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Abstract

We consider document listing on string collections, that is, finding in which strings a
given pattern appears. In particular, we focus on repetitive collections: a collection
of size N over alphabet [1, σ] is composed of D copies of a string of size n, and s edits
are applied on ranges of copies. We introduce the first document listing index with
size Õ(n + s), precisely O((n lg σ + s lg2N) lgD) bits, and with useful worst-case
time guarantees: Given a pattern of length m, the index reports the ndoc > 0 strings
where it appears in time O(m lg1+εN · ndoc), for any constant ε > 0 (and tells in
time O(m lgN) if ndoc = 0). Our technique is to augment a range data structure
that is commonly used on grammar-based indexes, so that instead of retrieving all
the pattern occurrences, it computes useful summaries on them. We show that the
idea has independent interest: we introduce the first grammar-based index that, on
a text T [1, N ] with a grammar of size r, uses O(r lgN) bits and counts the number
of occurrences of a pattern P [1,m] in time O(m2 + m lg2+ε r), for any constant
ε > 0. We also give the first index using O(z lg(N/z) lgN) bits, where T is parsed
by Lempel-Ziv into z phrases, counting occurrences in time O(m lg2+εN).

Key words: Repetitive string collections; Document listing; Grammar
compression; Grammar-based indexing; Range minimum queries; Range counting;
Succinct data structures

1 Introduction

Document retrieval on general string collections is an area that has recently
attracted attention [43]. On the one hand, it is a natural generalization of the
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basic Information Retrieval tasks carried out on search engines [1,9], many
of which are also useful on Far East languages, collections of genomes, code
repositories, multimedia streams, etc. It also enables phrase queries on natural
language texts. On the other hand, it raises a number of algorithmic challenges
that are not easily addressed with classical pattern matching approaches.

In this paper we focus on one of the simplest document retrieval problems,
document listing [39]. Let D be a collection of D documents of total length
N . We want to build an index on D such that, later, given a search pattern
P of length m, we report the identifiers of all the ndoc documents where
P appears. Given that P may occur nocc � ndoc times in D, resorting to
pattern matching, that is, finding all the nocc occurrences and then listing
the distinct documents where they appear, can be utterly inefficient. Opti-
mal O(m+ ndoc) time document listing solutions appeared only in 2002 [39],
although they use too much space. There are also more recent statistically
compressed indices [51,28], which are essentially space-optimal with respect
to the statistical entropy and pose only a small time penalty.

We are, however, interested in highly repetitive string collections [42], which are
formed by a few distinct documents and a number of near-copies of those. Such
collections arise, for example, when sequencing the genomes of thousands of
individuals of a few species, when managing versioned collections of documents
like Wikipedia, and in versioned software repositories. Although many of the
fastest-growing datasets are indeed repetitive, this is an underdeveloped area:
most succinct indices for string collections are based on statistical compression,
and these fail to exploit repetitiveness [34].

1.1 Modeling repetitiveness

There are few document listing indices that profit from repetitiveness. A sim-
ple model to analyze them is as follows [36,23,42]: Assume there is a single
document of size n on alphabet [1, σ], and D−1 copies of it, on which s single-
character edits (insertions, deletions, substitutions) are distributed arbitrarily,
forming a collection of size N ≈ nD. This models, for example, collections of
genomes and their single-point mutations. For versioned documents and soft-
ware repositories, a better model is a generalization where each edit affects
a range of copies, such as an interval of versions if the collection has a lin-
ear versioning structure, or a subtree of versions if the versioning structure is
hierarchical.

The gold standard to measure space usage on repetitive collections is the size
of the Lempel-Ziv parsing [35]. If we parse the concatenation of the strings in
a repetitive collection under either of the models above, we obtain at most
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z = O(n/ lgσ n + s) � N phrases. Therefore, while a statistical compressor
would require basically N lg σ bits if the base document is incompressible
[34], we can aim to reach as little as O(n lg σ + s lgN) bits by expoiting
repetitiveness via Lempel-Ziv compression (an arbitrary Lempel-Ziv pointer
requires O(lgN) bits, but those in the first document could use O(lg n)).

This might be too optimistic for an index, however, as there is no known way
to extract substrings efficiently from Lempel-Ziv compressed text. Instead,
grammar compression allows extracting any text symbol in logarithmic time
using O(r lgN) bits, where r is the size of the grammar [8,54]. It is possible
to obtain a grammar of size r = O(z lg(N/z)) [10,30], which using standard
methods [50] can be tweaked to r = n/ lgσN + s lgN under our repetitiveness
model. Thus the space we might aim at for indexing is O(n lg σ+s lg2N) bits.

1.2 Our contributions

Although they perform reasonably well in practice, none of the existing struc-
tures for document listing on repetitive collections [14,23] offer good worst-case
time guarantees combined with worst-case space guarantees that are appropri-
ate for repetitive collections, that is, growing with n+s rather than with N . In
this paper we present the first document listing index offering good guarantees
in space and time for repetitive collections: our index

(1) uses O((n lg σ + s lg2N) lgD) bits of space, and
(2) performs document listing in time O(m lg1+εN · ndoc), for any constant

ε > 0.

That is, at the price of being an O(lgD) space factor away from what could
be hoped from a grammar-based index, our index offers document listing with
useful time bounds per listed document. The result is summarized in Theo-
rem 2.

We actually build on a grammar-based document listing index [14] that stores
the lists of the documents where each nonterminal appears, and augment it
by rearranging the nonterminals in different orders, following a wavelet tree
[27] deployment that guarantees that only O(m lg r) ranges of lists have to
be merged at query time. We do not store the lists themselves in various
orders, but just succinct range minimum query (RMQ) data structures [19]
that allow implementing document listing on ranges of lists [51]. Even those
RMQ structures are too large for our purposes, so they are further compressed
exploiting the fact that their underlying data has long increasing runs, so the
structures are reduced with techniques analogous to those developed for the
ILCP data structure [23].
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The space reduction brings new issues, however, because we cannot afford
storing the underlying RMQ sequences. These problems are circumvented with
a new, tailored, technique to extract the distinct elements in a range that might
have independent interest (see Lemma 2 in Appendix A).

Extensions The wavelet tree [27] represents a two-dimensional grid with
points. It is used in grammar-based indexes [15,16,12] to enumerate all the
occurrences of the pattern: a number of secondary occurrences are obtained
from each point that qualifies for the query. At a high level, our idea above is to
compute summaries of the qualifying points instead of enumerating them one
by one. We show that this idea has independent interest by storing the number
of secondary occurrences that can be obtained from each point. The result is an
index of O(r lgN) bits, similar to the size of previous grammar-based indexes
[15,16,12], and able to count the number of occurrences of the pattern in time
O(m2 + m lg2+ε r) for any constant ε > 0 (and O(m(lgN + lg2+ε r)) if the
grammar is balanced); see Theorem 4. Current grammar-based indexes are
unable to count the occurrences without locating them one by one, so for the
first time a grammar-based index can offer efficient counting. Further, by using
recent techniques [24], we also obtain the improved time O(m lgN+lgε r·nocc)
for an index based on a balanced grammar that reports the nocc occurrences;
see Theorem 1. Indeed, Lempel-Ziv based indexes are also unable to count
without locating. As a byproduct of our counting grammar-based index, we
obtain a structure of O(z lg(N/z) lgN) bits, where z ≤ r is the size of the
Lempel-Ziv parse of T , that can count in time O(m lg2+εN); see Theorem 5.

As another byproduct, we improve an existing result [45] on computing sum-
maries of two-dimensional points in ranges, when the points have associated
values from a finite group. We show in Theorem 3 that, within linear space,
the time to operate all the values of the points in a given range of an r × r
grid can be reduced from O(lg3 r) to O(lg2+ε r), for any constant ε > 0.

2 Related work

The first optimal-time and linear-space solution to document listing is due
to Muthukrishnan [39], who solves the problem in O(m + ndoc) time using
an index of O(N lgN) bits of space. Later solutions [51,28] improved the
space to essentially the statistical entropy of D, at the price of multiplying
the times by low-order polylogs of N (e.g., O(m + lgN · ndoc) time with
O(N) bits on top of the entropy [51,6]). However, statistical entropy does not
capture repetitiveness well [34], and thus these solutions are not satisfactory
in repetitive collections.
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There has been a good deal of work on pattern matching indices for repeti-
tive string collections [47, Sec 13.2]: building on regularities of suffix-array-like
structures [36,40,41,4,24], on grammar compression [15,16,12], on variants of
Lempel-Ziv compression [34,20,18,7], and on combinations [20,21,29,55,5,48,46].
However, there has been little work on document retrieval structures for repet-
itive string collections.

