvaluationThis index performs well for full evaluation. However, if we want to expand just one node to get its children,it is very ine�cient. To retrieve the �rst level of descendants we need to traverse the whole subtree of aconstructor. For lazy evaluation we can use an index which is O(3jNV j) space. It is an adaptation of the fullindex that stores each constructor in a separate �le, but storing only the segment and the �rst child of eachnode. This index o�ers the same e�ciency that the previous one does, but now it is easy to expand just onenode, in a similar way to the expansion in the full index, that is, with minimal disk movement and transfer.Expanding the node of a view is harder, as said previously.37



5.1.3 Analysis of IndexingIn this section we analyze the space requirement for indices, and the time they need to answer Constr andView queries.The initial proposal for the full index in memory uses 7 words. We show now how many bits it requires.From those 7 words, we have a segment description, which takes 2 log2 T bits (T is the size of the text); aconstructor id (log2 jCV j bits); and four pointers into the same index (4 log2 jNV j bits). We also store anarray of constructors with pointers to their �rst top-level nodes (log2 jNV j bits). So, the number of bitsrequired for the full index isjNV j(4 log2 jNV j+ 2 log2 T + log2 jCV j) + jCV j log2 jNV jThis index is optimal in time, since it answers View(V ) in time O(jNV j) and Constr(c) in time O(jcj).However, the assumption of keeping it in memory is not realistic. When keeping it on disk, the seek time canmake the retrieval of Constr(c) to be O(jcjjNV j) seek time.If we add the information on the next (in the array) node of the same constructor, the seek time is reducedto O(jNV j), but we add jNV j log2 jNV j to the space requirement (i.e. 8 words per node). We can avoidthis by replacing the two �elds as explained, thus keeping the original space requirement and average timecomplexity, although the worst case for Constr is now O(jcj log jcj) (by using appropriate data structuresand external addressing in hashing).Finally, we can eliminate the pointer to the �rst child in the view (thus eliminating another jNV j log2 jNV jterm in the space usage, i.e. using 6 words per node), and keep the same average complexity, but the worstcase for View(V ) turns to O(jNV j log jNV j).The variations that store the index in di�erent �les do not alter the space usage, they just change the orderof elements. However, the time complecity changes if we use a separate �le for each constructor. In thiscase, we answer Constr(c) in time O(jcj) in total, but View(V ) can work O(jNV j2) seek, although onlyO(jNV j) reads are made. In this case, for lazy evaluation it is better to translate V = C1+ :::+Ck, and workO(jNV jjCV j), while for full evaluation it is better to read all �les to main memory and merge there, wherethere are no seek costs.Of course if we can pay the space cost of two indices, we can keep the best version for each query.The partial index, instead, uses two words per node. In bits, it has two arrays of points, i.e. 2 log2 T bits.We also need, for each constructor, to �nd its two arrays, so if we had all the data in a long tape, we wouldneed to begin with jCV j \pointers" to the rest of the tape, i.e. log2 jNV j bits (the total number of positionsof the rest of the tape). Thus, this index takes2jNV j log2 T + jCV j log2 jNV jbits.This index answers Constr(c) in O(jcj) time, and View(V ) in O(jNV jjCV j) time.The lazy version of the partial index takes 3 words. In bits, it holds the segment and the next child, thus ittakes jNV j(2 log2 T + log2 jNV j) + jCV j log2 jNV jbits. The time complexity is the same as its 2-words version.To get an idea of how big NV can be with respect to T (the size of the database), the indexing structure ofa 300-page book (with T � 1 Mb) may have NV = 1000 nodes (needing 28 Kb for the full index and 8 Kbfor the partial one) if we index chapters, sections and paragraphs. If, instead, we index 1 Mb of C code withall the �ne parsing details, we would have near 300K nodes, i.e. 8 Mb of space for the full index and 2.3 Mbfor the partial one. 38



5.2 QueryingWe describe here the algorithms to implement the de�ned operations, to show that all of them can performvery e�ciently. Observe that we have already addressed the implementation of View and Constr as partof the de�nition of indices, so we focus on the rest here.5.2.1 Full EvaluationSince the result of a query is a set of nodes (a subset of some view), and the query language is compositional,all operations deal with sets of nodes to produce new sets. The generation of leaves is already addressed:Constr and View are resolved in the previous section, and since the algorithms for matching operations arenot of interest in here, we just assume they generate a set of matches.5.2.1.1 Data StructuresFor e�cient operation, we represent the set of nodes by a tree (it is already mentioned in the previous section,but with no justi�cation for this). This tree does not represent any hierarchy, it is just a way to store a set,which allows e�cient implementation of the operations.The criterion to form the tree is straightforward: a node descends from another in the tree if and only if itdoes in the view (see Figure 5.5).In order to save space, we could put the tree in an array, as we do with indices, but since these trees aregoing to be operated upon (i.e. additing, moving and deleting of nodes), we need a highly dynamic structure,which is not provided by the array implementation. Thus, we implement trees with pointers. For the samereason, it is di�cult to have these trees on disk, because we need rapid access to di�erent portions of them.Since the sets may be large, the need to store the full tree in memory is a weak point of this approach.This problem can be solved by a virtual-memory-like approach, keeping part of the intermediate results (i.e.whole trees) swapped out to disk. In this case, we must select the operand which will be used later to swapit out (that information is available from the query plan). An interesting option to store those internalresults is to use the same layout as the one we use for the indices of constructors. This idea, together witha good swapping policy, provides a uniform and elegant solution to the problem. Observe also that, whilean operand has to be kept in memory to e�ciently modify it, a read-only operand could be operated fromdisk with reasonable e�ciency. This way, the policy could prefer the operands that are to be used just forreading, to swap them out.
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Observe that, given the criterion to form the tree, any tree obtained from matches or operations on matchesis at, i.e. a linear array of non-overlapped, non-nested segments, so all operations on matches need to workon those arrays, while operations on other structures work over general trees.5.2.1.2 Generating a Query PlanGiven the syntax tree of a query, we need to generate a query plan, that is, a sequence of operations to yieldthe desired result. There are many ways to linearize the operations of a tree preserving dependencies. Weprefer the one which minimizes the total space needed for the computation. Suppose one has to evaluateX op (Y op (Z op W )). One could �rst obtain X and then obtain the other side. To obtain the other sideone must, while keeping X in memory, compute Y , and then evaluate the other side, and so on. This way,we have, at a given time, X,Y ,Z and W all in memory (of course we can paginate, but this is not desirableeither). If, instead, we evaluate right-to-left in this case, we need space just for two operands at each time.Note that almost all operators select nodes from the left operand which have some property, so normallyjX op Y j � jXj.This problem, although simpli�ed, is solved in [ASU86]: one has to obtain �rst the \heavier" operand, thenthe other, and then operate them. Since in [ASU86] the problem is assignment of registers to compile anexpression tree, the \weight" of a tree is de�ned as its number of nodes. We need instead to estimate thesize of our sets. In absence of good estimators, using the number of nodes seems a reasonable initial choice(although more sophisticated heuristics should be developed). Thus the algorithm would be as simple assolving the tree by selecting �rst the bigger subtrees to evaluate.A useful modi�cation to having a syntax tree for the query is to have a directed acyclic graph (DAG), to avoidre-evaluating common subexpressions. These are not so uncommon in our language: not only constructornames can be frequently repeated, but for example the not form is expressed as Q� (Q such that:::).In that case, the problem of �nding an optimal evaluation order becomes much more complicated, beingsimilar to the problem of evaluating the DAG of an expression minimizing registers [ASU86], which is knownto be NP-Complete [GJ79].Another important point is that we can write our algorithms to operate by modifying one of the operandsto produce the answer, or by generating a new set. If the selected operand is to be used only once, it isbetter to modify it, otherwise we should generate a new set. This way, we should have two versions foreach algorithm. Another alternative is to use modifying algorithms and make a copy of the selected operandbefore the operation; or to use generating algorithms and deleting the operand the last time it is used.The query plan generator must implement the appropriate policy to avoid keeping unnecessary copies inmemory, deleting operands the last time they are used. This can be avoided if the last use is \modifying", soa good policy is to leave that operation for the end. If we have both versions of the algorithms we just selectthe modifying version the last time we use an operand. Most of the algorithms modify just one operand, sothe other is used just for reading. If we have only modifying operators, we can avoid making a copy if it isthe last use for the operand to be modi�ed. All these ideas must coexist with a general heuristic to evaluatea DAG minimizing the use of memory. This problem reveals of most importance in the experimental results,and deserves a complete study in the context of smart query plan generation.A reasonable heuristic for a DAG [ASU86] is to collect the root and all shared nodes, forming the tree of eachcollected node, consisting of their descendant nodes, but stopping at leaves or at shared nodes (i.e. roots ofother trees). Each tree is solved with the optimal algorithm for trees, and the order for evaluating trees issome topological ordering of the shared nodes, where after evaluating each node we must keep it until all itsparents have been evaluated.Observe that all these algorithms to select a suitable order of evaluation are meaningful only if we use fullevaluation, since for lazy evaluation the order is dictated by the mechanism itself.Another interesting point is the optimization of the query, but we do not address that issue here, since it iscomplex enough to constitute a whole separate problem (see, for example, [CM94]).40



5.2.1.3 Description of the AlgorithmsNow we describe the algorithms to implement the operations. We de�ne �rst the type of trees TV , over viewV , that these operators work on and yield. Operators are of type operator:TV = Subtree�VSubtreeV = NV � TVoperator = T �V ! TVAs we mentioned before, we have two strategies for full evaluation.The �rst one, called search-operate, operates by selecting one of the two operands and, for each of its nodes,searching into the (tree of the) other against what should it operate, making then the operation. Thesearcher/searched selection can be changed for the subproblems (subtrees), which are generally easy to �ndgiven the search performed by the root node. Which operand is searched into which is a heuristic decision.In the operands, we call \12" the strategy that searches the left operand into the right one, and \21" theopposite. For example, if we want to intersect P and Q (i.e. is), we can take each element p from thetop-level of P , search it in the tree of Q, and keep it only if it is found in Q. The search for the children ofp starts where the search for p ended. It seems a better idea to search the smaller tree into the bigger, so ifthe subtree where the children of p must be searched is smaller than the subtree of p we prefer to search thesmaller Q subtree into the subtree of p. It also seems a good idea to have a data structure that allows binarysearch on each level of the trees. We have selected the heuristic to decide between \12" and \21" based onthe results of the analysis, intuition and experimental results.The second one, called merge, operates by sequentially traversing both trees, in a more or less synchronizedway. For example, to solve (P is Q), we traverse both top-levels in synchronization, keeping the P nodes thatwe also �nd in Q. Depending on the inclusion relationships between P and Q nodes, we may have to descendin some of the two trees. This strategy works better with a data structure that allows e�cient sequentialaccess at each level.As we show below, the worst-case behavior ofmerge is better than that of search-operate, but the average casehas to be compared experimentally, since search-operate could be better if the operands have too di�erentsize. Along with the description of each algorithm we include its worst-case analysis.We use the following notation (see also the formal de�nition of the model in Chapter 3):� A segment can be written by denoting its two extremes ha; bi, being a and b two natural numbers from1 to T .� p > q means that the segment of p is de�nitely after the one of q, i.e. From(p) > To(q). We use thesame notation with p and q being segments, or even subtrees (denoting their root node). Analogouslywe de�ne p < q.� p = q means that both nodes are the same (not segments) if they are from the same view, but if wecompare two nodes from di�erent views for equality, we mean segment equality.� As expected, � means � or = (recall the de�nition of � between nodes).� p overlaps q means From(p) < From(q) � To(p) < To(q) or vice versa.� We assume for convenience (in all merge and lazy algorithms) that each list of subtrees ends with aspecial segment h1;1i, and we assume 1 =1.� If P is a query, then its top-level list of nodes is referred as fp1::plastg. If the list of subtrees of P hasonly one element, this lone subtree is referred to as p. fpa::pbg represents a subsequence of P .41



� node(t) and query(t) are the node and subquery, respectively, of a SubtreeV t. (this query(t) may benot expanded in lazy algorithms).� jP j denotes the number of top-level elements of a tree, and size(P ) denotes the total number of nodesof P .� If we compare two segments or a node against a segment, the comparison operator should be interpretedas if they were from di�erent views. This is always well de�ned. For example, ha; bi � n , ha; bi �Segm(n).� parentview(node) denotes the parent of node in the view tree, and parentQ(node) denotes the same inthe tree of the query Q; it can be none if the node has no parent. parentQ is not stored but computedwhile searching the node into Q.� posview and posQ denote the position of the child into its corresponding parent.� none, used as a query, denotes an empty query.� When we use an operator name in pre�x form, we indicate that the operation is not performed but leftspeci�ed (for lazy evaluation).� If P = fp1::png and Q = fq1::qmg are queries (denoted by their top-level trees), then the query P : Q(concatenation of top-levels) denotes fp1::pn; q1::qmg. This can only be done if pn < q1.� We use a C-like notation for our algorithms, with call-by-value convention and replacing braces byindentation. If any statement follows an If or While condition in the same line, then all the statementsfollowing the condition in the same line form the body of the compound sentence. In merge and lazyversions, we use a switch-like notation (a big left brace), in which the conditions are sequentially tested.Finally, recall that we are not deciding whether the operations work by modifying its arguments or theygenerate a new set with the result (we use the modifying or the generating terminology, which is mostconvenient for the exposition), and that we are not including in the algorithms the operations needed to keepcount of sizes (which we need for some operations). We disregard also the consideration of some exceptionconditions that can happen, to avoid complicating the exposition (e.g. empty queries, empty segments, nullvalues, unmarking, etc.).If we use modifying operators, we need to merge nodes from di�erent levels, extract a range of nodes from alevel, etc. Although we do not detail this, we assume we use a data structure that allows searching, extractinga subinterval and merging (when the merged set is to be inserted entirely in a single point) in logarithmic time.For example, we can use balanced binary trees. Searching can be done by simple binary search. We can deletea subinterval by making two \cut" operations and then merging the resulting subtrees (i.e. to delete (a::b)from T , we make (La; Ra) = Cut(T; a), then (Iab; Rb) = Cut(Ra; b), and then T 0 = Merge(La; Rb)). Finally,we can insert a subinterval by making one \cut" and merging three subtrees, i.e. to insert Iab in T , we make(L;R) = Cut(T; a) (note that since the whole subinterval �ts in the same point of T , Cut(T; a) = Cut(T; b)),then we make T 0 = Merge(L;Merge(Iab; R)). All this can be done in O(logn) time for trees of size n,including the necessary rebalancing.We use the following numbers in the analysis: nX is the size of the set corresponding to operand X, hX isthe height of its tree (in the worst case it can be nX ) and dX is the maximum degree of its tree (it can alsobe nX in a at tree). We also use n, d and h as the maximun corresponding value between all operands(there are two or three operands). Although it is possible to obtain a measure in terms of n only, there existsnormally some relationship to h and d, which should be interesting when we know some properties of thetrees a particular application uses.Some heuristic assumptions we have to make when we attempt to map the results of the analysis into aheuristic decision for \12" vs \21" (since we do not store d nor h) are: d; h; h logd � logn, logd � constant.42



\+" operatorSearch-operate version: We select one of the two trees to \put into" the other. For each element ofthe top-level of one tree, we search it into the other, inserting it where corresponds, and chaining withsubproblems appropriately. Which tree is searched into which is a heuristic decision, as in all search-operatealgorithms.To partition the problem adequately, we do not search each element of the �rst tree in sequence, but we parti-tion the set in a binary fashion. This way, if we have to insert fh1; 1i; h2; 2i; :::; hn; nig into fh1; 2ni; h1; 2n� 1i;:::; h1; n+ 1ig, we operate by �rst searching h1; ni, then h1; n=2i and hn=2 + 1; ni, then h1; n=4i, hn=4 + 1; n=2i,hn=2 + 1; 3n=4i and h3n=4 + 1; ni, etc., until reaching the real nodes. Note that in this way we insert thenode h1; ni until the bottom of the second operand, making n operations in total, while if we inserted eachelement hi; ii, we would make n2 operations. One can see this technique as if for each level of the searchingtree, we built a binary search tree, adding arti�cial internal nodes (e.g. h1; ni, hn=2 + 1; 3n=4i). Note thatwe add O(n) arti�cial nodes. This technique is applied in all the search-operate algorithms.See Figure 5.6 for another example. From a single level of P a binary tree of arti�cial nodes is created. Wheninserting that level into Q, an originallyO(n2) task (straight arrows) is converted to an O(n logn) task (curvearrows).Observe that no overlaps are possible, since P and Q must be from the same view.P +Q (search-operate version): Operate (P;Q)Operate (P;Q)If (size(P ) < size(Q)) return Plus (P;Q)else Plus (Q;P)Plus (P;Q)If jP j = 1(Q0; b; t) Search (node(p); Q).If (q0b 6= p) Q0  fq01::q0b�1g : (p; fq0b::q0tg) : fq0t+1:::g.query(q0b) Operate (query(q0b); query(p)).else(Q0; b; t) Searchi (hFrom(p1); T o(plast)i; Q).Q0  fq01::q0b�1g : Plus (fp1::phalfg; Plus (fphalf+1::plastg; fq0b::q0tg)) : fq0t+1:::g.Return Q0.Search (node;Q)b 1. t jQj.RepeatRestrict b; t while qb�1 < node < qt+1 (binary search).If (view(node) = view(qb) 6= text view)If (node 6� qb) Return (Q; b; t).else If (Segm(node) 6� Segm(qb)) Return (Q; b; t).Q query(qb).
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Searchi (node;Q)b 1. t jQj.RepeatRestrict b; t while qb�1 < node < qt+1 (binary search).If (node 6� qb) Return (Q; b; t).Q query(qb).
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Figure 5.6: An example of the mechanism of arti�cial nodes.Search operates by binary searching the left and right extremes of the node, thus it is O(logd). Notethat if Search takes care of, prior to searching each side, verifying if the answer is not already the initialvalue of b or t, no additional work is done by adding the arti�cial nodes, since at each iteration, two ofthe four ends to search are already computed: after determining that hFrom(p1); T o(plast)i restricts theQ list to fqb::qtg, we search hFrom(p1); T o(phalf )i in fqb::qtg (then From(p1) is work already done) andhFrom(phalf+1); T o(plast)i in the same array (then To(plast) is work already done). In this way, we do notmake any additional work. Searchi is similar, but it enters into a node also when it is equal to the searchingnode.We can show that this algorithm is between O(n log d) and O(n log2 d). We have not been able to tightenthis analysis. This analysis is only valid if both operands are from the same view, which is true in this case.We �rst analyze the algorithm as if always P was searched into Q, we take care later of the possible reversingof roles in subproblems.To see that it is O(n log2 d) we �rst demonstrate that a given node of Q can only be traversed by O(logdP )nodes from P. We are interested in nodes of P that traverse some node of Q (by traversing we mean thatalong the global execution of Plus, the P -node searches into a level of Q and falls inside one Q-node, goingto the next level; this Q-node is said to be traversed by the P -node), since the P -nodes which do not traverseQ-nodes can only search on a single level of Q, thus their whole complexity is O(nP log dQ).To see that, we �rst show that all the P -nodes traversing a single Q-node are in a single level of P . Supposep1; p2 traverse q, and are from di�erent levels of P . Suppose �rst that both nodes have parents, which wedenote P1; P2. If pi traverses q, then Pi does not (since if Pi traversed q, pi would search into the descendantsof q, being impossible for it to traverse q). Note also that Pi cannot be included in q, since pi is the �rst onthe path from pi to the top level of P in traversing q. This also implies that p1; p2 cannot descend from one44



another, that is, they must be disjoint. Now observe that we have derived the following facts: p1 and p2 aredisjoint and included in q, pi is included in Pi, and P1 and P2 are not included in q. This is impossible, sinceall these nodes belong to a single hierarchy (view), except if P1 = P2, what we wanted to demonstrate. Thegeneralization to the case in which some pi has no parent is trivial.Once we have this result, we show that with the method of arti�cial nodes, only O(logdP ) (arti�cial ororiginal) nodes can traverse q. We reason as if the level of P under consideration was a binary tree (of depthlog dP ), to show that at most 2 nodes of each level of P can traverse q.Suppose there were 3 nodes of a single level of the binary tree traversing q. If they are not contiguous, thenall nodes of the same level between the �rst and the last of the three must be included in q also. Thus, thereare at least 3 contiguous nodes in a single level included in q. From those 3 nodes, two of them must havethe same parent (an arti�cial node), which extends from the start of the �rst one to the end of the secondone. Therefore, this parent node must also be included in q, moreover, properly included (because of thethird node). Then, this parent node should traverse q, and not its two children. A contradiction.Now, the rest is easy. Since any node of Q is traversed by at most O(logdP ) nodes, if we count the searchto determine each traversal, we have that the total work is O(nQ logdP log dQ). Summing this to the workdone by P nodes that do not traverse a Q level, we have a total complexity of O(logdQ(nP + nQ logdP )) =O(n log2 d).The easiest way to take switching into account (i.e. the fact that Operate can change the order between Pand Q) is to consider the total number of calls of the form Plus(P;Q) and the total of the form Plus(Q;P ).Both totals are less than if all the calls were made by only one form, thus at worst we double the time (ofcourse this is not true, a better approximation is to say that summing both complexities we complete n log2 d,but for our purposes it is the same). Therefore, the complexity remains the same if we see it in terms of dand n.To see that it is no less than O(n logn), consider fh1; n� 1i; hn; ni; h1; n� 2i; hn� 1; n� 1i; :::; h1; 1i; h2; 2ig +fh1; 1i; h2; 2i; :::hn; nig.Merge version: We merge both trees, at the top level �rst. When one segment is included in another, wedescend on the corresponding level to merge the included segments.P +Q (merge version): Operate (P;Q;1).resultOperate (P;Q; limit)res �.While min(To(pi); T o(qj)) < limit8>>>>><>>>>>: pi < qj : res res : pi. Pass i.pi > qj : res res : qj. Pass j.pi = qj : res res : (node(pi); Operate(query(pi); query(pj);1).result). Pass i; j.pi � qj : Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : (node(qj); Op:result). fpi:::g  Op:rest. Pass j.pi � qj : Exchange fpi:::g$ fqj:::g.Return (result = res; rest = nonempty list from fpi:::g and fqj:::g).This algorithm is linear, which can be proven by a simple argument: at each comparison we make, at least oneelement from P or Q is solved and no longer compared. This way, we have O(nP + nQ) = O(n) time. To seethis, we can inductively assume that Operate is linear (which is true when no further recursive invocationsare made, since for each operation at least one element is eliminated from the problem), and observe that itreturns the part of the list on which it has not worked. This way, since the recursive invocations are linearand the elements they consider are not reconsidered by the caller, we have total linear behavior.To see that the algorithm is no less than O(n) consider fh1; 1i; h3; 3i; :::; h2n+ 1; 2n+ 1ig+ fh2; 2i; h4; 4i; :::;h2n+ 2; 2n+ 2ig (both at trees). 45



