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Abstract

Colored range queries are a well-studied topic in computational geometry and database research that, in the past
decade, have found exciting applications in information retrieval. In this paper, we give improved time and space
bounds for three important one-dimensional colored range queries — colored range listing, colored range top-k
queries and colored range counting — and, as a consequence, new bounds for various document retrieval problems
on general collections of sequences. Colored range listing is the problem of preprocessing a sequence S [1, n] of
colors so that, later, given an interval [i, i + ` − 1], we list the different colors in S [i, i + ` − 1]. Colored range
top-k queries ask instead for k most frequent colors in the interval. Colored range counting asks for the number of
different colors in the interval.

We first describe a framework including almost all recent results on colored range listing and document listing,
which suggests new combinations of data structures for these problems. For example, we give the first compressed
data structure (using nHk(S ) + o(n logσ) bits, for any k = o(logσ n), where Hk(S ) is the k-th order empirical
entropy of S and σ the number of different colors in S ) that answers colored range listing queries in constant
time per returned result. We also give an efficient data structure for document listing whose size is bounded in
terms of the k-th order entropy of the library of documents. We then show how (approximate) colored top-k
queries can be reduced to (approximate) range-mode queries on subsequences, yielding the first efficient data
structure for this problem. Finally, we show how modified wavelet trees can support colored range counting using
nH0(S ) + O(n) + o(nH0(S )) bits, and answer queries in O

(
log `

)
time. As far as we know, this is the first data

structure in which the query time depends only on ` and not on n. We also show how our data structure can be
made dynamic.
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1. Introduction

A range query on a sequence S [1, n] of elements in [1, σ] takes as arguments two indices i and j and returns
information about S [i, j]. This information could be, for example, the minimum or maximum value in S [i, j] [16],
the element with a specified rank in sorted order [22] (e.g., the median [10]), the mode [26], a complete list of
the distinct elements [47], the frequencies of the elements [55], a list of the k most frequent elements for a given
k [32], or the number of distinct elements [9]. In this paper, motivated by problems in document retrieval, we
consider the latter three kinds of problems, which are often referred to as “colored” range queries: colored range
listing (with or without color frequencies), colored range top-k queries, and colored range counting. These have
been associated, respectively, with very relevant document retrieval queries on general texts [47, 55, 57, 32, 22, 16,
13, 21, 6]: listing the documents where a pattern appears (possibly computing term frequencies), finding the most
relevant documents to a query (under a tf × idf scheme, for example), and computing document frequencies. Such
techniques have been shown to be competitive [13], even beating classical inverted indexes on natural-language
texts.
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In Section 2, we describe a framework that includes almost all recent results on colored range listing and the
related problem of document listing. This framework suggests new combinations of data structures that yield
interesting new bounds, including the first constant-time compressed data structures for colored range listing and
an efficient data structure for document listing whose space occupancy is bounded in terms of the higher-order
entropies of the library of documents. In Section 3, we describe what seems to be the first data structure to
support efficient, general approximate colored range top-k queries. By “approximate” we mean that we are given
an ε > 0 with S and we guarantee that no element we do not list occurs more than 1 + ε times more often in the
range than any element we list. Finally, in Section 4, we describe a new solution to the colored range counting
problem, reducing the space bound from O

(
n log n

)
bits to nH0(S ) + O(n) + o(nH0(S )) bits, where H0(S ) ≤ logσ

is the zero-order empirical entropy of S and σ ≤ n is the number of colors, and also improving the time bound
to O

(
log `

)
, where ` is the length of the query range2. The improvements for general colored range queries we

present in Sections 3 and 4 are not competitive with the state of the art when mapped to the more specific problem
of document retrieval. However, as we discuss in Section 5, data structures for general colored range queries can
be applied to information retrieval scenarios that specialized document-retrieval data structures cannot.

2. Color and Document Listing

2.1. Related work on color range listing
The problem of colored range listing (CRL) is to preprocess a given sequence S [1, n] over [1, σ] such that

later, given a range S [i.. j], we can quickly list all the distinct elements (“colors”) in that range. Many recent data
structures for CRL are based on a key idea by Muthukrishnan [47] (see [34] for older work). He defined C[1, n]
to be the array in which C[ j] is the largest value i < j such that S [i] = S [ j], or 0 if there is no such i, so that S [q]
is the first occurrence of a color in S [i.. j] if and only if i ≤ q ≤ j and C[q] < i. He showed how, if we store C
in an O

(
n log n

)
-bit data structure due to Gabow, Bentley and Tarjan [18] that supports O(1)-time range-minimum

queries (RMQs), we can quickly find all the values in C[i.. j] less than i and, thus, list all the colors in S [i.. j]. To
do this, we find the minimum value C[q] in C[i.. j]; if it is less than i, then we output S [q] and recurse on S [i..q−1]
and S [q + 1.. j]. Muthukrishnan’s CRL data structure uses O

(
n log n

)
bits and O(1) time per color reported.

Välimäki and Mäkinen [57] gave an alternative slower-but-smaller version of Muthukrishnan’s CRL data
structure, in which they used a 2n + o(n) bit, O(1) time RMQ succinct index due to Fischer and Heun [17]
that requires access to C. Välimäki and Mäkinen showed how access to C can be implemented by rank and select
queries on S ; specifically, for 1 ≤ q ≤ n, C[q] = selectS [q](S , rankS [q](S , q)−1), where selecta(S , r) is the position
of the rth occurrence of a in S . Välimäki and Mäkinen stored S in a multiary wavelet tree [14], which takes
nH0(S ) + o(n) logσ bits and O

(
1 + logσ/ log log n

)
time; when σ is polylogarithmic in n, it takes nH0(S ) + o(n)

bits and O(1) time. The zero-order empirical entropy H0(S ) =
∑

a
occ(a,S )

n log n
occ(a,S ) , where occ(a, S ) is the

number of times element a occurs in S , is the Shannon entropy of the distribution of elements in S .
Altogether, their CRL data structure takes nH0(S ) + 2n + o(n) logσ bits and O

(
1 + logσ/ log log n

)
time per

reported color. They also showed how to compute color frequencies using two rank queries on S , rankc(S , j) −
rankc(S , i − 1). Since multiary wavelet trees support rank queries in the same time as accesses, it follows that
reporting the color frequencies in the range does not affect their time and space bounds.

Gagie, Puglisi and Turpin [22] showed that a binary wavelet tree [27] can be used to compute range quantile
queries on S in O

(
logσ

)
time, and that these queries can be used to enumerate the distinct elements in S [i.. j],

eliminating the need for RMQs. A binary wavelet tree for S takes nH0(S ) + o(n) logσ bits and supports access,
rank and select in O

(
logσ

)
time; thus, by itself it is a CRL data structure taking O

(
logσ

)
time per reported color.

In a subsequent paper, Gagie, Navarro and Puglisi [21] reduced this time to O
(
log(σ/ncol)

)
, where ncol is the

number of colors reported, by replacing range quantile queries with depth-first-search traversal on the wavelet
tree. They also used a more compact wavelet tree [23] to reduce the space to nH0(S ) + o(n) bits.

Very recently, Belazzougui and Navarro [6] gave a new solution for colored range listing that uses n logσ +

O
(
n log logσ

)
bits of space and answers queries in O(1) time per reported color, and another that uses n logσ +

O
(
n log log logσ

)
bits andO

(
log logσ

)
time per reported color; both solutions return the colors’ frequencies. They

replace the structures that solve rank by weaker structures, based on monotone minimum perfect hash functions
(mmphfs), that answer queries of the form rankS [i](S , i). They show that these are sufficient if one locates the first
and last occurrence of each color in the array. This is achieved using two symmetric RMQ structures. They use
this result to give a solution for document listing that takes O

(
n log log D

)
bits on top of the CSA and answers

queries in O(search(m) + ndoc · lookup(n)) time, and another that takes O
(
n log log log D

)
extra bits and answers

queries in O
(
search(m) + ndoc(lookup(n) + log log D)

)
time; again, both solutions return frequencies.

