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Abstract

The rise of repetitive datasets has lately generated a lot of interest in compressed
self-indexes based on dictionary compression, a rich and heterogeneous family of
techniques that exploits text repetitions in different ways. For each such compres-
sion scheme, several different indexing solutions have been proposed in the last
two decades. To date, the fastest indexes for repetitive texts are based on the
run-length compressed Burrows–Wheeler transform (BWT) and on the Compact
Directed Acyclic Word Graph (CDAWG). The most space-efficient indexes, on the
other hand, are based on the Lempel–Ziv parsing and on grammar compression.
Indexes for more universal schemes such as collage systems and macro schemes
have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed
that all dictionary compressors can be interpreted as approximation algorithms for
the smallest string attractor, that is, a set of text positions capturing all distinct
substrings. Starting from this observation, in this paper we develop the first univer-
sal compressed self-index, that is, the first indexing data structure based on string
attractors, which can therefore be built on top of any dictionary-compressed text
representation. Let γ be the size of a string attractor for a text of length n. From
known reductions, γ can be chosen to be asymptotically equal to any repetitiveness
measure: number of runs in the BWT, size of the CDAWG, number of Lempel–Ziv
phrases, number of rules in a grammar or collage system, size of a macro scheme.
Our index takes O(γ lg(n/γ)) words of space and supports locating the occ occur-
rences of any pattern of length m in O(m lg n + occ lgε n) time, for any constant
ε > 0. This is, in particular, the first index for general macro schemes and collage
systems. Our result shows that the relation between indexing and compression is
much deeper than what was previously thought: the simple property standing at
the core of all dictionary compressors is sufficient to support fast indexed queries.
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1 Introduction

Efficiently indexing repetitive text collections is becoming of great importance
due to the accelerating rate at which repetitive datasets are being produced in
domains such as biology (where the number of sequenced individual genomes
is increasing at an accelerating pace) and the web (with databases such as
Wikipedia and GitHub being updated daily by thousands of users). A self-
index on a string S is a data structure that offers direct access to any substring
of S (and thus it replaces S), and at the same time supports indexed queries
such as counting and locating pattern occurrences in S. Unfortunately, classic
self-indexes — for example, the FM-index [20] — that work extremely well on
standard datasets fail on repetitive collections in the sense that their compres-
sion rate does not reflect the input’s information content. This phenomenon
can be explained in theory with the fact that entropy compression is not able
to take advantage of repetitions longer than (roughly) the logarithm of the
input’s length [22]. For this reason, research in the last two decades focused on
self-indexing based on dictionary compressors such as the Lempel–Ziv 1977
factorization (LZ77) [39], the run-length encoded Burrows–Wheeler transform
(RLBWT) [11] and context-free grammars (CFGs) [37], just to name the most
popular ones. The idea underlying these compression techniques is to break
the text into phrases coming from a dictionary (hence the name dictionary
compressors), and to represent each phrase using limited information (typi-
cally, a pointer to other text locations or to an external set of strings). This
scheme allows taking full advantage of long repetitions; as a result, dictionary-
compressed self-indexes can be orders of magnitude more space-efficient than
entropy-compressed ones on repetitive datasets.

The landscape of indexes for repetitive collections reflects that of dictionary
compression strategies, with specific indexes developed for each compression
strategy. Yet, a few main techniques stand at the core of most of the indexes.
To date, the fastest indexes are based on the RLBWT and on the Compact Di-
rected Acyclic Word Graph (CDAWG) [10,18]. These indexes achieve optimal-
time queries (i.e., asymptotically equal to those of suffix trees [50]) at the price
of a space consumption higher than that of other compressed indexes. Namely,
the former index [26] requires O(r lg(n/r)) words of space, r being the number
of equal-letter runs in the BWT of S, while the latter [3] uses O(e) words, e
being the size of the CDAWG of S. These two measures (especially e) have
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3 This work was partially done while the author was holding a post-doc position
at the Technical University of Denmark (DTU). Partially funded by the project
MIUR-SIR CMACBioSeq (“Combinatorial methods for analysis and compression
of biological sequences”) grant n. RBSI146R5L.
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been experimentally confirmed to be not as small as others — such as the size
of LZ77 — on repetitive collections [4].

Better measures of repetitiveness include the size z of the LZ77 factorization
of S, the minimum size g of a CFG (i.e., sum of the lengths of the right-
hand sides of the rules) generating S, or the minimum size grl of a run-length
CFG [44] generating S. Indexes usingO(z) orO(g) space do exist, but optimal-
time queries have not yet been achieved within this space. Kreft and Navarro
[38] introduced a self-index based on LZ77 compression, which proved to be
extremely space-efficient on highly repetitive text collections [15]. Their self-
index uses O(z) space and finds all the occ occurrences of a pattern of length m
in time O((m2h+(m+occ) lg z) lg(n/z)), where h ≤ z is the maximum number
of times a symbol is successively copied along the LZ77 parsing. A string of
length ` is extracted in O(h`) time. Similarly, self-indexes of size O(g) building
on grammar compression [16,17] can locate all occ occurrences of a pattern in
O(m2 lg lg n + m lg z + occ lg z) time. Within this space, a string of length `
can be extracted in time O(lg n+ `/ lgσ n) [7]. Alternative strategies based on
Block Trees (BTs) [5] appeared recently. A BT on S uses O(z lg(n/z)) space,
which is also the best asymptotic space obtained with grammar compressors
[13,48,29,30,47]. In exchange for using more space than LZ77 compression,
the BT offers fast extraction of substrings: O((1 + `/ lgσ n) lg(n/z)) time. A
self-index based on BTs has recently been described by Navarro [42]. Various
indexes based on combinations of LZ77, CFGs, and RLBWTs have also been
proposed [23,24,4,43,8,14]. Some of their best results areO(z lg(n/z)+z lg lg z)
space with O(m+ occ(lg lg n+ lgε z)) query time [14], and O(z lg(n/z)) space
with either O(m lgm+occ lg lg n) [24] or O(m+ lgε z+occ(lg lg n+ lgε z)) [14]
query time. Gagie et al. [26] give a more detailed survey.