\�" operatorSearch-operate version: We select one tree to search it into the other. We delete elements from P if we�nd them in Q also.Observe that no overlaps are possible, since P and Q must be from the same view.P �Q (search-operate version): Operate (P;Q)Operate (P;Q)If (size(P ) < size(Q)) Minus12 (P;Q).else Minus21 (P;Q).Minus12 (P;Q)If jP j = 1(Q; b; t) Search (node(p); Q).Operate (query(p); fqb::qtg).If (qb = p) P  query(p).else(Q; b; t) Searchi (hFrom(p1); T o(plasti); Q).Operate (fp1::phalfg; fqb::qtg). Operate (fphalf+1::plastg; fqb::qtg).Minus21 (P;Q)If jQj = 1(P; b; t) Search (node(q); P).Operate (fpb::ptg; query(q)).If (q = pb) P  fp1::pb�1g : query(pb) : fpt+1:::g.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).Operate (fpb::ptg; fq1::qhalfg). Operate (fpb::ptg; fqhalf+1::qlastg).The analysis of this algorithm is similar to the corresponding \+" operator, thus we have O(n logd::n log2 d).Merge version: We traverse both trees in synchronization. When we �nd a match, we delete the corre-sponding node from P . The inclusions among segments drive our movement through levels.The algorithm is presented in the next page.This algorithm is linear, which can be proven by an argument very similar as for \+": at each comparison,at least one element is left out of the problem, Operate is linear and does not repeat the work done in itsrecursive calls. Therefore, we have O(nP + nQ) = O(n) time.To see that is no less than O(n) consider the same example as for \+".
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P �Q (merge version): Operate (P;Q;1).resultOperate (P;Q; plimit)res �.While To(pi) < plimit8>>>>>>>>><>>>>>>>>>: pi < qj : res  res : pi. Pass i.pi > qj : Pass j.pi = qj : fpi:::g  query(pi) : fpi+1:::g.pi � qj : Op Operate (fpi:::g; query(qj); T o(qj) + 1).res  res : Op:result. fpi:::g Op:restp. Pass j.pi � qj : Op Operate (query(pi); fqj:::g;1).res  res : (node(pi); Op:result).fqj:::g  Op:restq. Pass i.Return (result = res; restp = fpi:::g; restq = fqj:::g).\is" operatorSearch-operate version: We select one tree to search it into the other. We mark elements of P when we�nd them in Q also, later we delete unmarked elements.Observe that no overlaps are possible, since P and Q must be from the same view.P is Q (search-operate version): Operate (P;Q)Operate (P;Q)MarkIs (P;Q).Delete unmarked elements from P.MarkIs (P;Q)If (size(P ) < size(Q)) MarkIs12 (P;Q).else MarkIs21 (P;Q).MarkIs12 (P;Q)If jP j = 1(Q; b; t) Search (node(p); Q). If (qb = p) Mark p.MarkIs (query(p); fqb::qtg).else(Q; b; t) Searchi (hFrom(p1); T o(plasti); Q).MarkIs (fp1::phalfg; fqb::qtg). MarkIs (fphalf+1::plastg; fqb::qtg).MarkIs21 (P;Q)If jQj = 1(P; b; t) Search (node(q); P). If (q = pb) Mark pb.MarkIs (fpb::ptg; query(q)).else(P; b; t) Searchi (hFrom(q1); T o(qlasti); P).MarkIs (fpb::ptg; fq1::qhalfg). MarkIs (fpb::ptg; fqhalf+1::qlastg).47



The analysis of this algorithm is much as for the corresponding \+" operator, except that we have to adda O(nP ) to the complexity, for collecting marked nodes. Since this does not change the total, we haveO(n log d::n log2 d).Merge version: We traverse both trees in synchronization. When we �nd a match, we include the corre-sponding node of P . The inclusions among segments drive our movement between levels.P is Q (merge version): Operate (P;Q;1).resultOperate (P;Q; plimit)res �.While To(pi) < plimit8>>>>><>>>>>: pi < qj : Pass i.pi > qj : Pass j.pi = qj : res res : (node(pi);Operate(query(pi); query(qj);1).result). Pass i; j.pi � qj : Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : Op:result. fpi:::g  Op:rest. Pass j.else : fpi:::g  query(pi) : fpi+1:::g.Return (result = res; rest = fpi:::g).This algorithm is O(nP + nQ) = O(n), again with the argument that any comparison deletes at least oneelement from the problem.To see that it is no less than O(n), we can use the same example of the \+" operator.\same" operatorThis operation is exactly like is, except in that we do not check for node equality but for segment equality.In this case, overlaps are possible. This fact does not a�ect the algorithms (observe that the clause pi = qj ofthe merge version is tested before pi � qj), but the analysis done for the search-operate version is no longervalid, because of overlaps.In this case, we analyze MarkIs12 as follows: each element of P can traverse a whole path of Q, makinglog dQ operations on each level; but it can never traverse more than the whole Q. This way, we haveO(nP min(nQ; hQ logdQ)). MarkIs21 is similar, that is, O(nQmin(nP ; hP log dP )). Thus, switching producesO(nmin(n; h logd)).We can show that it can reach O(n2) with this example: fh1; ni; hn+ 1; n+ 1i; h1; n� 1i; hn; ni; :::; h1; 1i; h2; 2igsame fh2; 2n+ 1i; h2; 2ni; :::; h2; n+ 2ig. All the nodes hi; ii traverse the whole chain of segments of Q; andthis happens at least for i 2 n::n=2 (because of switching).However, observe that our analysis for the merge version does remain the same, that is, O(nP +nQ) = O(n).\in" operatorSearch-operate version: We can search each element of P in the top-level of Q to determine whether itis included or not, in the last case we replace the P node by its children; or we can search each element ofthe top-level of Q into P to determine which nodes of P it includes, mark them, and later collect the markedP -nodes.Observe that overlaps are possible here, since P and Q can be from di�erent views.48



P in Q (search-operate version): Operate (P;Q)Operate (P;Q)MarkIn (P;Q).Delete unmarked elements from P (if a node is marked, its descendants areconsidered marked).MarkIn (P;Q)If (size(P ) log2 jQj < jQj log2(size(P ))) MarkIn12 (P;Q).else MarkIn21 (P;Q).MarkIn12 (P;Q)If jP j = 1Restrict b; t while qb�1 < p < qt+1.If (p � qb) Mark p.else MarkIn (query(p); fqb::qtg).elseRestrict b; t while qb�1 < hFrom(p1); T o(plast)i < qt+1.MarkIn (fp1::phalfg; fqb::qtg). MarkIn (fphalf+1::plastg; fqb::qtg).MarkIn21 (P;Q)If jQj = 1(P; b; t) Searchi (node(q); P).If (q overlaps pb) MarkIn21 (query(pb); fqg). b b+ 1.If (q overlaps pt) MarkIn21 (query(pt); fqg). t t� 1.Mark pb::pt.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).MarkIn (fpb::ptg; fq1::qhalfg). MarkIn (fpb::ptg; fqhalf+1::qlastg).The analysis of this algorithm is as follows.The �nal deletion of unmarked nodes is O(nP ).For MarkIn12, in the worst case we would have to process the whole P against the top-level of Q. Thisimplies that it is O(nP logdQ).To see that MarkIn12 can reach O(n logn) consider fh1; 2ni; h1; 2n� 1i; :::h1; n+ 1ig in fh1; 1i; h2; 2i; :::; hn; nig.Observe that in this analysis, dQ stands in fact for the arity of the top-level, not the maximum arity.For MarkIn21, we can use the same analysis done for \+", since although we needed there to assume theabsence of overlaps to show that only the children of a single node (of Q in this case) could traverse a node(of P in this case), and there may be overlaps here, we have only the top-level nodes in this case. Thus, italso holds here that fact. The rest of the proof did not need the absence of overlaps, so we have that onlylog dQ nodes can traverse a given P node. If we add the nodes of dQ that do not traverse a level in P , wehave a total of O(logdP (dQ + nP log dQ)) = O(n log2 d).We have still not considered the marking done at each level by MarkIn21. Observe that the marking of therange pb::pt is O(dP ) in principle, but we can use a balanced binary tree, where the root stands for markingp1::pd, its children for p1::pd=2 and pd=2+1::pd, etc. This way, marking involves traversing that binary treefrom the root to the leaves, a O(logdP ) task, thus this marking is O(dQ log dP ) in total and does not a�ectthe whole result.Again, we have not been able to show that it can reach O(n log2 n), we can only reach O(n logn) by considering49



the same example as for \+".If faced to the problem of having best worst-case complexity, we use only MarkIn12 to achieve O(n logd)behavior.This analysis does not change if P and Q are from the same view.Merge version: We traverse the top levels of P and Q, in synchronism. When a top-level node of P isincluded in one of Q, that subtree of P is included. When a top-level node of P includes one of Q, we replacethe node of P by its children.P in Q (merge version): Operate (P;Q)Operate (P;Q)res �.While To(pi) <18><>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : res res : pi. Pass i.else : fpi:::g  query(pi) : fpi+1:::g.Return res.This algorithm is O(nP + nQ) = O(n), which can be seen by observing that any element is considered atmost once.We can re�ne this analysis as follows: each time a node of P is expanded is because it contains an elementof Q or because it overlaps with an element of Q, thus each extreme of each segment of (the top-level of)Q is compared, at most, with a complete path of P (length hP ). That is because once we descend the �rstlevel in P , the relevant list from the top-level of Q has only one element (the original qj). At each level ofthis path, the merge can take us dP comparisons, thus the cost is O(dQhPdP ) = O(d2h). That means, forexample, that in a model with constant d and balanced trees the operation takes O(logn).This way, the complexity of this operator is O(min(nP + nQ; dQhP dP )) = O(min(n; d2h)).To see that it can reach O(n), we use the same example of \+".This analysis does not change if P and Q are from the same view.\beginin/endin" operatorsSearch-operate version: The idea is quite the same as for in. We use here a second mark, which meansthat the node is marked but its children are not necessarily marked. Overlaps are also possible here.MarkIn12 (P;Q)If jP j = 1Restrict b; t while qb�1 < p < qt+1.If (p � qb) Mark p.elseIf (From=To(p) 2 qb=qt) Mark2 p.MarkIn (query(p); fqb::qtg).elseRestrict b; t while qb�1 < hFrom(p1); T o(plast)i < qt+1.MarkIn (fp1::phalfg; fqb::qtg). MarkIn (fphalf+1::plastg; fqb::qtg).50



MarkIn21 (P;Q)If jQj = 1(P; b; t) Search (node(q); P).If q overlaps pb[ONLY beginin] Mark2 pb.MarkIn21 (query(pb); fqg). b b+ 1.If q overlaps pt[ONLY endin] Mark2 pt.MarkIn21 (query(pt); fqg). t t� 1.Mark pb::pt.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).MarkIn (fpb::ptg; fq1::qhalfg). MarkIn (fpb::ptg; fqhalf+1::qlastg).Operate and MarkIn are almost the same, except when deleting unmarked nodes, when we keep the elementswith the second mark, but we go into their subtrees, since they are not automatically marked.The analysis for these algorithms is exactly the same as for in.Merge version: The algorithms are quite the same as for in.P beginin Q (merge version): Operate (P;Q).resultOperate (P;Q)res �.While To(pi) <18>>>>><>>>>>:pi < qj : Pass i.pi > qj : Pass j.pi � qj : res res : pi. Pass i.From(pi) 2 qj : Op Operate (query(pi); fqj:::g).res res : (node(pi); Op:result). fqj:::g  Op:rest. Pass i.else : fpi:::g  query(pi) : fpi+1:::g.Return (result = res; rest = fqj:::g).P endin Q (merge version): Operate (P;Q)Operate (P;Q)res �.While To(pi) <18>>>>>>>>><>>>>>>>>>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : res  res : pi. Pass i.else : Op Operate (query(pi); fqj:::g).fqj:::g  Op:rest. While (To(qj) < To(pi)) Pass j.If (To(pi) 2 qj) res res : (node(pi); Op:result).else res res : Op:result.Pass i.Return (result = res; rest = fqj:::g).The analysis of these algorithms is the same as for in. The only di�erence is that there is some extra work51



in retraversing Q (i.e. the clause pi > qj). But observe that it is, in total, linear in the size of the top-levelof Q. Thus, we add O(dQ), which does not a�ect the total.To see that it can reach O(n), we use the same example as for \+".If P and Q are from the same view, beginin/endin should be interpreted as in.\[s] in/beginin/endin" operatorsSearch-operate: We can take each element of Q, search it into P , and mark the s-th immediate descendants.Or we can take each element of P , search in Q its including nodes, and for each including node, we searchback in P its immediate descendant, marking the s-th ones. This is done until there are no more includingnodes of the P -node in Q, or until the P -node is marked (each element in P is given its opportunity to bemarked). The used elements of Q are also marked, to avoid repeating work (we collect in an implicit list themarked Q elements, to avoid traversing the whole Q to unmark it). Due to the form of traversing Q, wecannot use for a node of P a node of Q corresponding to a higher level of P (since when a P -node gives theturn to its descendants, it has traversed in Q all the levels that corresponded to it).Observe that overlaps are possible here, since P and Q need not to be from the same view.[s] P in Q (search-operate version): Operate (P;Q)Operate (P;Q)MarkIn (P;Q).Delete unmarked elements from P, unmark elements of Q.MarkIn (P;Q)If (size(P ) < size(Q)) MarkIn12 (P;Q).else MarkIn21 (P;Q).MarkIn12 (P;Q)RepeatRestrict b; t while qb�1 < hFrom(p1); T o(plast)i < qt+1.If (jP j = 1) If p 6� qb Break repeat.else If (hFrom(p1); T o(plast)i 6� qb) Break repeat.If qb is unmarkedMark qb.Restrict base; top while pbase�1 < qb < ptop+1.[EXCEPT endin] If (qb overlaps pbase) base base + 1.[EXCEPT beginin] If (qb overlaps ptop) top top� 1.For each m 2 base::topIf (pm is unmarked ^ m� base 2 s) Mark pm.Q query(qb).If (jP j= 1) MarkIn (query(p); fqb::qtg).else MarkIn (fp1::phalfg; fqb::qtg). MarkIn (fphalf+1::plastg; fqb::qtg).
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MarkIn21 (P;Q)If jQj = 1If q is unmarked(P; b; t) Search (node(q); P).Mark q. MarkIn (fpb::ptg; query(q)).[EXCEPT endin] If (qb overlaps pb) b b+ 1.[EXCEPT beginin] If (qb overlaps pt) t t� 1.For each m 2 b::tIf (m� b 2 s) Mark pm.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).MarkIn (fpb::ptg; fq1::qhalfg). MarkIn (fpb::ptg; fqhalf+1::qlastg).We analyze this algorithm by considering both alternatives separately. Note �rst that the �nal collection ofmarked nodes is O(nP ) (although we have to unmark nodes of Q also, observe that the marked nodes of Qare kept in a list to unmark them, and the size of this list is < size(P )).MarkIn12 can search, in total, on the whole Q, so that part is O(nP min(nQ; hQ log dQ)) (recall same). Eachelement of Q can search on a level of P , and traverse the same level to mark its s-th children, thus we haveO(nQ(log dP + dP )), yielding a total of O(nP min(nQ; hQ log dQ) + nQdP ) = O(nmin(n; d+ h logd)).MarkIn21, on the other hand, traverses P , thus we have O(nQmin(nP ; hP logdP )), and each element canmark on a single level of P , thus we have also O(nQdP ), yielding O(nP + nQmin(nP ; dP + hP log dP )) =O(nmin(n; d+ h logd)), the same total as MarkIn12.To see that both MarkIn12 and MarkIn21 can reach O(n2), consider the following example: [s] fh1; 1i;h2; 2i; :::; hn; nig in fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig.If P and Q are from the same view, the algorithm behaves better. Since the searches become O(n log2 d)(recall \+"), we have that MarkIn12 is O(nP log dP log dQ + nQdP ) = O(nd). Similarly, MarkIn21 becomesO(nQ log dQ logdP + nQdP ) = O(nQdP ) = O(nd). Then the whole algorithm is O(nd).If P and Q are from the same view, [s]beginin/endin should be interpreted as [s]in.The same example shown for the general case demonstrates that we can reach O(n2) even inside a singleview.Merge version: This algorithm requires also marking of selected nodes. We traverse both trees in synchro-nization. When we �nd a set of nodes of P included in one of Q, we include the s-ths of them, and then wepass again over the included P -nodes, this time comparing them with the subtree of the Q-node. If, instead,the node of P includes one of Q, we follow the children of the P -node. We �nally collect the marked nodesof P .The algorithm is presented in the next page. It is analyzed as follows.First, consider that we can traverse both P and Q completely, and that the �nal deletion of unmarked nodesis O(nP ). Observe that each element of Q is deleted from the problem by doing at most O(dP ) work (whenpi � qj), thus the algorithm is O(nP + nQdP ). But also observe that each element of P can be worked on byat most a complete path of Q, thus the algorithm is also O(nQ + nPhQ). Then, the algorithm has the bestfrom both complexities, namely O(min(nP + nQdP ; nQ + nPhQ)) = O(nmin(d; h)).To see that it can reach O(n2), consider the same example as for search-operateThis analysis is not di�erent if P and Q are from the same view.The algorithms for [s]beginin and [s]endin are quite similar to [s]in, the only di�erence being that we shouldreplace (in both places) the condition pi � qj by From(pi) 2 qj for beginin and by To(pi) 2 qj for endin.The analysis is the same.If P and Q are from the same view, [s]beginin/endin should be interpreted as [s]in.53



[s] P in Q (merge version): Operate (P;Q)Operate (P;Q)Traverse (P;Q).Delete unmarked P nodes.Traverse (P;Q)While max(To(pi); T o(qj)) <18>>>>>>><>>>>>>>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : Traverse (fpi:::g; query(qj)). pos 1.While pi � qjIf (pi is unmarked and pos 2 s) Mark pi.Pass i. pos pos + 1.else : fqj:::g  Traverse (query(pi); fqj:::g). Pass i.Return fqj:::g.\with(k)" operatorSearch-operate version: We can take each element of Q, search it into P , and increment the annotation ofthe last P -node including it. The annotation is handled as follows: we store, for each node of P , how manytimes it has been annotated. Then we traverse P , computing the total number of annotations in its subtreesplus its own annotations, deleting the node if this total is < k.Alternatively, we can take each element of P and determine how many elements of Q it includes, deletingit if includes less than k nodes (by doing it bottom-up, we only count this for nodes without remainingdescendants, i.e. as long as a node is determined to pass the test, its ancestors are automatically included).We cannot switch between the two algorithms for the subproblems as before, because they are di�cult tocombine. Recall that we store the size of each subtree, although we do not detail how we keep it, because itadds uninteresting overhead to the exposition. We also store the counter for each node, which is normallyzero.Observe that overlaps are possible here, since P and Q need not to be from the same view.Note that we use parentP in MarkWith21. This information is not stored, but easily computed by Search.P with(k) Q (search-operate version): Operate (P;Q)Operate (P;Q)If (size(P )(log2(size(Q)) +min(k; size(Q))) < size(Q) log2(size(P ))) With12 (P;Q).else With21 (P;Q).With21 (P;Q)MarkWith21 (P;Q; none).Delete (P).
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Delete (P)tot 0.For each piparc annot(pi)+ Delete(query(pi)).tot tot + parc. annot(pi) 0.Include pi only if parc � k (it is already a leaf if deleted now).Return tot.With12 (P;Q)If jP j = 1(Q; b; t) Searchi (node(p); Q).tot With12 (query(p); fqb::qtg).If (tot < k) tot CheckIncl (p; fqb::qtg; k)If (tot < k) Delete p.Return tot.else(Q; b; t) Searchi (hFrom(p1); T o(plast)i; Q).Return With12 (fp1::phalfg; fqb::qtg) + With12 (fphalf+1::plastg; fqb::qtg).MarkWith21 (P;Q; top)If jQj = 1(P 0; b; t) Search (node(q); P).If (P 6= P 0) top parentP (P 0).MarkWith21 (fp0b::p0tg; query(q); top).If (top 6= none) annot(top) annot(top) + 1.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).MarkWith21 (fpb::ptg; fq1::qhalfg). MarkWith21 (fpb::ptg; fqhalf+1::qlastg).CheckIncl (p;Q; k)Restrict b; t until hFrom(qb); T o(qt)i � Segm(p).n k � (t � b+ 1).For each m 2 b::t, while n > 0n n� size(qm).If (n � 0) Return k.If p overlaps qb�1n n � CheckIncl (p; query(qb�1); n). If (n � 0) Return k.If p overlaps qt+1n n � CheckIncl (p; query(qt+1); n). If (n � 0) Return k.Return k � n.We analyze this algorithm by considering both alternatives separately.With12makes the search we have already analyzed for same, i.e. O(nP min(nQ; hQ log dQ)), but also, for eachelement of P , it can execute CheckIncl, which cannot count more than k or nQ elements, but can traverse apath due to overlaps �nding nothing, which adds min(nQ; hQ log dQ) to its complexity. Thus, the complexityof CheckIncl is O(min(nQ; k+hQ logdQ)), so we have a total complexity of O(nP min(nQ; k+hQ log dQ)) =O(nmin(n; k + h log d)). 55