2Our logarithms are base 2 by default.
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Table 1: Existing and new solutions for color range listing. We give the time to list each color without and with frequency information.

source space (in bits) time per color time including frequencies
[47] O

(
n log n

)
O(1)

[57] nH0(S ) + 2n + o(n) logσ O
(
1 +

logσ
log log n

)
O
(
1 +

logσ
log log n

)
[22] nH0 + o(n) logσ O

(
logσ

)
O
(
logσ

)
[21] nH0 + o(n) O

(
log(σ/ncol)

)
O
(
log(σ/ncol)

)
[6] n logσ + O

(
n log logσ

)
O(1) O(1)

[6] n logσ + O
(
n log log logσ

)
O(1) O

(
log logσ

)
2+8 nH0(S ) + 2n + o(n) O

(
1 +

logσ
log w

)
O
(
1 +

logσ
log w

)
3+8 nHk(S ) + 2n + o(n) logσ O(1) O

(
log logσ

log w

)
4+8 nH0(S ) + 2n + o(n)(H0(S ) + 1) O

(
log logσ

log w

)
O
(
log logσ

log w

)
5+8 nH0(S ) + 2n + o(n)(H0(S ) + 1) O(1) O

(
log logσ log log logσ

)
5+8+10 nH0(S ) + o(n)H0(S ) + O

(
n log log logσ

)
O(1) O

(
log logσ

)
5+8+9 nH0(S ) + o(n)H0(S ) + O

(
n log logσ

)
O(1) O(1)

3+8+9 nHk(S ) + o(n) logσ + O
(
n log logσ

)
O(1) O(1)

The top part of Table 1 summarizes the existing solutions for CRL.

2.2. Related work on document listing

Muthukrishnan [47] gave his solution to the CRL problem as part of a solution to the problem of document
listing (DL), in which we are given a library of documents and asked to preprocess them such that later, given a
pattern p[1,m], we can quickly list all the distinct documents containing that pattern (see [43] for older work). Let
T [1, n] be the concatenation of the D documents. Muthukrishnan defined the array E[1, n] such that E[i] is the
document containing the starting position of the lexicographically ith suffix in T . All the positions where p occurs
in T correspond to starting positions of suffixes that start with p, and all those suffixes are listed contiguously in
E, say in the range E[i, j]. It follows that the documents where p appears are those mentioned in E[i, j], and that
the multiplicities of the document identifiers in E[i, j] correspond to the frequencies of p in the corresponding
documents. Therefore, once we know i and j, we can implement a DL query as a CRL query on E[i.. j].

To compute i and j, Muthukrishnan used a classical stringology data structure called the suffix tree [58, 1] of
T . It occupies O

(
n log n

)
bits and gives i and j in time O(m). Thus the DL solution requires O

(
n log n

)
bits of space

and O(m + ndoc) time to list the ndoc documents containing p[1,m].
Just as for CRL, the next developments have focused on reducing the space of this solution. The difference with

CRL solutions is the O
(
n log n

)
-bit space suffix tree. A smaller structure, the suffix array A[1, n] [41], simply lists

the suffixes of T in lexicographical order. The suffixes starting with p form an interval A[i, j]. While this structure
still requires O

(
n log n

)
bits of space, there is a wealth of compressed variants of it [48], using as little space as

that of the compressed text and including the text. In this paper, we will call them generically compressed suffix
arrays (CSAs), and refer to their space in bits as |CSA|. CSAs find the interval of suffixes starting with p[1,m] in
times from O(m) to O

(
m log n

)
, to which we will refer generically as search(m). Finally, they compute any cell

A[i] in time from constant to polylogarithmic in n, to which we will refer generically as lookup(n).
Once the issue of the CSA is sorted out, any CRL solution can be converted into a DL solution. For example,

Välimäki and Mäkinen [57] combined their CRL data structure with a CSA, obtaining a DL data structure that
takes |CSA| + n log D + 2n + o(n) log D bits and O

(
search(m) + ndoc(1 + log D/ log log n)

)
time. The pattern’s

frequency in a document d can also be computed within the same time. Finally, they noted that, using one select
query per occurrence, they can list the positions of the pattern’s occurrences in a specified document. Similarly,
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Gagie, Navarro and Puglisi’s [21] CRL solution, combined with a CSA of T , yields a DL data structure that takes
|CSA| + n log D + o(n) log D bits and O

(
search(m) + ndoc log(D/ndoc)

)
time, frequencies included.

Finally, Belazzougui and Navarro’s [6] CRL solution can be converted into a DL solution that takes |CSA| +
O
(
n log log D

)
bits and answers queries in O(search(m) + ndoc · lookup(n)) time, and another that takes |CSA| +

O
(
n log log log D

)
bits and answers queries in O

(
search(m) + ndoc(lookup(n) + log log D)

)
time. Both solutions

return frequencies within the same time bounds.
Sadakane [55] initiated another line that, although it is based on the idea of Muthukrishnan, does not derive

directly from a CRL solution. He replaced Gabow, Bentley and Tarjan’s [18] RMQ data structure by a 4n+o(n) bit
index that, given a range C[i.. j], in O(1) time and without consulting C, returns the position of the minimum value
in that range (but not the value itself). He also showed how the CSA and a bit vector V[1, n] can simulate access
to E: 1s in V mark the positions in T where the documents start; then, for 1 ≤ q ≤ n, E[q] = rank1(V,CSA[q]),
where rank1(V, r) is the number of 1s in V[1..r]. It takes D log(n/D) +O(D) + o(n) bits to store V such that a rank1
query takes O(1) time [53]. Sadakane did not store C at all so, when listing the distinct documents containing
a pattern, he used a D-bit string to mark which documents he had already listed. He used a recursion similar to
Muthukrishnan’s, stopping whenever it finds a document already reported.

Sadakane’s DL data structure uses |CSA|+4n+D log(n/D)+O(D)+o(n) bits andO(search(m) + ndoc · lookup(n))
time. He used |CSA|+ 4n + o(n) additional bits for data structures to compute the pattern’s frequency in each doc-
ument, increasing the time bound to O

(
search(m) + ndoc(lookup(n) + log log ndoc)

)
(assuming lookup(n) is also

the time to find CSA−1[q], where CSA−1 denotes the inverse permutation of A).
Hon, Shah and Vitter [32] described a solution to DL similar to Sadakane’s but removing the Θ(n)-bit space

term. They pack logε n consecutive cells of C into a block and build the RMQ data structure on the block minima
(so it takes O

(
n/ logε n

)
bits of space), and reports (avoiding repetitions) all the documents in the block that holds

the minimum. Their whole data structure takes |CSA|+ D log(n/D) +O(D) + o(n) bits and answers queries in time
O
(
search(m) + ndoc logε n · lookup(n)

)
, for any constant ε > 0.

They can also return the number of times the pattern occurs in any document by using, like Sadakane [55],
one CSAd local to each document d. These add up to other |CSA| extra bits. To find out how many times
document d = E[q], i ≤ q ≤ j, appears in E[i.. j], it maps q to position p = CSA[q] − select1(V, d) + 1 within
document d, and then to q′ = CSA−1

d [p]. This is the first lexicographic occurrence of the pattern in CSAd. The
last occurrence is found by an exponential search and then by a binary search on CSAd[q′..], for the largest c such
that CSA−1[CSAd[q′+c]+select1(V, d)−1)] ≤ j. Then the answer, c+1, is obtained in time O

(
lookup(n) log c

)
=

O
(
lookup(n) log n

)
.