The above-discussed compression schemes are the most popular, but not the
most space-efficient ones. More powerful compressors (NP-complete to opti-
mize) include macro schemes [49] and collage systems [36]. Not much work
exists in this direction, and no indexes are known for these particular com-
pressors.

1.1 String attractors

As seen in the previous paragraphs, the landscape of self-indexes based on dic-
tionary compression — as well as that of dictionary compressors themselves —
is extremely fragmented, with several techniques being developed for each dis-
tinct compression strategy. Very recently, Kempa and Prezza [35] gathered all
dictionary compression techniques under a common theory: they showed that
these algorithms are approximations to the smallest string attractor, that is,
a set of text positions “capturing” all distinct substrings of S.
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Definition 1 (String attractor [35]). A string attractor of a string S[1..n] is
a set of γ positions Γ = {j1, . . . , jγ} such that every substring S[i..j] has an
occurrence S[i′..j′] = S[i..j] with jk ∈ [i′, j′], for some jk ∈ Γ.

Their main result is a set of reductions from dictionary compressors to string
attractors of asymptotically the same size.

Theorem 1 ([35]). Let S be a string and let α be any of these measures:

(1) the size g of a CFG for S,
(2) the size grl of a run-length CFG for S,
(3) the size c of a collage system for S,
(4) the size z of the LZ77 parse of S,
(5) the size b of a macro scheme for S.

Then, S has a string attractor of size γ = O(α). In all cases, the correspond-
ing attractor can be computed in O(|S|) time and space from the compressed
representation.

Importantly, this implies that any data structure based on string attractors is
universal : given any dictionary-compressed text representation, we can induce
a string attractor and build the data structure on top of it. Indeed, the au-
thors exploit this observation and provide the first universal data structure for
random access, of size O(γ lg(n/γ)). Their extraction time within this space is
O(lg(n/γ) + `/ lgσ n). By using slightly more space, O(γ lg(n/γ) lgε n) for any
constant ε > 0, they obtain time O(lg(n/γ)/ lg lg n + `/ lgσ n), which is the
optimal that can be reached using any space in O(γ polylogn) [35]. This sug-
gests that compressed computation can be performed independently from the
compression method used while at the same time matching the lower bounds
of individual compressors (at least for some queries such as random access).

1.2 Our Contributions

In this paper we exploit the above observation and describe the first universal
self-index based on string attractors, that is, the first indexing strategy not
depending on the underlying compression scheme. Since string attractors stand
at the core of the notion of compression, our result shows that the relation
between compression and indexing is much deeper than what was previously
thought: the simple string attractor property introduced in Definition 1 is
sufficient to support indexed pattern searches.

Theorem 2. Let a string S[1..n] have an attractor of size γ. Then, for any
constant ε > 0, there exists a data structure of size O(γ lg(n/γ)) that, given
a pattern string P [1..m], outputs all the occ occurrences of P in S in time
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O(m lg n + occ(lgε γ + lg lg(n/γ))) = O(m lg n + occ lgε n). It can be built in
O(n + γ lg(n/γ)

√
lg γ) worst-case time and O(γ lg(n/γ)) space with a Monte

Carlo method returning a correct index with high probability. A guaranteed
construction, using Las Vegas randomization, takes O(n lg n) expected time
(this time also holds w.h.p.) and O(n) space.

We remark that no representation offering random access within o(γ lg(n/γ))
space is known. The performance of our index is close to that of the fastest
self-indexes built on other repetitiveness measures, and it is the first one that
can be built for macro schemes and collage systems.

To obtain our results, we adapt the block tree index of Navarro [42], which is
designed for block trees on the LZ77 parse, to operate on string attractors. The
result is also different from the block-tree-like structure Kempa and Prezza
use for extraction [35], because that one is aligned with the attractors and
this turns out to be unsuitable for indexing. Instead, we use a block-tree-like
structure, which we dub Γ-tree, which partitions the text in a regular form. We
moreover introduce recent techniques [24] to remove the quadratic dependency
on the pattern length in query times.

1.3 Notation

We denote by S[1..n] = S[1] · · ·S[n] a string of length n over an alphabet of
size σ = O(n). Substrings of S are denoted S[i..j] = S[i] · · ·S[j], and they are
called prefixes of S if i = 1 and suffixes of S if j = n. The concatenation of
strings S and S ′ is denoted S ·S ′. We assume the RAM model of computation
with a computer word of ω = Ω(lg n) bits. By lg we denote the logarithm
function, to the base 2 when this matters.

The term with high probability (w.h.p. abbreviated) indicates with probability
at least 1 − n−c for an arbitrarily large constant c, where n is the input size
(in our case, the input string length).