One precedent is Claude and Munro’s index based on grammar compression
[14]. It builds on a grammar-based pattern-matching index [16] and adds an
inverted index that explicitly indicates the documents where each nontermi-
nal appears; this inverted index is also grammar-compressed. To obtain the
answer, an unbounded number of those lists of documents must be merged.
No relevant worst-case time or space guarantees are offered.

Another precedent is ILCP [23], where it is shown that an array formed by
interleaving the longest common prefix arrays of the documents in the order of
the global suffix array, ILCP, has long increasing runs on repetitive collections.
Then an index of size bounded by the runs in the suffix array [36] and in the
ILCP array performs document listing in time O(search(m)+lookup(N)·ndoc),
where search and lookup are the search and lookup time, respectively, of a
run-length compressed suffix array [36,24]. Yet, there are only average-case
bounds for the size of the structure in terms of s: If the base document is
generated at random and the edits are spread at random, then the structure
uses O(n lgN + s lg2N) bits on average.

The last previous work is PDL [23], which stores inverted lists at sampled
nodes in the suffix tree of D, and then grammar-compresses the set of inverted
lists. For a sampling step b, it requiresO((N/b) lgN) bits plus the (unbounded)
space of the inverted lists. Searches that lead to the sampled nodes have their
answers precomputed, whereas the others cover a suffix array range of size
O(b) and are solved by brute force in time O(b · lookup(N)).

To be fair, those indexes perform well in many practical situations [22]. How-
ever, in this article we are interested in whether providing worst-case guaran-
tees in time and space.

3 Basic Concepts

3.1 Listing the different elements in a range

Let L[1, t] be an array of integers in [1, D]. Muthukrishnan [39] gives a struc-
ture that, given a range [i, j], lists all the ndoc distinct elements in L[i, j] in
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Fig. 1. An example of the structure to find the distinct elements in a range. Array
L contains the elements, E contains the pointers to previous occurrences, F marks
the run heads in E, and E′ stores those run heads.

time O(ndoc). He defines an array E[1, t] (called C in there) storing in E[k]
the largest position l < k where L[l] = L[k], or E[k] = 0 if no such position
exists. Note that the leftmost positions of the distinct elements in L[i, j] are
exactly those k where E[k] < i. He then stores a data structure supporting
range-minimum queries (RMQs) on E, rmqE(i, j) = argmini≤k≤jE[k] [19].
Given a range [i, j], he computes k = rmqE(i, j). If E[k] < i, then he reports
L[k] and continues recursively on L[i, k−1] and L[k+ 1, j]. Whenever it turns
out that E[k] ≥ i for an interval [x, y], there are no leftmost occurrences of
L[i, j] within L[x, y], so this interval can be abandoned. It is easy to see that
the algorithm takes O(ndoc) time and uses O(t lg t) bits of space; the RMQ
structure uses just 2t+ o(t) bits and answers queries in constant time [19].

Furthermore, the RMQ structure does not even access E. Sadakane [51] re-
places E by a bitvector V [1, D] to mark which elements have been reported.
He sets V initially to all zeros and replaces the test E[k] < i by V [L[k]] = 0,
that is, the value L[k] has not yet been reported (these tests are equivalent
only if we recurse left and then right in the interval [43]). If so, he reports L[k]
and sets V [L[k]]← 1. Overall, he needs only O(t+D) bits of space on top of
L, and still runs in O(ndoc) time (V can be reset to zeros by rerunning the
query or through lazy initialization). Hon et al. [28] further reduce the extra
space to o(t) bits, yet increasing the time, via sampling the array E.

Example 1. Fig. 1 shows an example on an array L[1, 13]; for now consider
only arrays L and E. To find the distinct elements in L[5, 13] we start with
k = rmqE(5, 13) = 7. Since E[7] = 2 < 5 (or, in Sadakane’s version, since
L[7] = 2 has not been reported), we report value L[7] = 2 and recurse on
L[5, 6] and L[8, 13]. In the first we compute k = rmqE(5, 6) = 5 and, since
E[5] = 4 < 5 (or, in Sadakane’s version, since L[5] = 1 has not been reported),
we report value L[5] = 1 and recurse on L[6, 6]. But E[6] = 5 is not less than
5 (or, in Sadakane’s version, L[6] = 1 has already been reported), we do not
continue. Now returning to L[8, 13], we compute k = rmqE(8, 13) = 8. Since
E[8] = 3 < 5 (or, in Sadakane’s version, since L[8] = 3 has not been reported),
we report L[8] = 3 and recurse on L[9, 13]. We compute k = rmqE(9, 13) =
12. Since E[12] = 6 is not less than 5 (or, in Sadakane’s version, since L[12] =
1 has already been reported), we finish.
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In this paper we introduce a variant of Sadakane’s document listing tech-
nique that might have independent interest; see Section 4.2 and Lemma 2 in
Appendix A.

3.2 Range minimum queries on arrays with runs

Let E[1, t] be an array that can be cut into ρ runs of nondecreasing values.
Then it is possible to solve RMQs in O(lg lg t) time plus O(1) accesses to E
using O(ρ lg(t/ρ)) bits. The idea is that the possible minima (breaking ties
in favor of the leftmost) in E[i, j] are either E[i] or the positions where runs
start in the range. Then, we can use a sparse bitvector F [1, t] marking with
F [k] = 1 the run heads. We also define an array E ′[1, ρ], so that if F [k] = 1
then E ′[rank1(F, k)] = E[k], where rankv(F, k) is the number of occurrences of
bit v in F [1, k]. We do not store E ′, but just an RMQ structure on it. Hence,
the minimum of the run heads in E[i, j] can be found by computing the range
of run heads involved, i′ = rank1(F, i−1)+1 and j′ = rank1(F, j), then finding
the smallest value among them in E ′ with k′ = rmqE′(i′, j′), and mapping it
back to E with k = select1(F, k

′), where selectv(F, k
′) is the position of the

k′th occurrence of bit v in B. Finally, the RMQ answer is either E[i] or E[k],
so we access E twice to compare them.

Example 2. The array E of Fig. 1 has ρ = 3 runs, E[1, 6], E[7, 11], and
E[12, 13]. The positions of the run heads are marked in F , and the smaller
array E ′ contains the run heads. The answer to rmqE(5, 13) can be only 5 (the
first element of the interval, not a run head) or the position of some of the
involved run heads, 7 and 12. To find the smallest run head, we compute the
appropriate range in E ′, i′ = rank1(F, 5−1)+1 = 2 and j′ = rank1(F, 13) = 3.
The actual RMQ structure is built on the much shorter E ′, where we find k′ =
rmqE′(2, 3) = 2. This position is mapped back to k = select1(F, 2) = 7. Then
rmqE(5, 13) is either 5 (the leftmost element in the range) or 7 (the smallest
involved run head). We compare E[5] with E[7] and choose the smaller, E[7].

This idea was used by Gagie et al. [23, Sec 3.2] for runs of equal values, but it
works verbatim for runs of nondecreasing values. They show how to store F in
ρ lg(t/ρ) +O(ρ) bits so that it solves rank in O(lg lg t) time and select in O(1)
time, by augmenting a sparse bitvector representation [49]. This dominates
the space and time of the whole structure.

The idea was used even before by Barbay et al. [2, Thm. 2], for runs of nonde-
creasing values. They represented F using ρ lg(t/ρ) +O(ρ) + o(t) bits so that
the O(lg lg t) time becomes O(1), but we cannot afford the o(t) extra bits in
this paper.
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Fig. 2. An example of a wavelet tree on the grid [1, 13]× [1, 7], where the points have
labels. The data in gray is conceptual; only the one in black is actually represented.
We give the names of the sequences up to the second level only to avoid cluttering.