To see that it can reach O(n2), consider fhn; 2ni; hn; 2n� 1i; :::; hn; n+ 1ig with(1) fh1; ni; h2; ni; :::; hn; nig(which is also an O(n) example for CheckIncl).With21 is much simpler, since it just makes the traversal we have analyzed for same, and collects P to selectthe properly marked nodes, i.e. O(nP + nQmin(nP ; hP logdP )) = O(nmin(n; h logd)).To show that it can reach O(n2), consider the same example as for same.We can use just use With21 if faced to the problem of having better worst case.If P and Q are from the same view, the algorithm behaves better.First, (as we saw for \+"), the searches into a set are O(n log2 d) in total. Second, we show that nowCheckIncl can be made O(logdQ).Since there are not overlaps, CheckIncl is O(logdQ +min(k; dQ)). But we could form an (implicit) binarytree on the levels of Q, where nodes represent ranges 1::d; 1::(d=2); (d=2 + 1)::d; :::, and store at each nodeof the binary tree the total size of the interval it represents. In this case, the counting of nodes in a call toCheckIncl is also O(log dQ), regardless of k, and thus the whole CheckIncl becomes O(logdQ).This way, With12 becomes O(nP (logdP logdQ + logdQ)) = O(nP log dP log dQ) = O(n log2 d). With21becomes O(nP + nQ logdQ log dP ) = O(n log2 d), and the whole algorithm is O(n log2 d).As for \+", we have not found aO(n log2 n) example. An O(n logn) example for With12 is fh1; 2ni; h1; 2n� 1i;:::; h1; nig with(n+ 1)fh1; 1i; h2; 2i; :::; hn; nig. An O(n logn) example for With21 is fh1; 1i; h2; 2i; :::; hn; nigwith(1) fh1; 2ni; h1; 2n� 1i; :::; h1; nig.Merge version: We traverse both trees synchronously, to determine, for each node of Q, the last node of Pcontaining it, then incrementing its annotation.P with(k) Q (merge version): Operate (P;Q)Operate (P;Q)Annotate (P;Q; none).Delete (P).Annotate (P;Q; last)While To(qj) < (last 6= none ? To(last) + 1 : 1)8>>>>><>>>>>: pi < qj : Pass i.pi > qj : If (last 6= none) annot(last)  annot(last) + 1 + size(qj).Pass j.pi � qj : fqj:::g  Annotate (query(pi); fqj:::g; pi):restq.else : If (last 6= none) annot(last)  annot(last) + 1.fpi:::g  Annotate (fpi:::g; query(qj); last):restp. Pass j.Return (restp = fpi:::g; restq = fqj:::g).This algorithm is O(nP + nQ) = O(n), what can be seen by considering again that each comparison leavesat least one element out of the problem, and that the collection of properly marked nodes is O(nP ).To see that it can reach O(n), we use the same example as for \+".This algorithm is not better if P and Q are from the same view.\withbegin/withend(k)" operatorsThese operations are similar to with, the necessary modi�cations follow.If P and Q are from the same view, withbegin/withend(k) should be interpreted as with(k).56



Search-operate version: We have to add in CheckIncl an instruction just after the de�nition of n, to sayIf (pi overlaps qt+1=qb�1) n n� 1. On the other hand, MarkWith21 must be modi�ed to be as followsMarkWith21 (P;Q; top)If jQj = 1(P 0; b; t) Searchi (node(q); P). If (P 6= P 0) top parentP (p0b).MarkWith21 (fp0b::p0tg; query(q); top).(P 0; b; t) Searchi (hFrom=To(q); F rom=To(q)i; fp0b; p0tg).If (P 6= P 0) top parentP (P 0).If (top 6= none) annot(top) annot(top) + 1.else(P 0; b; t) Searchi (hFrom(q1); T o(qlast)i; P) If (P 6= P 0) top parentP (p0b).MarkWith21 (fpb::ptg; fq1::qhalfg; top). MarkWith21 (fpb::ptg; fqhalf+1::qlastg; top).The analysis remains the same.Merge version: The only di�erence is that we should change the segment whose annotation is incrementedin the else condition. In withbegin, if From(qj) 2 pi we increment the annotation of pi, not last. Inwithend, if To(qj) 2 pi we increment the annotation of pi, not last. The analysis is the same.\[s]child" operatorSearch-operate version: We can take each element of P and search its (view) parent in Q, marking theP -node if it is s-th child of its view parent and that view parent is in Q; or we can take each element of Q andsearch its view children in P , marking its s-th view children. We can switch the algorithms for subproblems.Observe that overlaps are not possible here, since P and Q must be from the same view.[s] P child Q (search-operate version): Operate (P;Q)Operate (P;Q)Child (P;Q; none).Delete unmarked nodes from P.Child (P;Q; par)If (size(P ) log2(size(Q)) < 2size(Q) log2(size(P ))) Child12 (P;Q; par).else Child21 (P;Q).Child12 (P;Q; par)If jP j = 1(Q0; b; t) Searchi (node(p); Q). If (Q 6= Q0) par parentQ(q0b).If p is unmarked ^ par 6= none ^ parentview(p) = par ^ posview(p) 2 sMark p.Child (query(p); fq0b::q0tg; par).else(Q0; b; t) Searchi (hFrom(p1); T o(plast)i; Q). If (Q 6= Q0) par parentQ(q0b).Child (fp1::phalfg; fq0b::q0tg; par). Child (fphalf+1::plastg; fq0b::q0tg; par).57



Child21 (P;Q)If jQj = 1(P; b; t) Searchi (node(q); P).For each m 2 b::tIf (parentview(pm) = q ^ posview(pm) 2 s) Mark pm.Child (fpb::ptg; query(q); q).else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).Child (fpb::ptg; fq1::qhalfg; par). Child (fpb::ptg; fqhalf+1::qlastg; par).We analyze this algorithm by considering each alternative. The �nal deletion of unmarked nodes is O(nP ).Child12makes the traversal we analyzed for \+", thus it isO(nP logdQ::nP logdP log dQ) = O(n log d::n log2 d).To see that it can reach O(n logn), consider [s] fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig child fh1; 1i; h2; 2i; :::; hn; nig.Child21 does the same, but it may have to traverse linearly a level of P for each node of Q, so it isO(nP + nQdP ) = O(nd).To see that it can reach O(n2), consider [s] fh1; 1i; h2; 2i; :::; hn; nig child fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig.Again, if we are faced to the problem of having low worst case behavior, we simply select Child12 always.Merge version: We traverse both trees in synchronization, recalling the last Q-node including the currentP elements (par). When we �nd a P -node which descends from par, we test if it is an s-th view child of par,in which case we collect it.[s] P childpar Q (merge version): Operate (P;Q; par).resultOperate (P;Q; par)res �.While To(pi) < (par = none ? 1 : To(par) + 1)8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: pi < qj : If par 6= none ^ parentview(pi) = par ^ posview(pi) 2 sres res : (node(pi); �).Pass i.pi > qj : Pass j.pi � qj : Op Operate (query(pi); fqj:::g; par).If par 6= none ^ parentview(pi) = par ^ posview(pi) 2 sres res : (node(pi); Op:result).else res res : Op:result.fqj:::g Op:restq. Pass i.pi � qj : Op Operate (fpi:::g; query(qj); node(qj)).res res : Op:result. fpi:::g  Op:restp. Pass j.Return (result = res; restp = fpi:::g; restq = fqj:::g).This algorithm is O(nP + nQ) = O(n), what can be seen by considering again that each comparison leavesone element out of the problem.To show that it can reach O(n), we use the same example of \+".\parent(k)" operatorSearch-operate version: We can take each element of P and search it in Q, marking the P -node if it hask or more of its children in Q. Or we can take each element of Q and search its parent in P , incrementing58



its annotation. Then, we delete the P -nodes whose annotation is less than k. We can switch algorithms forsubproblems.Observe that overlaps are not possible here, since P and Q must be from the same view.P parent(k) Q (search-operate version): Operate (P;Q)Operate (P;Q)Parent (P;Q).Delete from P those nodes whose annot < k.Parent (P;Q)If (2size(P ) log2(size(Q)) < size(Q) log2(size(P ))) Parent12 (P;Q).else For each pi Parent21 (query(pi); Q; pi).Parent12 (P;Q)If jP j = 1(Q; b; t) Searchi (node(p); Q).Parent (query(p); fqb::qtg).If t� b+ 1 � kFor each m 2 b::t, while annot(p) < kIf (p = parentview(qm)) annot(p) annot(p) + 1.else(Q; b; t) Searchi (hFrom(p1); T o(plast)i; Q).Parent (fp1::phalfg; fqb::qtg). Parent (fphalf+1::plastg; fqb::qtg).Parent21 (P;Q; par)If jQj = 1(P 0; b; t) Searchi (node(q); P). If (p 6= P 0) par parentP (p0b).Parent (fp0b::p0tg; query(q)).If (par = parentview(q)) annot(par) annot(par) + 1.else(P; b; t) Searchi (hFrom(q1); T o(qlast)i; P).Parent (fpb::ptg; fq1::qhalfg). Parent (fpb::ptg; fqhalf+1::qlastg).We analyze this algorithm by considering each alternative. The �nal deletion of unmarked nodes is O(nP ).Parent12 makes the traversal we analyzed for \+", i.e. O(nP log dP logdQ), but it can also traverse, for eachnode of P , a level of Q, thus it is O(nPdQ) = O(nd) in total.To see that it can reach O(n2), consider fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig parent(1) fh1; 1i; h2; 2i; :::; hn; nig,if neither node of P is parent of a node of Q.Parent21 makes the same traversal, but nothing else, so it is O(nP + (nQ logdP ::nQ log dP logdQ)) =O(n log d::n log2 d).To see that it can reach O(n logn), consider fh1; 1i; h2; 2i; :::; hn; nig parent(1) fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig.If faced to the problem of having best worst-case behavior, we can use only Parent21.Merge version: We traverse both trees in synchronization. When we �nd in P the parent of a node of Q,we increment its annotation. Finally, we delete the P-nodes having < k children.59



P parent(k) Q (merge version): Operate (P;Q)Operate (P;Q)Annotate (P;Q; none).Delete P-nodes whose annot < k.Annotate (P;Q; par)While To(qj) < (par = none ? 1 : To(par) + 1)8>>>>>>>>><>>>>>>>>>: pi < qj : Pass i.pi > qj : If (par 6= none ^ parentview(qj) = par) annot(par) annot(par) + 1.Pass j.pi � qj : fqj:::g  Annotate (query(pi); fqj:::g; pi).restq.Pass i.pi � qj : If (par 6= none ^ parentview(qj) = par) annot(par) annot(par) + 1.fpi:::g  Annotate (fpi:::g; query(qj); none).restp.Pass j.Return (restp = fpi:::g; restq = fqj:::g).This algorithm is O(nP+nQ) = O(n), which can be seen by considering that each time Annotate is recursivelyinvoked, the part of the problem it has traversed is never worked on again, and that at each iteration, atleast one element is deleted from the problem. Finally, the deletion of unmarked nodes is O(nP ).To see that it can reach O(n), we use the same example of \+".\before/after(k)(C)" operatorsSearch-operate version: We begin by solving before. We can take each element of P and search intoQ the adjacent corresponding range (which is passing the P -node, up to k points to the right, but can alsobe limited by the minimal C-node containing the P -node), marking the P -node if we �nd something in Qbeginning within the range and with the same minimal C including node (Findf). Or we can take eachelement of Q, compute its adjacent corresponding range (which is before the Q-node), and search it into P ,marking the corresponding nodes in P . Later, we delete the unmarked P -nodes. We cannot switch algorithmsat subproblems, since they are di�cult to combine. If both minimalC including nodes do not exist, they arenone and are considered to be equal and to include everything.Observe that overlaps are possible here, since P , Q and C can be from di�erent views.We use an auxiliary procedure in the \12" version: Findf, which receives the range where to search, thetop-level Q candidates, and the minimal C including the P -node, and searches into the Q candidates forsomeone included in the same minimal C-node. Except for the extremes, the rest of the top-level nodes areguaranteed to be included in the C-node. One of the (perhaps overlapping) extremes can also be used tomake the P -node classify . Note that if a non-overlapping top-level Q-node is included in another C-node(which is then included in the original C), then its subtree is also included in that new C. The only cases inwhich searching into subtrees of Q is necessary is in overlapping extremes.
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P before(k) Q (C) (search-operate version): Operate (P;Q;C)Operate (P;Q;C)If (size(P )(log2(size(C)) + 2 log2(size(Q))) <size(Q)(log2(size(C)) + 2 log2(size(P ))) + size(Q))Before12 (P;Q;C).else Before21 (P;Q;C).Before21 (P;Q;C)MarkBefore21 (P;Q;C).Delete unmarked nodes.Before12 (P;Q;C)If jP j = 1(C 0; db; dt) Searchi (node(p); C).s hFrom(p); T o(p) + ki \ parentC(C0).(Q; b; t) Search (s;Q).Before12 (query(p); fqb::qtg; fc0db::c0dtg).If (: Findf (hTo(p) + 1; T o(s)i; fqb::qtg; parentC(c0db))) P  query(P ).else(C 0; db; dt) Searchi (hFrom(p1); T o(plast)i; C).s hFrom(p1); T o(plast) + ki \ parentC(c0db).(Q; b; t) Search (s;Q).Before12 (fp1::phalfg; fqb::qtg; fc0db::c0dtg).Before12 (fphalf+1::plastg; fqb::qtg; fc0db::c0dtg).Findf (s;Q; c)(Q; b0; t0) Search (s;Q).b (qb0 overlaps s ? b0 + 1 : b0).t (qt0 overlaps s ? t0� 1 : t0).For each j 2 b::tRestrict db; dt while query(c)db�1 < qj < query(c)dt+1.If (qj 6� query(c)b) Return true.If t0 6= tRestrict db; dt while query(c)db�1 < qt0 < query(c)dt+1.If qt0 � cIf (qt0 6� query(c)db) Return true.else If (Findf (s; query(qt0); (node(c); fcdb::cdtg))) Return true.If b0 6= bRestrict db; dt while query(c)db�1 < qb0 < query(c)dt+1.If (qb0 6� query(c)db ^ Findf (s; query(qb0); (node(c); fcdb::cdtg))) Return true.Return false.
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MarkBefore21 (P;Q;C)If jQj = 1(C 0; db; dt) Searchi (node(q); C).s hFrom(q)� k; To(q)i \ parentC(c0db).(P; b; t) Search (s; P).MarkBefore21 (fpb::ptg; query(q); fc0db::c0dtg).MarkInside (hFrom(s); F rom(q) � 1i; fpb::ptg; parentC(c0db)).else(C 0; db; dt) Searchi (hFrom(q1); T o(qlast)i; C).s hFrom(q1)� k; To(qlast)i \ parentC(c0db).(P; b; t) Search (s; P).MarkBefore21 (fpb::ptg; fq1::qhalfg; fc0db::c0dtg).MarkBefore21 (fpb::ptg; fqhalf+1::qlastg; fc0db::c0dtg).We use two auxiliary procedures here. MarkInside receives a range s, a top-level P -nodes candidates formarking, and the minimalC containing the markingQ-node. The P -nodes overlapping the range are traversedrecursively to �nd more candidates (one of the overlapping extremes can also be marked); and those nodeswholly included in the range are sent to MarkFull. This procedure uses a second type of mark, mark2.It traverses the whole subtree of the P -nodes, marking them, and stopping when a P -node descends froma C-node included in the minimal C containing the Q-node. This mark2 has another property that avoidsrepeating work: if a node has been marked2 once, there is no bene�t in entering it again to mark it with otherQ-node. The reason for this is that MarkBefore21 proceeds bottom-up and left-to-right. That guaranteesthat any P -node subtree is MarkFull'ed �rst with the best Q-node to do it, since it is done only if theP -node (and hence its subtree) is fully contained in the C-node, and with the minimal possible C-node;since the C-node containing both the P -subtree and a higher or farther Q-node than the �rst one is surelyequal or larger than the �rst one. Observe that this is because MarkBefore21 marks P -nodes to its left, thecorresponding MarkAfter21 should invoke MarkInside also bottom-up but rigth-to-left.MarkInside (s; P; c)(P; b; t) Search (s; P).b0 (b < t� 1 ^ pb overlaps s ? b+ 1 : b).t0 (pt overlaps s ? t� 1 : t).MarkFull (fpb0::pt0g; query(c)).If b 6= b0 ^ pb is unmarked2Restrict b0; t0 while query(c)b0�1 < pb < query(c)t0+1.If (c � pb 6� query(c)b0) Mark pb.MarkInside (s; query(pb); (node(c); fquery(c)b0 ::query(c)t0g)).If t 6= t0 ^ pt is unmarked2Restrict b0; t0 while query(c)b0�1 < pt < query(c)t0+1.MarkInside (s; query(pt); (node(c); fquery(c)b0 ::query(c)t0g)).MarkFull (P;C)If jP j = 1If p is unmarked2Restrict b; t while cb�1 < p < ct+1.If (p 6� cb) Mark2 p. MarkFull (query(p); fcb::ctg)else(C; b; t) Searchi (hFrom(p1); T o(plast + k)i; C).MarkFull (fp1::phalfg; fcb::ctg). MarkFull (fphalf+1::plastg; fcb::ctg).62



We analyze this algorithm by considering each alternative.Before12 traverses C as we analyzed for same, so this part is O(nP min(nC ; hC log dC)). Although it doessomething somewhat di�erent for Q (we search not for the nodes, but for their extension by s), we haveanyway O(nP min(nQ; hQ log dQ)) for that part. Finally, Findf, which is called for all P -nodes, can traversea complete path of the tree, and at each level we traverse we search its dQ nodes into another level (of C).This leads us to O(min(nQ; hQdQ) logdC) for Findf.But note that we can replace the loop For j 2 b::t by a binary tree strategy similar to arti�cial nodes,searching for hFrom(qb); T o(qt)i, then for hFrom(qb); T o(q(b+t)=2)i and hFrom(q(b+t)=2+1); T o(qt)i, etc. Thetotal complexity in this case is O(dQ + dC) instead of O(dQ logdC). To see this, consider �rst that eachpartition of the Q level cuts the C level by half, then we have log d+2 log(d=2)+ :::+2i log(d=2i)+ :::+d log 1,which is O(d). We can also show that the worst case occurs when we partition by half the searched level,since if the partition is with proportion � we havelog2 dXi=0 iXk=0�ik� log2 ��k(1� �)j�k� = (2d� 1) log2 d+ log2(�(1� �))(d log2 d� d+ 1)which is maximized when � = 1=2, to yield 2d� log2 d� 1.Therefore, the complexity of Findf can be reduced to min(nQ log dC; hQ(dC + dQ)) (it cannot be worse thannQ log dC, since the search done with the binary tree approach can never be more than if each node searchedin a whole level). This way, we have a total complexity of O(nP (min(nC ; hC log dC) +min(nQ; hQ log dQ) +min(nQ logdC ; hQ(dC + dQ)))) = O(nmin(n log d; hd)).To see that it can reach O(n2 logn), consider fh1; 2ni; h2; 2ni; :::; hn; 2nig before(n+1) fh1; 3ni; h1; 3n� 1i; :::;h1; 2n+ 1i; h2n+ 1; 2n+ 1ig (fh1; 3n+ 1i; hn; ni; hn+ 1; n+ 1i; :::; h3n; 3nig) which is also an O(n logn) ex-ample for Findf.MarkBefore21 uses marking, so we must add O(nP ). It traverses C as we analyzed for same, so that part isO(nQmin(nC ; hC logdC)). By the same reasons as before, the search into P is also O(nQmin(nP ; hP log dP )).MarkInside is called for each Q-node, and it can traverse a complete path, searching into a level of C eachtime, thus it is O(hP logdC) if we do not count the calls to MarkFull, which can be invoked at each level.MarkFull can, in whole, traverse the complete tree (because of mark2), searching into a level of C foreach element, thus it is O(nP logdC). Therefore, we have a total complexity of O(nQ(min(nC ; hC logdC) +min(nP ; hP log dP ) + hP log dC) + nP logdC) = O(nh log d).To see that it can reach O(n2 logn), consider fhn; 3ni; hn; 3n� 1i; :::; hn; 2n+ 1ig before(n + 1) fhn; 2ni;hn; 2n� 1i; :::; hn; nig (fh1; 3n+ 1i; hn; ni; hn+ 1; n+ 1i; :::; h3n; 3nig).If faced to the problem of having better worst case behavior, we prefer to use only Before21.If P , Q and C are from the same view, the algorithm behaves a little better. The searches into C are nowO(nP logdP log dC) in total, but the rest of the procedures involve s, that can still cause overlaps, and thentheir complexity remains the same. This way, the total complexity of Before12 becomes O(nP (logdP logdC+min(nQ; hQ log dQ) +min(nQ log dC; hQ(dC + dQ)))) = O(nmin(n log d; hd)), a little change. The total com-plexity of Before21 becomes O(nQ(log dP log dC+min(nP ; hP logdP )+hP log dC)+nP logdC) = O(nh log d),also a little change.The same example given for the general case can show that even inside the same view the algorithm isO(n2 logn).The idea for after(k)(C) is the same as for before, only some details di�er. The complexity is also the same.Merge version: We begin by solving before. We traverse both trees in synchronization, determining foreach node of P if there is a node of Q under the same minimal C-node, after the P -node, at a distance � k.63