In our results, we make use of a modern variant of Karp–Rabin fingerprinting
[33] (more common nowadays than the original version), defined as follows. Let
q ≥ σ be a prime number, and r be a uniform number in [1..q−1]. The finger-
print φ̂ of a string S = S[1] · · ·S[n] ∈ [1..σ]n is defined as φ̂(S) =

∑n−1
i=0 S[n−

i] · ri mod q. The extended fingerprint of S is the triple φ(S) = 〈φ̂(S), r|S|

mod q, r−|S| mod q〉. We say that S 6= S ′, with S, S ′ ∈ [1..σ]n, collide through
φ (for our purposes, it will be sufficient to consider equal-length strings) if
φ̂(S) = φ̂(S ′), that is, φ̂(S − S ′) = 0, where S ′′ = S − S ′ is the string defined
as S ′′[i] = S[i]− S ′[i] mod q. Since φ̂(S ′′) is a polynomial (in the variable r)
of degree at most n− 1 in the field Zq, it has at most n− 1 roots. As a con-
sequence, the probability of having a collision between two strings is bounded
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by O(n/q) when r is uniformly chosen in [1..q − 1]. By choosing q ∈ Θ(nc+2)
for an arbitrarily large constant c, one obtains that such a hash function is
collision-free among all equal-length substrings of a given string S of length
n w.h.p. To conclude, we will exploit the (easily provable) folklore fact that
two extended fingerprints φ(U) and φ(V ) can be combined in constant time to
obtain the extended fingerprint φ(UV ). Similarly, φ(UV ) and φ(U) (respec-
tively, φ(V )) can be combined in constant time to obtain φ(V ) (respectively,
φ(U)). From now on, we will by default use the term “fingerprint” to mean
extended fingerprint.

2 Γ-Trees

Given a string S[1..n] over an alphabet [1..σ] with an attractor Γ of size γ, we
define a Γ-tree on S as follows. At the top level, numbered l = 0, we split S
into γ substrings (which we call blocks) of length b0 = n/γ. Each block is then
recursively split into two so that if bl is the length of the blocks at level l, then
it holds that bl+1 = bl/2, until reaching blocks of one symbol after lg(n/γ)
levels (that is, bl = n/(γ ·2l)). 4 At each level l, every block that is at distance
< bl from a position j ∈ Γ is marked (the distance between j and a block
S[i..i′] is i− j if i > j, j− i′ if i′ < j, and 0 otherwise). Blocks S[i..i′] that are
not marked are replaced by a pointer 〈ptr1, ptr2, δ〉 to an occurrence S[j′..j′′]
of S[i..i′] that includes a position j ∈ Γ, j′ ≤ j ≤ j′′. Such an occurrence
exists by Definition 1. Moreover, it must be covered by 1 or 2 consecutive
marked blocks of the same level due to our marking mechanism, because all
the positions in S[j′..j′′] are at distance < bl from j. Those 1 or 2 nodes of the
Γ-tree are ptr1 and ptr2, and δ is the offset of j′ within ptr1 (δ = 0 if j′ is the
first symbol inside ptr1).

In level l + 1 we explicitly store only the children of the blocks that were
marked in level l. The blocks stored in the Γ-tree (i.e., all blocks at level 0
and those having a marked parent) are called explicit. In the last level, the
marked blocks store their corresponding single symbol from S.

See Figure 1 for an example of a Γ-tree. We can regard the Γ-tree as a binary
tree (with the first lg γ levels chopped out), where the internal nodes are
marked nodes and have two children, whereas the leaves either are marked
and represent just one symbol, or are unmarked and represent a pointer to 1
or 2 marked nodes of the same level. If we call w the number of leaves, then
there are w−γ (marked) internal nodes. From the leaves, γ of them represent
single symbols in the last level, while the other w − γ leaves are unmarked
blocks replaced by pointers. Thus, there are in total 2w− γ nodes in the tree,

4 For simplicity of description, we assume that n/γ is a power of 2.
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Fig. 1. Example of a Γ-tree built on a text of length n = 24 with γ = 3 attractor po-
sitions (black letters). Marked blocks are colored in gray. Each non-marked block (in
white) is associated with an occurrence (underlined) crossing an attractor position,
and therefore overlapping only marked blocks. Only explicit blocks are shown.

of which w − γ are internal nodes, w − γ are pointers, and γ store explicit
symbols. Alternatively, w nodes are marked (internal nodes plus leaves) and
w − γ are unmarked (leaves only).

The Γ-tree then uses O(w) space. To obtain a bound in terms of n and γ,
note that, at each level, each j ∈ Γ may mark up to 3 blocks; thus there are
w ≤ 3γ lg(n/γ) marked blocks in total and the Γ-tree uses O(γ lg(n/γ)) space.

We now describe two operations on Γ-trees that are fundamental to support
efficient indexed searches. The former is also necessary for a self-index, as
it allows us extracting arbitrary substrings of S efficiently. We remind that
this procedure is not the same described on the original structure of string
attractors [35], because the structures are also different.