3.3 Wavelet trees

A wavelet tree [27] is a sequence representation that supports, in particular,
two-dimensional orthogonal range queries [11,44]. Let (1, y1), (2, y2), . . . , (r, yr)
be a sequence of points with yi ∈ [1, r], and let S = y1y2 . . . yr be the y
coordinates in order. The wavelet tree is a perfectly balanced binary tree
where each node handles a range of y values. The root handles [1, r]. If a node
handles [a, b] then its left child handles [a, µ − 1] and its right child handles
[µ, b], with µ = d(a + b)/2e. The leaves handle individual y values. If a node
handles range [a, b], then it represents the subsequence Sa,b of S formed by
the y coordinates that belong to [a, b]. Thus at each level the strings Sa,b form
a permutation of S. What is stored for each such node is a bitvector Ba,b so
that Ba,b[i] = 0 iff Sa,b[i] < µ, that is, if that value is handled in the left child
of the node. Those bitvectors are provided with support for rank and select
queries. The wavelet tree has height lg r, and its total space requirement for
all the bitvectors Ba,b is r lg r bits. The extra structures for rank and select
add o(r lg r) further bits and support the queries in constant time [13,38].

We will use wavelet trees where there can be more than one point per column,
say p ≥ r points in total. To handle them, we add a bitvector R[1, p + 1] =
10c1−110c2−1 . . . 10cr−11, if there are cj points in column j. Then any coordinate
range [x1, x2] is mapped to the wavelet tree columns [select1(R, x1), select1(R, x2+
1) − 1]. Conversely, a column j returned by the wavelet tree can be mapped
back to the correct coordinate x = rank1(R, j). The wavelet tree then repre-
sentes a string S of length p over the alphabet [1, r] using p lg r+o(p lg r) bits,
to which R adds p+ o(p) bits to implement rank and select in constant time.

Example 3. Fig. 2 shows a grid of p = 13 columns and r = 7 rows. Only the
bitvectors Ba,b are represented; the strings Sa,b are conceptual. The example
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shows that we can also associate labels with the points, and these induce (vir-
tual) arrays Aa,b associated with the corresponding points in Sa,b. We do not
usually store the arrays Aa,b explicitly, but rather some information on them.

With the wavelet tree one can recover any yi value by tracking it down from
the root to a leaf, but let us describe a more general procedure, where we
assume that the x-coordinates are already mapped.

Range queries Let [x1, x2]× [y1, y2] be a query range. The number of points
that fall in the range can be counted in O(lg r) time as follows. We start at
the root with the range S[x1, x2] = S1,r[x1, x2]. Then we project the range
both left and right, towards S1,µ−1[rank0(B1,r, x1 − 1) + 1, rank0(B1,r, x2)] and
Sµ,r[rank1(B1,r, x1−1)+1, rank1(B1,r, x2)], respectively, with µ = d(r+1)/2e. If
some of the ranges is empty, we stop the recursion on that node. If the interval
[a, b] handled by a node is disjoint with [y1, y2], we also stop. If the interval
[a, b] is contained in [y1, y2], then all the points in the x range qualify, and we
simply sum the length of the range to the count. Otherwise, we keep splitting
the ranges recursively. It is well known that the range [y1, y2] is covered by
O(lg r) wavelet tree nodes, and that we traverse O(lg r) nodes to reach them
(see Gagie et al. [25] for a review of this and more refined properties). If we
also want to report all the corresponding y values, then instead of counting
the points found, we track each one individually towards its leaf, in O(lg r)
time. At the leaves, the y values are sorted.

Example 4. To count the number of points inside [3, 6]× [2, 6], we start with
S1,7[3, 6] = 4, 5, 3, 5, and project it to S1,3[2, 2] = 3 and S4,7[2, 4] = 4, 5, 5. The
left range, in S1,3, is projected to the right only, because the left node handles
S1,1, whose y range has no intersection with the query range [2, 6]. The right
projection is S2,3[2, 2] = 3. Since the y range of S2,3 is contained in that of
the query, [2, 6], we already count the point in S2,3[2, 2] as belonging to the
result. The other range, S4,7[2, 4], is projected to the left, S4,5[2, 4] = 4, 5, 5,
whereas the projection to the right is empty, S6,7[1, 0]. Since the y range of
S4,5 is completely contained in that of the query, we count the 3 points in
S4,5[2, 4] as part of the query, and answer that there are 4 points in the range
without need of tracking those points down, but we may do if we want to find
their coordinates. In total, we traverse at most the O(lg y) maximal nodes that
cover the query interval [2, 6] : S2,3, S4,5, S6,6, and their ancestors.

Faster reporting By using O(r lg r) bits, it is possible to track the positions
faster in upward direction, and associate the values with their root positions.
Specifically, by using O((1/ε)r lg r) bits, one can reach the root position of a
symbol in time O((1/ε) lgε r), for any ε > 0 [11,44]. Therefore, the nocc results
can be extracted in time O(lg r + nocc lgε r) for any constant ε.
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Summary queries Navarro et al. [45] showed how to perform summary
queries on wavelet trees, that is, instead of listing all the points that belong
to a query range, compute some summary on them faster than listing the
points one by one. For example, if the points are assigned values in [1, N ],
then one can use O(p lgN) bits and compute the sum, average, or variance of
the values associated with points in a range in time O(lg3 r), or their mini-
mum/maximum in O(lg2 r) time. The idea is to associate with the sequences
Sa,b other sequences Aa,b storing the values associated with the corresponding
points in Sa,b, and carry out range queries on the intervals of the sequences
Aa,b of the O(lg r) ranges into which two-dimensional queries are decomposed,
in order to compute the desired summarizations. To save space, the explicit
sequences Aa,b are not stored; just sampled summary values.

Example 5. Consider the previous example query, now assuming that the
labels of the grid are weights associated with the points. We could associate with
Aa,b the sum of its prefixes, Pa,b[i] =

∑i
k=1Aa,b[k]. Then, instead of counting

the points in [3, 6]× [2, 6], we could sum up its weights: since all the points are
in S2,3[2, 2] and S4,5[2, 4], the sum of the weights is (P2,3[2]−P2,3[1])+(P4,5[4]−
P4,5[1]). We can then compute sums in time O(lg r), but use O(p lg r lgN) bits.
Sampling can reduce this space while increasing the time.

In this paper we show that the O(lg3 r) time can be improved to O(lg2+ε r),
for any constant ε > 0, within the same asymptotic space; see Theorem 3 in
Section 6.

3.4 Grammar compression

Let T [1, N ] be a sequence of symbols over alphabet [1, σ]. Grammar compress-
ing T means finding a context-free grammar that generates T and only T . The
grammar can then be used as a substitute for T , which provides good com-
pression when T is repetitive. We are interested, for simplicty, in grammars in
Chomsky normal form, where the rules are of the form A → BC or A → a,
where A, B, and C are nonterminals and a ∈ [1, σ] is a terminal symbol. For
every grammar, there is a proportionally sized grammar in this form.

A Lempel-Ziv parse [35] of T cuts T into z phrases, so that each phrase
T [i, j] appears earlier in T [i′, j′], with i′ < i. It is known that the smallest
grammar generating T must have at least z rules [50,10], and that it is possible
to convert a Lempel-Ziv parse into a grammar with r = O(z lg(N/z)) rules
[50,10,52,31,32]. Furthermore, such grammars can be balanced, that is, the
parse tree is of height O(lgN). By storing the length of the string to which
every nonterminal expands, it is easy to access any substring T [i, j] from its
compressed representation in time O(j− i+ lgN) by tracking down the range
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 2,3l (C’) = 
 2,3l (F’) = 
 2l (G’) = 

1,2l (E) = 
1l (F) = 
1l (G) = 

1,2,3l (A) = 
1,2l (B) = 
1l (C) = 
1,2,3l (D) = 

 3l (B’’) = 
 3l (E’’) = 
 3l (G’’) = 

a b r a a d a

A B D

E

D

a b a a d a

A D

D
2 3

k

C’

F’

G’

k

C’

F’

l

B’’

E’’

G’’

Fig. 3. The grammar of three strings (or documents) D1, D2, and D3, each with
an edit with respect to the previous one. On top we show the parse tree of each
document, in the middle the grammar in Chomsky normal form (removing the rules
A→ a for conciseness), and in the bottom the inverted list of the documents where
each nonterminal appears.

in the parse tree. This can be done even on unbalanced grammars [8]. The
total space of this representation, with a grammar of r rules, is O(r lgN) bits.

Example 6. Fig. 3 shows the grammar compression of a set of three strings,
or documents, D1 = abracada, D2 = abrakada, and D3 = ablakada. Each
document has edits with respect to the previous one. This follows the way in
which we will use grammars in this article: D1 has a trivial balanced grammar,
and then the grammar of each Dd is equal to that of Dd−1 except for the edits,
which induce new terminals up to the root. Disregard the inverted lists for now.