2.3. New tradeoffs

All the previous solutions have essentially the same ingredients: for CRL, access to S , distinct color enumer-
ation on S (implemented via RMQs on C or range quantile queries on S ) and, to count the number of times each
color occurs, rank on S ; for DL, a suffix tree or CSA for T , access to E, distinct document enumeration on E and,
to report the pattern’s frequency in each document, rank on E. Solutions for CRL can be used for DL with the
addition of a CSA for T , setting S = E and σ = D. Recall that Sadakane’s [55] and Hon, Shah and Vitter’s [32]
solutions for DL implement access to E using a CSA and bit vector V on T , so they do not apply to general CRL.

Our main contribution in this section is the observation that, using new data structures for access, color enu-
meration and rank, we obtain new bounds for both CRL and DL. This is formalized next.

Observation 1. Suppose we are given a sequence S [1, n] over [1, σ] and we store any data structure supporting
access on S in time tacc and any structure supporting distinct enumeration in a range of S in time tenum per element
(and any structure supporting rank on S in time trank if computing frequencies is desired). Then later, given i and j,
we can list the distinct elements in S [i.. j] in time O(tacc + tenum) per reported element. The cost to list, in addition,
the frequency in S [i.. j] of a reported element is O(trank).

Corollary 2. Given a concatenation T [1, n] of D documents, we can store either

• the CSA for T and data structures supporting access, enumeration and rank on the corresponding array
E[1, n] in times tacc, tenum and trank, or

• the CSA for T , a bit vector occupying D log(n/D) + O(D) + o(n) bits, and data structures supporting enu-
meration and rank on E as above,

such that, given a pattern of length m, we can list the distinct documents containing that pattern in timeO(search(m))
plus O(tacc + tenum + trank) per reported document, where tacc = lookup(n) in the second case and trank is required
only in order to list the frequencies of the documents.
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Table 2: Space and time bounds for some data structures supporting operations on S [1, n] over [1, σ], where w is the length in bits of the
computer word. The O

(
σ log n

)
extra bits of wavelet trees can be avoided [40] so we have not included them. The space bound in row 3 holds

for k = o(logσ n). In rows 6 and 7, g is the size (in bits) of a given context-free grammar generating S and only S . In rows 4 and 6, α(·) is the
inverse Ackermann function. Rows 9 and 10 only solve queries of the form rankS [i](S , i).

row source space (in bits) tacc tenum trank

1 [21] nH0(S ) + o(n) O
(
log(σ/ncol)

)
O
(
log(σ/ncol)

)
O
(
log(σ/ncol)

)
2 [7, Thm. 7] nH0(S ) + o(n) O

(
1 +

logσ
log w

)
O
(
1 +

logσ
log w

)
3 [7, Thm. 9] nHk(S ) + o(n) logσ O(1) O

(
log logσ

log w

)
4 [7, Thm. 8] nH0(S ) + o(n)(H0(S ) + 1) O(α(σ)) O

(
log logσ

log w

)
5 [4, Thm. 1] nH0(S ) + o(n)(H0(S ) + 1) O(1) O

(
log logσ log log logσ

)
6 [8, Thm. 1] O(gα(g)) O

(
log n

)
7 [8, Thm. 1] O(g) O

(
log n log log n

)
8 [16, Thm. 1] 2n + o(n) O(1)

9 [6, Thm. 1] O
(
n log logσ

)
O(1)

10 [6, Thm. 1] O
(
n log log logσ

)
O
(
log logσ

)
A selection of these data structures is shown in Table 2 (for conciseness, we show only the results that are

currently the best for our purposes, leaving aside many previous ones [15, 5, 24, 28] on which most of the new
ones build). Note that one solution (row 3) achieves high-order entropy space, nHk(S ). This is a lower bound to
the bits per symbol emitted by any semistatic statistical compressor that encodes each symbol as a function of the
k previous ones [42]. It holds Hk(S ) ≤ Hk−1(S ) ≤ H0(S ) ≤ logσ.

If we choose a set of rows covering support for access and enumeration (and rank) then we can answer CRL
queries (and return the frequency of each color). The space bound is the sum of the space bounds and the time
bound per reported color is O(tacc + tenum + trank), the latter term for computing frequencies.

The bottom part of Table 1 shows several combinations that improve upon previous results for CRL. The
numbers in italics correspond to the rows of Table 2 used. The first rows, 2+8 to 5+8, are combinations of a
compressed sequence representation to provide access and rank (by Belazzougui and Navarro [7] or Barbay et
al. [4]), with enumeration provided via Fischer’s [16] succinct index for RMQ (which does not access the array).
All those improve upon the previous solution of Välimäki and Mäkinen [57] in space and time. The next rows,
3/5+8+9/10, incorporate a mmphf to the previous combination, improving the time (in many cases to constant)
in exchange for higher space. The result is a compressed variant of Belazzougui and Navarro’s [6] solution, and
it turns out to be the first compressed CRL data structure (using nHk(S ) + o(n logσ) bits of space) that answers
queries in constant time per returned color.

For conciseness, we do not explicitly enumerate the new DL solutions that derive from our new CRL solutions;
those should be immediate from Corollary 2. It is also possible to derive new solutions that are specific for DL
using the table. For example, an obvious one is that Sadakane’s solution [55] improves by using the newer RMQ
solution by Fischer [16], which requires 2n + o(n) bits instead of Sadakane’s original 4n + o(n).

The alternatives listed in Table 1 are not formally comparable. There are some solutions that always use less
space than others; one can order 2+8 < 4/5+8 < 5+8+10 < 5+8+9, and 3+8 < 3+8+9, but those using more space
are faster. In many cases, however, the space comparison depends on the relation between nH0(S ) + o(n)H0 and
Hk(S ) + o(n) logσ, and this depends on the application in which the CRL problem arises. In the particular case
of DL, H0(E) is related to the lengths of the documents; that is, it will be smaller if documents have very different
lengths, and will approach log D when documents are roughly the same size. More interesting is Hk(E), which
depends on how predictable is the next document if we have seen the k previous cells in E. The more predictable
E is in this sense, the lower is Hk(E). While we do not have formal bounds, we expect that Hk(E) will be lower
when E is more repetitive. Next we show that Hk(T ), the compressibility of T , is related to repetitiveness of E,
and exploit that relation using a completely different tool.

This result is obtained by combining Bille, Landau and Weimann’s [8] grammar-based data structure for access
(lines 6/7), Fischer’s [16] succinct index for RMQ (line 8), and the smaller mmphfs [6] for rank (line 10). González
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and Navarro [25] showed how to build a grammar generating an array that, together with some other small data
structures, gives access to the suffix array (SA) A. Building Bille, Landau and Weimann’s data structure for this
grammar, we obtain an O

(
log n

)
-time data structure for DL whose size is bounded in terms of the high-order

entropies of the library of documents. This is described next.

Theorem 3. Given a concatenation T [1, n] of D documents, we can store T in

|CSA| + O
(
n log log log D

)
+ O

((
n min(Hk(T ), 1) + D

)
log

(
1

min(Hk(T ), 1) + D/n

)
α(n) log n

)
bits, for any k ≤ β logσ n, constant 0 < β < 1 and σ the size of the alphabet of T . Then given a pattern of
length m, we can list the distinct documents containing that pattern in time O(search(m)) plus O

(
log n

)
to list

each document with its frequency.