2.1 Extraction

To extract a single symbol S[i], we first map it to a local offset 1 ≤ i′ ≤ b0 in its
corresponding level-0 block. In general, given the local offset i′ of a character
in the current block at level l, we first see if the current block is marked. If so,
we map i′ to a position in the next level l+ 1, where the current block is split
into two blocks of half the length: if i′ ≤ bl+1, then we continue on the left
child with the same offset; otherwise, we subtract bl+1 from i′ and continue
on the right child. If, instead, i is not in a marked block, we take the pointer
〈ptr1, ptr2, δ〉 stored for that block and add δ to i′. If the result is i′ ≤ bl, then
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we continue in the node ptr1 with offset i′; otherwise, we continue in ptr2 with
the offset i′ − bl. In both cases, the new node is marked, so we proceed as on
marked blocks in order to move to the next level in constant time. The total
time to extract a symbol is then O(lg(n/γ)).

A substring of length ` can thus be extracted in time O(` lg(n/γ)), which will
be sufficient to obtain the search time complexity of Theorem 2. It is possible
to augment Γ-trees to match the complexity O(lg(n/γ)+`/ lgσ n) obtained by
Kempa and Prezza [35] on string attractors as well, though this would have
no impact on our results.

2.2 Fingerprinting

We now show that the Γ-tree can be augmented to compute the Karp–Rabin
fingerprint of any text substring in logarithmic time.

Lemma 1. Let S[1..n] have an attractor of size γ and φ a Karp–Rabin finger-
print function. Then we can store a data structure of size O(γ lg(n/γ)) words
supporting the computation of φ on any substring of S in O(lg(n/γ)) time.

Proof. We augment our Γ-tree of S as follows. At level 0, we store the Karp–
Rabin fingerprints of all the text prefixes ending at positions i · n/γ, for i =
1, . . . , γ. At levels l > 0, we store the fingerprints of all explicit blocks.

We first show that we can reduce the problem to that of computing the fin-
gerprints of two prefixes of explicit blocks. Then, we show how to solve the
sub-problem of computing fingerprints of prefixes of explicit blocks.

Let S[i..j] be the substring of which we wish to compute the fingerprint
φ(S[i..j]). Note that φ(S[i..j]) can be computed in constant time from φ(S[1..i−
1]) and φ(S[1..j]) so we can assume, without loss of generality, that i = 1 (i.e.,
the substring is a prefix of S). Then, at level 0 the substring spans a sequence
B1 · · ·Bt of blocks followed by a prefix C of block Bt+1 (the sequence of blocks
or C could be empty). The fingerprint of B1 · · ·Bt is explicitly stored, so the
problem reduces to that of computing the fingerprint of C.

We now show how to compute the fingerprint of a prefix of an explicit block
(at any level) in O(lg(n/γ)) time. We distinguish two cases.

(A) We wish to compute the fingerprint of B[1..k], for some k ≤ bl, and B
is a marked block at level l. Let Bleft and Bright be the children of B at level
l + 1. Then, the problem reduces to either (i) computing the fingerprint of
Bleft [1..k] if k ≤ bl+1, or combining the fingerprints of Bleft (which is stored)
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and Bright [1..k− bl+1]. In both sub-cases, the problem reduces to that of com-
puting the fingerprint of the prefix of a block at level l + 1, which is explicit
since B is marked.

(B) We wish to compute the fingerprint of B[1..k], for some k ≤ bl, but B is
an unmarked explicit block. Then, B is linked (through a Γ-tree pointer) to an
occurrence in the same level spanning at most two blocks, both of which are
marked. If the occurrence of B spans only one marked block B′ at level l, then
B[1..bl] = B′[1..bl] and we are back in case (A). Otherwise, the occurrence of
B spans two marked blocks B′ and B′′ at level l: B[1..bl] = B′[i..bl]B

′′[1..i −
1], with i ≤ bl. For each pointer of this kind in the Γ-tree, we store the
fingerprint of B′[i..bl]. We consider two sub-cases. (B.1) If k ≥ bl − i + 1,
then B[1..k] = B′[i..bl]B

′′[1..k − (bl − i+ 1)]. Since we store the fingerprint of
B′[i..bl], the problem reduces again to that of computing the fingerprint of the
prefix B′′[1..k− (bl− i+1)] of a marked (explicit) block. (B.2) If k < bl− i+1,
then B[1..k] = B′[i..i + k − 1]. Although this is not a prefix nor a suffix of a
block, note that B[1..k]B′[i+ k..bl] = B′[i..i+ k − 1]B′[i+ k..bl] = B′[i..bl]. It
follows that we can retrieve the fingerprint of B[1..k] in constant time using
the fingerprints of B′[i+k..bl] and B′[i..bl]. The latter value is explicitly stored.
The former is the fingerprint of the suffix of an explicit (marked) block. In
this case, note that the fingerprint of a block’s suffix can be retrieved from the
fingerprint of the block and the fingerprint of a block’s prefix, so we are back
to the problem of computing the fingerprint of an explicit block’s prefix.

To sum up, computing a prefix of an explicit block at level l reduces to the
problem of computing a prefix of an explicit block at level l + 1 (plus a con-
stant number of arithmetic operations to combine values). In the worst case,
we navigate down to the leaves, where fingerprints of single characters can
be computed in constant time. Combining this procedure into our main algo-
rithm, we obtain the claimed running time of O(lg(n/γ)).

3 A Universal Self-Index

Our self-index structure builds on the Γ-tree of S. It is formed by two main
components: the first finds all the pattern occurrences that cross explicit block
boundaries, whereas the second finds the occurrences that are completely in-
side unmarked blocks.