3.5 Grammar-based indexing

The pattern-matching index of Claude and Navarro [15] builds on a grammar
in Chomsky normal form that generates a text T [1, N ], with r rules of the
form A→ BC. Let s(A) be the string generated by nonterminal A. Then they
collect the distinct strings s(B) for all those nonterminals B, reverse them, and
lexicographically sort them, obtaining s(B1)

rev < . . . < s(Br′)
rev, for r′ ≤ r.

They also collect the distinct strings s(C) for all those nonterminals C and
lexicographically sort them, obtaining s(C1) < . . . < s(Cr′′), for r′′ ≤ r. They
create a set of points in [1, r′]× [1, r′′] so that (i, j) is a point (corresponding
to nonterminal A) if the rule that defines A is A → BiCj. Those r points
are stored in a wavelet tree. Note that the nonterminals of the form A → a
are listed as some Bi or some Cj (or both), yet only the rules of the form
A→ BC have associated points in the grid. Since there may be many points
per column, we use the coordinate mapping described in Section 3.3. The
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b
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c d k l r

BB’’C’DC

E’’

Fig. 4. The grid structure formed by the sorted strings s(Bi)
rev (on top) and s(Cj)

(on the left). Points are labeled by the nonterminals A that connect A→ BiCj .

space is thus r lg r′′ + o(r lg r′′) +O(r + r′) ≤ r lg r + o(r lg r) bits.

Example 7. Fig. 4 shows the grid corresponding to the grammar of Fig. 3. If
we separate points in the same column as explained, the result is the grid of
Fig. 2, which is represented by that wavelet tree, and the labels correspond to
the nonterminals. The mapping bitvector is R = 1111101011111.

To search for a pattern P [1,m], they first find the primary occurrences, that
is, those that appear when B is concatenated with C in a rule A→ BC. The
secondary occurrences, which appear when A is used elsewhere, are found in a
way that does not matter for this paper. To find the primary occurrences, they
cut P into two nonempty parts P = P1P2, in the m−1 possible ways. For each
cut, they binary search for P rev

1 in the sorted set s(B1)
rev, . . . , s(Br′)

rev and for
P2 in the sorted set s(C1), . . . , s(Cr′′). Let [x1, x2] be the interval obtained for
P rev
1 and [y1, y2] the one obtained for P2. Then all the points in [x1, x2]×[y1, y2],

for all the m−1 partitions of P , are the primary occurrences. These are tracked
down the wavelet tree, where the label A of the rule A → BiCj is explicitly
stored at the leaf position of the point (i, j). We then know that P appears in
s(A)[|s(Bi)| − |P1|+ 1, |s(Bi)|+ |P2|].

Example 8. To search for P = bra we try two partitions, P1 = b with
P2 = ra, and P1 = br with P2 = a. In the first partition, we find for P1 the
range [ba, ba] in the strings s(Bi)

rev, which after mapping it to the grid of
Fig. 2 becomes [x1, x2] = [7, 8]. For P2 we find the range [ra, ra] in the strings
s(Cj), which is [y1, y2] = [7, 7] in Fig. 2. The wavelet tree search then ends up
in the rightmost leaf. If we explicitly store the strings Aa,b at the leaves, we
may recover the nonterminal E, which is the only occurrence of P under this
partition P1P2. The second partition does not return results, thus nonterminal
E contains the only primary occurrence of P .

The special case m = 1 is handled by binary searching the (Bi)
revs or the

(Cj)s for the only nonterminal A → P [1]. This, if exists, is the only primary

12



occurrence of P .

To search for P rev
1 or for P2, the grammar is used to extract the required

substrings of T in time O(m + lgN), so the overall search time to find the
nocc nonterminals containing the primary occurrences is O(m lg r(m+lgN)+
lg r · nocc). Let us describe the fastest known variant that uses O(r lgN) bits,
disregarding constant factors in the space. Within O(r lgN) bits, one can
store Patricia trees [37] on the strings s(Bi)

rev and s(Cj), to speed up binary
searches and reduce the time to O(m(m+lgN)+lg r ·nocc). Also, one can use
the structure of Gasieniec et al. [26] that, within O(r lgN) further bits, allows
extracting any prefix/suffix of any nonterminal in constant time per symbol
(see Claude and Navarro [16] for more details). Since in our search we only
access prefixes/suffixes of whole nonterminals, this further reduces the time to
O(m2 + (m+nocc) lg r). Finally, we can use the technique for faster reporting
described in Section 3.3 to obtain time O(m2 + m lg r + lgε r · nocc), for any
constant ε > 0.

Faster locating on balanced grammars If the grammar is balanced, how-
ever, we can do better within O(r lgN) bits using the most recent develop-
ments. We can store z-fast tries [3, App. H.3] on the sets s(B1)

rev, . . . , s(Br′)
rev

and s(C1), . . . , s(Cr′′). We can also associate with each nonterminal A a Karp-
Rabin fingerprint [33] for s(A). If the balanced grammar is in Chomsky normal
form, then any substring of T is covered by O(lgN) maximal nonterminals, so
its fingerprint can be assembled in time O(lgN). Otherwise, we can convert
it into Chomsky normal form while perserving its asymptotic size and bal-
ancedness. 2 It is possible to build the fingerprints so as to ensure no collisions
between substrings of T [21]. We can also extract any substring of length m
of T in time O(m + lgN), and even in time O(m) if they are prefixes or suf-
fixes of some s(A) [26]. With all those elements, we can build a scheme [24,
Lem. 5.2] that can find the lexicographic ranges of the m − 1 prefixes P rev

1

in s(B1)
rev, . . . , s(Br′)

rev and the m− 1 suffixes P2 in s(C1), . . . , s(Cr′′), all in
time O(m lgN). This reduces the time obtained in the preceding paragraph
to O(m lgN + lgε r · nocc), for any constant ε > 0. We will use this result
for document listing, but it is of independent interest as a grammar-based
pattern-matching index. Note we have disregarded the secondary occurrences,
but those are found in O(lg lg r) time each with structures using O(r lgN)
bits [16].

2 To convert a rule A → B1 . . . Bt to Chomsky normal form, instead of building
a balanced binary tree of t − 1 intermediate rules, use the tree corresponding to
the Shannon codes [17, Sec. 5.4] of the probabilities |s(Bi)|/|s(A)|. Those guarantee

that the leaf for each Bi is at depth
⌈
lg |s(A)||s(Bi)|

⌉
. Any root-to-leaf path of length h,

when expanded by this process, telescopes to h+ lgN .
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Theorem 1. Let text T [1, N ] be represented by a balanced grammar of size r.
Then there is an index of O(r lgN) bits that locates the nocc occurrences in T
of a pattern P [1,m] in time O(m lgN + lgε r · nocc), for any constant ε > 0.

Counting This index locates the occurrences of P one by one, but cannot
count them without locating them all. This is a feature easily supported by
suffix-array-based compressed indexes [36,24] in O(m lgN) time or less, but
so far unavailable in grammar-based or Lempel-Ziv-based compressed indexes.
In Theorem 4 of Section 6 we offer for the first time efficient counting for
grammar-based indexes. Within their same asymptotic space, we can count
in time O(m2 + m lg2+ε r) for any constant ε > 0 (and O(m(lgN + lg2+ε r))
if the grammar is balanced). For a text parsed into z Lempel-Ziv phrases we
obtain, in Theorem 5, O(m lg2+ε(z lg(N/z))) time and O(z lg(N/z) lgN) bits.

Document listing The original structure was also unable to perform doc-
ument listing without locating all the occurrences and determining the docu-
ment where each belongs. Claude and Munro [14] showed how to extend it in
order to support document listing on a collection D of D string documents,
which are concatenated into a text T [1, N ]. A grammar is built on T , where
nonterminals are not allowed to cross document boundaries. To each nontermi-
nal A they associate the increasing list `(A) of the identifiers of the documents
(integers in [1, D]) where A appears. To perform document listing, they find
all the primary occurrences A → BC of all the partitions of P , and merge
their lists. 3 There is no useful worst-case time bound for this operation other
than O(r · ndoc). To reduce space, they also grammar-compress the sequence
of all the r lists `(A). They give no worst-case space bound for the compressed
lists (other than O(rD lgD) bits).

Example 9. The bottom of Fig. 3 shows the lists `(·) associated with the
grammar nonterminals. After our search for P = bra in the previous example,
which returned only the nonterminal E, we may directly report `(E) = 1, 2, the
list of all the documents where P appears.