Proof. González and Navarro’s algorithm takes advantage of the so-called runs of the SA, that is, areas A[i..i + `]
such that there is some other area A[ j.. j + `] where A[ j + k] = A[i + k] + 1 for all 0 ≤ k ≤ `. Let R be the number
of runs with which the SA can be covered; it is known that R ≤ min(n, nHk(T ) + σk) for any k [38]. González
and Navarro represent the SA differentially so that these areas become true repetitions, and use a grammar-based
compression algorithm that represents A using O

(
R log(n/R)

)
rules. We note that, in E, those SA runs become

identical areas E[i..i + `] = E[ j.. j + `] except for at most D cells where the document number can change when
we advance by one text position. It follows that, by applying the same compression algorithm [25] to E we obtain
O
(
(R + D) log(n/(R + D))

)
rules and hence the space given in the theorem.

As a final note applying only to document collections, Sadakane’s CSA [54] essentially represents a function
Ψ such that A[Ψ(i)] = A[i]+1, which is stored in compressed form and any value computed in constant time. Thus
one advances virtually in the text by successively applying Ψ. Now assume we sample E with a step r such that,
for any i, E[Ψ j(i)] is sampled for some 0 ≤ j < r. Then one computes any E[i] value in time O(r) by following Ψ

until reaching a sampled entry, whose value will be the same as E[i] if we also sample every document end in the
text collection. The space is O

(
(n/r) log r

)
+ (n/r) log D for a bitmap marking the sampled cells and an array with

the sampled values, respectively. For example, using r = log D yields access to E (though not rank nor select on
it) in the same time as a binary wavelet tree, within bit space n + o(n). Depending on the relation between n and
D, this can be an interesting alternative to using lookup and marking the document beginnings [55].

3. Top-k Queries

3.1. Improving the current-best solution for documents
Hon, Shah and Wu [30] described a data structure that stores a library T of D documents of total length n in

O
(
n log2 n

)
bits such that later, given a pattern of length m and an integer k ≥ 1, we can find the k documents that

contain that pattern most frequently, in O
(
m + log n log log n + k

)
time. We call this the document top-k problem

(DTK). Hon, Shah and Vitter [32] gave solutions for DTK that store T in O
(
n log n

)
bits and answer queries in

O
(
m + k log k

)
time, or in 2|CSA|+ o(n) + D log(n/D) +O(D) bits and O

(
search(m) + k log3+ε n · lookup(n)

)
time.

The last solution consists of a tree τk built for each k power of 2. For τk they divide E into blocks of size
z = k log2+ε n, and τk consists of the suffix tree nodes that are lowest common ancestors (lca) of end points of
blocks, and transitively all the lcas of pairs of those nodes. At each node, τk stores the k most frequent documents
within the whole blocks it contains, and their frequencies. Thus each τk requires O

(
(n/z)k log n

)
= O

(
n/ log1+ε n

)
bits, and all the trees together add up to O

(
n/ logε n

)
bits. At query time, to find the top-k documents in E[i.. j],

they increase k to the next power of 2 and find the highest node of τk whose range [i′.. j′] is contained in
[i.. j]. They show that i′ − i ≤ z and j − j′ ≤ z by the lca properties. Then the query is answered by con-
sidering the k candidates given by τk and the O(z) further candidates found at positions of E[i..i′ − 1] and
E[ j′ + 1.. j], for each of which they compute the frequency. The total time, considering priority queue opera-
tions, is O

(
search(m) + z(trank + log k) + k log k

)
= O

(
search(m) + k log3+ε n · lookup(n)

)
. This time bound can

be improved to O
(
search(m) + k log D log(D/k) log1+ε n · lookup(n)

)
by noticing that (a) one needs only O

(
log D

)
powers of 2 for k since k ≤ D; (b) one can store the top-k elements in the τk trees and not their frequency. The
k frequencies can be computed at query time without changing the time complexity since k = o(z). Thus the k
documents out of D can be stored in increasing order and as gamma-encoded differences, taking O

(
k log(D/k)

)
bits. Therefore we can use smaller blocks of size z = k log D log(D/k) logε n, which are processed faster, and still
have O

(
n/ logε n

)
= o(n) space for the structure.

Note that, for this solution to work for any τk, we also need to represent τk in compact form3. A succinct

3This was noted and solved [6] after our conference publication. We reproduce that solution here.
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tree representation [56] using just 2 + o(1) bits per node supports in O(1) time many operations, including lca,
preorder (whose consecutive values are used to index an array storing the top-k candidate data on each node),
and preorder−1. For each pair of consecutive block endpoints pi and pi+1 we store the preorder xi of the sam-
pled tree node lca(pi, pi+1). As xi ≥ xi−1, values xi + i are increasing, and thus can be stored in a structure
of (n/z) lg 2n

n/z + O(n/z) bits that retrieves any xi in constant time [51]4. This space is O
(
(n/z) lg z

)
= o(n) bits.

With this structure we can find in constant time the lowest sampled node covering a block interval [L,R] as
lca(preorder−1(xL), preorder−1(xR−1)).

In addition, we can replace the |CSA| bits of that solution for computing frequencies, by Grossi et al.’s [28]
succinct index for rank, in the spirit of Section 2.5 This index requires n o(log D) bits of space and computes
any rank on E via O

(
log log D

)
accesses to E. In this way, we achieve a new space bound of |CSA| + o(n) +

D log(n/D) + O(D) + n o(log D) bits, which can be better or worse than before, but the time is reduced to
O
(
search(m) + k log D log(D/k) logε n · lookup(n)

)
, for any ε (log-logarithmic terms disappear by adjusting ε).

3.2. An approximate solution to the general problem

We now give a solution to the approximate colored range top-k problem (CRTK), which asks us to preprocess
a given sequence S such that later, given a range S [i.. j] and an integer k ≥ 1, we can return an approximate list
of the k elements (“colors”) that occur most frequently in that range. We do not know of any previous efficient
solutions to this problem, although finding the k most frequent or important items in various data sets and models
is a well-studied problem and there has been work on interesting special cases (see, e.g., [33, 36]).

Greve, Jørgensen, Larsen and Truelsen [26] recently gave a data structure that, for any ε > 0, stores S in
O
(
(n/ε) log n

)
bits such that we can find an element with the property that no element is more than 1 + ε times

more frequent in S [i, j], in O
(
log(1/ε)

)
time. Thus, their data structure solves the approximate CRTK problem

for k = 1, which is called the approximate range-mode problem. As motivation for studying the approximate
range-mode problem, they also proved a lower bound implying that a data structure using n logO(1) n space takes
Ω(log n/ log log n) time to answer exact range-mode queries, and any data structure answering such queries in
O(1) time takes nΩ(1) space. (The current upper bounds for exact range-mode queries are much larger, however:
e.g., the best known data structure using O(n) words of O(n) bits each, takes O

( √
n/ log n

)
query time [12]; the

best known data structure takingO(1) query time usesO
(
n2 log log n/ log2 n

)
words [52].) We can assume Greve et

al.’s data structure also returns the frequency of the approximate mode in S [i.. j], since adding a rank data structure
for S allows us to compute this and does not change their space bound. We show how to use their data structure as
a building block to store S in O

(
(n/ε)(H0(S ) + 1) log n

)
bits such that, given an integer k, we can approximately

list the k most common elements and their frequencies in O
(
k logσ log(1/ε)

)
time.