Lemma 2. Any substring S[i..j] of length at least 2 either overlaps two con-
secutive explicit blocks or is completely inside an unmarked block.

Proof. The leaves of the Γ-tree partition S into a sequence of explicit blocks:
γ of those are attractor positions and the other w − γ are unmarked blocks.
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Clearly, if S[i..j] is not completely inside an unmarked block, it must cross a
boundary between two explicit blocks.

We exploit the lemma in the following way. We will define an occurrence of
P as primary if it overlaps two consecutive explicit blocks. The occurrences
that are completely contained in an unmarked block are secondary. By the
lemma, every occurrence of P is either primary or secondary. We will use a
data structure to find the primary occurrences and another one to detect the
secondary ones. The primary occurrences are found by exploiting the fact that
a prefix of P matches at the end of an explicit block and the remaining suffix
of P matches the text that follows. Secondary occurrences, instead, are found
by detecting primary or other secondary occurrences within the area where
an unmarked block points.

We note that this idea is a variant of the classical one [32] used in all in-
dexes based on LZ77 and CFGs. Now we show that the principle can indeed
be applied on attractors, which is the general concept underlying all those
compression methods (and others where no indexes exist yet), and therefore
unifies all those particular techniques.

3.1 Primary Occurrences

We describe the data structures and algorithms used to find the primary occur-
rences. Overall, they require O(w) space and find the occp primary occurrences
in time O(m lg(mn/γ) + occp lgεw), for any constant ε > 0.

Data Structures. The leaves of the Γ-tree partition S into explicit blocks.
The partition is given by the starting positions 1 = p1 < . . . < pw ≤ n of
the leaves. By Lemma 2, every primary occurrence contains some substring
S[pi − 1..pi] for 1 < i ≤ w.

If we find the occurrences considering only their leftmost covered position
of the form pi − 1, we also ensure that each primary occurrence is found
once. Thus, we will find primary occurrences as a prefix of P appearing at
the end of some S[pi−1..pi − 1] followed by the corresponding suffix of P ap-
pearing at the beginning of S[pi..n]. For this sake, we define the set of pairs
B = {〈S[pi..n], S[pi−1..pi − 1]rev〉, 1 < i ≤ w}, where S[pi−1..pi − 1]rev means
S[pi−1..pi − 1] read backwards, and form multisets X and Y with the left and
right components of B, respectively.

We then lexicographically sort X and Y , to obtain the strings X1, X2, . . . and
Y1, Y2, . . .. All the occurrences ending with a certain prefix of P will form a
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contiguous range in the sorted multiset Y , whereas all those starting with a
certain suffix of P will form a contiguous range in the sorted multiset X . Each
primary occurrence of P will then correspond to a pair 〈Xx, Yy〉 ∈ B where
both Xx and Yy belong to their range.

Our structure to find the primary occurrences is a two-dimensional discrete
grid G storing one point (x, y) for each pair 〈Xx, Yy〉 ∈ B. The grid G is of size
(w− 1)× (w− 1). We represent G using a two-dimensional range search data
structure requiring O(w) space [12] that reports the t points lying inside any
rectangle of the grid in time O((t+ 1) lgεw), for any constant ε > 0. We also
store an array T [1..w−1] that, for each point (x, y) in G, where Xx = S[pi..n],
stores T [y] = pi, that is, where Xx starts in S.

Queries. To search for a pattern P [1..m], we first find its primary oc-
currences using G as follows. For each partition P< = P [1..k] and P> =
P [k + 1..m], for 1 ≤ k < m, we search Y for P rev

< and X for P>. For each
identified range [x1, x2] × [y1, y2], we extract all the t corresponding primary
occurrences (x, y) in time O((t + 1) lgεw) with our range search data struc-
ture. Then we report a primary occurrence starting at T [y]− k for each such
point (x, y). Over the m intervals, this adds up to O((m + occp) lgεw) =
O((m+ occp) lgε(γ lg(n/γ)).

We obtain the m− 1 ranges in the multiset X in overall time O(m lg(mn/γ)),
by using the fingerprint-based technique of Gagie et al. [24] applied to the z-
fast trie of Belazzougui et al. [2] (we use a lemma from Gagie et al. [26] where
the overall result is stated in cleaner form). We use an analogous structure to
obtain the ranges in Y of the suffixes of the reversed pattern.

Lemma 3 (adapted from [26, Lem. 5.2]). Let S[1..n] be a string on alphabet
[1..σ], X be a sorted set of suffixes of S, and φ a Karp–Rabin fingerprint
function. If one can extract a substring of length ` from S in time fe(`) and
compute φ on it in time fh(`), then one can build a data structure of size
O(|X |) that obtains the lexicographic ranges in X of the m − 1 suffixes of a
given pattern P in worst-case time O(m lg(σ)/ω+m(fh(m)+lgm)+fe(m)) —
provided that φ is collision-free among substrings of S whose lengths are powers
of two.