At the end of Section 5.1 we show that, under our repetitiveness model, this
index can be tweaked to occupy O(n lgN + s lg2N) bits, close to what can
be expected from a grammar-based index according to our discussion. Still, it
gives no worst-case guarantees for the document listing time. In Theorem 2
we show that, by multiplying the space by an O(lgD) factor, document listing
is possible in time O(m lg1+εN · ndoc) for any constant ε > 0.

3 In pattern matching, the same nonterminal A may be found several times with
different partitions P = P1P2, and these yield different occurrences. For document
listing, however, we are only interested in the nonterminal A.
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4 Our Document Listing Index

We build on the basic structure of Claude and Munro [14]. Our main idea is
to take advantage of the fact that the nocc primary occurrences to detect in
Section 3.5 are found as points in the two-dimensional structure, along O(lg r)
ranges within wavelet tree nodes (recall Section 3.3) for each partition of P .
Instead of retrieving the nocc individual lists, decompressing and merging
them [14], we will use the techniques to extract the distinct elements of a
range seen in Section 3.1. This will drastically reduce the amount of merging
necessary, and will provide useful upper bounds on the document listing time.

4.1 Structure

We store the grammar of T in a way that it allows direct access for pattern
searches, as well as the wavelet tree for the points (i, j) of A→ BiCj, the Pa-
tricia trees, and extraction of prefixes/suffixes of nonterminals, all in O(r lgN)
bits; recall Section 3.5.

Consider any sequence Sa,b[1, q] at a wavelet tree node handling the range [a, b]
(recall that those sequences are not explicitly stored). Each element Sa,b[k] = j
corresponds to a point (i, j) associated with a nonterminal Ak → BiCj. Con-
sider the sequence of associated labels Aa,b[1, q] = A1, . . . , Aq (not explic-
itly stored either). Then let La,b = `(A1) · `(A2) · · · `(Aq) be the concatena-
tion of the inverted lists associated with the nonterminals of Aa,b, and let
Ma,b = 10|`(A1)|−110|`(A2)|−1 . . . 10|`(Aq)|−1 mark where each list begins in La,b.
Now let Ea,b be the E-array corresponding to La,b, as described in Section 3.1.
As in that section, we do not store La,b nor Ea,b, but just the RMQ structure on
Ea,b, which together with Ma,b will be used to retrieve the unique documents
in a range Sa,b[i, j].

Since Ma,b has only r 1s out of (at most) rD bits across all the wavelet tree
nodes of the same level, it can be stored with O(r lgD) bits per level [49], and
O(r lg r lgD) bits overall. On the other hand, as we will show, Ea,b is formed by
a few increasing runs, say ρ across the wavelet tree nodes of the same level, and
therefore we represent its RMQ structure using the technique of Section 3.2.
The total space used by those RMQ structures is then O(ρ lg r lg(rD/ρ)) bits.

Finally, we store the explicit lists `(Ak) aligned to the sequences Aj,j of the
wavelet tree leaves j, so that the list of any element Aa,b[k] is reached in
O(lg r) time by tracking down the element. Those lists, of maximum total
length rD, are grammar-compressed as well, just as in the basic scheme [14].
If the grammar has l rules, then the total compressed size is O(l lg(rD)) bits
to allow for direct access in O(lg(rD)) time, see Section 3.4.
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a,bA A G C D C’ B’’ B

a,bE

a,bS 2 3 1 1 1 1 1

a,bM 1 0 0 1 1 1 0 0 1 0 1 1 0

a,bL 1 2 3 1 1 1 2 3 2 3 3 1 2

0 0 0 1 4 5 2 3 7 8 10 6 9

a,bB 1 1 0 0 0 0 0

a,bF 1 0 0 0 0 0 1 0 0 0 0 1 0

a,bE’ 0 2 6

RMQ (0,2,6)

Fig. 5. Our structure on a wavelet tree node. Only those in black are actually stored.

Our complete structure uses O(r lgN + r lg r lgD+ ρ lg r lg(rD/ρ) + l lg(rD))
bits.

Example 10. Fig. 5 shows our structure on a wavelet tree node, specifically
the left child of the root in Fig. 2. Only the bitvectors Ba,b, Ma,b, and Fa,b are
stored explicitly, plus the RMQ structures on E ′a,b (the headers of the non-
decreasing runs in Ea,b). Bitvectors Ba,b (plus the all structures associated
with the grammar of T ) contribute O(r lgN) bits, bitvectors Ma,b contribute
O(r lg r lgD) bits, and bitvectors Fa,b and the RMQ structures on E ′a,b con-
tribute O(ρ lg r lg(rD/ρ)) bits. On the leaf nodes, the sequences La,b are ex-
plicitly stored as well (in grammar-compressed form), contributing O(l lg(rD))
further bits.

4.2 Document listing

A document listing query proceeds as follows. We cut P in the m− 1 possible
ways, and for each way identify the O(lg r) wavelet tree nodes and ranges
Aa,b[i, j] where the desired nonterminals lie. Overall, we have O(m lg r) ranges
and need to take the union of the inverted lists of all the nonterminals in
those ranges. We extract the distinct documents in each corresponding range
La,b[i

′, j′] and then compute their union. If a range has only one element, we
can simply track it to the leaves, where its list `(Ak) is stored, and decompress
the whole list. Otherwise, we use a more sophisticated mechanism.

Example 11. To have an interesting example, consider we search for P =
[b-r] [a-l], where we admit ranges of symbols, in the index of Fig. 4. Then we
partition it into P1 = [b-r] and P2 = [a-l]. The searches, after mapping to
the grid of Fig. 2, yield the range [x1, x2] = [7, 13] and [y1, y2] = [1, 6]. This is
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mapped to the wavelet tree nodes and ranges A1,3[3, 7], A4,5[1, 0] (empty range),
and A6,6[1, 1]. As seen in Fig. 5, the interval of A1,3[3, 7] corresponds to the
concatenation of lists L1,3[5, 13] = 1, 1, 2, 3, 2, 3, 3, 1, 2 (obtained with rank and
select on M1,3). We will obtain the distinct documents 1, 2, 3 in this range.
The range A6,6[1, 1] contains only the list `(E′′) = 3 (see Fig. 3). Thus we find
document 3 twice, in different wavelet tree nodes. On longer patterns, we can
also find them repeated across different partitions P1P2.

We use in principle the document listing technique of Section 3.1. Let Aa,b[i, j]
be a range from where to obtain the distinct documents. We compute i′ =
select1(Ma,b, i) and j′ = select1(Ma,b, j+1)−1, and obtain the distinct elements
in La,b[i

′, j′], by using RMQs on Ea,b[i
′, j′]. Recall that, as in Section 3.2, we use

a run-length compressed RMQ structure on Ea,b. With this arrangement, every
RMQ operation takes time O(lg lg(rD)) plus the time to accesses two cells in
Ea,b. Those accesses are made to compare a run head with the leftmost element
of the query interval, Ea,b[i

′]. The problem is that we have not represented the
cells of Ea,b, nor we can easily compute them on the fly.

Barbay et al. [2, Thm. 3] give a representation that determines the position
of the minimum in Ea,b[i

′, j′] without the need to perform the two accesses on
Ea,b. They need ρ lg(rD) + ρ lg(rD/ρ) + O(ρ) + o(rD) bits. The last term is,
unfortunately, is too high for us 4 .