P before(k) Q (C) (merge version): Operate (P;Q)Operate (P;Q)Traverse (P;Q).Delete unmarked elements from P.Traverse (P;Q)While To(pi) <18>>>>>>><>>>>>>>: pi > qj : Pass j.else : (c; lc) SearchC (node(pi)).s hTo(pi) + 1; T o(pi) + ki \ c.fqj:::g  Traverse (query(pi); fqj:::g).While (To(qj) < From(s)) Pass j.If (Determ (fqj:::g; s; T o(c); lc).tomark) Mark (pi).Pass i.Return (fqj:::g).SearchC searches for the minimal element of C including its argument. To achieve total O(nh) behaviorfor SearchC, it uses a global array G where the current position of the search at each level of C is kept, totraverse at most one path at each invocation (note that P is traversed in depth-�rst order).SearchC (pi)Call U a special segment containing all.Call G the global array, L the current level.Initially G0 = U;G1 = c1; L = 1.While (pi 6� GL�1) L L � 1.RepeatWhile (GL 6= end ^ To(GL) < From(pi)) Pass GL. GL+1  none.If GL 6= end ^ pi � GLL L+ 1.If (GL = none) GL  first(query(GL�1)). GL+1  none.else Return (GL�1; GL).Determ searches for an element in Q included in the same minimal C node, and at the proper direction anddistance.Determ (fqj:::g; s; qlim; fcig)If From(qj) < From(s)(tomark; fci:::g) Determ(query(qj); s; qlim; fci:::g).If (tomark) Return (true; �) else Pass j.While From(qj) � To(s) ^ To(qj) � qlim( ci < qj : Pass i.ci � qj : Pass j.else : Return (true; �).If (From(qj) � To(s)) Return Determ(query(qj); s; qlim; fci:::g).Return (false; fci:::g). 64



This algorithm is analyzed as follows.First, observe that throughout the whole execution, SearchC works O(nChC) time, since the total numberof times that the \Pass GL" instruction is executed is O(nC), because a node passed that way is neverreconsidered again (due to the depth-�rst traversal of P ); and on the other hand, we can traverse the wholetree up and down at each call, thus achieving a total O(nh) behavior.To see that SearchC is no better than O(n2), consider C = fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig; P = fhn; 2n+ 1i;hn; ni; hn+ 1; 2n+ 1i; hn+ 1; n+ 1i; hn+ 2; 2n+ 1i; :::g.Determ is O(min(nQ; dQhQ)), since it works O(dQ) at each iteration, and only the �rst time it can get intoboth recursive calls. Since at each iteration it descends one level in Q, we have it is O(dQhQ). On the otherhand, it cannot traverse more than the whole Q, so it is O(min(nQ; dQhQ)). Note that it traverses also alevel of C, but this level is traversed only once along the whole path, so it adds O(dC) at each invocationfrom outside.To see that Determ can reach O(n), consider Determ (fh1; ni; h2; ni; :::; hn; nig; hn; 2ni; fci:::g).The number of times qj is advanced without progressing in P is O(dQ) in total (i.e. the top-level of Q).Finally, each pi is left out of the problem by executing Determ, i.e. this part is O(nP (dC +min(nQ; dQhQ))).Therefore, the total complexity is O(nChC + nP (dC +min(nQ; dQhQ))) = O(nmin(n; dh)).To see that it can reach O(n2), consider the following example: fh1; 1i; h2; 2i; :::; hn; nig before(n + 1)fhn+ 1; n+ 1i; hn+ 2; n+ 2i; :::; h2n; 2nig (fh1; 2ni; hn+ 1; 2nig).If P , Q and C are from the same view, the algorithm behaves a little better. The reason is that now SearchCmakes a single traversal on C along the whole execution, since the worst that can happen is that C is whollytraversed in depth-�rst order. Not existing overlaps, it is not possible to repeat a path. The whole complexityis then O(nC + nP (dC +min(nQ; dQhQ))) = O(nmin(n; dh)), a little improvement.The same example of the general case shows that we can reach O(n2) even inside a single view.The idea for after(k)(C) is the same as for before, only some details di�er. The complexity is also the same.\before/after(C)" operatorsSearch-operate version: We begin by solving before. We can take each element ofQ, compute its adjacentcorresponding range (which is before the Q-node, limited by the minimalC-node including the Q-node), andsearch it in P , marking the node in P which is nearest the one of Q. Later, we delete the unmarked P -nodes.Or we can take each element of P and search in Q the adjacent corresponding segment (which is passing theP -node), selecting from Q the node which is nearest to the P -node. Then, we search the Q-node back inP , to determine the P -node that that Q-node should mark. Since the best candidate for marking a P -nodeis its nearest Q-node, and each P -node gets its best opportunity to be marked, it su�ces to mark only onQ-nodes selected as the best for each P -node (note that if the \best" Q-node for a given P -node does notmark it, then neither will, since that means that there is another P -node which is preferred by the Q-node,and that one will be preferred by any farther node). We also mark the already used nodes of Q to avoidrepeating work.We cannot switch algorithms at subproblems, since they are di�cult to combine. Observe that overlaps arepossible here, since P , Q and C can be from di�erent views.
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P before Q (C) (search-operate version): Operate (P;Q;C)Operate (P;Q)If (2size(P ) log2(size(Q)) < size(Q) log2(size(P ))) BeforeMin12 (P;Q;C).else MarkBeforeMin21 (P;Q;C).Delete unmarked nodes from P.BeforeMin12 (P;Q;C)MarkBeforeMin12 (P; P;Q;C).Unmark nodes of Q.MarkBeforeMin12 (Pr; P;Q;C)If jP j = 1(C 0; db; dt) Searchi (node(p); C).s hFrom(p);1i \ parentC(c0db).(Q; b; t) Search (s;Q). (Pr; b0; t0) Search (s; Pr).MarkBeforeMin12 (fPrb0::P rt0g; query(p); fqb::qtg; fc0db::c0dtg).If p is unmarkedB  SearchMinf (hTo(p) + 1; T o(s)i; fqb::qtg; parentC(c0db)).If B 6= none ^ B is unmarkedMark B. s hFrom(s) � 1; F rom(B)� 1i.r  SearchMint (s; fPrb0::P rt0g; parentC(c0db)).If (r 6= none) Mark r.else(C 0; db; dt) Searchi (hFrom(p1); T o(plast)i; C).(Q; b; t) Search (hFrom(p1);1i; Q).(Pr; b0; t0) Search (hFrom(p1);1i; P r).MarkBeforeMin12 (fPrb0::P rt0g; fp1::phalfg; fqb::qtg; fc0db::c0dtg).MarkBeforeMin12 (fPrb0::P rt0g; fphalf+1::plastg; fqb::qtg; fc0db::c0dtg).MarkBeforeMin21 (P;Q;C)If jQj = 1(C 0; db; dt) Searchi (node(q); C).s h1; T o(q)i \ parentC(c0db).(P; b; t) Search (s; P).MarkBeforeMin21 (fpb::ptg; query(q); fc0db::c0dtg).r SearchMint (hFrom(s); F rom(q) � 1i; fpb::ptg; parentC(0db)).If (r 6= none) Mark r.else(C 0; db; dt) Searchi (hFrom(q1); T o(qlast)i; C).(P; b; t) Search (h1; T o(qlast)i; P).MarkBeforeMin21 (fpb::ptg; fq1::qhalfg; fc0db::c0dtg).MarkBeforeMin21 (fpb::ptg; fqhalf+1::qlastg; fc0db::c0dtg).
66



SearchMinf/SearchMint (s; P; c)(P; b; t) Search (s; P).If pb=t overlaps sRestrict b0; t0 while query(c)b0�1 < pb=t < query(c)t0+1.If pb=t 6� query(c)b0r SearchMinf/SearchMint (s; query(pb=t); (node(c); fquery(c)b0 ::query(c)t0g)).If (r 6= none) Return r.b b+ 1 / t t� 1.For each i 2 b::t=t::bRestrict b0; t0 while query(c)b0�1 < pi < query(c)t0+1.If (pi 6� query(c)b0) Return pi.Return none.We analyze this algorithm by considering each alternative. The �nal deletion of unmarked nodes is O(nP ).MarkBeforeMin21 traverses C, in the form we analyzed for same, i.e. O(nQmin(nC ; hC logdC)). It alsotraverses P , and as explained for before(k)(C), it is also O(nQmin(nP ; hP log dP )). Finally, it invokesSearchMint for each node. This routine can traverse a complete path, and for each level it can traverse itwholly; it also searches in a level of C for each element it traverses, so it is O(min(nP ; hPdP ) logdC). But wecan modify it with the same technique used for Findf, with a binary tree, to achieve O(min(nP log dC ; hP (dP+dC))). This leads to a total complexity of O(nP +nQ(min(nC ; hC logdC)+min(nP log dC; hP (dP + dC)))) =O(nmin(n log d; hd)).To see that it can reach O(n2 logn), we use the same example as for Before21. To see that SearchMin canreach O(n logn), consider SearchMin (h1; n+ 1i; fh2; 2n+ 1i; h2; 2ni; :::; h2; n+ 2ig; fh2; 2i; h3; 3i; :::; hn+ 1;n+ 1ig).MarkBeforeMin12 is more complex, since it traverses C, Q and the same P (since the Q-node is searchedback into P ). All this contributes with O(nmin(n; h logd)) (we have to add O(nP min(nP ; hP log dP )) foreach element of P , that searches into the same P ). The two calls to SearchMin complete the analysis, toleave us also with O(nP (min(nC ; hC logdC)+min(nP logdC ; hP (dP +dC))+min(hQ(dQ+dC); nQ logdC))) =O(nmin(n log d; hd)).We can use the same example as for Before21 to show it can reach O(n2 logn).If P , Q and C are from the same view, the complexity changes exactly as it does in before(k)(C).The idea for after(C) is the same as for before(C), only some details di�er. The complexity is also thesame.Merge version: For each element of P , we search for the nearest element in Q which is in the same minimalC-node and we mark it. We traverse P in depth-�rst order, so if a Q node is the candidate to mark a Pnode p, but it was also previously selected by another p0, we must unmark the older (and farther) p0. Toachieve this, the \mark" �eld of Q elements (called marked to ease reading) point to the (last and hence theonly valid) P element they marked, if any. This way, the P node can be accessed and unmarked if it getsdisplaced by a newer one. Later, we collect the marked nodes of P .
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P before Q (C) (merge version): Operate (P;Q)Operate (P;Q)Traverse (P;Q).Delete unmarked elements from P.Traverse (P;Q)While To(pi) <18>>>>>>>>>>>>><>>>>>>>>>>>>>: pi > qj : Pass j.else : (c; lc) SearchC (node(pi)).s hTo(pi) + 1;1i \ c.fqj:::g  Traverse (query(pi); fqj:::g).While (To(qj) < From(s)) Pass j.Qmarker  Mark (fqj:::g; s; lc).marker.If Qmarker 6= noneIf (marked(Qmarker) 6= none) Unmark marked(Qmarker).Mark pi. marked(Qmarker)  pi.Pass i.Return fqj:::g.Mark is which selects the minimum-distance candidate.Mark (fqj:::g; s; fcig)If From(qj) < From(s)(marker; fci:::g) Mark(query(qj); s; fci:::g).If (marker 6= none) Return (marker; �) else Pass j.While To(qj) � To(s)8<: ci < qj : Pass i.ci � qj : Pass j.else : Return (qj; �).If (From(qj) � To(s)) Return Mark(query(qj); s; fci:::g).Return (none; fci:::g).This algorithm is analyzed as follows. The �nal deletion of unmarked nodes is O(nP ). SearchC is O(nChC)in total as before. Mark is much like Determ, in the sense that it traverses a level of C in the whole invocationfrom Traverse, and of O(dQ) Q-nodes at each level of Q; and after the �rst time, just one of the two recursivecalls can succeed, thus achieving O(dC + dQhQ), or O(dC + nQ) by observing that each element is workedon at most once. On the other hand, Mark is invoked once for each element of P , and the total number ofPass j performed is O(dQ) (the top-level of Q). Thus, we have O(nChC +dQ+nP (dC +min(nQ; dQhQ))) =O(nmin(n; dh)) cost.To see that it can reach O(n2), consider the same example of before(k).If P , Q and C are from the same view, the complexity changes exactly as it does in before(k)(C).The idea for after(C) is the same as for before(C), only some details di�er. The complexity is also thesame. 68



5.2.2 Lazy EvaluationThe idea of lazy evaluation, which we mentioned briey at the beginning of this chapter and in Section 5.1,is as follows. Instead of making an operation and obtaining the full tree, we represent that result as theoperation to perform and the representation of the operands, that is (X op Y ), will be converted to a treewith root op and subtrees X and Y with no more computation. This technique would convert the evaluationof a query to just its syntax tree, except because the �nal result has to be obtained. To expand the �nalresult, we begin by obtaining its top-level nodes. Suppose that we want to expand (X op Y ). We de�nealgorithms to get the answer step by step, that is, to convert (X op Y ) to the top-level nodes r1::rl withchildren (X1 op Y1)..(Xl op Yl). Of course that algorithm would need some information on X and Y , whichis obtained by expanding the expressions that de�ne them, node by node. Once we have the top-level nodes,we obtain their children, and then the children of each child, and so on, until obtaining the whole answer.Hopefully, not all the sets involved in the expression need to be fully evaluated (see for example [GT87]).This mechanism is not new, for example is of widespread use in lazy functional languages [Dav92].5.2.2.1 Mechanism of ExpansionThe type of our trees is now more complex, since they can be not expanded. For each view V , we have thetype of lazy trees LTV over V : LTV = NonEvaluatedV [EvaluatedVNonEvaluatedV = [op2OP op� LT arity(op)VEvaluatedV = LSubtree�VLSubtreeV = NV � LTVwhere OP is the set of our operators, each one with its arity. Note that Evaluated means evaluated at leastone level. Note also that TV � LTV .Suppose we have de�ned all our operations to obtain the �rst-level descendants of (X op Y ), and that weare given the syntax tree of a query. Then we present a procedure to obtain the expanded tree, expandingwhen necessary (and only when necessary) the subexpressions.We use the following notation here:� (root1(T1)::rootk(Tk)) is an (Evaluated) lazy tree with those rooti nodes comprising its �rst-levelexpansion, and Ti its descendants.� op(X1; :::; Xk) is a (NonEvaluated) lazy tree.� expand : LTV ! TV is our expansion function.� expandLevel : LTV ! EvaluatedV expands, if it is not already expanded, one level of the lazy tree.� perform : OP � LT �V ! EvaluatedV , performs the operation on the arguments, to expand one levelof the lazy tree.Now, our procedure is de�ned as followsexpand((r1(T1)::rk(Tn))) = (r1(expand(T1))::rk(expand(Tk)))expand(op(X1; ::; Xk)) = expand(expandLevel(op(X1; ::; Xk)))expandLevel((r1(T1)::rk(Tn))) = (r1(T1)::rk(Tn))expandLevel(op(X1; ::; Xk)) = perform(op; expandLevel(X1); ::; expandLevel(Xk))69



Note that expandLevel is prepared to be invoked on an already evaluated tree. The reason for this is thatthe query tree is not necessarily a tree, it may well be a DAG. This way, an operation can be invoked on anoperand which is already semievaluated by a previous operation, so that no expansion is made twice.Observe that this idea is well-suited for interactive systems that combine querying with navigation (e.g.[Mac91, Mac90]). We can use expandLevel instead of expand, to obtain just the top-level list of the answer.This list can be presented to the user, who may want to discard parts of it and to enter into others. At thispoint we call expandLevel in the nodes the user wants to get in. This way, we can save signi�cant work.5.2.2.2 Implementation ConsiderationsSome considerations arise here. Observe that, since the ow of control of expansions is not easily predictablewith lazy evaluation, it is hard to know when an element will no longer be used, since the operations carriedout on it do not begin and end at predictable moments, but evolve as long as the values are needed. Thisimplies that no deallocation can be done in advance, and thus that there is no bene�t in modifying operations,since they are applicable if one knows that the operand is not referenced from elsewhere. The only situationin which one can assure that is when the operand is used only for one operation. The best option would be,therefore, to use modifying versions of operators in this last case and generating versions elsewhere. Underthis schema, all remaining nodes can only be deallocated when the whole evaluation completes (but recallour comments about the need for a serious study of this problem).Another problem is regarding swapping policy, if we keep some operands on disk. In lazy evaluation, it is toodi�cult to decide which nodes are good for swapping out, while in full evaluation it is easy to know whichoperands are to be needed later than which. This problem can be alleviated by the fact that lazy evaluationis likely to reclaim less space than full evaluation.5.2.2.3 Description of the AlgorithmsWe now present the lazy version of our algorithms. Not that some choices we had for full evaluation areunavailable here, since we have to expand in a �xed order. We use in general a modi�cation of the mergeapproach, but in some cases we lose e�ciency in the process. Sometimes we must elect between redoing alittle of work or expanding parts that perhaps will never be needed. We have systematically preferred toexpand as little as possible.\+" operatorThe idea is the same as the merge version of full evaluation, the di�erence being that the subproblems areleft to be solved later. This makes the evaluation of the whole tree not so e�cient, but this is compensatedby the possibility of not evaluating the whole tree. Observe that we need additional information when we leftthe operation for later. We write that information as a subscript of the operator (it is initially limit =1).Recall that no overlaps are possible, since P and Q must be from the same view. We present the algorithmin the next page.This algorithm is not linear as its full version, because it is not longer valid that at each comparison atleast one element from P or Q is solved and no longer compared. Observe that now, when pi � qj, we passthrough the pi's which will be the operands of the next level in order to continue the merge at the currentlevel. Indeed, we may pass through them many times, each time the list descends one level. By observingeach element of P , we see that it can be compared at most h times. By observing each element of Q, we seethat it can traverse a level of P just once, that is O(d). Thus, the algorithm is O(nmin(d; h)), i.e. O(n2) inthe worst case. We cannot re�ne the analysis in terms of the sizes of P and Q, because of the switching inthe case pi � qj.To see that it can reach O(n2) consider fh1; 1i; h2; 2i; :::; hn; nig + fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig.On the other hand, we work O(dP + dQ) = O(d) per lazy invocation to this operator. Observe that it does70



not force any further expansion of the subtrees.P +limit Q (lazy version): Operate (P;Q; limit)Operate (P;Q; limit)res �.While min(To(pi); T o(qj)) < limit8>>>>><>>>>>: pi < qj : res res : pi. Pass i.pi > qj : res res : qj. Pass j.pi = qj : res res : (node(pi);+1(query(pi); query(qj))). Pass i; j.pi � qj : res res : (node(qj);+To(qj )+1(fpi:::g; query(qj))). Pass j.While (pi � qj) Pass i.pi � qj : Exchange P $ Q.Return res.\�" operatorThe idea is the same as for the merge version of full evaluation, the di�erence being that the subproblems areleft to be solved later. This makes the evaluation of the whole tree not so e�cient, but this is compensatedby the possibility of not evaluating the whole tree.Recall that no overlaps are possible, since P and Q must be from the same view.P �Q (lazy version): Operate (P;Q;1).resultOperate (P;Q; plimit)res �.While To(pi) < plimit8>>>>><>>>>>:pi < qj : res res : pi. Pass i.pi > qj : Pass j.pi = qj : pi  expandLevel(pi). fpi:::g  query(pi) : fpi+1:::g.pi � qj : qj  expandLevel(qj). Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : Op:result. fpi:::g  Op:rest. Pass j.pi � qj : res res : (node(pi);�(query(pi); fqj:::g)). Pass i.Return (result = res; rest = fpi:::g).This algorithm is not linear as its full version. The argument is almost the same as with \+", this time thecase which produces the problem is pi � qj. The complexity is then O(min(nP + nQhP ; nQ + nP dQ)) =O(nmin(d; h)).To see that it can reach O(n2) consider fh1; 2n� 1i; h2n; 2ni; h1; 2n� 2i; h2n� 1; 2n� 1i; :::; h1; ni; hn + 1;n+ 1ig � fh1; 1i; h2; 2i; :::; hn; nig.This operator can force the full trees to be expanded, for example if P = Q, thus it can work up toO(nP + nQ) = O(n) in a single lazy invocation (as the full merge \�").\is/same" operatorsThe idea for is is the same as for themerge version of full evaluation, the di�erence being that the subproblemsare left to be solved later. This does not introduce ine�ciencies.71