In Sections 2.1 and 2.2 we show how to extract in time fe(`) = O(` lg(n/γ))
and how to compute a fingerprint in time fh(`) = O(lg(n/γ)), respectively.
In Section 4.2 we show that a Karp–Rabin function that is collision-free
among substrings whose lengths are powers of two can be efficiently found.
Together, these results show that we can find all the ranges in X and Y in
time O(m lg(σ)/ω +m(lg(n/γ) + lgm) +m lg(n/γ)) = O(m lg(mn/γ)).
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Patterns P of length m = 1 can be handled as P [1]∗, where ∗ stands for any
character. Thus, we take [x1, x2] = [1, w] and carry out the search as a normal
pattern of length m = 2. To make this work also for the last position in S,
we assume as usual that S is terminated by a special symbol $ that cannot
appear in search patterns P . Alternatively, we can store a list of the marked
leaves where each alphabet symbol appears, and take those as the primary
occurrences. A simple variant of Lemma 2 shows that occurrences of length 1
are either attractor positions or are inside an unmarked block, so the normal
mechanism to find secondary occurrences from this set works correctly. Since
there are in total γ such leaves, the space for these lists is O(σ + γ) = O(γ).

3.2 Secondary Occurrences

We now describe the data structures and algorithms to find the secondary
occurrences. They require O(w) space and find the occs secondary occurrences
in time O((occp + occs) lg lgω(n/γ)).

Data structures. To track the secondary occurrences, let us call target and
source the text areas S[i..i′] and S[j′..j′′], respectively, of an unmarked block
and its pointer, so that there is some j ∈ Γ contained in S[j′..j′′] (if the blocks
are at level l, then i′ = i+bl−1 and j′′ = j′+bl−1). Let S[pos..pos+m−1] be
an occurrence we have already found (using the grid G, initially). Our aim is to
find all the sources that contain S[pos..pos+m− 1], since their corresponding
targets then contain other occurrences of P .

To this aim, we store the sources of all levels in an array R[1..w − γ], with
fields j′ and j′′, ordered by starting positions R[k].j′. We build a predecessor
search structure on the fields R[k].j′, and a range maximum query (RMQ)
data structure on the fields R[k].j′′, able to find the maximum endpoint j′′ in
any given range of R. While a predecessor search using O(w) space requires
O(lg lgω(n/w)) time on an ω-bit-word machine [45, Sec. 1.3.2], the RMQ struc-
ture operates in constant time using just O(w) bits [21].

Queries. Let S[pos..pos+m−1] be a primary occurrence found. A predeces-
sor search for pos gives us the rightmost position r where the sources start at
R[r].j′ ≤ pos. An RMQ on R[1..r] then finds the position k of the source with
the rightmost endpoint R[k].j′′ in R[1..r]. If even R[k].j′′ < pos+m−1, then no
source covers the occurrence and we finish. If, instead, R[k].j′′ ≥ pos+m− 1,
then the source R[k] covers the occurrence and we process its correspond-
ing target as a secondary occurrence; in this case we also recurse on the
ranges R[1..k − 1] and R[k + 1..r] that are nonempty. It is easy to see that
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each valid secondary occurrence is identified in O(1) time (see Muthukrish-
nan [41] for an analogous process). In addition, such secondary occurrences,
S[pos′..pos′+m−1], must be recursively processed for further secondary occur-
rences. A similar procedure is described for tracking the secondary occurrences
in the LZ77-index [38].

The cost per secondary occurrence reported then amortizes to a predecessor
search, O(lg lgω(n/γ)) time. This cost is also paid for each primary occurrence,
which might not yield any secondary occurrence to amortize it. We now prove
that this process is sufficient to find all the secondary occurrences.

Lemma 4. The described algorithm reports every secondary occurrence exactly
once.

Proof. We use induction on the level l of the unmarked block that contains
the secondary occurrence. All the secondary occurrences of the last level are
correctly reported once, since there are none. Now consider an occurrence
S[pos..pos + m − 1] inside an unmarked block S[i..i′] of level l. This block is
the target of a source S[j′..j′′] that spans 1 or 2 consecutive marked blocks
of level l. Then there is another occurrence S[pos′..pos′ +m− 1], with pos′ =
pos − i + j′. Note that the algorithm can report S[pos..pos + m − 1] only
as a copy of S[pos′..pos′ + m − 1]. If S[pos′..pos′ + m − 1] is primary, then
S[pos..pos+m− 1] will be reported right after S[pos′..pos′ +m− 1], because
[pos′..pos′ + m − 1] ⊆ [j′..j′′], and the algorithm will map [j′..j′′] to [i..i′] to
discover S[pos..pos + m − 1]. Otherwise, S[pos′..pos′ + m − 1] is secondary,
and thus it is within one of the marked blocks at level l that overlap the
source. Moreover, it is within one of the blocks of level l + 1 into which those
marked blocks are split. Thus, S[pos′..pos′ + m − 1] is within an unmarked
block of level > l, which by the inductive hypothesis will be reported exactly
once. When S[pos′..pos′+m− 1] is reported, the algorithm will also note that
[pos′..pos′ +m− 1] ⊆ [j′..j′′] and will find S[pos..pos+m− 1] once as well.

If we handle patterns of length m = 1 by taking the corresponding attractor
positions as the primary occurrences, then there may be secondary occurrences
in the last level, but those point directly to primary occurrences (i.e., attractor
positions), and therefore the base case of the induction holds too.