Instead, we modify the way the distinct elements are obtained, so that compar-
ing the two cells of Ea,b is unnecessary. In the same spirit of Sadakane’s solution
(see Section 3.1) we use a bitvector V [1, D] where we mark the documents al-
ready reported. Given a rangeAa,b[i, j] (i.e., La,b[i

′, j′] = `(Aa,b[i]) · · · `(Aa,b[j])),
we first track Aa,b[i] down the wavelet tree, recover and decompress its list
`(Aa,b[i]), and mark all of its documents in V . Note that all the documents
in a list `(·) are different. Now we do the same with Aa,b[i + 1], decom-
pressing `(Aa,b[i + 1]) left to right and marking the documents in V , and
so on, until we decompress a document `(Aa,b[i+d])[k] that is already marked
in V . Only now we use the RMQ technique of Section 3.2 on the interval
Ea,b[x, j

′], where x = select1(Ma,b, i+ d)− 1 + k, to obtain the next document
to report. This technique, as explained, yields two candidates: one is Ea,b[x],
where La,b[x] = `(Aa,b[i+ d])[k] itself, and the other is some run head Ea,b[k

′],
where we can obtain La,b[k

′] from the wavelet tree leaf (i.e., at `(Aa,b[t])[u],
where t = rank1(Ma,b, k

′) and u = k′ − select1(M, t) + 1). But we know that
La,b[x] was already found twice and thus Ea,b[x] ≥ i′, so we act as if the
RMQ was always Ea,b[k

′]: If the correct RMQ answer was Ea,b[x] then, since
i′ ≤ Ea,b[x] ≤ Ea,b[k

′], we have that La,b[k
′] is already reported and we will stop

4 Even if we get rid of the o(rD) component, the ρ lg(rD) term becomes O(s lg3N)
in the final space, which is larger than what we manage to obtain. Also, using it
does not make our solution faster.
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anyway. Hence, if La,b[k
′] is already reported we stop, and otherwise we report

it and continue recursively on the intervals Ea,b[i
′, k′ − 1] and Ea,b[k

′ + 1, j′].
On the first, we can continue directly, as we still know that La,b[i

′] was found
twice. On the second interval, instead, we must restore the invariant that the
leftmost element was found twice. So we find out with M the list and posi-
tion of La,b[k

′+ 1], and traverse the list from that position onwards, reporting
documents until finding one that had already been reported.

If the RMQ algorithm does not return any second candidate Ea,b[k
′] (which

happens when there are no run heads in Ea,b[i
′ + 1, j′]) we can simply stop,

since the minimum is Ea,b[i
′] and La,b[i

′] is already reported. The correctness
of this document listing algorithm is formally proved in Appendix A.

Example 12. Consider again Example 2, whose array L in Fig. 1 corre-
sponds to L1,3 in Fig. 2 and La,b in Fig. 5. To solve rmqE(5, 13), we found
the minimum of the involved run heads, E[7], and compared it with E[5]. This
time, however, we do not have access to E = Ea,b, and therefore cannot use
the same mechanism. Instead, we proceed as follows to find the distinct doc-
uments in La,b[5, 13], corresponding to the lists in Aa,b[3, 7]. We track down
Aa,b[3] to determine it is C, and report its list of documents, `(C) = 1. Now
we track down Aa,b[4] to determine it is D. As soon as we start traversing its
list, `(D) = 1, 2, 3, we find the repeated document La,b[6] = 1, so we stop and
switch to computing rmqEa,b

(6, 13). Since the RMQ structure is built on the
run heads of Ea,b, it can only tell that the minimum is either Ea,b[6] or Ea,b[7].
We then simply assume the minimum is Ea,b[7] (which is true in this case).
Thus, we track La,b[7] down to the leaves, to find out it is document 2, which
we report. Now we recurse on the two intervals, Ea,b[6, 6] and Ea,b[8, 13]. In
the former we do not report anything because it contains no second candidate
apart from the already reported position La,b[6] = 1. To process Ea,b[8, 13], in-
stead, we must reestablish the invariant that the first element has been found
twice. So we track La,b[8] to the leaves, finding the new document 3, which is
reported. We continue with La,b[9], which turns out to be document 2, already
reported. Now we switch again to computing RMQs: rmqEa,b

(9, 13) tells that
the minimum is either Ea,b[9] or Ea,b[12]. We simply assume it is Ea,b[12],
which is correct in this case. But when we track La,b[12] down to the leaves,
we find it is document 1, which is already reported and thus we finish.

The m−1 searches for partitions of P take time O(m2), as seen in Section 3.5.
In the worst case, extracting each distinct document in the range requires an
RMQ computation without access to Ea,b (O(lg lg(rD)) time), tracking an el-
ement down the wavelet tree (O(lg r) time), and extracting an element from
its grammar-compressed list `(·) (O(lg(rD) time). This adds up to O(lg(rD))
time per document extracted in a range. In the worst case, however, the same
documents are extracted over and over in all the O(m lg r) ranges, and there-
fore the final search time is O(m2 +m lg r lg(rD) · ndoc).
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5 Analysis in a Repetitive Scenario

Our structure uses O(r lgN + r lg r lgD+ ρ lg r lg(rD/ρ) + l lg(rD)) bits, and
performs document listing in time O(m2 +m lg r lg(rD) · ndoc). We now spe-
cialize those formulas under our repetitiveness model. Note that our index
works on any string collection; we use the simplified model of the D−1 copies
of a single document of length n, plus the s edits, to obtain analytical results
that are easy to interpret in terms of repetitiveness.

We also assume a particular strategy to generate the grammars in order to
show that it is possible to obtain the complexities we give. This involves deter-
mining the minimum number of edits that distinguishes each document from
the previous one. If the s edit positions are not given explicitly, the optimal set
of s edits can still be obtained at construction time, with cost O(Ns), using
dynamic programming [53].

5.1 Space

Consider the model where we have s single-character edits affecting a range of
document identifiers. This includes the model where each edit affects a single
document, as a special case. The model where the documents form a tree of
versions, and each edit affects a whole subtree, also boils down to the model
of ranges by numbering the documents according to their preorder position in
the tree of versions.

An edit that affects a range of documents di, . . . , dj will be regarded as two
edits: one that applies the change at di and one that undoes it at dj (if needed,
since the edit may be overriden by another later edit). Thus, we will assume
that there are at most 2s edits, each of which affects all the documents starting
from the one where it applies. We will then assume s ≥ (D − 1)/2, since
otherwise there will be identical documents, and this is easily reduced to a
smaller collection with multiple identifiers per document.

Our grammar The documents are concatenated into a single text T [1, N ],
where N ≤ D(n + s). Our grammar for T will be built over an alphabet of
O(N1/3) “metasymbols”, which include all the possible strings of length up to
1
3

lgσN . The first document is parsed into dn/1
3

lgσNe metasymbols, on top
of which we build a perfectly balanced binary parse tree of height h = Θ(lg n)
(for simplicity; any balanced grammar would do). All the internal nodes of this
tree are distinct nonterminal symbols (unless they generate the same strings),
and end up in a root symbol S1.
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Now we regard the subsequent documents one by one. For each new document
d, we start by copying the parse tree from the previous one, d − 1, including
the start symbol Sd = Sd−1. Then, we apply the edits that start at that
document. Let h be the height of its parse tree. A character substitution
requires replacing the metasymbol covering the position where the edit applies,
and then renaming the nonterminals A1, . . . , Ah = Sd in the path from the
parent of the metasymbol to the root. Each Ai in the path is replaced by a new
nonterminal A′i (but we reuse existing nonterminals to avoid duplicated rules
A → BC and A′ → BC). The nonterminals that do not belong to the path
are not affected. A deletion proceeds similarly: we replace the metasymbol of
length k by one of length k − 1 (for simplicity, we leave the metasymbol of
length 0, the empty string, unchanged if it appears as a result of deletions).
Finally, an insertion into a metasymbol of length k replaces it by one of length
k+ 1, unless k was already the maximum metasymbol length, 1

3
lgσN . In this

case we replace the metasymbol leaf by an internal node with two leaves, which
are metasymbols of length around 1

6
lgσN . To maintain a balanced tree, we

use the AVL insertion mechanism, which may modify O(h) nodes toward the
root. This ensures that, even in documents receiving s insertions, the height
of the parse tree will be O(lg(n+ s)).

The Chomsky normal form requires that we create nonterminals A → a for
each metasymbol a (which is treated as a single symbol); the first document
creates O(n/ lgσN) nonterminals; and each edit creates O(lg(n + s)) new
nonterminals. Therefore, the final grammar size is r = Θ(N1/3 + n/ lgσN +
s lg(n+s)) = Θ(n/ lgσN+s lgN), where we used that either n or s is Ω(

√
N)

because N ≤ D(n + s) ≤ (2s + 1)(n + s). Once all the edits are applied, we
add a balanced tree on top of the D symbols Sd, which asymptotically does
not change r (we may also avoid this final tree and access the documents
individually, since our accesses never cross document borders). Further, note
that, since this grammar is balanced, Theorem 1 allows us reduce its O(m2)
term in the search time to O(m lgN).