Recall that no overlaps are possible, since P and Q must be from the same view.P is Q (lazy version): Operate (P;Q;1).resultOperate (P;Q; plimit)res �.While To(pi) <18>>>>><>>>>>:pi < qj : Pass i.pi > qj : Pass j.pi = qj : res res : (node(pi); is (query(pi); query(qj))). Pass i; j.pi � qj : qj  expandLevel(qj). Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : Op:result. fpi:::g  Op:rest. Pass j.else : pi  expandLevel(pi). fpi:::g  query(pi) : fpi+1:::g.Return (result = res; rest = fpi:::g).This algorithm is linear as its full version, with the same argument: each comparison eliminates at least oneelement from the problem. The di�erence with \�" is that each time we leave something for later, it is awhole subtree, which we do not need to re-traverse.To see that it can reach O(n), we use the same example of the full version.This operator can work O(nP + nQ) = O(n) in a single lazy call, making the full trees to be expanded.Consider for example fh1; n+ 1i; h1; ni; :::; h1; 2ig is fh1; 2n+ 1i; h1; 2ni; :::; h1; n+ 2i; h1; 1ig.The same operation is exactly like is, except in that we do not check for node equality but for segmentequality. In this case, overlaps are possible, so we use the same algorithm as for is, the else clause standingalso for overlaps. The complexity is also the same.\in" operatorThe idea is the same as the merge version of full evaluation, the di�erence being that the subproblems areleft to be solved later. This does not introduce ine�ciencies. The algorithm is exactly as in the full mergeversion, just inserting pi  expandLevel(pi) as the �rst instruction of the else clause.Recall that overlaps are possible here, since P and Q can be from di�erent views.This algorithm is analyzed exactly as its full version, in fact it is identical except for the expandLevel. Notethat it will never make Q expand more than the �rst level, although it can cause the full P to be expanded,thus it can be O(min(nP + nQ; dPdQhP )) = O(min(n; d2h)) in a single lazy call. Consider for examplefh1; ni; h1; n� 1i; :::; h1; 1ig in fh1; 1ig.The algorithm is not better if P and Q are from the same view.\beginin/endin" operatorsThe idea is the same as for in. Recall that overlaps are possible here, since P and Q can be from di�erentviews.
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P beginin Q (lazy version): Operate (P;Q)Operate (P;Q)res �.While To(pi) <18>>><>>>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : res res : pi. Pass i.From(pi) 2 qj : res res : (node(pi); beginin (query(pi); fqj:::g)). Pass i.else : pi  query(expandLevel(pi)) : fpi+1:::g.Return res.P endin Q (lazy version): Operate (P;Q)Operate (P;Q)res �.While To(pi) <18>>>>>>>>>>><>>>>>>>>>>>:pi < qj : Pass i.pi > qj : Pass j.pi � qj : res res : pi. Pass i.else : oldj  j. While (To(qj) < To(pi)) Pass j.If (To(pi) 2 qj) res res : (node(pi); endin (query(pi); fqoldj :::g)).elsepi  expandLevel(pi).res  res : Operate (query(pi); fqoldj :::g).Pass i.Return res.These algorithms are not linear as their full versions. Observe that the top-level of Q can be retraversedmany times, more exactly, for a complete path of P (then we do O(hPdQ) work in Q). By adding the O(nP )traversal of P , we have O(nP + hP dQ). On the other hand, both algorithms are O(dPdQhP ) as their fullversions, thus the �nal complexity is O(min(nP + hPdQ; dPdQhP )) = O(min(n+ dh; d2h)).To see that they can reach O(n2), consider fh1; 2n� 1i; h2n; 2ni; h1; 2n� 2i; h2n� 1; 2n� 1i; :::h1; ni; hn+ 1;n+ 1ig beginin fh1; 1i; h2; 2i; :::; hn; nig, and fh1; 2ni; h1; 2n� 1i; :::; h1; nig endin fh1; 1i; h2; 2i; :::; hn; nig.These algorithms never force Q to be expanded, but they can expand the whole P . beginin can workO(min(nP+nQ; dPdQhP )) = O(min(n; d2h)) per call, consider for example fh1; 2n+ 1i; h1; 2ni; :::; h1; nig be-ginin fh2; 2i; h3; 3i; :::; hn+ 1; n+ 1ig. endin can work O(min(nP +hP dQ; dPdQhP )) = O(min(n+dh; d2h))per call, the same example shows that it can reach O(n2).If P and Q are from the same view, beginin/endin should be interpreted as in.\[s]in/beginin/endin" operatorsThe idea for in is the same as the merge version of full evaluation, the di�erence being that the subproblemsare left to be solved later. This does introduce some ine�ciencies. The important modi�cations are in thatwe need two marks for lazy deletion of unmarked nodes (the second mark means that the descendants of anode have some opportunity to be included).Recall that overlaps are possible here, since P and Q need not to be from the same view.73



[s] P in Q (lazy version): Operate (P;Q)Operate (P;Q)Traverse (P;Q).res �.While To(pi) <1If pi is markedIf (pi is marked2) res res : pi.else res res : (node(pi); �).elseIf (pi is marked2) res res : query(expandLevel(pi)).Pass i.Return res.Traverse (P;Q)While max(To(pi); T o(qj)) <18>>>>>>>>>>><>>>>>>>>>>>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : qj  expandLevel(qj ). pos 1.Traverse (fpi:::g; query(qj)).While pi � qjIf (pi is unmarked and pos 2 s) Mark pi.Pass i. pos pos + 1.else : query(pi) [s]in (query(pi); fqj:::g).Mark2 pi. Pass i.This algorithm is analyzed almost as for its full version. In this case, it is also possible to repeat work on alevel of Q, thus the total = O(min(nPhQ+nQ; nQdP +nP )+min(nQhP +nP ; nPdQ+nQ)) = O(nmin(h; d)).To see that it can reach O(n2) and that both P and Q can be fully expanded in a single call (thus beingO(min(nPhQ + nQ; nQdP + nP )) = O(nmin(h; d)) in a single lazy call), consider [s] fh1; 2ni; h1; 2n� 1i; :::;h1; n+ 1i; h1; 1i; h2; 2i; :::; hn; nig in fh1; 3ni; h1; 3n� 1i; :::; h1; 2n+ 1ig.This algorithm is not better if P and Q are from the same view.The [s]beginin and [s]endin operations are quite the same as [s]in, the only di�erence being that we shouldreplace (in both places) the condition pi � qj by From(pi) 2 qj for beginin and by To(pi) 2 qj for endin.The analysis is the same.If P and Q are from the same view, [s]beginin/endin should be interpreted as [s]in.\with/withbegin/withend(k)" operatorsWe begin by solving with. This operation is quite complicated to perform in a lazy fashion, mainly becausewe cannot know the size of the operands, since they are not computed yet. Moreover, we cannot evenhave the size computed for the expanded part of operands, since they are shared and a policy of immediateactualization of all pointers to a query is expensive and contrary to the spirit of lazy evaluation. Thus, wehave a computed size, which is only guaranteed to be less than the real size. In order to expand the minimumpossible of Q, we make up to three passes on the interesting part: counting the computed size at the toplevel, traversing the whole expanded part to actualize the computed size, and expanding if necessary. Toavoid traversing a tree to expand any remaining node when we already know that it is fully expanded, weuse an additional ag compl. 74



P with(k) Q (lazy version): Operate (P;Q).resultOperate (P;Q; plimit)res �.While To(pi) < plimit8>>>>>>>>><>>>>>>>>>: pi < qj : Pass i.pi > qj : Pass j.pi � qj : qj  expandLevel(qj).Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : Op:result. fpi:::g  Op:rest.else : If Determ(node(pi); fqj:::g; k)res  res : (node(pi); with(k) (query(pi); fqj:::g)).Pass i.Return (result = res; rest = fpi:::g).Determ determines if P contains k or more Q-nodes, making up to three passes if necessary. The list l canbe made implicit, to avoid the space overhead.Actual traverses Q, counting the nodes of the already expanded part, until no more nodes are found or untilit �nds k nodes included in p. It also actualizes the information of size, and returns a list of pointers whereexpansion can be made if necessary.Expand expands Q, until there are no more nodes or it �nds k nodes included in p.Determ (p;Q; k)pass 1:t 0. oldj  j. If (qj overlaps p) Pass j.While qj � pk  k � 1. t t+ size(qj).If (t � k) Return true.Pass j.pass 2:j  oldj. sz  0. l  �.While qj 6> p(t; nl) Actual(query(qj); k � sz; p; qj � p)sz  sz + t. l  l : nl. Pass j.If (sz � k) Return true.pass 3:k k � sz. sz  0.For each li 2 lsz  sz + Expand (li; k � sz; p).If (sz � k) Return true.Return false.
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Actual (Q; k; p; incl)If Q is expandedIf (incl ^ (Q:compl _ size(Q) � k)) Return (size(Q); �).sz  0. l  �.While (qj < p) Pass j.While (qj 6> p ^ sz < k)(t; nl) Actual (query(qj); k � sz � 1; p; qj � p).sz  sz + t. l  l : nl.If (qj � p) sz  sz + 1.if (size(Q) < sz) size(Q) sz.If (the While traversed the whole query(Q) ^ incl ^ l = �) Q:compl true.If (sz � k) l  �.Return (sz; l).else Return (0; fQg).Expand (Q; k; p)Q expandLevel(Q). t 0.While qj 6> p ^ t < k8<: qj < p : Pass j.qj � p : t t + 1 + Expand (qj; k � t � 1; p). Pass j.else : t t + Expand (qj; k � t; p). Pass j.Return t.Expand expands a node, completely or until it �nds k nodes. Actual traverses the tree, searching for alreadyexpanded nodes, completely or until it �nds k nodes, and actualizes the computed sizes if appropriate. Determtraverses Q, stopping when it �nds k nodes or more.It may be argued that Expand can cause expansion of an unbounded number of nodes that result in emptyqueries that do not reduce k. But observe that for each unexpanded query included in the list that Expandprocesses, there is an expanded parent which has been counted. If the counted nodes before calling to Expanddid not reach k, then the length of the list is < k + 2. We add 2 for the possibility of overlapping nodesthat add an element to the list without being counted. Therefore, Expand cannot be invoked more than O(k)times from outside.If at each recursive call, Expand reduced k by one, then the total work done by Expand would be O(k), butit can also expand nodes that overlap with p, what does not reduce k. This can be done for a complete pathof Q, and makes it traverse the levels. This way, Expand is O(k+ dQhQ) for the whole set of invocations fora single p node. Since it cannot traverse more than the whole Q, it is in fact O(min(nQ; k+ dQhQ)).Actual is quite similar: cannot work more than O(k) time, except for overlaps, what makes it O(min(nQ; k+dQhQ)) for the whole set of invocations for a single p node.This way, Determ is also O(min(nQ; k + dQhQ)), and the whole algorithm is O(nP min(nQ; k + dQhQ)) =O(nmin(n; k + dh)).To show that it can reach O(n2), we present the following example: fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1igwith(n)fh1; 1i; h2; 2i; :::; hn; nig.This operation cannot cause further expansion in P , since if a P node is not included, its subtree is neitherincluded. But it can expand Q wholly. At each lazy call, the algorithm can work O(min(n; d(k + dh))). Tosee this, consider that, on the one hand, we work only on the top-level of P , thus the argument we used forthe full expansion shows that (replacing nP by dP ) we can work at most O(dP (k + dQhQ)) (not consideringthe nQ bound yet). On the other hand, consider that in the whole execution of the lazy call, Determ cannot76



touch a Q node more than twice (since no more than two top-level P nodes can contain or overlap the Qnode), thus we can take a better minimum: O(min(nQ + dP ; dP (k + dQhQ))) = O(min(n; d(k + dh))).To see that it can reach O(n), consider the same example as for \+".If P and Q are from the same view, this algorithm performs better. The reason is that now Expand, Actualand Determ are really O(min(nQ; k), thus the whole algorithm is O(nP min(nQ; k)) = O(nmin(n; k)). Themaximum amount of work done at each call is also smaller, since we can eliminate the dQhQ added becauseof overlaps, to reach O(min(nQ + dP ; dPk)) = O(min(n; kd)).The same examples of the general case can be used to show that even when P and Q are from the same view,the whole complexity can reach O(n2) and the complexity per call can reach O(n).The operations withbegin/withend(k) are similar to with(k), we need minimal changes to the algorithm.These are: in both Actual and Expand, the condition qj � pi should change to From=To(qj) 2 pi; and inthe \pass 1" of Determ we should, for withbegin, add an instruction after the While block, namely \If(qj overlaps p) k k� 1. If (t � k) Return true"; and for withend, do also \k k � 1" if the �rstIf holds. The analysis is the same.If P and Q are from the same view, withbegin/withend(k) should be interpreted as with(k).\[s]child"The idea is the same as the merge version of full evaluation, the di�erence being that the subproblems are leftto be solved later. This does not introduce ine�ciencies. Recall that initially par = none, and that overlapsare not possible here, since P and Q must be from the same view.[s] P childpar Q (lazy version): Operate (P;Q; par).resultOperate (P;Q; par)res �.While To(pi) < (par = none ? 1 : To(par) + 1)8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
pi < qj : If par 6= none ^ parentview(pi) = par ^ posview(pi) 2 sres res : (node(pi); �).Pass i.pi > qj : Pass j.pi � qj : If par 6= none ^ parentview(pi) = par ^ posview(pi) 2 sres res : (node(pi); [s]childpar(query(pi); fqj:::g)).While (pi � qj) Pass j.elsepi  expandLevel(pi).Op Operate (query(pi); fqj:::g; par).res res : Op:result. fqj:::g  Op:restq.Pass i.pi � qj : qj  expandLevel(qj ).Op Operate (fpi:::g; query(qj); node(qj)).res res : Op:result. fpi:::g  Op:restp. Pass j.Return (result = res; restp = fpi:::g; restq = fqj:::g).This algorithm is O(nP + nQ) = O(n) as its full version, despite it looks like other O(n2) operations. Thepossible problem here is the case pi � qj, since it traverses some qj's again after having processed them. Butthe di�erence is that the list of Q-children of a Q-node is re-traversed only once in the whole process, namelywhen we �nd the view children of Q in P (since all children of a node are in a single level in any possiblequery tree), thus it adds O(n) to the whole process. 77



To see that it can reach O(n) consider the same example of the full version.It is also possible to work O(nP +nQ) = O(n) at a single lazy call, and to expand fully P and Q, consider forexample [s]fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1i; h1; 1ig child fh1; ni; h1; n� 1i; :::; h1; 2ig, when no parent/childrelationship holds.\parent(k)" operatorThe idea is the same as for the merge version of full evaluation, but leaving subproblems for later. Since thistime we have to traverse the children of a P -node to determine which of them are children in the view (toknow if it remains or not), we introduce an ine�ciency, since the children have to be traversed later for thedescendants of the P -node.Recall that overlaps are not possible here, since P and Q must be from the same view.P parent(k) Q (lazy version): Operate (P;Q;1).resultOperate (P;Q; plimit)res �.While To(pi) < plimit8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
pi < qj : Pass i.pi > qj : Pass j.pi � qj : children 0. oldj  j.While pi � qjIf (parentview(qj) = pi) children children+ 1.Pass j.If children < kpi  expandLevel(pi).res  res : Operate (query(pi); fqoldj :::g;1).result.else res res : (node(pi);parent(k) (query(pi); fqoldj :::g)).Pass i.pi � qj : qj  expandLevel(qj).Op Operate (fpi:::g; query(qj); T o(qj) + 1).res res : Op:result. fpi:::g  Op:rest. Pass j.Return (result = res; rest = fpi:::g).This algorithm is not linear as its full version, since it can pass many times over the same Q-nodes. Observethat for each P -node one can work at mostO(dQ), and that on the other hand, one cannot repeat the work on asingle Q-node more than O(hP ) times. This way, we obtainO(min(nQ+nPdQ; nP+nQhP )) = O(nmin(d; h)).To see that it can reach O(n2), consider fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig parent(1) fh1; 1i; h2; 2i; :::; hn; nig.This operation can force P and Q to be fully expanded, and can work O(min(nQ + nP dQ; nP + nQhP )) =O(nmin(d; h)) at a single lazy call. To see this, consider fh1; 2ni; h1; 2n� 1i; :::; h1; n+ 1ig parent(1)fh1; 3ni; h1; 3n� 1i; :::; h1; 2n+ 1i; h1; 1i; h2; 2i; :::; hn; nig, when no parent/child relationship holds.\before/after(k)(C)" operatorWe begin by before. The idea is exactly as in the full merge version, but leaving subproblems for later. Thisforce us to retraverse some Q nodes that in the full version are advanced by the children of the node, andthis makes marking not worth anymore. The initial value for qlimit is 1. Recall that overlaps are possiblehere, since P , Q and C can be from di�erent views. 78



P beforeqlimit(k) Q (C) (lazy version): Operate (P;Q; qlimit)Operate (P;Q; qlimit)res �.While To(pi) <18>>>>>>>>><>>>>>>>>>: pi > qj : Pass j.else : (c; lc) SearchC (node(pi)).lim min(qlimit; T o(c)).s hTo(pi) + 1; T o(pi) + ki \ h1; limi.oldj  j. While (To(qj) < From(s)) Pass j.If (Determ (fqj:::g; s; lim; lc).tomark)res res : (node(pi); beforelim(k) (query(pi); fqoldj :::g)(lc). Pass i.else fpi:::g  query(expandLevel(pi)) : fpi+1:::g.Return res.SearchC and Determ are exactly the same as their fullmerge versions, just taking care of invoking expandLevelon a node prior to using its query.This algorithm is analyzed almost as its full version. The only change is that the total number of times \Passj" is executed can be now O(hPdQ), not O(dQ) as before, but this does not change the total.We can, in a single lazy call, work O(nChC + nP (dC + min(nQ; hQdQ))) = O(nmin(n; dh)). To see this,consider the same example as for the merge version.It can also fully expand P , Q and C. To see this, consider fh1; ni; h1; n� 1i; :::; h1; 1ig before fh1; 2ni;h1; 2n� 1i; :::; h1; n+ 1ig (fh1; 3ni; h1; 3n� 1i; :::; h1; 2n+ 1ig).The change experimented by the complexity when P , Q and C are from the same view is exactly as for themerge version. The examples presented for the general case show that the maximum amount of work andexpansion per lazy call does not change either, since the example can occur in a single hierarchy.The idea for the after(k)(C) operator is similar to before(k)(C), except in some details. The complexity isalso the same.\before/after(C)" operatorsWe have not been able to develop a real lazy version for these operations, since the obtention of the �rst levelrequires a global computation involving the whole tree, and what happens with a node depends on its siblingsand their descendants, so there is no foreseeable way to separate subproblems for later expansion. Anyway,although we have to obtain the whole answer, it is possible to delete nodes without expanding them, whichis the purpose of lazy evaluation. The algorithm is, thus, the same, taking care of invoking expandLevel ona node prior to using its query. The complexity is of course the same as its full merge version.5.2.3 Analysis SummaryIn this section we summarize the space and time complexity results discussed in the presentation of algorithms.5.2.4 Space for QueriesSince the representation of a set of Q-nodes (i.e. the answer to a query or subquery) is dynamic, it uses, foreach node, a pointer to the view (log2 jNV j bits), a pointer to its children (log2 jQj bits, if they are storedcontiguously), the number of children (log2 jQj) and the size of the subtree (log2 jQj). Since some algorithmsrely on marks, we really need more information. The space requirements for marks range from 1 to log2 jNV jbits. Thus, ignoring marks, we need 79



SQ = jQj(log2 jNV j+ 3 log2 jQj) � 4jNV j log2 jNV jbits per query result. If we consider jQj � jNV j=jCV j (which is reasonable), we needSQ � jNV jjCV j (4 log2 jNV j � 3 log2 jCV j)bits. This formula is the same if we use a linked list for the level of the tree, since in that case we replacethe number-of-children �eld by a next-sibling �eld (both are log2 jQj).Measured in words, SQ = 4jQj. If we include the mark �eld, we have SQ = 5jQj.During the resolution of a query, we need to keep many results at the same time. We saw in section 5.2.1.2how to minimize space utilization if we use a tree for the query syntax (if we use a DAG it is much harder topredict the space utilization). If we have a query with a syntax tree of q nodes, the worst that can happenis that the tree is balanced. Suppose all operators are of arity a (a � 2, since unary operators do not forceus to store more nodes), then by following the principle of solving the heaviest node �rst, we will have in theworst case a� 1 computed answers per level, thus needing a total space less thanSQ (1 + (a � 1) loga(1 + q(a � 1))) = O (SQa loga q)Note that in most cases a = 2. In that case, the exact answer isSQ (1 + log2(1 + q))) = O (SQ log q)In lazy evaluation we cannot predict how much space we will need, since we have normally all internal nodespartially computed.If we use a DAG we may have to keep also space for all shared nodes.5.2.5 Running Time of OperationsSince we have already analyzed the operations when we described them, we summarize and comment herethe results.As we can see in Table 5.1, the merge approach is better in general if we look at the worst case behavior.However, we must take into account other aspects of the problem. For example, the search-operate approachcould be very good if the two operands are very distinct in size, we test this in the simulations. The lazyapproach can also be better than the full one, because although it is less e�cient in producing the wholetrees, it can deliver the answer generating the intermediate solutions only to a partial degree.We have not included here the operators to enhance the pattern-matching sublanguage, since they are quiteeasy to implement and normally linear. We have not included also the implementation of the View andConstr queries, since they are discussed in the section about indexing, and their performance depends onthe index. Anyway, most implementations of Constr and View are linear in the size of the result.These good complexity results are possible thanks to our approach of coupling nodes with segments, whichallows us to readily apply divide-and-conquer techniques for obtaining the whole set of solutions to a query.The ideas of a set-oriented query language, coupling nodes with segments, using a data structure in which wecan easily separate ranges of segments, and a language which reduces all queries to operations on proximalnodes lead us to an implementationwhere the amortized cost per retrieved element is, in many cases, constant.In order to compare the e�ciency of our approach to that of the other considered models, we must de�nehow we measure the e�ciency of those models.The three simpler models (the hybrid model [BY94], PAT expressions [ST92] and overlapped lists [CCB95a])have to manage sequential lists (no nesting) in their intermediate results, thus they are susceptible of an80