The total search cost with occ primary and secondary occurrences is there-
fore O(m(lgε(γ lg(n/γ)) + lg(mn/γ)) + occ(lgε(γ lg(n/γ)) + lg lgω(n/γ))) =
O(m lg n + occ(lgε γ + lg lg(n/γ))) = O(m lg n + occ lgε n), for any constant
ε > 0 defined at indexing time (the choice of ε affects the constant that ac-
companies the size O(γ lg(n/γ)) of the structure G).
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4 Construction

If we allow the index construction to be correct with high probability only,
then we can build it in O(n+w lg(n/γ)+w

√
lgw) time and O(w) space (plus

read-only access to S), using a Monte Carlo method. Since w = O(γ lg(n/γ))
is the number of leaves in the Γ-tree and γ(lg(n/γ))O(1) ⊆ O(n), the time can
be written as O(n+w

√
lg γ). In order to ensure a correct index, a Las Vegas

method requires O(n lg n) time in expectation (and w.h.p.) and O(n) space.

4.1 Building the Γ-tree

Given the attractor Γ, we can build the index data structure as follows. At
each level l, we create an Aho–Corasick automaton [1] on the unmarked blocks
at this level (i.e., those at distance ≥ bl from any attractor), and use it to scan
the areas S[j − bl + 1..j + bl − 1] around all the attractor elements j ∈ Γ in
order to find a proper pointer for each of those unmarked blocks. This takes
O(n) time per level. Since the areas around each of the γ attractor positions
are scanned at each level but they have exponentially decreasing lengths, the
scanning time adds up to O(γ n

γ
+ γ n

2γ
+ γ n

4γ
+ · · · ) = O(n).

As for preprocessing time, each unmarked block is preprocessed only once,
and they add up to O(n) symbols. The preprocessing can thus be done in
time O(n) [19]. To be able to scan in linear time, we can build deterministic
dictionaries on the edges outgoing from each node, in time O(n(lg lg σ)2) [46].

In total, we can build the Γ-tree in O(n(lg lg σ)2) deterministic time and O(n)
space.

To reduce the space to O(w), instead of inserting the unmarked blocks into
an Aho–Corasick automaton, we compute their Karp–Rabin fingerprints, store
them in a hash table, and scan the areas S[j−bl+1..j+bl−1] around attractor
elements j. This finds the correct sources for all the unmarked blocks w.h.p.
Indeed, if we verify the potential collisions, the result is always correct within
O(n) expected time (further, this time holds w.h.p.).

4.2 Building the Fingerprints

Building the structures for Lemma 1 requires (i) computing the fingerprint of
every text prefix ending at block boundaries (O(n) time and O(w) space in
addition to S), (ii) computing the fingerprint of every explicit block (O(w)
time and O(w) space starting from the leaves and combining results up to the
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root), (iii) for each unmarked explicit block B, computing the fingerprint of
a string of length at most |B| (i.e., the fingerprint of B′[i..bl]; see case (B) of
Lemma 1). Since unmarked blocks do not have children, each text character
is seen at most once while computing these fingerprints, which implies that
these values can also be computed in O(n) time and O(w) space in addition
to S.

This process, however, does not include finding a collision-free Karp–Rabin
hash function. As a result, the fingerprinting is correct w.h.p. only. We can use
the de-randomization procedure of Bille et al. [9], which guarantees to find —
in O(n lg n) expected time 5 and O(n) words of space — a Karp–Rabin hash
function that is collision-free among substrings of S whose lengths are powers
of two. This is sufficient to deterministically check the equality of substrings 6

in the z-fast trie used in the technique [26, Lem. 5.2] that we use to quickly
find ranges of pattern suffixes/prefixes (in our Section 3.1).

4.3 Building the Multisets X and Y

To build the multisets X and Y for the primary occurrences, we can build the
suffix arrays [40] of S and its reverse, Srev. This requires O(n) deterministic
time and space [31]. Then we can scan those suffix arrays to enumerate X and
Y in the lexicographic order.

To sort X and Y within O(w) space, we can build instead a sparse suffix tree
on the w positions of X or Y in S. This can be done in expected time (and
w.h.p.) O(n

√
lgw) and O(w) space [27]. If we aim to build the suffix array

correctly w.h.p. only, then the time drops to O(n).

We must then build the z-fast trie [2, Thm. 5] on the sets X and Y . Since we
can use any space in O(w), we opt for a simpler variant described by Kempa
and Kosolobov [34, Lem. 5], which is easier to build. Theirs is a compact
trie that stores, for each node v representing the string v.str and with parent
node v.par: (i) the length |v.str|, (ii) a dictionary mapping each character
c to the child node v′ of v such that v′.str[|v.str| + 1] = c (if such a child
exists), and (iii) the (non-extended) fingerprint of v.str[1..kv], where kv is the
two-fattest number in the range [|v.par.str| + 1..|v.str|], that is, the number
in that range whose binary representation has the largest number of trailing
zeros. The trie also requires a global “navigating” hash table that maps the
O(w) pairs (kv, φ̂(v.str[1..kv])) to their corresponding node v.

5 The time is also O(n lg n) w.h.p., not only in expectation.
6 If the length ` of the two substrings is not a power of two, then we compare their
prefixes and suffixes whose length is the largest power of two smaller than `.
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If p prefixes some string in X (resp. Y) and the fingerprint function φ̂ is
collision-free among equal-length text substrings, then their so-called fat bi-
nary search procedure finds — in time O(lg |p|) — the highest node v such
that v.str is prefixed by a search pattern p (assuming constant-time compu-
tation of the fingerprint of any substring of p, which can be achieved after a
linear-time preprocessing of the pattern). The range of strings of X (resp. Y)
is then associated with the node v.