Inverted lists Our model makes it particularly easy to bound l. Instead of
grammar-compressing the lists, we store for each nonterminal a plain inverted
list encoded as a sequence of ranges of documents, as follows. Initially, all the
nonterminals that appear in the first document have a list formed by the single
range [1, D]. Now we consider the documents d one by one, with the invariant
that a nonterminal appears in document d − 1 iff the last range of its list is
of the form [d′, D]. For each nonterminal that disappears in document d (i.e.,
an edit removes its last occurrence), we replace the last range [d′, D] of its list
by [d′, d − 1]. For each nonterminal that (re)appears in document d, we add
a new range [d,D] to its list. Overall, the total size of the inverted lists of all
the nonterminals is O(r + s lgN), and each entry requires O(lgD) bits. Any
element of the list is accessed with a predecessor query in O(lg lgD) time,
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faster than on the general scheme we described.

The use of metasymbols requires a special solution for patterns of length
up to 1

3
lgσN , since some of their occurrences might not be found crossing

nonterminals. For all the O(N1/3) possible patterns of up to that length, we
store the document listing answers explicitly, as inverted lists encoding ranges
of documents. These are created as for the nonterminals. Initially, all the
metasymbols that appear in the first document have a list formed by the
single range [1, D], whereas the others have an empty list. Now we consider
the documents one by one. For each edit applied in document d, we consider
each of the O(lg2

σN) metasymbols of all possible lengths that the edit destroys.
If this was the only occurrence of the metasymbol in the document, we replace
the last range [d′, D] of the list of the metasymbol by [d′, d− 1]. Similarly, for
each of the O(lg2

σN) metasymbols of all possible lengths that the edit creates,
if the metasymbol was not present in the document, we add a new range [d,D]
to the list of the metasymbol. Overall, the total size of the inverted lists of the
metasymbols is O(N1/3 + s lg2

σN) ⊆ O(n + s lg2
σN), and each entry requires

O(lgD) bits.

Run-length compressed arrays Ea,b Let us now bound ρ. When we have
only the initial document, all the existing nonterminals mention document 1,
and thus E = Ea,b has a single nondecreasing run. Now consider the moment
where we include document d. We will insert the value d at the end of the lists
of all the nonterminals A that appear in document d. As long as document d
uses the same parse tree of document d− 1, no new runs are created in E.

Lemma 1. If document d uses the same nonterminals as document d − 1,
inserting it in the inverted lists does not create any new run in the E arrays.

Proof. The positions p1, . . . , pk where we insert the document d in the lists of
the nonterminals that appear in it, will be chained in a list where E[pi+1] = pi
and E[p1] = 0. Since all the nonterminals A also appear in document d−1, the
lists will contain the value d−1 at positions p1−1, . . . , pk−1, and we will have
E[pi+1− 1] = pi− 1 and E[p1− 1] = 0. Therefore, the new values we insert for
d will not create new runs: E[p1] = E[p1 − 1] = 0 does not create a run, and
neither can E[pi+1] = E[pi+1 − 1] + 1, because if E[pi+1 + 1] < E[pi+1] = pi,
then we are only creating a new run if E[pi+1 + 1] = pi − 1, but this cannot
be since E[pi+1− 1] = pi− 1 = E[pi+1 + 1] and in this case E[pi+1 + 1] should
have pointed to pi+1 − 1.

Now, each edit we apply on dmakesO(lgN) nonterminals appear or disappear,
and thus O(lgN) values of d appear or disappear in E. Each such change may
break a run. Therefore, E may have at most ρ = O(s lgN) runs per wavelet
tree level (all the lists appear once in each level, in different orders).
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Total The total size of the index can then be expressed as follows. The
O(r lg r lgD) bits coming from the sparse bitvectors M , is O(r lgN lgD) (since
lg r = Θ(lg(ns)) = Θ(lgN)), and thus it is O(n lg σ lgD + s lg2N lgD). This
subsumes the O(r lgN) bits of the grammar and the wavelet tree. The in-
verted lists can be represented with O((r+ s lgN) lgD) bits, and the explicit
answers for all the metasymbols require O((n+s lg2

σN) lgD) bits. Finally, the
O(ρ lg r lg(rD/ρ)) bits of the structures E are monotonically increasing with
ρ, so since ρ = O(s lgN) = O(r), we can upper bound it by replacing ρ with
r, obtaining O(r lg r lgD) as in the space for M . Overall, the structures add
up to O((n lg σ + s lg2N) lgD) bits.

Note that we can also analyze the space required by Claude and Munro’s
structure [14]. They only need the O(r lgN) bits of the grammar and the
wavelet tree, which avoiding the use of metasymbols is O(n lgN + s lg2N)
bits. Although smaller than ours almost by an O(lgD) factor, their search
time has no useful bounds.

5.2 Time

If P does not appear in D, we note it in time O(m lgN), since all the ranges
are empty of points. Otherwise, our search time is O(m lgN +m lg r lg(rD) ·
ndoc) = O(m lg2N ·ndoc). The O(lg(rD)) cost corresponds to accessing a list
`(A) from the wavelet tree, and includes the O(lg r) time to reach the leaf
and the O(lgD) time to access a position in the grammar-compressed list.
Since we have replaced the grammar-compressed lists by a sequence of ranges,
this last cost is now just O(lg lgD) ⊆ O(lg lg r). As seen in Section 3.3, it is
possible to reduce the O(lg r) tracking time to O((1/ε) lgε r) for any ε > 0,
within O((1/ε)r lgN) bits. In this case, the lists `(A) are associated with the
symbols at the root of the wavelet tree, not the leaves.

Theorem 2. Let collection D, of total size N , be formed by an initial docu-
ment of length n plus D−1 copies of it, with s single-character edit operations
performed on ranges or subtrees of copies. Then D can be represented within
O((n lg σ+s lg2N) lgD) bits, so that the ndoc > 0 documents where a pattern
of length m appears can be listed in time O(m lg1+εN ·ndoc), for any constant
ε > 0. If the pattern does not appear in D, we determine this is the case in
time O(m lgN).

We can also obtain other tradeoffs. For example, with ε = 1/ lg lg r we obtain
O((n lg σ + s lg2N)(lgD + lg lgN)) bits of space and O(m lgN lg lgN · ndoc)
search time.
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6 Counting Pattern Occurrences

Our idea of associating augmented information with the wavelet tree of the
grammar has independent interest. We illustrate this by developing a variant
where we can count the number of times a pattern P occurs in the text without
having to enumerate all the occurrences, as is the case with all the grammar-
based indexes [15,16,12]. In these structures, the primary ocurrences are found
as points in various ranges of a grid (recall Section 3.5). Each primary occur-
rence then triggers a number of secondary occurrences, disjoint from those
triggered by other primary occurrences. These secondary occurrences depend
only on the point: if P occurs when B and C are concatenated in the rule
A → BC, then every other occurrence of A or of its ancestors in the parse
tree produces a distinct secondary occurrence. Even if the same rule A→ BC
is found again for another partition P = P1P2, the occurrences are different
because they have different offsets inside s(A).

We can therefore associate with each point the number of secondary occur-
rences it produces, and thus the total number of occurrences of P is the sum
of the numbers associated with the points contained in all the ranges. By aug-
menting the wavelet tree (recall Section 3.3) of the grid, the sum in each range
can be computed in time O(lg3 r), using O(r lgN) further bits of space for the
grid [45, Thm. 6]. 5 We now show how this result can be improved to time
O(lg2+ε r) for any constant ε > 0. Instead of only sums, we consider the more
general case of a finite group [45], so our particular case is ([0, N ],+,−, 0).

Theorem 3. Let a grid of size r × r store r points with associated values
in a group (G,⊕,−1 , 0) of N = |G| elements. For any ε > 0, a structure of
O((1/ε)r lgN) bits can compute the sum ⊕ of the values in any rectangular
range in time O((1/ε) lg2+ε r).

Proof. We modify the proof Navarro et al. [45, Thm. 6]. They consider, for the
sequence Sa,b of each wavelet tree node, the sequence of associated values Aa,b.
They store a cumulative array Pa,b[0] = 0 and Pa,b[i+ 1] = Pa,b[i]⊕Aa,b[i+ 1],
so that any range sum ⊕i≤k≤jAa,b[k] = Pa,b[j] ⊕ Pa,b[i − 1]−1 is computed in
constant time. The space to store Pa,b across all the levels is O(r lg r lgN)
bits. To reduce it to O(r lgN), they store instead the cumulative sums of
a sampled array A′a,b, where A′a,b[i] = ⊕(i−1) lg r<k≤i lg rAa,b[k]. They can then
compute any range sum over A′a,b, with which they can compute any range
sum over Aa,b except for up to lg r elements in each extreme. Each of those
extreme elements can be tracked up to the root in time O((1/ε) lgε r), for any

5 Although the theorem states that it must be t ≥ 1, it turns out that one can use
t = lg r/ lgN (i.e., τ = lg r) to obtain this tradeoff (our r is their n and our N is
their W ).
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ε > 0, using O((1/ε)r lg r) bits, as described at the end of Section 3.3. The
root sequence A1,r is stored explicitly, in r lgN bits. Therefore, we can sum
the values in any range of any wavelet tree node in time O((1/ε) lg1+ε r). Since
any two-dimensional range is decomposed into O(lg r) wavelet tree ranges, we
can find the sum in time O((1/ε) lg2+ε r).