We first build a binary wavelet tree for S [27]. This is a balanced tree where each node represents a range of
[1, σ]: the root represents the full range, the leaves the individual symbols, and the children of a node represent the
left and right halves of the node’s range. For each node v, let S v be the subsequence of S consisting of characters
labelling the leaves in v’s subtree. The original wavelet tree does not store S v, but just a bitmap Bv of length |S v|

telling whether each S v[i] went to the left or right child. Rank and select over those bitmaps allow accessing any
S [i], as well as computing ranka(S , i) and selecta(S , i), in time O

(
logσ

)
, and the overall space is n logσ(1 + o(1)).

The tree can also track any range S [i.. j] down to any node [40].
Here we do store each subsequence S v in an instance of Greve et al.’s approximate range-mode data structure.

For now, assume [i, j] = [1, n] and that Greve et al.’s data structure returns the exact mode, rather than an approxi-
mation. Notice that, if a1, . . . , ak′ are the k′ most frequent elements and v is an ancestor of the leaf labelled ak′ but
not of those labelled a1, . . . , ak′−1, then ak′ is the mode in S v. Let V be the set of ancestors of a1, . . . , ak′−1 and let
V ′ be the set of nodes who are not in V themselves but whose siblings are; V ′ contains the root of the tree if V is
empty. We can find ak′ by finding the mode of S v for each v ∈ V ′, finding their frequencies in S , and taking the
most frequent.

We keep the modes for each v ∈ V ′ in a priority queue, ordered by their frequencies and with the corresponding
nodes of the wavelet tree as auxiliary data. Notice ak′ is the head of the queue, so we can find and output it in O(1)
time; let v be the corresponding node, i.e., the node in V ′ such that the mode of S v is ak′ . To update the queue, we
delete ak′ , perform range-mode queries on the siblings of nodes on the path from v to the leaf labelled ak′ , and add
the modes to the queue. There are always O

(
k logσ

)
nodes in the queue (the tree is of height O

(
logσ

)
) so, if we

use a priority queue allowing O
(
log(k logσ)

)
= O

(
logσ

)
time deletion and O(1) time insertion [11], then we can

4Using a constant-time rank/select implementation on their internal bitmap H [46].
5This index was superseded by another [6] in Section 2, and hence not listed there; however the solution dominating it computes a weaker

version of rank that is of no use here.
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find the k most frequent elements in S in O
(
k logσ log(1/ε)

)
time. We can deal with general i and j by using the

wavelet tree to compute the appropriate range in each subsequence [40].
Suppose that, instead of using a balanced wavelet tree, we use one with the same shape as the code-tree for a

code with expected codeword length O(H0(S ) + 1). For each occurrence of a symbol a in S , there is an occurrence
of a in the subsequence S v for each node v on the path from the root to the leaf labelled a. It follows that the total
length of the subsequences in the whole tree is O(n(H0(S ) + 1)), so storing all the subsequences in instances
of Greve et al.’s data structure takes O

(
(n/ε)(H0(S ) + 1) log n

)
bits. Using a Huffman-shaped wavelet tree [38]

would minimize the total length of the subsequences, but a Huffman tree can be very deep (height n − 1 for a
very skewed distribution), which would compromise our time bound. Therefore, we use an O

(
logσ

)
-restricted

Huffman tree [44], which yields both the space and time bounds we want.

Theorem 4. Given a sequence S [1, n] over an alphabet of size σ and a constant ε > 0, we can store S in
O
(
(n/ε)(H0(S ) + 1) log n

)
bits such that, given i, j and k, we can list k distinct elements such that no element is

more than 1 + ε times more frequent in S [i.. j] than any of the ones we list, in O
(
k logσ log(1/ε)

)
time.

This (1 + ε)-approximation makes sense in information retrieval scenarios, where top-k queries are understood
to be just approximations of the ideal answer.

3.3. The K-mining problem

Muthukrishnan [47] defined (document) K-mining (DKM) as the problem of finding all the documents in the
library that contain a given pattern at least K times. He gave an O

(
n log2 n

)
-bit data structure that, given K and a

pattern of length m, answers queries in O(m) time plus O(1) time per reported document. Hon, Shah and Wu [30]
noted that we can use binary search with a DTK data structure to solve DKM, with an O

(
log n

)
slowdown for

the queries. They then showed how we can use an O
(
n log2 n

)
-bit data structure to find the largest k such that k

documents contain the pattern K times, in O
(
search(m) + log n log log n

)
time. Hon, Shah and Vitter [32] gave

an O
(
n log n

)
-bit data structure that answers K-mine queries in time O(m) plus O(1) per reported document. They

also showed how to improve the space bound to 2|CSA| + o(n) + D log(n/D) bits at the cost of increasing the time
O
(
search(m) + k log3+ε n · lookup(n)

)
, which we can improve in much the same way as in Section 3.1. Neither of

these solutions applies, however, to general colored range queries.
Since our CRTK data structure outputs elements in (approximately) non-increasing order by frequency in the

range, it also solves (approximately) the natural generalization of DKM: i.e., the colored range K-mine (CRKM)
problem, which asks us to report all the elements that occur at least K times in S [i.. j]. If we query our data
structure until the next element it would report occurs fewer than (1 + ε)K times, then we use O

(
logσ log(1/ε)

)
time per reported element, but we may miss some elements that occur between K and (1+ε)K times. Alternatively,
if we query our data structure until the next element it would report occurs fewer than K/(1+ε) times, then we find
all the elements that occur at least K times, but we can bound our time only in terms of the number of elements
that occur at least K/(1 + ε) times.

4. Counting

4.1. Related work

For general colored range counting, we are asked to store a set of n colored points in Rd such that later,
given an axis-aligned box, we can quickly count the distinct colors it contains. Most papers on this problem have
focused on d ≥ 2 dimensions (see, e.g., [35]). We consider the one-dimensional version of the problem. The
best solution known for general static one-dimensional colored range counting is an O(n)-word data structure by
Bozanis, Kitsios, Makris and Tsakalidis [9] that answers queries in O

(
log n

)
time. The best dynamic solutions

known [37] take, for queries and updates, either O
(
n log n

)
words and O

(
log n

)
time or O(n) words and O

(
log2 n

)
time. In this section, we consider the special case in which the colored points are the integers 1, . . . , n. Storing
these points is equivalent to storing a string S [1..n] over an alphabet whose size σ is the number of distinct colors,
such that later, given a substring’s endpoints, we can quickly count how many distinct characters that substring
contains. We describe a data structure for counting colors in strings, one that takes only nH0(S )+O(n)+o(nH0(S ))
bits, where H0(S ) is the zero-order empirical entropy of S . Furthermore, we simultaneously reduce the query time
to O

(
log `

)
, where ` is the size of the query range. As far as we know, no other data structure for colored range

counting has a non-trivial upper bound depending only on `.
Our solution is based on the array C[1..n] of Muthukrishnan [47] described in Section 2.1. Recall that each

cell C[q] stores the largest value p < q such that S [p] = S [q] (or 0 if no such p exists), and thus S [q] is the first
occurrence of that distinct character in S [i.. j] if and only if i ≤ q ≤ j and C[q] < i. Therefore, the number of
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distinct characters in S [i.. j] is the number of values in C[i.. j] strictly less than i. If we store C in a wavelet tree [27],
which takes n log n+o(n) bits [23], then we can count all such values q ∈ [i.. j] such that C[q] ∈ [0..i−1] inO

(
log n

)
time; for details see Mäkinen and Navarro [40]. This is already a slight improvement over the bounds we achieve
with Bozanis et al.’s data structure [9]. The wavelet tree could be compressed using standard techniques, but this
would reflect the compressibility of C. Instead, the space can be reduced to n logσ + O

(
n log log n

)
bits, close to

the size of S , by modifying the wavelet tree [20]. We reduce the space further by modifying the representation of
C rather than the wavelet trees.