Their search procedure, however, has an anomaly [34, Lem. 5]: in some cases it
might return a child of v instead of v. We can fix this problem (and always re-
turn the correct v) by also storing, for every internal trie node v, the fingerprint
of v.str and the exit character v.str[|v.par.str| + 1]. Then, we know that the
procedure returned v if and only if |v.par.str| < |p|, the fingerprint of v.par.str
matches that of p[1..|v.par.str|] and v.str[|v.par.str| + 1] = p[|v.par.str| + 1].
If these conditions do not hold, we know that the procedure returned a child
of v and we fix the answer by moving to the parent of the returned node. 7

If p does not prefix any string in X (resp. Y), or if φ̂ is not collision-free, the
search (with our without our fix) returns an arbitrary range. We recall that, to
cope with the first condition (which gives the z-fast trie search the name weak
prefix search), Lemma 3 adds a deterministic check that allows discarding
the incorrect ranges returned by the procedure. The second condition, on the
other hand, w.h.p. does not fail. Still, we recall that we can ensure that our
function is collision-free by checking, at construction time, for collisions among
substrings whose lengths are powers of two, as described in Section 4.2.

The construction of this z-fast trie starts from the sparse suffix tree of X
(or Y), since the topology is the same. The dictionaries giving constant-time
access to the nodes’ children can be built correctly w.h.p. in time O(w),
or be made perfect in expected time (and w.h.p.) O(w) [51]. Alternatively,
one can use deterministic dictionaries, which can be built in worst-case time
O(w(lg lg σ)2) [46]. In all cases, the construction space is O(w). Similarly, the
navigating hash can be built correctly w.h.p. in time O(w), or be made perfect
in expected time (and w.h.p.) O(w). We could also represent the navigating
hash using deterministic dictionaries built in worst-case time O(w(lg lgw)2)
[46] and space O(w). The O(w) fingerprints φ̂(v.str) and the hashes of the
pairs (kv, φ̂(v.str[1..kv])) can be computed in total time O(w lg(n/γ)) by using
Lemma 1 to compute the Karp–Rabin fingerprints.

7 This fix works in general. In their particular procedure, we do not need to check
that v.str[|v.par.str|+1] = p[|v.par.str|+1] (nor to store the exit character). Alter-
natively, we could directly fix their procedure by similarly storing the fingerprint of
v.str (hash(v.str), in their article) and changing line 6 of their extended version [34]
to “if v.len < |pat| and hash(v.str) = hash(pat[1..v.len]) and v.map(pat[v.len +
1]) 6= nil then v ← v.map(pat[v.len+ 1]);”.
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4.4 Structures to Track Occurrences

A variant of the grid data structure G [6], with the same space and time
performance, can be built in O(w

√
lgw) deterministic time, and O(w) space.

The arrays T and R can be built in O(w) space and O(w lg lgw) deterministic
time [28].

The RMQ structure on R requires O(w) deterministic construction time and
O(w) bits [21]. The predecessor data structure [45], however, requires perfect
hashing. This can be built in O(w) space and O(w(lg lgw)2) deterministic
time [46], or in O(w) expected time (also holding w.h.p.).

5 Conclusions

We have introduced the first universal self-index for repetitive text collections.
The index is based on a recent result [35] that unifies a large number of
dictionary compression methods into the single concept of string attractor. For
each compression method based on Lempel–Ziv, grammars, run-compressed
BWT, collage systems, macro schemes, etc., it is easy to identify an attractor
set of the same asymptotic size obtained by the compression method, say
γ. Thus, our construction automatically yields a self-index for each of those
compression methods, within O(γ lg(n/γ)) space. No structure is known of
size o(γ lg(n/γ)) able to efficiently extract a substring from the compressed
text (say, within O(polylog n) time per symbol), and thus O(γ lg(n/γ)) is the
minimum space we could hope for an efficient self-index with the current state
of the art.

Indeed, no self-index of size o(γ lg(n/γ)) is known: the smallest ones use
O(z) [38] and O(r) [26] space, respectively, yet there are text families where
z, r = Ω(b∗ lg n) = Ω(γ∗ lg n) [25] (where b∗ and γ∗ denote the smallest macro
scheme and attractor sizes, respectively). The most time-efficient self-indexes
use Θ(r lg(n/r)) and Ω(z lg(n/z)) space, which is asymptotically equal or
larger than ours. The search time of our index, O(m lg n + occ lgε n) for any
constant ε > 0, is close to that of the fastest of those self-indexes, which were
developed for a specific compression format (see [26, Table 1]). Moreover, our
construction provides a self-index for compression methods for which no such
structure existed before, such as collage systems and macro schemes. Those
can provide smaller attractor sets than the ones derived from the more popular
compression methods.

We can improve the search time of our index by using slightly more space.
Our current bottleneck in the per-occurrence query time is the grid data struc-
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ture G, which uses O(w) space and returns each occurrence in time O(lgεw).
Instead, a grid structure [12] using O(w lg lgw) = O(γ lg(n/γ) lg lg n) space
obtains the occp primary occurrences in time O((occp+1) lg lgw). This slightly
larger version of our index can then search in time O(m lg n+occ lg lg n). This
complexity is close to that of some larger indexes in the literature for repetitive
string collections (see [26, Table 1]).

A number of avenues for future work are open, including supporting more
complex pattern matching, handling dynamic collections of texts, supporting
document retrieval, and implementing a practical version of the index. Any
advance in this direction will then translate into all of the existing indexes for
repetitive text collections.
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