Operation Search-Operate Merge Lazy Lazy(in whole) (per call)+ n logd::n log2 d n nmin(d; h) n� n logd::n log2 d n nmin(d; h) nis n logd::n log2 d n n nsame nmin(n; h logd) n n n[n logd::n log2 d]in n log d min(n; d2h) min(n; d2h) min(n; d2h)beginin n log d min(n; d2h) min(n + dh; d2h) min(n; d2h)endin n log d min(n; d2h) min(n + dh; d2h) min(n+ dh; d2h)[s]*in nmin(n; d+ h log d) nmin(d; h) nmin(d; h) nmin(d; h)[nd]with*(k) nmin(n; h logd) n nmin(n; k + dh) min(n; d(k + dh))[n logd::n log2 d] [nmin(n; k)] [min(n; kd)][s]child n logd::n log2 d n n nparent(k) n logd::n log2 d n nmin(d; h) nmin(d; h)after/before(k)(C) nh log d nmin(n; dh) nmin(n; dh) nmin(n; dh)after/before(C) nmin(n logd; dh) nmin(n; dh) nmin(n; dh) nmin(n; dh)Table 5.1: Complexity results for all versions of the operations. When the complexity can be better if theoperands are in a single view, the better complexity is indicated below the general value, in square brackets.implementation in which all operators are linear (a merge-like approach). They can also be implementedin a search-operate-like manner, i.e. searching each segment into the other set. This approach makes mostoperations O(n logn), but as search-operate, could be preferred in certain cases (see, however, the exper-imental results). Since the actual implementations are not a property of the models and not always areavailable (some of them are commercial products), we decide to consider these models as if they had a linearimplementation (i.e. the best) for all operands, i.e. slightly better than ours.The lists-of-references model is quite complex and hence has problems about e�ciency [Mac91, Mac90].However, since we are taking the part of the model similar to ours (i.e. discarding attributes and hypertextmanagement), we only take into account the implementation of this subset. From the cited papers we caninfer that the implementation of that subset makes most operations O(n logn), so we use that complexity.The more complex models, instead, cannot have that good implementation. The tree matching model [KM93]involves a number of NP-Complete problems, especially regarding logical variables and unordered inclusion.Only ordered tree inclusion without variables can be similar in e�ciency to our approach, but this is a toorestricted version of the model. On the other hand, there is no data about the e�ciency of p-strings, butmany operations must be O(n2) (because of the cardinality of the result set). Moreover, there are some dataabout the times required to process the SOED that indicate that the implementation is not very e�cient.Thus, we treat these complex models as being much less e�cient than ours.
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Chapter 6A PrototypeIn this chapter we describe a prototype that implements our model, following the system architecture proposedearlier. We have used this prototype to measure average time and space used, and to test di�erent heuristics.6.1 ImplementationOur prototype provides two main facilitiesIndexing: each document is indexed in two separate forms: an index for text and another for structure.The index for text is provided by the text search engine we use. The index for structure can be builtby any mechanism; for example we have implemented parsers for some markup languages and a tool toconvert parse trees to the index format.Querying: a search module implementing all representative operations is provided. This module has threeimplementations, one for each version of the algorithms. Pattern-matching subqueries are redirectedto the text search engine that we use.See Figures 6.1 and 6.2 for diagrams of the software architecture of our prototype. Observe how the generalarchitecture described in Section 3.4 is mapped into this one. Currently, the interface layer is very primitive,and the document layer does not exist. There is no query parser yet, we manually write the query plans.Currently, our text search engine is the API of SearchCity [Ars92], which is based on the use of PAT arrays[FBY92, chapter 5] (also called su�x arrays [MM90]), and partially implements the hybrid model [BY94].PAT arrays allow to �nd all occurrences of a given pre�x in log2 n time, where n is the number of index pointsof the text. Its space requirement is n words. The matching sublanguage supported by the API includes:whole words, ranges, wildcards in any place but the beginning, proximity search, boolean operators, etc. Italso has tools to de�ne �elds (much like [BY94]), but we do not use them. It provides a number of documentmanagement facilities, so the \document layer" of our architecture could in fact be implemented with thesame API.The API also allows to �lter the raw text, by applying a character normalization �lter, a synonyms andstopwords �lter, and a format �lter. This last �lter allows to use �les in other formats di�erent from ASCII(e.g. Word), without copying their �ltered form into a new �le. All format-related (i.e. non-searchable)portions of the �le are �ltered out, so that queries can only see the true contents of the �le. The APIprovides a tool to add new format �lters.We use that �ltering tool to incorpore texts whose structure is embedded in their content, this way allowingonly the contents to be searchable, and using the marking to parse the structure and generate a view index.This way, we have an index for matches and a separate index per view. The PAT array can be seen as ageneric index for the text view. Recall that we do not want to allow users to see the markup, since all whatthey should do with it should be done through the operators to query on structure.82
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�ne-grain. We do not parse DDIF directly, but use the output of ddis2ascii V3.03, a program thatoutputs a readable version of a DDIF-marked document. We recognize the structuring commands andtheir scope, although we do not make a more complex semantic analysis, which would be required tocapture the full power of the language. We �lter the native �le, not creating a copy.We implemented the simplest version of the structure index, i.e. the full index in memory, together withprocedures to load it from and save it to disk. A real application should use some of the solutions we proposefor keeping the index on disk.The operators we have implemented cover all interesting problems and algorithms: View, Constr,Match,+, �, is, same, in, [s]in, with(k), [s]child, parent(k), before(k)(C), and before(C).Text views are implemented by creating, for each match on queries, an index array, where one entry per nodeof the resulting tree is created. This is not the smartest way to do it, but it is simple enough for a prototype.This text view is deallocated when the query disappears.The language for sequences (recall [s]in, [s]child, etc.) is as follows: one can express a �nite number ofranges from three classes: from position i to j, from position last � i to last � j, and from position i tolast� j. We believe it is expressive enough for most normal cases. That means, for example, that we cannotselect all even chapters, or all prime-numbered sections.For the search-operate version, we implement the set of children of a node as a sorted array, in which wecan easily perform binary or interpolation search. The problem is that many operations, if we consider thenecessary merge of arrays or deletion of nodes, become O(n2) in the worst case. A real implementationshould use a data structure as described earlier, to make all those operations in O(log d) time. We have notimplemented also the binary split method to create arti�cial nodes, which assures that the worst case cannotreach O(n2). We instead search for each node of the level in sequence. Although a real application shouldimplement binary split, the di�erence in the average case is negligible except for very deep trees (which areunlikely to appear in practice), while we can bene�t in speed due to simpler code.These two simpli�cations have been tested and found reasonable. On the one hand, we show in the tests thatthe behavior of search-operate is no di�erent as a proportion of merge for \�" and is operations, in which\�" does only search but is does a lot of node deletion. On the other hand, we tested in the same examples of\�" (which do only searches) the strategy of arti�cial nodes vs the simpler code, and found them equivalent.All search-operate versions destroy one or both operands (i.e. they are implemented as modifying operations).For the merge and lazy versions, instead, we use sorted linked lists, which are e�cient for merging operations(we do not search for elements here, we just traverse sets). Merge operators are also implemented as modifyingoperations.Lazy evaluation is e�ciently implemented by storing, as the identi�er of the operator to apply, the address ofits procedure (all procedures are normalized to receive the same type of parameters). The procedures usedin the full-evaluate versions solve the queries and obtain the answers, while in lazy evaluation they just buildthe tree that indicates the operations to perform. Another procedure is invoked later to force expansion ofthe result.A problem related to lazy evaluation is the need of a garbage collection mechanism for shared nodes. Sincethere are no circular references, either reference count or mark&sweep mechanisms can be used [Coh81].While the �rst one deallocates immediately unused memory, the second one takes place only upon memoryexhaustion and can be slower, stopping the execution for a long time and making evaluation time moreunpredictable. On the other hand, mark&sweep can easily collect complex structures, including cycles.Since we share lists of queries in a complex way (i.e. it is possible to point to the middle of a list), weprefer the mark&sweep style. We implement a pool of shared objects to deallocate all objects after the wholeevaluation of a query. A real application should either adapt the reference count mechanism to deal with ourlists, or use the pool to implement a mark&sweep garbage collection scheme, that upon memory exhaustionmarks all what is reachable from the query that initially triggered the expansion, and then frees all what isin the pool and is not marked. 85



Lazy operations are not implemented as modifying but as generating operations (i.e. they do not destroytheir operands). This is the only feasible alternative for shared objects. We can share queries and lists ofqueries independently, and we can even share parts of lists.6.2 ExperimentsIn this section we present the results obtained with the prototype. We �rst present a list of questions thatthese tests help to answer, then we expose the tests we made and their results, and �nally we extract someconclusions from experimental data.6.2.1 MotivationThe list of questions the tests should help us to answer is:� Which are the average times of the operators?� The search-operate versions have normally two alternatives: search the �rst operand into the second orvice versa (\12" or \21"). Under which condition should each alternative be selected?� Under which condition should one use merge or search-operate versions? We must compare runningtimes to determine a global heuristic that selects to merge or to search-operate depending on the sizecharacteristics of the operands (in this case, we should unify the data structures, probably by using abinary tree to arrange the nodes of each level).� How much do we save by using lazy evaluation in terms of time? And in terms of space? Is it worthpaying the overhead?� Is it advisable to use interpolation instead of binary search in search-operate algorithms?� How does the shape, depth and width of the structure a�ect the previous measures?6.2.2 TestsAll tests were run on a Sun SparcClassic, with 16 Mb of RAM, running SunOS 4.1.3 U1. The CPU speed ofthis machine is approximately 26 SpecMark.We use three main document formats in our texts: LaTEX documents, which provide us with a samplerepresentative of the distribution likely to be found in books and texts: relatively coarse-grain, shallow andwide; and C code, SGML and DDIF, which are much �ner-grain, deeper and not so wide. On each documenttype we have only one hierarchy, thus we had no overlap cases to include in our tests. We provided thesecases by means of text operations, that generate segments overlapping with structural components.As explained in the initial exposition of the model, there is no good probabilistic modellization of the dis-tribution of hierarchies, what prevents us to run a sound test and obtain results about mean, variance andcon�dence intervals. We instead selected a number of appropriate examples, to have an idea of the measuresthat we want to obtain. As it is shown later, this is enough for our purposes.We conducted three main tests:An operator-wise test: It is the most extense. Its aim is to obtain average values for all versions of allrepresentative operators, answering then the questions about average times, and about which algorithmsare better in each case. Details follow:� The operators tested were: \+", \�", is, in, [s] in, with(k), [s] child, parent(k), before(k) andbefore. 86



� For each operator, we tested the �ve versions of the algorithms: lazy, full merge and three versionsof search-operate: using the heuristic to select between \12" and \21" versions, using always \12"and using always \21".� We ran the algorithms for nine di�erent sizes of operands, i.e. for all combinations of sizes 102,103 and 104 for both operands. The time for smaller sets was negligible. We used such a grossscale because of what we mentioned about the di�culty to run more precise tests.� Each run was made on at and deep operands, to see how the structure inuenced the results.� Finally, for each operation, algorithm version, size combination and at/deep selection, �ve di�er-ent operand pairs were selected, intended to represent a range of possible values on that case.� Some special cases: in both before operations, two di�erent values for C were tested: zero and103, to see how it inuenced the times. For before(k), we use k = 10 and k = 500. Finally, withwas used with k = 5, except for the lazy version, that was also run with k = 100, since it waslikely to be a�ected by k. All other k and [s] parameters do not a�ect performance.We performed about 1300 tests in total, each one run on �ve di�erent examples.A test for lazy vs merge: Its aim is to determine the average expansion of the trees made by the lazyalgorithms, and to compare times against full merge. The time comparison was also done in the �rsttest, but in this case we selected 10 queries of di�erent complexity, on C code (observe that the queriesof the �rst test are all of one operator only). The idea was to know what is the percentage of expansionin a real query (i.e. with more than one operation involved), where lazy evaluation is likely to behavebetter, and what performance can we expect in queries involving many operations.A test for binary vs interpolation search: Its aim is to determine how close is the real distribution toa uniform one, to decide whether interpolation search is a good idea. We tested it for sizes between 10and 104, in each case with ten pairs of at operands selected from the documents. These case were runas a \�" operation, since being di�erent the operands, the process would involve just search time.The detailed results of the tests are shown in Appendix C. Figures 6.3 and 6.4 show some typical results.
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Figure 6.4: Typical times for equal-sized deep operands. Observe that we use a logarithmic scale.6.2.3 ResultsFrom the results of the tests, we can strongly conclude a number of important facts:� The merge algorithms are by far better than their search-operate counterparts. Although both versionsare similar for sizes of 103 or less, merge algorithms are much better for larger sets, for example bya factor between 2 and 3 for operands of size 104. This di�erence cannot be attributed to memorymanagement, since it remains even in tests where no modi�cation of the operands occur.� The merge algorithms are strongly linear in most cases, depending only on the size of the operands.Search-operate algorithms, on the other hand, are not linear and get much worse when we jump from103 to 104. Moreover, they are extremely unstable, depending a lot on internal details of the structureof operands.� This unstability is not only bad for interactive activities, but also prevents from drawing reasonableheuristics to apply \12" or \21". The algorithms that allow switching between \12" and \21" insubproblems are even more unstable, and can be even de�nitely worse than using \12" or \21" alone.This is because they can take the wrong decision not only the �rst time, but also in subproblems.� However, this issue is not that important, since the \12" and \21" versions are not too di�erent, evenwhen run on sets of very di�erent size. This is the reason because we de�ne our heuristics by complexityand some intuitive considerations in the de�nition of the algorithms: it is di�cult to make it better,and does not make a big di�erence.� The running time of merge algorithms is normally easy to predict, except in some cases (especially theC of before seems to a�ect retrieval times in unpredictable ways). For most operations, the timesindicate that near 50.000 nodes per second are processed in this machine.� Although in one-operator queries the lazy algorithms are roughly equivalent to full merge ones, the lazyapproach is normally better in more complex queries, but its times are quite unstable. As we may88



expect, its performance is very dependent upon how much does it need to expand, and this is closerelated to the internal structure of trees and the kind of operations we are performing.� In the real queries tested, the lazy algorithm behaved in a very variable way. Its percentage of expansionranged from 40% to almost 100%, depending on the structure and sizes of the operands and intermediateresults.� The speed of merge algorithms in the complex queries was proportional to the sum of the sizes of allinternal results. The constant for our machine is between [1:5 :: 2:5]�10�5 seconds per node, or between[4 :: 7] � 104 nodes per second. The time for lazy evaluation was normally half the time for merge,being a common range a fraction of [0:25 :: 0:90].� It is important to note another di�erence between full and lazy evaluation: we implemented modifyingversions of full algorithms and generating versions of lazy ones. Modifying algorithms are better if theresults are a big portion of the operand, generating algorithms are better otherwise. This aspect wasnot foreseen in the theoretical analysis, but emerges as an important practical consideration, since theresults indicate that generating algorithms are much better in practice.� A deeper structure of operands a�ects negatively the mean and variance of most operators in all versions,although merge algorithms are less a�ected.� On the tests run for binary vs interpolation search, interpolation performed much worse than binarysearch.These facts raise some general conclusions to learn from the tests:� We should concentrate on merge and lazy algorithms and discard the search-operate version. Thisinvolves more complex algorithms, it is more di�cult to analyze, is very unstable and nonlinear (alsoin practice) and has de�nitely worse performance. Merge is strongly linear, predictable, e�cient andsimpler.� A rough estimation for the time taken by merge algorithms to process a query whose syntax tree has qnodes is (2q� 1)� (average operand size). The constant depends on the machine, for example in ourcase it is � 2� 10�5 seconds per node (50.000 nodes per second).� Lazy operations presents a high variance compared to merge, expanding between 40% and 100% of thequery and taking between 25% and 90% of the time merge needs to retrieve the result. It is probablyworth to extend the lazy mechanism to expand only some children of a node, since its advantage isrelated to how much it has to expand.� The problem of modifying vs generating algorithms should be separated from full vs lazy evaluation, anddeeply studied in the context of query optimization and query plan generation, because they stronglyinuence practical times. Mixed strategies, such as modifying operations plus garbage collection toavoid processing the nodes to be deleted, should be studied.
89



Chapter 7Conclusions and Future Work7.1 SummaryThe problem of querying a textual database on both its contents and structure has been analyzed. We foundthe existing approaches to be either not very expressive or ine�cient.Then, we have de�ned a model for structuring documents and a query language that are expressive ande�ciently implementable.To evaluate expressivity we have compared our model with other known ones, showing which aspects of eachone can be represented with the other; and we de�ned a framework in which to evaluate any similar model,situating known approaches.To evaluate e�ciency we have implemented our model, and analyzed the behavior of our algorithms in termsof both space and time. We also implemented a prototype to draw average measures and to test di�erentalternative solutions to some problems.7.2 ConclusionsThe results of this work are a new model for structuring and querying textual databases which has ane�cient implementation and good expressivity, a framework to compare expressivity and an analysis of theexpressivity of the new model, an implementation of the operations, and a theoretical and practical study oftheir behavior in terms of both time and space.The main idea of this work is that a set-oriented query language based on operations on nearby nodes is veryexpressive and e�ciently implementable. The strong relation imposed between nodes and segments allowsus to index the nodes in a tree, based on their left-to-right and including relations. This way, at the momentof operating two sets, we can easily apply divide-and conquer techniques, thus avoiding costly all-against-allmatching algorithms such as those studied in [KM92, KM95]. On the other hand, most interesting operationscan be carried out by operating nearby nodes.We developed two main strategies to solve queries. A full-evaluation approach computes the whole set ofanswers, while a lazy-evaluation one computes only what is needed to obtain the �nal result. Both strategiesare competitive for set-oriented languages. Additionally, lazy evaluation can be adapted to interactive systemsthat combine querying and navigation, by expanding only the top-level and thereafter expanding the nodesthe user wants to see more closely.The structuring model and operations de�ned for the language are shown to be competitive in expressivity,getting closer in expressivity to models that have not an e�cient implementation. On the other hand, themerge and lazy algorithms developed show good and predictable performance, both in their analysis and inthe tests, what situates this model closer in e�ciency to those which have much less expressivity.90



While a number of operations can be added to the language keeping the high e�ciency, the work shows thatsome other features cannot be added without signi�cantly complicating the implementation and degradingthe performance. For example, more expressivity can be obtained by dissociating nodes and segments (as in[GT87]), or by including non-proximal operations (like semijoin), but at the cost of losing e�ciency.Finally, recall that the proposed language is an operational algebra, not necessarily intended to be accessed bythe �nal user, as the relational algebra is not used by the users of the database. It serves as an intermediaterepresentation of the operations.See Figure 7.1 for a graphical (and informal) comparison of similar models when taking into account bothe�ciency and expressivity. Note that we have included p-strings in this drawing, assuming an expressivitysuperior to all the languages we have analyzed. Note also that only a part of the lists-of-references model isconsidered. Note that, as any quantization of concepts this comparison is busjective. Nevertheless, it doesgive an idea of where our model is.
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fully exploited. On the other hand, we should �nd a set of operators which is simple, elegant andexpressive, as for example the relational algebra. In this work we focused only in showing which thingscould be expressed with our approach, but not in a single and simple language.� To improve the lazy mechanism, by allowing to expand only parts of levels, since as it is, the mechanismexpands complete levels and that is not good for shallow trees (and most of them are).� To implement the proposed techniques for maintaining the index and operands on disk, to study thebehavior of di�erent approaches and policies. We have disregarded this problem here, implementingthe index and operands in memory.� To design swapping policies for when the operands do not �t in memory. We have disregarded thisproblem here, having all operands in memory all the time.� To design a query parser that generates smart query plans, implementing the proposed techniques (trees,DAGs, and deallocation policies), to experimentally study their behavior. We have not implementedthe query parser, but generate manually the query plans.� Related to the previous is the need to �nd a good way to avoid processing nodes that must be deleted,and to draw a general heuristic in the use of modifying or generating algorithms.� To implement parsers and �lters to index new types of structuring mechanisms.� To de�ne a query language suitable for end users, possibly visual, to map onto our operational algebra.� To enhance the prototype, to convert it into a real application, with management of indices on disk,swapping, query plan generation, etc. An interesting possibility is to use the lazy mechanism as theengine of a system combining set-oriented queries with navigational tools.� To prove formally the correctness of our algorithms, which we have done only informally.� To study an extension to our model that allows manipulating the results of queries as new views, as inrelational databases.7.4 Open ProblemsFinally, we point out a number of problems raised by this work, which deserve a separate and deep studyand attention:� The design of query optimization techniques for our language. Once the query plan generator is written,there is a large number of possible optimizations, by using algebraic identities that allow transformationof an expression to a cheaper one. Another direction is to make some compound operations atomic,which may be cheaper to implement that way (a typical example is P � (P such that:::)). Some ideasand theoretical results about optimization can be found in [CM94].� An interesting area is the integration between this kind of model and others, such as the relational orthe traditional IR ones. This issue has not been considered here, since we focused on the structureproblem. See [SDAMZ94] for some ideas on this area. A promising direction to manipulate tuples inour language is to convert all operators of the kind \select nodes of P which are related in such waywith a node of Q" to \select pairs (p; q) from P �Q related in a such way".� As the research in this area matures, it is possible that a reasonable probabilistic model for the structureof documents emerges, at least for restricted areas. In that case, an average-case study of the behaviorof our algorithms in both space and time would be of most interest.� The generalization of the problem to manage non-hierarchical structures, such as a hypertext network.The design of a good and e�cient query language for this case has not been studied, to our knowledge.92