Apart from counting the unique colors, our data structure can support other interesting queries. For example,
we can count

• the “new colors” in an interval S [i.. j] (those that do not appear to the left of i) by counting the number of 0s
in C[i.. j];

• the colors in an interval S [i.. j] whose last occurrence was in another interval S [i′.. j′], by counting the
number of values in C[i.. j] that are between i′ and j′;

• the colors that occur exactly once in S [i.. j].

To count the colors that occur exactly once in S [i.. j], we use three instances of our data structure. We build the
first instance normally, we build the second instance replacing even occurrences (2nd, 4th, etc.) of each character
by a special filler character #, and we build the third instance replacing odd occurrences (1st, 3rd, etc.) of each
character by this filler; e.g., if S = abracadabra, then the three instances are abracadabra, abr#cad###a and
###a###abr#, respectively. (Since the second and third instances are for complementary strings, we could merge
them fairly easily; we consider them separately for the sake of simplicity.) Given S [i.. j], we use the first instance
to find the total number dall of distinct characters in S [i.. j], we use the second instance to find the number dodd of
distinct characters that have an odd occurrence in S [i.. j], and we use the third instance to find the number deven of
distinct characters that have an even occurrence in S [i.. j]. The number of distinct characters that have both an odd
and an even occurrence is dodd + deven − dall, so the number of characters that have only an odd or only an even
occurrence — i.e., exactly one occurrence — is 2dall − dodd − deven.

In document retrieval, i.e., with S = E (see Section 2.1), colored range counting can be used for computing
the document frequency of a given pattern, i.e., how many documents contain it. We note that Sadakane [55] gave
a faster and more space-efficient data structure for computing the document frequencies of single patterns, but his
solution cannot be used for colored range counting in arbitrary strings. In Section 5, we discuss document retrieval
scenarios that are supported by our data structures but not by Sadakane’s.

In Section 4.2, we describe a simple data structure that takes n(logσ + log log n + 2 + o(1)) bits and answers
queries in O

(
log n

)
time. In Section 4.3, we extend the ideas from Section 4.2 to build a data structure that

takes nH0(S ) + O(n) + o(nH0(S )) bits and answers queries in O
(
α(n) log n log log n

)
time, where α is the inverse

Ackermann function. We adjust our data structure and analysis slightly in Section 4.4, so that our time bounds
are in terms of `, the length of the substring whose distinct colors we are counting, rather than in terms of n. In
Section 4.5, we reorganize our data structure and improve the query time to O

(
log `

)
. For this result, we need a

couple of simple but non-standard tricks in implementing wavelet trees; previous sections use standard wavelet
trees as a black box. In Section 4.6, we show how our data structure can be made dynamic. Specifically, we
first show how to achieve the same time bound for querying and a space bound of O(n(H0(S ) + 1)) bits while
supporting an O

(
log n

)
-time append operation, which is the most natural update when, e.g., maintaining log files.

We then show how to support color substitutions and deletions, at the cost of using O
(
log2 n

)
time for both queries

and updates. Finally, we show how our data structure replaces S (both in the static and dynamic case) by giving
access to any S [i] in reasonable time.

4.2. Simple Blocking
In this section, we give a simple proof that, using two normal wavelet trees and a straightforward encoding of

C, we need store only n(logσ+ log log n+o(1)) bits to answer queries in O
(
log n

)
time. Without loss of generality,

assume σ = o(n/ log n); otherwise, we achieve our desired bound by simply storing C in a single, normal wavelet
tree. Our idea is to break S into blocks of length b = σ log n and encode the entry C[q] differently depending on
whether the previous occurrence S [p] of the character S [q] is contained in the same block. If p is contained in
the same block as q, then we write C[q] as the dlog be-bit offset of p within the block; otherwise, we write it as
the dlog ne-bit binary representation of p. Notice that, for each block, there are at most σ entries of C encoded as
dlog ne-bit numbers.

We build a bitvector indicating how each entry of C is encoded, which takes n + o(n) bits. We build one
wavelet tree storing all the dlog be-bit encodings, which takes at most n log b + o(n) = n(logσ + log log n + o(1))

9
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Figure 1: The array S , with lines above indicating blocks and arcs indicating characters’ previous occurrences; our representation of the C
array overlaid on the bitvector, with white indicating intra-block pointers and grey indicating inter-block pointers; and the contents of the two
wavelet trees — intra-block pointers in one and inter-block pointers in the other. Notice that, since both copies of b are contained within one
block, the distance 3 is measured from the beginning of that block.

bits, and another storing all the dlog ne-bit encodings, which takes at most σdn/be log n + o(σdn/be) = n + o(n)
bits. This is illustrated in Figure 1. Notice that, if S [q] is the first occurrence of a character in S [i.. j] and C[q]
is encoded in dlog be bits, then q must be between i and the end of the block containing i. This is because, if
S [q] were in a later block, then C[q] < i would be encoded using dlog ne bits. Therefore we can count all such
first occurrences in O

(
log b

)
= O

(
logσ + log log n

)
time using the bitvector and the first wavelet tree (looking for

positions in C[i..di/be ·b] with offsets in [0..(i mod b)−1]). We can count all the other first occurrences in O
(
log n

)
time using the bitvector and the second wavelet tree (using the normal query after mapping the positions using the
bitvector).

Theorem 5. Given a string S [1..n], we can build a data structure that takes n(logσ+ log log n+2+o(1)) bits such
that later, given a substring’s endpoints, in O

(
log n

)
time we can count how many distinct characters it contains.

Notice that, if σ ≥ 4 log n, then the data structure we just presented is within a factor of 2 of being succinct. If
σ < 4 log n, then we can store S in a multiary wavelet tree [14], which takes nH0(S ) + o(n) bits, and answer any
query by enumerating the characters in the alphabet and, for each one, using two O(1)-time rank queries to see
whether it occurs in the given substring.

Corollary 6. Given a string S [1..n], we can build a data structure that takes 2n logσ + o(n) bits such that later,
given a substring’s endpoints, in O

(
log n

)
time we can count how many distinct characters it contains.

4.3. Multi-Size Blocking
In this section, we extend our idea from the previous section so that, instead of encoding entries of C dif-

ferently for only two block sizes — i.e., σ log n and n — we use many block sizes. In particular, we use
O
(
log log n/ log(1 + δ)

)
different block sizes,

21+δ, 2max((1+δ)2,2), 2max((1+δ)3,3), 2max((1+δ)4,4), . . . , n ,

where δ ∈ (0, 1] is a value we will specify later. Also, for each block size b, we consider S to consist of about
2n/b evenly overlapping blocks,

S [1..b], S [b/2 + 1..3b/2], S [b + 1..2b], S [3b/2 + 1..5b/2], . . . , S [n − b + 1, n] .