This immediately yields the first grammar-compressed index able to count
pattern occurrences without locating them one by one.

Theorem 4. Let text T [1, N ] be represented by a grammar of size r. Then
there exists an index of O(r lgN) bits that can count the number of occurrences
of a pattern P [1,m] in T in time O(m2 + m lg2+ε r), for any constant ε > 0.
If the grammar is balanced, the time can be made O(m(lgN + lg2+ε r)).

Further, since we can produce a balanced grammar of size r = O(z lg(N/z))
for a text of length N with a Lempel-Ziv parse of size z [50,10,52,31,32], we
also obtain a data structure whose size is bounded by z.

Theorem 5. Let text T [1, N ] be parsed into z Lempel-Ziv phrases. Then there
exists an index of O(z lg(N/z) lgN) bits that can count the number of occur-
rences of a pattern P [1,m] in T in time O(m lgN + m lg2+ε(z lg(N/z))) =
O(m lg2+εN), for any constant ε > 0.

7 Conclusions

We have presented the first document listing index with worst-case space and
time guarantees that are useful for repetitive collections. On a collection of size
N formed by an initial document of length n and D−1 copies it, with s single-
character edits applied on individual documents, or ranges of documents (when
there is a linear structure of versions), or subtrees of documents (when there
is a hierarchical structure of versions), our index uses O((n lg σ+s lg2N) lgD)
bits and lists the ndoc > 0 documents where a pattern of length m appears in
time O(m lg1+εN ·ndoc), for any constant ε > 0. We also prove that a previous
index that had not been analyzed [14], but which has no useful worst-case time
bounds for listing, uses O(n lgN+s lg2N) bits. As a byproduct, we offer a new
variant of a structure that finds the distinct values in an array range [39,51].

The general technique we use, of augmenting the range search data structure
used by grammar-based indexes, can be used for other kind of summarization
queries. We illustrate this by providing the first grammar-based index that
uses O(r lgN) bits, where r is the size of a grammar that generates the text,
and counts the number of occurrences of a pattern in time O(m2 +m lg2+ε r)),
for any constant ε > 0 (and O(m(lgN + lg2+ε r)) if the grammar is balanced).
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We also obtain the first Lempel-Ziv based index able of counting: if the text
is parsed into z Lempel-Ziv phrases, then our index uses O(z lg(N/z) lgN)
bits and counts in time O(m lg2+εN). As a byproduct, we improve a previous
result [45] on summing values over two-dimensional point ranges.

Future work The space of our document listing index is an O(lgD) factor
away from what can be expected from a grammar-based index. An important
question is whether this space factor can be removed or reduced while retaining
worst-case time guarantees for document listing. The analogous challenge in
time is whether we can get a time closer to the Õ(m+ ndoc) that is obtained
with statistically-compressed indexes, instead of our Õ(m · ndoc).

Another interesting question is whether there exists an index whose space and
time can be bounded in terms of more general repetitiveness measures of the
collection, for example in terms of the size r of a grammar that represents the
text, as is the case of grammar-based pattern matching indexes that list all
the occurrences of a pattern [15,16,12]. In particular, it would be interesting
to handle block edits, where a whole block of text is inserted, deleted, copied,
or moved. Such operations add only O(lgN) nonterminals to a grammar, or
O(1) phrases to a Lempel-Ziv parse, whereas our index can grow arbitrarily.

Yet another question is whether we can apply the idea of augmenting two-
dimensional data structures in order to handle other kinds of summarization
queries that are of interest in pattern matching and document retrieval [43],
for example counting the number of distinct documents where the pattern
appears, or retrieving the k most important of those documents, or retrieving
the occurrences that are in a range of documents.

A Proof of Correctness

We prove that our new document listing algorithm is correct. We first consider
a “leftist” algorithm that proceeds as follows to find the distinct elements in
L[sp, ep]. It starts recursively with [i, j] = [sp, ep] and remembers the doc-
uments that have already been reported, globally. To process interval [i, j],
it reports L[i], L[i + 1], . . . until finding an already reported element at L[d].
Then it finds the minimum E[k] in E[d, j]. If L[k] had been reported already,
it stops; otherwise it reports L[k] and proceeds recursively in L[d, k − 1] and
L[k + 1, j], in this order. Our actual algorithm is a slight variant of this pro-
cedure, and its correctness is established at the end.

Lemma 2. The leftist algorithm reports the ndoc distinct elements in L[sp, ep]
in O(ndoc) steps.
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Proof. We prove that the algorithm reports the leftmost occurrence in L[sp, ep]
of each distinct element. In particular, we prove by induction on j − i that,
when run on any subrange [i, j] of [sp, ep], if (1) every leftmost occurrence in
L[sp, i− 1] is already reported before processing [i, j], then (2) every leftmost
occurrence in L[sp, j] is reported after processing [i, j]. Condition (1) holds
for [i, j] = [sp, ep], and we need to establish that (2) holds after we process
[i, j] = [sp, ep]. The base case i = j is trivial: the algorithm checks L[i] and
reports it if it was not reported before.

On a larger interval [i, j], the algorithm first reports d−i occurrences of distinct
elements in L[i, d− 1]. Since these were not reported before, by condition (1)
they must be leftmost occurrences in [sp, ep], and thus, after reporting all the
leftmost occurrences of L[i, d − 1], condition (1) holds for any range starting
at d.

Now, we compute the position k with minimum E[k] in E[d, j]. Note that L[k]
is a leftmost occurrence iff E[k] < sp, in which case it has not been reported
before and thus it should be reported by the algorithm. The algorithm, indeed,
detects that it has not been reported before and therefore recurses on L[d, k−
1], reports L[k], and finally recurses on L[k + 1, j]. 6 Since those subintervals
are inside [i, j], we can apply induction. In the call on L[d, k−1], the invariant
(1) holds and thus by induction we have that after the call the invariant (2)
holds, so all the leftmost occurrences in L[sp, k− 1] = L[sp, d− 1] ·L[d, k− 1]
have been reported. After we report L[k] too, the invariant (1) also holds for
the call on L[k + 1, j], so by induction all the leftmost occurrences in L[sp, j]
have been reported when the call returns.

In case E[k] ≥ sp, L[k] is not a leftmost occurrence in L[sp, ep], and moreover
there are no leftmost occurrences in L[d, j], so we should stop since all the
leftmost occurrences in L[sp, j] = L[sp, d − 1] · L[d, j] are already reported.
Indeed, it must hold sp ≤ E[k] < d, since otherwise E[E[k]] < E[k] and
d ≤ E[k] ≤ j, contradicting the definition of k. Therefore, by invariant (1),
our algorithm already reported L[k] = L[E[k]], and hence it stops.

Then the algorithm is correct. As for the time, clearly the algorithm never
reports the same element twice. The sequential part reports d− i documents
in time O(d− i + 1). The extra O(1) can be charged to the caller, as well as
the O(1) cost of the subranges that do not produce any result. Each calling
procedure reports at least one element L[k], so it can absorb those O(1) costs,
for a total cost of O(ndoc).

Our actual algorithm is a variant of the leftist algorithm. When it takes the

6 Since L[k] does not appear in L[d, k − 1], the algorithm also works if L[k] is
reported before the recursive calls, which makes it real-time.
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minimum E[k] in E[d, j], if k = d, it ignores that value and takes instead
k = k′, where k′ is some other value in [d + 1, j]. Note that, when processing
E[d, j] in the leftist algorithm, L[d] is known to occur in L[sp, d−1]. Therefore,
E[d] ≥ sp, and if k = d, the leftist algorithm will stop. The actual algorithm
chooses instead position k′, but E[k′] ≥ E[d] ≥ sp, and therefore, as seen in
the proof of Lemma 2, the algorithm has already reported L[k′], and thus the
actual algorithm will also stop. Then the actual algorithm behaves identically
to the leftist algorithm, and thus it is also correct.
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