� A formal framework in which to compare expressivity is needed. We have done one step forward in thatdirection in this work, but the long-term goal should be a formal and sound hierarchy like what can befound in the area of formal languages (see [CM95, GPG89] for some examples). Related to this is theproblem of �nding lower bounds for the complexity of the operations related to structure, in order toknow when we have found the best algorithms.� Finally, we need not only a formal but also a practical standard of expressivity. Currently, a widediversity of expressivity models exist, and no consensus about what one would like to express. Findinga uni�ed view on this subject is a matter of maturing.
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Appendix AFormal Syntax and SemanticsWe �rst de�ne the syntax of our expressions (Expr) by an annotated abstract syntax. In this de�nition, weuse N as the set of natural numbers, Z as the integers, M as the set of pattern-matching expressions, S asthe language for denoting positions, and E;E1; E2; E3 2 Expr.Some compositions are not allowed when the operands are from di�erent views. We could address thisproblem formally, but it would be cumbersome, so we prefer to indicate at the right side of each alternative,the conditions on the views of the operands and the view of the result, between brackets. The view of theresult is expressed as a function � : Expr ! V.Expr �! View(V ) [V 2 V � fVtg; � = V ]j Constr(c) [c 2 C � fCtg; � = V=c 2 CV ]j Match(m) [m 2M; � = Vt]j (E1 collapse/subtract/intersect E2) [� = � (E1) = � (E2) = Vt]j join/complement(E) [� = � (E) = Vt]j move(i; j) E1 (E2)) [i; j 2 Z; � = � (E1) = Vt]j (E1 to E2 (E3)) [� = � (E1) = � (E2) = Vt]j toplevel(E) [� = Vt]j (E1 + E2) [� = � (E1) = � (E2) 6= Vt]j (E1 � E2) [� = � (E1) = � (E2) 6= Vt]j (E1 is E2) [� = � (E1) = � (E2) 6= Vt]j (E1 same E2) [� = � (E1)]j (E1 with(k) E2) [k 2 N; � = � (E1)]j (E1 withbegin/withend(k) E2) [k 2 N; � = � (E1) 6= � (E2)]j (E1 in E2) [� = � (E1)]j (E1 beginin/endin E2) [� = � (E1) 6= � (E2)]j ([s] E1 in E2) [s 2 S; � = � (E1)]j ([s] E1 beginin/endin E2) [s 2 S; � = � (E1) 6= � (E2)]j (E1 parent(k) E2) [k 2 N; � = � (E1) = � (E2) 6= Vt]j ([s] E1 child E2) [s 2 S; � = � (E1) = � (E2) 6= Vt]j (E1 after/before E2 (E3)) [� = � (E1)]j (E1 after/before(k) E2 (E3)) [k 2 N; � = � (E1)]Now, the function I is de�ned inductively as:� I(View(V )) = NV .� I(Constr(c)) = fx 2 N=Constr(x) = cg.� Suppose m is a pattern-matching expression, whose result is a set of segments (a1; b1)::(ak; bk). Then,I(m) = ftai;bi=i 2 [1::k]g. 98



� I(P collapse Q) = fta1;bn=9ta1;b1:::tan;bn 2 I(P ) [ I(Q)=(8i; bi � ai+1) ^ 6 9tx;y 2 I(P ) [ I(Q) �fta1;b1 :::tan;bng=(x; y) \ (a1; bn) 6= ;g.� I(joinP ) = fta1;bn=9ta1;b1 :::tan;bn 2 I(P )=(8i; ai+1 = bi+1) ^ 6 9tx;y 2 I(P )=(x = bn+1 _ y = a1�1)g.� I(P intersect Q) = fta;b=9tx;y 2 I(P ); tz;w 2 I(Q)=(x; y) \ (z; w) = ta;b 6= ;g.� I(complement P ) = fta;b=a � b ^ 9tx;a�1; tb+1;y 2 I(P ) [ ft0;0; tT+1;T+1gg.� I(P minus Q) = I(P intersect (complement Q)).� I(toplevel P ) = fta;b=9x 2 maxim(I(P ))=Segm(x) = (a; b)g. Here we use maxim : }(N ) ! }(N ),de�ned as maxim(X) = fx 2 X= 6 9x0 2 X=x0 � xg (on chains, it returns singletons).� I(move(n;m) P (C)) = fta0;b0=a0 � b0 ^ 9p 2 I(P )=Segm(p) = (a; b) ^ (a + n; b + m) \Segm(minim(z 2 I(C)=p � z)) = (a0; b0)g. Here we use minim : }(N ) ! }(N ), de�ned asminim(X) = fx 2 X= 6 9x0 2 X=x � x0g (on chains, it returns singletons, that we interpret hereas their only element).� I(P to Q (C)) = minimfta;d=a � d ^ 9x 2 I(P )=Segm(x) = (a; b) ^ 9y 2 I(Q)=Segm(y) =(c; d) ^ minim(fz 2 I(C)=x � zg) = minim(fz 2 I(C)=y � zg)g.� I(P + Q) = I(P ) [ I(Q).� I(P � Q) = I(P )� I(Q).� I(P is Q) = I(P ) \ I(Q).� I(P same Q) = fx 2 I(P )=9y 2 I(Q)=Segm(x) = Segm(y)g.� I(P with(k) Q) = fx 2 I(P )=jfy 2 I(Q)=y � xgj � kg.� I(P withbegin(k) Q) = fx 2 I(P )=jfy 2 I(Q)=From(y) 2 Segm(x)gj � kg.� I(P withend(k) Q) = fx 2 I(P )=jfy 2 I(Q)=To(y) 2 Segm(x)gj � kg.� I(P in Q) = fx 2 I(P )=9y 2 I(Q)=x � yg.� I(P beginin Q) = fx 2 I(P )=9y 2 I(Q)=From(x) 2 Segm(y)g.� I(P endin Q) = fx 2 I(P )=9y 2 I(Q)=To(x) 2 Segm(y)g.� I([s] P in Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, S : S � N � }(N ) ! ftrue; falseg is theinterpretation of the position language S, which says whether the left-to-right position of the segmentof a node in the segments of a set of nodes is acceptable by the speci�cation of s. This positionis only well de�ned when none of the segments includes another, which is the case in Zy. Finally,Zy = fx 2 P=x � y ^ x 2 maxim(z 2 P=z � y _ y 6� z)g.� I([s] P beginin Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, Zy = fx 2 P=From(x) 2 Segm(y) ^ x 2maxim(z 2 P=Segm(z) 6� Segm(y))g.� I([s] P endin Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, Zy = fx 2 P=To(x) 2 Segm(y) ^ x 2maxim(z 2 P=Segm(z) 6� Segm(y))g.� I(P parent(k) Q) = fx 2 I(P )=jfy 2 I(Q)=x �! ygj � kg.� I([s] P child Q) = fx 2 I(P )=9y 2 I(Q)=y �! x ^ S(s; x; fz 2 N=y �! zg)g.� I(P after(k) Q (C)) = fx 2 I(P )=9y 2 I(Q)=0 < From(x) � To(y) � k ^ minim(fz 2 I(C)=x �zg) = minim(fz 2 I(C)=y � zg)g. 99



� I(P after Q (C)) = Sy2I(Q) first(fx 2 I(P )=From(x) > To(y) ^ minim(fz 2 I(C)=x � zg) =minim(fz 2 I(C)=y � zg)g). Here, first : }(N ) ! N selects the node in the set with lowest valueof From, and if there are more than one, the maximal. If all the nodes are from the same view, thiscriterion gives exactly one node.� I(P before(k) Q (C)) = fx 2 I(P )=9y 2 I(Q)=0 < From(y) � To(x) � k ^ minim(fz 2 I(C)=x �zg) = minim(fz 2 I(C)=y � zg)g.� I(P before Q (C)) = Sy2I(Q) last(fx 2 I(P )=From(y) > To(x) ^ minim(fz 2 I(C)=x � zg) =minim(fz 2 I(C)=y � z)g)g. last is analogous to first, selecting the highest value of To, or themaximal if they are the same.
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Appendix BTranslation FormulasB.1 Hybrid ModelWe depict here functions D andM, to translate from the hybrid model to ours, and the function R, to dothe converse. We begin with the parallel de�nition of D andM.� Matching expressions m: we do not enter into details here. They return a set of size-1 text segments.Although we do not de�neM(m), it holds D(m) = DV withM(m).� P + = or Q makes the union of match points and documents of P and Q:{ M(P + = or Q) =M(P ) collapseM(Q).{ D(P + = or Q) = D(P ) + D(Q).� P �Q subtracts the matches of Q from the matches of P . The resulting D component are documentswhich contain some resulting match.{ M(P �Q) =M(P ) subtractM(Q).{ D(P � Q) = DV withM(P � Q).� P&Q intersects the matches of Q with the matches of P . The resulting D component are documentswhich contain some resulting match.{ M(P&Q) =M(P ) sameM(Q).{ D(P&Q) = DV withM(P&Q).� � P takes all match points except those present in P . The resulting D component are documents whichcontain some resulting match.{ M(� P ) = \*" subtractM(P ). We assume here that we have in the matching sublanguage aquery \*" to retrieve all points of the text (which is quite problable).{ D(� P ) = DV withM(� P ).� P and Q intersects the documents of P and Q. The resuling match points are those which appear inP or in Q (inside the resulting documents).{ M(P and Q) = (M(P ) collapseM(Q)) in D(P and Q).{ D(P and Q) = D(P ) is D(Q).� P butnot Q subtracts the document of Q from the documents of P . The resulting matches are those ofthe remaining P documents. 101



{ M(P butnot Q) =M(P ) subtract (M(P ) in D(Q)).{ D(P butnot Q) = D(P )�D(Q).� not P returns all documents except those included in P , and an empty set of matches.{ M(not P ) = \*" subtract \*", or any mechanism to obtain an empty text query.{ D(not P ) = DV �D(P ).� P in f restricts the match points of P to those appearing inside a �eld f . The set of documents isrestricted to those containing some resulting match point.{ M(P in f) = (M(P ) in f1) collapse ... collapse (M(P ) in fr).{ D(P in f) = D(P ) withM(P in f).� f with P returns matches corresponding to the beginnings of �elds f containing some match of P , andthe documents containing those beginnings.{ M(f with P ) = (beginnings (f1 with M(P ))) collapse ... collapse (beginnings (fr withM(P ))).{ D(f with P ) = DV withM(f with P ).This completes the representation, except for some, whose syntax is somek(q1; :::; qm), with 1 � k � m andqi queries. It means that a document is retrieved only if at least k of the m queries retrieve it. The onlysimulation we can o�er for some is of length k�mk � = O(m2m), by rewritingsomek(q1; :::; qm) = orqi1 6=:::6=qik2fq1;:::;qmg(qi1 and ::: and qik)The de�nition of the converse function, R, follows.� R(Constr(c)) = c with \*".� R(View(V )) = (c1 with \*") + :::+ (cr with \*"), where CV = fc1; :::; crg.� R(Match(m)). We left this unspeci�ed.� R(P +Q) = R(P ) +R(Q).� R(P �Q) = R(P )�R(Q).� R(P is/same Q) = R(P ) &R(Q). Recall that since no two segments begin at the same position, is =same.� R(P beginin Q) = R(P ) in c. This works only if Q = Constr(c) (it is not compositional). If Q =Constr(c1) + :::+ Constr(cr), it can be translated into (R(P ) in c1) + :::+ (R(P ) in cr).� R(P in/endin Q) can be translated as before, with the additional constraint that the hierarchy mustbe strict.� R([s] P in/beginin/endin Q) cannot be represented.� R(P parent/[s] child Q): the concept does not exist.� R(P withbegin Q) = c with R(Q). This works only if P = Constr(c) and k = 1. Again, if Q =Constr(c1) + :::+ Constr(cr), it can be translated into (c1 with R(Q)) + :::+ (cr with R(Q)).� R(P with/withend Q) can be translated as before, with the additional constraint that the hierarchymust be strict.� R(P after/before(k)Q (C)) = R(P ) after=before:k R(Q). This only works if C = none. Notice alsothat after=before measure from segment start to segment start, so the semantics is in fact di�erent.� R(P after/before Q (C)) cannot be represented.102



B.2 PAT ExpressionsWe depict here the function I, to translate from PAT expressions to our model, and the function P, to dothe converse. We begin with the de�nition of I.� Matching expressions m: we disregard this issue here, assuming we get a set of match points (size-1text segments).� reg is the set of all areas corresponding to reg, thus I(reg) = toplevel (Vreg).� P within Q is the set of areas of P whose start point is in some area of Q, thus I(P within Q) = I(P )beginin I(Q).� P including:n Q is the set of areas of P including at least n start points from areas of Q, thusI(P including:n Q) = I(P ) withbegin(n) I(Q).� P + Q makes the union of areas, but if they overlap, all areas are converted to their start points,thus I(P +Q) = I(P ) collapse I(Q) if it does not cause overlaps, else (beginnings I(P )) collapse(beginnings I(Q)).� P �Q makes set di�erence, thus I(P � Q) = I(P ) subtract I(Q).� P ^Q makes set intersection, thus I(P ^Q) = I(P ) same I(Q).� P fby:n Q is the set of areas of P starting at most n points before the start of an area of Q, thusI(P fby:n Q) = I(P ) before(n) I(Q) (none), except because we count from the end points of P , notfrom starts. In fact, the same [ST92] recognizes that this is not so good. If :n is not present, we usebefore (1).� P near:n Q is as fby, but the Q area can be before or after P , thus I(P near:n Q) = (I(P ) before(n)I(Q) (none)) collapse (I(P ) after(n) I(Q) (none)), with the same special cases as before.� P not op Q (a metarrule for all operators op allowing a not clause) retrieves the elements of P notretrieved by P op Q, thus I(P not op Q) = I(P ) subtract I(P op Q).The de�nition of the converse function, P, follows.� P(Constr(c)) = regc.� P(View(V )) = regc1 + :::+ regcr , where CV = fc1; :::; crg.� P(Match(m)), we disregard this point here.� P(P + Q) = P(P ) + P(Q).� P(P � Q) = P(P )� P(Q).� P(P is/same Q) = P(P ) ^ P(Q). Since regions and their segments are exactly the same, is = same.� P(P beginin Q) = P(P ) within P(Q).� P(P in/endin Q) is the same as before, but only works if the views do not overlap.� P([s] P in/beginin/endin Q) cannot be represented.� P(P withbegin(k) Q) = P(P ) including:k P(Q).� P(P with/withend Q) is the same as before, but only works if the views do not overlap.� P(P parent/[s] child Q): the concept does not exist.103



� P(P before(k) Q (C)) = P(P ) fby:k P(Q), only if C = none. The same comment about measuringfrom start to start instead of from end to start.� P(P after(k) Q (C)) cannot be translated (observe that near�fby does not work, since a P node thatclassi�es because it has a Q node before it and another after it should be included, but it is eliminatedby near � fby).� P(P after/before Q (C)) cannot be translated.B.3 Overlapped ListsWe depict here the function H, to translate from overlapped lists to our model, and the function W, to dothe converse. We begin with the de�nition of H.� Matching expressions m: we disregard this issue here, assuming we get a set of disjoint segments.� reg is the set of all areas corresponding to reg, thus H(reg) = toplevel (Vreg).� P < Q is the set of areas of P included in some area of Q, thus H(P < Q) = H(P ) in H(Q).� P 6< Q is the opposite, thus H(P 6< Q) = H(P ) subtract (H(P ) in H(Q)).� P > Q is the set of areas of P including in some area of Q, thus H(P > Q) = H(P ) with H(Q).� P 6> Q is the opposite, thus H(P 6> Q) = H(P ) subtract (H(P ) with H(Q)).� P 5 Q is the union of the sets, eliminating nesting (we also collapse segments when overlaps result),thus H(P 5 Q) = H(P ) collapse H(Q).� P 3 Q are segments that extend from P to Q elements such that P is before Q, selecting the minimalones. Thus, H(P 3 Q) = H(P ) to H(Q) (none).� P 4 Q is (P 3 Q)+ (Q 3 P ), but it causes overlaps. So we represent it by collapsing: H(P 4 Q) =(H(P ) to H(Q) (none)) collapse (H(Q) to H(P ) (none)).� n 4 (A0; :::; Am�1) is proposed as a generalization of 4 and 5. For each set of matches of A0 5A1::: 5 Am�1, it selects any possible subset of size m and returns the concatenation of its elements.Although the only representation we could do for this operator is exponential in length, observe thatsince we cannot represent the overlaps, our answer is the same as for A0 5 A1::: 5 Am�1.� n words returns all segments formed by n words. This query obviously produces overlapping segmentsfor n > 1, and cannot be represented. It makes no sense to represent all the segments by collapsingthem. This query is used to restrict the size and distance of other queries.The de�nition of the converse function, W, follows.� W(Constr(c)) = regc. It cannot return nested elements, if there are nested elements, the innermostare returned.� W(View(V )) = regc1 5 :::5 regcr , where CV = fc1; :::; crg. The same observation as before.� W(Match(m)), we disregard this point here.� W(P + Q) =W(P )5W(Q). Only minimal segments are returned.� W(P � Q) cannot be expressed, except in very special cases (with the help of 6< and 6>).104



� W(P is/same Q) = (W(P ) < W(Q)) >W(Q). This works thanks to not having nested elements inQ. Observe that is = same in this model, since nodes are just segments. If two nodes could have thesame segment, is would not be expressible.� W(P in Q) =W(P ) < W(Q).� W(P beginin/endin Q) is the same as before, but only works if the elements do not overlap.� W([s] P in/beginin/endin Q) cannot be represented.� W(P with(k) Q) =W(P ) > (W(Q)3:::3W(Q)) (k times).� W(P withbegin/withend Q) is the same as before, but only works if the elements do not overlap.� W(P parent/[s] child Q): the concept does not exist.� W(P after/before Q (C)) = (W(P ) 3 W(Q)) < W(C). This works because there is no nesting inC.� W(P after/before(k)Q (C)) = ((W(P ) 3W(Q)) < k words) < W(C). words are like our symbols,can be words, characters, etc. The same comment as before about nesting in C.B.4 Lists of ReferencesWe depict here the function X , to translate from lists of references to our model, and the function Y, todo the converse. We begin with the de�nition of X . We use a simpli�ed version of the syntax presented in[Mac91], which is too complex.� Text matching expressions can be used to restrict nodes to retrieve. We do not address this issue here.They are translated into our text matching expressions in some way.� constr is a constructor name, thus X (constr) = [1::last] Constr(constr) in V (recall that V is thename of the only hierarchy we have). The positional inclusion is used to select the top-level components.� constrlist:constr allows to traverse a path in the hierarchy. There are two possibilities:{ If constr can be parent of the last element in constrlist, then X (constrlist:constr) = [1::last] (Vparent X (constrlist)) in V .{ If constr can be a child of the last element in constrlist, then X (constrlist:constr) =Constr(constr)child X (constrlist).The two situations are not exclussive, but the paper says that things must be arranged in the indexingto avoid ambiguities.� any n P , when not used after having, selects the n �rst components of P , thus X (any n P ) = [1::n] Pin Constr(archive). archive is a constructor related to storage organization, and all answers of aquery are from the same archive. In some situations, the positions must be measured from withinanother constructor (this can be syntactically determined), chich can also be represented by replacingarchive.� P union Q makes the union of both sets, if they are from the same constructor, else it is the emptyset (this can be syntactically determined). If they are from the same constructor, then X (P unionQ) = X (P ) +X (Q), else any way to obtain an empty set can be used (e.g. V � V ).� P intersection Q makes the intersection of both sets, so X (P intersection Q) = X (P ) is X (Q).� P di�erence Q takes the di�erence, with the same comments about di�erent constructors. X (Pdi�erence Q) = X (P )� X (Q). 105