If C[q] = p and the smallest block containing both S [p] and S [q] has size b, then we write C[q] as the dlog be-bit
offset of p within the lefthand block of size b containing S [q] (there are at most two such blocks and, if there are
two, then they overlap). Since, for some k,

2max((1+δ)k−1,k−1)−1 < q − p + 1 ≤ b = 2max((1+δ)k ,k) ,

we have dlog be < (1 + δ) log(q − p + 1) + 3. In other words, if S [p] and S [q] are occurrences of a character a that
does not occur in S [p + 1..q − 1], then we use fewer than (1 + δ) log(q − p + 1) + 3 bits to store C[q]. By Jensen’s
Inequality, since the logarithm is concave, the total number of bits we use to store the offsets for occurrences of a
is maximized when those occurrences are evenly spaced and, thus, the space in bits is at most

(1 + δ)
∑

a

occ(a, S ) log
(

n
occ(a, S )

+ 1
)

+ 3n = (1 + δ)nH0(S ) + O(n) ,
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Figure 2: The array S , with lines above indicating the overlapping block structure (with blocks of three different sizes, in this case) and arcs
indicating characters’ previous occurrences; our representation of the C array overlaid on the string t, with shades of grey indicating which
encoding length is used for each pointer (black for 0s); and the contents of the three wavelet trees — pointers contained in short blocks,
pointers contained in medium-length blocks, and pointers contained in long blocks. Notice that, although 9 is larger than 5, the pointer with
value 9 has a shorter encoding because both copies of b are contained within the same medium-length block, while the two copies of a are not
contained in any single block except the one long block, which contains the whole string.

where occ(a, S ) is the number of occurrences of a in S .
Let t be a string indicating whether each entry of C[q] is 0 and, if not, the block size used for it. We build

a multiary wavelet tree [14] storing t. Notice we can always encode a block size b = 2max((1+δ)k ,k) in O
(
log k

)
=

O
(
log log b

)
bits. By the calculations in the paragraph above and another application of Jensen’s Inequality, H0(t) =

O
(
log(H0(S ) + 1)

)
. It follows that, if H0(S ) grows without bound as n goes to infinity, then the size of the wavelet

tree for t is o(nH0(S )) bits; otherwise, it is O(n) bits. As a byproduct, using this wavelet tree, in O(1) time we can
count all the characters whose first appearance in S is in S [i.. j].

For each block size b, we build a wavelet tree storing all the dlog be-bit encodings. By the same calculation as
before, these wavelet trees take a total of (1 + δ)nH0(S ) + O(n) + o(nH0(S )) bits. This is illustrated in Figure 2.
Notice that, for any block size b, if S [q] is the first occurrence of that distinct character in S [i.. j] and C[q] is
encoded in dlog be bits, then q must be between i and the end of the righthand block of size b containing i. Using
the multiary wavelet tree and the wavelet tree for block size b, in O

(
log b

)
time we can count all such characters

in the right halves of both the lefthand and the righthand blocks of size b containing S [i]. Since these are the
only blocks of size b containing S [i] and the right half of the lefthand block is the left half of the righthand block,
the sum is the total number of such characters. That is, in O

(
log b

)
time, we can count all the first occurrences

S [q] of distinct characters in S [i.. j] such that C[q] is encoded in dlog be bits. Repeating this for each of the
O
(
log log n/ log(1 + δ)

)
block sizes, in O

(
log n log log n/ log(1 + δ)

)
= O

(
(1/δ) log n log log n

)
time we can count

the distinct characters in S [i.. j]. Choosing δ = 1/α(n), for example, where α is the inverse Ackermann function,
yields a space bound of (1 + 1/α(n))nH0(S ) + O(n) + o(nH0(S )) = nH0(S ) + O(n) + o(nH0(S )) bits and a time
bound of O

(
α(n) log n log log n

)
.

Theorem 7. Given a string S [1..n], we can build a data structure that takes nH0(S ) +O(n) + o(nH0(S )) bits such
that later, given a substring’s endpoints, in O

(
α(n) log n log log n

)
time we can count how many distinct characters

it contains.

4.4. Time Independent of n

Suppose we are to count the distinct colors in S [i.. j], and let ` = j − i + 1. Let bmax be the size of the
smallest block in the scheme of Section 4.3 that completely contains S [i.. j]. Using the technique described in
the last paragraph of Section 4.3, we count the entries C[q] < i in C[i.. j] that are encoded using a block size
at most bmax. Since there are O

(
log log bmax/ log(1 + δ)

)
= O

(
α(n) log log(` + 1)

)
such block sizes and we need

O
(
log bmax

)
= O

(
log `

)
time for each, this takes O

(
α(n) log ` log log(` + 1)

)
time. Counting the entries encoded

with bigger block sizes is made easier by the fact that, if C[q] = p in C[i.. j] is encoded using a block size larger
than bmax, then we must have p < i. Therefore, any such big block entry in C[i.. j] indicates the first occurrence of
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some distinct character in S [i.. j]. Instead of directly counting all big block entries in C[i.. j], we count all small
block entries in C[i.. j] and subtract this count from `. Using the multiary wavelet tree of t, we can count the entries
in C[i.. j] that are encoded with a given block size in constant time, obtaining a time bound O

(
α(n) log log(` + 1)

)
for processing the big block sizes. Thus, without any modification to the data structures, we have improved the
query time in Theorem 7 to O

(
α(n) log ` log log(` + 1)

)
. Since α(n) grows very slowly as n increases, our time

bound is now almost independent of n.
To make our time bound completely independent of n, we adjust our block sizes: the first block size b1 is 2;

for i ≥ 2, the kth block size is
bk = 2max(∏k−1

h=1(1+1/α(bh)),k) .

If the smallest block containing both S [p] and S [q] has size bk then, since

2max(∏k−2
h=1(1+1/α(bh)),k−1)−1 < q − p + 1 ≤ 2max(∏k−1

h=1(1+1/α(bh)),k) ,

we have log(q− p + 1) < dlog bke < (1 + 1/α(bk−1)) log(q− p + 1) + 3. Also notice that, since bk−1 can be bounded
from below in terms of bk and bk can be bounded from below in terms of q − p, α(bk−1) increases without bound
(albeit very slowly) as q − p goes to infinity. Therefore, we use fewer than log(q − p + 1) + o(log(q − p + 1))
bits to store C[q]. By calculations similar to those in Section 4.3, we still use nH0(S ) + O(n) + o(nH0(S )) bits in
total. Now, however, since α(b1) ≤ · · · ≤ α(bk), more calculation shows that the number of block sizes up to bk is
O
(
log log bk/ log(1 + 1/α(bk))

)
, from which it follows that our new time bound is O

(
α(`) log ` log log(` + 1)

)
.

Theorem 8. Given a string S [1..n], we can build a data structure that takes nH0(S ) + O(n) + o(nH0(S )) bits
such that later, given a substring’s endpoints i and j, in O

(
α(`) log ` log log(` + 1)

)
time we can count how many

distinct characters it contains, where ` = j − i + 1.

4.5. Reducing Time

We now modify the data structure so that instead of having one wavelet tree for each block size, we have a
separate wavelet tree for each block. If C[q] = p is encoded using a block size b then one or two blocks of size b
contain both p and q, and we store the encoding in the wavelet tree of the leftmost block. Notice that q is always
in the second half of the block. The total number of bits in the encodings does not change.

A standard wavelet tree implementation technique is to represent each level of a wavelet tree with a single
bitvector, which is the concatenation of the bitvectors for individual nodes over that level [14, 39]. Here we can
similarly use a single bitvector to represent a level over all wavelet trees for a given block size. As in the standard
case, given the location of the bitvector for a node, we can easily locate the bitvectors for the children. For each
block size bk, we provide two additional bitvectors to directly locate nodes, one for the root level and one for the
level at height k (where leaves have height 0). The size of such a bitvector is nk + v + o(nk + v), where nk is the
length of the level bitvector, which equals the number of entries encoded with block size bk, and v is the number
of nodes on the given level. Since v = O

(
n/2k

)
for height k and is less or equal for the root level, the size of the

locating bitvectors for block size bk is O
(
nk + n/2k

)
, which is O(n) over all block sizes.

When counting the number of distinct colors in S [i.. j], we handle block sizes larger than bmax as before using
the multiary wavelet tree for t in O

(
α(`) log log(` + 1)

)
time. For each block size b ≤ bmax, we need to query the

wavelet trees for the two blocks that contain i. For block size bmax we do this as before in O
(
log bmax

)
= O

(
log `

)
time. Block sizes smaller than bmax are handled differently.