� P of Q selects elements of P which descend from a Q element, keeping only the top-level results. Thus,X (P of Q) = [1::last](X (P ) in X (Q)) in V .� P from Q selects the elements of P that are children of an element of Q. Thus, X (P from Q) = X (P )child X (Q).� P where cond selects elements of P satisfying cond. That cond can refer to the element itself or to adescendant. Thus,{ X (P where (c1 and c2)) = X ((P where c1) where c2){ X (P where (c1 or c2)) = X (P where c1) + X (P where c2){ X (P where (Q in constr)) = X (P ) with (Constr(constr) with X (Q)). Here Q can be a textmatching expression.{ X (P where (Q notin constr)) = X (P )� (X (P ) with (Constr(constr) with X (Q))). Here Qcan be a text matching expression.� P having any n Q selects elements of P including at least n elements of Q, thus X (P having any nQ) = X (P ) with(k) X (Q).� P having all Q selects elements of P such that all constr included in them are in Q. Here, constr isthe constructor of the elements in Q (which can be syntactically determined). Thus, X (P having allQ) = X (P )� (X (P ) with (Constr(constr)� X (Q))).� P having all n Q also restricts P elements to include exactly n elements of Q, thus X (P having alln Q) = X (P having all Q) is ((X (P ) with(n) X (Q))� (X (P ) with(n+ 1) X (Q))).� The same for not having, thus X (P not having ... Q) = X (P )�X (P having... Q).� P @ (pos) selects pos-th elements of P . The language of positions is similar to ours, so X (P @(pos)) = [pos] X (P ) in Constr(archive). archive is as before, and again can be replaced by anotherconstructor.Now the converse. Some restrictions apply here: we can represent only one hierarchy, we can represent onlythe top-level of the answers, and we cannot merge elements from di�erent constructors. We de�ne now theY function. Observe that beginin, endin, withbegin and withend are not applicable, since only onehierarchy exists.� Text pattern matching expressions are translated in some way that we do not cover here, but in thismodel text matches can only be used to restrict other answers, not directly returned.� Y(P + Q) = Y(P ) union Y(Q), but only works if P and Q are from the same constructor and theresult has no nested components.� Y(P �Q) = Y(P ) di�erence Y(Q).� Y(P is Q) = Y(P ) intersection Y(Q).� Y(P same Q) cannot be represented.� Y(P in Q) = Y(P ) of Y(Q).� Y([s] P in Q) = [s] Y(P ) of Y(Q).� Y(P with(k) Q) = Y(P ) having any k Y(Q).� Y([s] P child Q) = [s] Y(P ) from Y(Q).� Y(P parent(k)Q) = Y(P ) intersectY(Q):parent. Actually, parent cannot be said, but it is necessaryto give the constructor name. Thus, this only works if the constructor of Q has always the sameconstructor as parent and there is no confusion with children of the same constructor.� after and before cannot be represented. 106



B.5 Tree MatchingThe de�nition of the KX function follows.� KX(Constr(c)) = X : c.� KX(View(V )) = X : c1 ; ::: ; X : cr. Note that the language of [KM93] does not have \;" (or), but itsays it should, so we use it freely.� KX(Match(m)): we disregard this issue here. The results can only be used to restrict other queries.� KX(P in Q) = KX (P ) ; KY (Q) ; (Y : c1(X) ; ::: ; Y : cr(X)). beginin and endin are not di�erentfrom in in a single view.� KX([s] P in/beginin/endin Q) cannot be expressed.� KX(P with(k) Q) = KX(P ) ; KY1(Q) ; ::: ; KYk(Q) ; (81 � i < j � k) Yi 6= Yj ; (X : c1(Y1) ; ::: ; X :cr(Y1)) ; ::: ; (X : c1(Yk) ; ::: ; X : cr(Yk)). Note that we need the 6= predicate for k > 1. withbeginand withend are the same as with in a single view.� KX(P parent/[s] child Q) cannot be expressed. Only transitive relationships can be seen, this isencouraged in [KM93] to support data independence.� KX(P after/before Q) cannot be expressed, except what can be done with ordered inclusion in fewcases.� KX(P + Q) = KX(P ) ; KX(Q).� KX(P � Q) cannot be expressed.� KX(P is Q) = KX(P ) ; KX(Q).� It is not clear whether same can be expressed or not.It is interesting to observe that �, [s] in, child and parent could all be expressible if the language includeda closed-world not (ala Prolog).
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Appendix CExperimental ResultsWe present here our experimental results in detail. This appendix is divided into three sections, one foreach type of experiment. We begin each section by commenting the speci�c conclusions derived from theexperiments, and then present the tables. More general conclusions are presented in the body of this work.C.1 An Operator-Wise TestWe present one table for each operator tested. This summarizes fourteen tables, since before is tested withjCj = 0 and jCj = 1000, and before(k) also with k = 10 and k = 500. For each operator, the �ve di�erentalgorithms are presented, each one for di�erent values for their �rst and second operand, and for at anddeep operands.We extract the following speci�c results from the numbers:� While the merge and lazy algorithms are roughly linear, the times for all search-operate algorithms growfaster.� The search-operate algorithms are, for sizes exceeding n = 1000, uniformlyworse than the other versions.They have also higher variance.� The merge and lazy algorithms are roughly equivalent, although the lazy ones present higher variance.Both versions depend more heavily on the �rst operand than on the second (except \+", which issymmetric).� The times for the merge versions indicate that approximately 50.000 nodes per second are processed.� This equivalence between the merge and lazy versions must be studied for more complex queries, whatis done in the next section. We should also notice that some di�erences are because the merge versionuses modifying algorithms and the lazy version uses generating ones.� Except for before the \12" and \21" versions are not too di�erent, and it is hard to predict whatshould be applied based on simple measures such as size.� Almost all times are worse for deep operands than for at, having larger mean and variance. However,the merge algorithms are the less a�ected.� When the \12" vs \21" heuristic can be changed for subproblems, the mixed search-operate version haslarger variance, and can be better or even worse than any of its \12" or \21" counterparts.� The \12" version for with is uniformly worse than its \12" counterpart and therefore should be dis-carded. 108



� The lazy version of with seems to work better for larger values of k. This could indicate that it is moree�cient to expand wholly the second operand and compute its sizes than initially avoiding expansionand then having to expand small pieces. This deserves further study.� In the before and before(k) algorithms, a larger C a�ects mean and variance, generally for worse. Ina few cases it helps by narrowing the search.� In the before(k) algorithms, k does not a�ect too much the performance. These algorithms are a littleworse than those for before.\+" operator: Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.02 0.14 0.00 0.02 0.15merge 103 0.02 0.03 0.17 0.02 0.03 0.20104 0.14 0.17 0.35 0.15 0.20 0.53102 0.00 0.01 0.24 0.00 0.03 0.23lazy 103 0.01 0.03 0.26 0.03 0.06 0.35104 0.24 0.26 0.69 0.23 0.35 0.74102 0.01 0.01 0.69 0.01 0.02 1.50search-operate 103 0.02 0.06 0.72 0.02 0.04 1.52104 0.69 0.72 1.19 1.50 1.52 2.23102 0.01 0.01 0.67 0.01 0.02 1.50\12" 103 0.02 0.06 0.71 0.02 0.05 1.51104 0.69 0.75 1.21 1.50 1.56 2.18102 0.01 0.02 0.71 0.01 0.03 1.50\21" 103 0.01 0.07 0.75 0.02 0.04 1.58104 0.69 0.70 1.18 1.49 1.50 2.21\�" operator: Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.01 0.02 0.14 0.01 0.02 0.16merge 103 0.02 0.03 0.15 0.02 0.03 0.25104 0.14 0.15 0.35 0.15 0.18 0.55102 0.00 0.00 0.03 0.00 0.01 0.05lazy 103 0.01 0.01 0.05 0.03 0.04 0.17104 0.11 0.12 0.50 0.06 0.11 0.62102 0.01 0.02 0.69 0.01 0.02 1.51search-operate 103 0.02 0.07 0.70 0.01 0.04 1.53104 0.65 0.71 1.15 1.47 1.52 1.91102 0.01 0.02 0.67 0.01 0.01 1.50\12" 103 0.03 0.06 0.72 0.03 0.04 1.52104 0.76 0.82 1.02 1.55 1.60 2.07102 0.00 0.02 0.72 0.01 0.02 1.51\21" 103 0.01 0.05 0.75 0.01 0.03 1.53104 0.64 0.68 1.18 1.49 1.53 2.02109



\is" operator: Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.02 0.16 0.01 0.02 0.16merge 103 0.03 0.04 0.17 0.03 0.03 0.24104 0.26 0.26 0.46 0.28 0.29 0.56102 0.00 0.00 0.01 0.02 0.04 0.07lazy 103 0.00 0.00 0.03 0.03 0.04 0.14104 0.03 0.03 0.36 0.03 0.14 0.58102 0.00 0.02 0.69 0.01 0.01 1.50search-operate 103 0.02 0.06 0.69 0.01 0.04 1.51104 0.82 0.85 1.01 1.62 1.64 2.06102 0.01 0.01 0.63 0.01 0.01 1.43\12" 103 0.02 0.06 0.69 0.02 0.04 1.52104 0.82 0.84 1.04 1.57 1.63 2.36102 0.00 0.02 0.84 0.01 0.01 1.59\21" 103 0.02 0.05 0.86 0.00 0.02 1.59104 0.72 0.72 0.94 1.49 1.49 1.93\in" operator: Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.15 0.00 0.02 0.16merge 103 0.01 0.03 0.16 0.03 0.06 0.18104 0.15 0.25 0.43 0.28 0.29 0.53102 0.00 0.00 0.03 0.00 0.02 0.02lazy 103 0.00 0.00 0.04 0.01 0.03 0.04104 0.12 0.13 0.33 0.04 0.14 0.50102 0.01 0.01 0.68 0.00 0.02 1.49search-operate 103 0.01 0.05 0.72 0.02 0.03 1.49104 0.69 0.81 1.17 1.63 1.64 1.93102 0.01 0.01 0.68 0.00 0.01 1.47\12" 103 0.01 0.04 0.69 0.03 0.03 1.49104 0.69 0.94 1.20 1.69 1.73 1.93102 0.01 0.01 0.72 0.00 0.01 1.62\21" 103 0.01 0.06 0.84 0.02 0.02 1.65104 0.69 0.71 1.15 1.45 1.50 1.84
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\[s] in" operator: s = 1::3Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.14 0.00 0.02 0.15merge 103 0.03 0.03 0.16 0.03 0.03 0.20104 0.22 0.24 0.40 0.23 0.25 0.57102 0.00 0.00 0.03 0.00 0.01 0.07lazy 103 0.00 0.00 0.04 0.03 0.05 0.16104 0.07 0.08 0.65 0.12 0.30 0.69102 0.00 0.01 0.68 0.00 0.01 1.45search-operate 103 0.01 0.05 0.71 0.01 0.03 1.49104 0.71 0.72 0.92 1.50 1.53 2.13102 0.00 0.01 0.68 0.00 0.01 1.45\12" 103 0.02 0.06 0.71 0.02 0.02 1.49104 0.86 0.86 0.92 1.59 1.66 1.89102 0.00 0.01 0.80 0.00 0.02 1.58\21" 103 0.01 0.05 0.83 0.01 0.05 1.66104 0.71 0.72 1.18 1.50 1.53 2.13\with(k)" operator: k=5Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.14 0.00 0.02 0.16merge 103 0.02 0.03 0.17 0.04 0.05 0.21104 0.26 0.26 0.45 0.27 0.32 0.66102 0.00 0.01 0.03 0.00 0.02 0.04lazy (k = 5) 103 0.01 0.00 0.04 0.02 0.03 0.13104 0.04 0.04 0.33 0.02 0.08 0.65102 0.00 0.00 0.01 0.00 0.01 0.05lazy (k = 100) 103 0.00 0.01 0.05 0.00 0.02 0.12104 0.01 0.03 0.19 0.03 0.05 0.39102 0.00 0.01 0.69 0.00 0.04 1.70search-operate 103 0.02 0.06 1.07 0.01 0.07 2.34104 0.74 0.76 1.20 1.53 1.57 2.72102 0.00 0.01 0.69 0.06 0.07 1.70\12" 103 0.08 0.14 1.07 0.11 0.26 2.34104 0.97 1.27 1.52 2.44 2.49 2.71102 0.00 0.02 0.86 0.00 0.02 1.62\21" 103 0.02 0.06 0.88 0.01 0.04 1.69104 0.74 0.76 1.20 1.53 1.57 2.81
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\parent(k)" operator: k = 1Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.00 0.15 0.00 0.02 0.16merge 103 0.02 0.04 0.17 0.03 0.03 0.20104 0.22 0.22 0.48 0.23 0.25 0.60102 0.00 0.01 0.03 0.00 0.01 0.10lazy 103 0.01 0.01 0.05 0.01 0.03 0.11104 0.01 0.03 0.62 0.03 0.13 0.68102 0.00 0.01 0.69 0.00 0.01 1.47search-operate 103 0.01 0.05 0.76 0.01 0.06 1.49104 0.81 0.86 1.22 1.54 1.76 2.39102 0.00 0.00 0.69 0.00 0.01 1.49\12" 103 0.01 0.06 0.72 0.02 0.03 1.50104 0.86 0.86 1.14 1.51 1.83 2.13102 0.00 0.01 0.82 0.00 0.02 1.51\21" 103 0.01 0.05 0.90 0.02 0.03 1.55104 0.76 0.77 1.15 1.50 1.53 2.56\[s] child" operator: s = 1::3Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.12 0.00 0.02 0.18merge 103 0.02 0.04 0.17 0.03 0.04 0.20104 0.24 0.28 0.40 0.28 0.30 0.56102 0.00 0.00 0.01 0.00 0.00 0.04lazy 103 0.00 0.00 0.03 0.02 0.04 0.16104 0.03 0.03 0.37 0.05 0.12 0.58102 0.00 0.01 0.73 0.00 0.02 1.47search-operate 103 0.01 0.06 0.77 0.02 0.04 1.60104 0.81 0.85 1.08 1.63 1.63 2.31102 0.00 0.01 0.66 0.01 0.01 1.47\12" 103 0.01 0.05 0.69 0.02 0.04 1.49104 0.85 0.88 1.04 1.65 1.67 2.43102 0.00 0.02 0.81 0.00 0.01 1.57\21" 103 0.00 0.05 0.84 0.01 0.03 1.60104 0.74 0.76 0.98 1.54 1.56 2.03
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\before" operator: jCj = 0Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.14 0.00 0.03 0.15merge 103 0.03 0.04 0.17 0.05 0.06 0.21104 0.31 0.34 0.46 0.34 0.40 0.64102 0.00 0.00 0.03 0.00 0.02 0.03lazy 103 0.02 0.02 0.05 0.03 0.04 0.05104 0.28 0.28 0.50 0.30 0.33 0.68102 0.00 0.01 0.68 0.00 0.02 0.77search-operate 103 0.02 0.06 0.68 0.01 0.05 1.00104 0.81 0.85 1.79 1.00 1.22 2.38102 0.00 0.01 0.68 0.00 0.02 0.77\12" 103 0.04 0.07 0.68 0.06 0.07 1.00104 1.13 1.14 1.79 1.93 1.99 2.38102 0.00 0.03 0.85 0.00 0.03 1.61\21" 103 0.02 0.06 0.97 0.01 0.05 1.83104 0.81 0.85 1.44 1.00 1.22 3.89\before" operator: jCj = 1000Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.01 0.03 0.19 0.02 0.04 0.19merge 103 0.05 0.06 0.43 0.07 0.09 0.46104 0.35 0.39 0.55 0.39 0.44 0.65102 0.00 0.01 0.05 0.01 0.03 0.05lazy 103 0.03 0.06 0.06 0.05 0.06 0.08104 0.34 0.35 0.62 0.35 0.38 0.72102 0.04 0.06 0.90 0.04 0.04 0.84search-operate 103 0.04 0.11 1.34 0.02 0.11 1.13104 0.86 1.04 1.97 1.17 1.34 3.76102 0.04 0.06 0.90 0.05 0.04 0.84\12" 103 0.08 0.08 1.34 0.09 0.15 1.13104 1.28 1.75 1.97 2.17 2.20 3.76102 0.04 0.08 0.96 0.04 0.05 1.63\21" 103 0.04 0.12 1.68 0.02 0.11 1.79104 0.86 1.04 2.68 1.17 1.34 5.05
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\before(k)" operator: k = 10; jCj= 0Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.14 0.00 0.02 0.16merge 103 0.02 0.03 0.17 0.03 0.07 0.21104 0.30 0.31 0.42 0.30 0.32 0.62102 0.00 0.01 0.04 0.00 0.01 0.05lazy 103 0.02 0.02 0.08 0.07 0.09 0.23104 0.26 0.30 0.55 0.27 0.29 0.63102 0.00 0.01 0.62 0.00 0.01 0.68search-operate 103 0.01 0.06 0.81 0.01 0.06 1.06104 0.81 0.84 1.21 0.93 1.14 2.39102 0.00 0.01 0.62 0.00 0.01 0.68\12" 103 0.03 0.06 0.81 0.03 0.08 1.06104 1.03 1.11 1.21 1.80 1.81 2.39102 0.00 0.02 0.84 0.00 0.02 1.63\21" 103 0.01 0.06 0.86 0.01 0.06 1.70104 0.81 0.84 1.43 0.93 1.14 2.69\before(k)" operator: k = 10; jCj= 1000Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.01 0.02 0.15 0.02 0.02 0.19merge 103 0.04 0.05 0.20 0.05 0.09 0.22104 0.26 0.28 0.46 0.32 0.33 0.66102 0.00 0.00 0.03 0.01 0.03 0.05lazy 103 0.02 0.03 0.08 0.04 0.07 0.21104 0.34 0.36 0.54 0.34 0.34 0.68102 0.04 0.05 0.78 0.03 0.04 0.80search-operate 103 0.04 0.07 0.79 0.05 0.11 1.11104 0.89 0.98 1.45 0.96 1.15 2.42102 0.04 0.05 0.78 0.04 0.04 0.80\12" 103 0.06 0.07 0.79 0.06 0.10 1.11104 1.20 1.27 1.45 1.90 1.95 2.42102 0.04 0.06 1.00 0.03 0.07 1.69\21" 103 0.04 0.07 1.02 0.05 0.11 1.81104 0.89 0.98 1.76 0.96 1.15 3.11
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\before(k)" operator: k = 500; jCj= 0Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.01 0.12 0.00 0.02 0.16merge 103 0.02 0.03 0.16 0.06 0.10 0.18104 0.26 0.28 0.36 0.33 0.43 0.59102 0.00 0.01 0.03 0.01 0.03 0.04lazy 103 0.03 0.06 0.13 0.04 0.17 0.27104 0.32 0.35 0.59 0.35 0.43 0.64102 0.00 0.01 0.63 0.00 0.02 0.78search-operate 103 0.01 0.07 0.70 0.02 0.06 1.05104 0.83 0.88 1.15 0.92 1.17 2.29102 0.00 0.01 0.63 0.00 0.02 0.78\12" 103 0.02 0.07 0.70 0.04 0.04 1.05104 0.97 1.12 1.15 1.89 1.93 2.29102 0.00 0.03 0.85 0.00 0.03 1.73\21" 103 0.01 0.07 0.88 0.02 0.06 1.74104 0.83 0.88 1.20 0.92 1.17 3.05\before(k)" operator: k = 500; jCj= 1000Version Flat operands Deep operandsop1 n op2 102 103 104 102 103 104102 0.00 0.03 0.18 0.01 0.03 0.19merge 103 0.04 0.05 0.22 0.07 0.11 0.24104 0.33 0.35 0.48 0.35 0.38 0.62102 0.00 0.00 0.04 0.01 0.05 0.04lazy 103 0.04 0.07 0.10 0.06 0.09 0.22104 0.31 0.36 0.62 0.36 0.42 0.71102 0.04 0.04 0.81 0.03 0.05 0.81search-operate 103 0.04 0.08 0.88 0.03 0.11 1.10104 0.90 1.04 1.45 0.99 1.23 2.40102 0.04 0.04 0.81 0.03 0.05 0.81\12" 103 0.06 0.08 0.88 0.06 0.10 1.10104 1.20 1.27 1.45 1.96 2.15 2.40102 0.04 0.07 0.99 0.01 0.07 1.84\21" 103 0.04 0.07 1.07 0.03 0.11 1.98104 0.90 1.04 1.67 0.99 1.23 3.77C.2 A Test for Lazy vs Merge AlgorithmsIn this case, we select from a sample �le with C code a number of \real-life" queries. For each query wepresent, we detail the total size of leaves, the total number of nodes from all leaves and intermediate results,the size of the �nal results, the number of operators in the query, the times taken by the merge and lazyalgorithms to evaluate the query, the percentage lazy time / merge time, and the percentage of expansionforced by the lazy algorithm, as a fraction of the whole number of nodes that full evaluation forces to compute.To be fair, we do not compute twice repeated operands for full evaluation, since reuse can be accomplishedby using generating algorithms. 115



The speci�c conclusions we extract are:� In real cases, lazy algorithms seem to be better than merge ones, although due to the large variance ofthe �rst ones, the fraction is somewhere between 0.25 and 0.90.� The percentage expanded by lazy evaluation has also large variance, lying somewhere between 40% and100%, depending on a number of subtle parameters. Some of them are the atness of the sets, and therelation between initial operand sizes and �nal result size.� The total time of evaluation is, in both cases, proportional to the total number of nodes processed, ormore roughly, to the sizes of the leaves and the number of operations to perform. That means, for themerge version, between [1:5 :: 2:5]� 10�5 seconds per node.� It seems that, in practice, generating algorithms are better than modifying ones. This is perhapsbecause �nal sizes tend to be small in comparison with leaves sizes. This point deserves further study.Leaves Total Final number of merge lazy lazy/merge lazy/mergesize size size operators time time time expansion1167 1167 1167 0 0.00 0.00 100% 100%1641 1863 222 1 0.02 0.02 100% 85%2329 2932 603 1 0.05 0.02 98% 40%1395 1457 27 2 0.04 0.01 25% 35%2350 3704 605 2 0.05 0.04 57% 80%2422 3273 338 2 0.07 0.08 114% 95%2104 2648 29 3 0.06 0.04 67% 78%8196 9440 16 3 0.23 0.08 34% 39%7164 9316 1076 3 0.36 0.14 39% 100%9117 16832 311 3 0.46 0.20 44% 36%14174 18260 188 8 0.42 0.33 78% 72%C.3 A Test for Binary vs Interpolation SearchIn this case we took, for sizes 10, 102, 103 and 104, 10 samples of each size. Each sample consisted of two atoperands of that size, which we operated (doing just search) using binary and interpolation search. The resultis that interpolation search is normally not advisable under the distributions likely to appear in practice.Size Binary Interpolation10 0.00 0.01102 0.00 0.01103 0.06 0.09104 1.12 2.87
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