If B is a block of size bk < bmax that contains i, it does not contain j. If C[q] = p is stored in the wavelet
tree for B, then q < j. We want to count an entry C[q] = p in B if (i) q ≥ i and (ii) p < i. Since p < q, both
conditions cannot be violated simultaneously. Thus we count entries that violate (i) and entries that violate (ii) and
subtract the sum from the total number of entries for block B. Notice that this does not work for larger block sizes
because we need an additional condition q ≤ j. Using the multiary wavelet tree for t we can count in constant
time all entries C[q] = p that are encoded using block size bk and have q in a given range. This is sufficient to
count all entries in B as well as those that violate (i). Counting (ii) can be done by locating the leaf that represents
the position i in the wavelet tree for block B, so that all the positions to the right at the last level of the wavelet
tree for B are those that violate (ii). We locate the leaf by locating its ancestor at height k in constant time and
traversing down in O(k) time. Thus block size bk can be processed in O(k) time and all block sizes smaller than
bmax in O

(
(α(`) log log(` + 1))2

)
time.

Theorem 9. Given a string S [1..n], we can build a data structure that takes nH0(S ) +O(n) + o(nH0(S )) bits such
that later, given a substring’s endpoints i and j, in O

(
log `

)
time we can count how many distinct characters it

contains, where ` = j − i + 1.
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4.6. Dynamism

Suppose we want to append a character S [n + 1] to S . To maintain C, we must append C[n + 1] = p to it,
where p is the position of the last occurrence of S [n + 1] in S [1..n], or 0 if there is no such occurrence. We
maintain a separate data structure of σ log n bits to find the last occurrence of any character in O

(
logσ

)
time. We

will describe how to append C[n + 1] to our representation of C stored in the data structure we gave in Section 4.3
(as appending it to the data structure from Section 4.2 is similar and simpler).

Our first concern is to append to the string t a character indicating whether p is 0 and, if not, the block size
used for it. Instead of storing t with a multiary wavelet tree, we now store it with a Huffman-shaped binary
wavelet tree [38], with the bitvectors at the internal nodes stored separately from each other (i.e., not concate-
nated, as would be usual). As long as these bitvectors are each stored with at most linear redundancy, they
take a total of at most O(n(H0(t) + 1)) ⊆ O

(
n log(H0(S ) + 1) + n

)
bits. Also, since t is over an alphabet of size

O
(
log log n/ log(1 + δ)

)
, which is O

(
(log log n)2

)
with our choice of δ = 1/α(n), we can store the shape of the tree

using O
(
log n

)
-bit pointers at each internal node without increasing our overall space bound.

To append a character to t, we append a bit to each bitvector on the path from the root of the wavelet tree to
the leaf labelled with the character we append (we create this leaf if it does not already exist). Each bit indicates
whether the next node on the path is the current node’s left child or its right child. Many implementations of
bitvectors are based on breaking them into blocks (see, e.g., [40] for more discussion) and, thus, make appending
relatively easy. Since we allow ourselves linear redundancy, whenever a bitvector outgrows the space allocated to
it, we double that space; we use background processing to copy the bitvector into its new location, so that our time
bounds are still worst-case. Appending to t takes a total of O

(
log log log n

)
time.

Our other concern is to append C[n + 1] to a sequence of values encoded with the same block size b, all of
which are stored in a wavelet tree. We use essentially the same approach as when appending a character to t.
One complication is that the sequence of values is no longer guaranteed to be over a small alphabet, so it is not
immediately clear how we can use O

(
log n

)
-bit pointers at the internal nodes. If b is small, at most n/ log n, then,

as with t, there is no problem: calculation shows that using pointers in all the wavelet trees for small block sizes
increases our space bound by at most O(n). For the case when b > n/ log n, we replace the standard trie shape
of wavelet trees with a Patricia trie shape. From the standard wavelet tree, we remove all nodes associated with
an empty sequence. If any remaining node has exactly one child, the associated bitvector is all 0s or all 1s and
can be encoded with a single bit stored in the closest existing descendant of the node. The resulting wavelet tree
shape is a Patricia trie [45], where the number of internal nodes is less than the number of leaves, which is equal
to the number of distinct values in the sequence and, thus, at most the length of the sequence. Recall that, if
we use log b bits for each value stored in the wavelet tree for block size b, for every b, then we use a total of
(1 + δ)nH0(S ) + O(n) + o(nH0(S )) bits. Therefore, if we use O

(
log n

)
⊆ O

(
log b

)
bits for pointers at each internal

node, then we use O(n(H0(S ) + 1)) bits altogether. Appending to the sequence stored in a wavelet tree for a block
size takes O

(
log n

)
time.

Theorem 10. We can modify the data structure from Theorem 7 such that we achieve the same time bound for
querying and a space bound of O

(
n(H0(S ) + 1) + σ log n

)
bits while supporting an O

(
log n

)
-time append opera-

tion.

If we modify the data structure from Section 4.3 by replacing all the wavelet trees (including the multiary
wavelet tree) with dynamic wavelet trees [29], which support queries, insertions and deletions inO

(
log2 n/ log log n

)
time6, we still use nH0(S ) +O(n) + o(nH0(S )) bits, but O

(
log2 n

)
time for queries and appends. This data structure

can also support color substitutions and deletions in O
(
log2 n

)
time. In order to replace a character S [q] = a by

a′, we find the last occurrences S [p] and S [p′] of a and a′ strictly before S [q], and the first occurrences S [r]
and S [r′] of a and a′ strictly after S [q]. We update C such that C[q] = p′, C[r] = p and C[r′] = q, again using
O
(
log2 n

)
time.

To quickly find the preceding and succeeding occurrence of a character, we maintain a sampled version S ′ of S
that contains approximately every (log log n)th occurrence of each distinct character. More precisely, we maintain
the invariant that between every sampled occurrence of a character a, there is between log log n and 2 log log n
unsampled occurrences of a. Also, the last occurrence of each character is in the sample. We store a dynamic bit
vector F[1, n] to mark the sampled positions and a dynamic wavelet tree for S ′. Since the distribution of symbols
is approximately the same in S and S ′, the space we need is o(nH0(S )) +O(n) +σ log n bits. We can now find the
preceding and succeeding occurrence of a character using a constant number of rank and select queries on F and

6Multiary wavelet trees achieve O
(
(log n/ log log n)2

)
time, but for C we need binary wavelet trees.
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S ′ and O
(
log log n

)
accesses to C. This takes O

(
log2 n

)
time. The same time is also sufficient to modify S ′ when

necessary to maintain the invariants.
To delete a character from S , we replace it with a special null character not in the alphabet (which we search for

and exclude when performing queries). If S d is a string S with d extra null characters added, then (n + d)H0(S d)−
nH0(S ) ≤ n + d. We also maintain a background process that keeps removing null characters. In one O

(
log2 n

)
time step of the process, we move a run of consecutive null characters one step to the right. The background
process works in phases. In the beginning of a phase, we find the leftmost null character and start moving it to the
right. Any null characters encountered will join the moving group. The phase ends after at most n steps, when the
group reaches the end and can be easily removed. For every new deletion, we perform two steps of the background
process. This ensures that, if at most half of characters are null characters in the beginning of a phase, the same is
true at the end. Thus the number of null characters and the extra bits needed to store them remains O(n).

Theorem 11. We can modify the data structure from Theorem 7 such that it takes nH0(S ) + O(n) + o(nH0(S )) +

σ log n bits, and supports queries, appends, color substitutions and deletions in O
(
log2 n

)
time.

We note that our sampled string S ′, together with F and C, indeed replace the original sequence S , in the
sense that any symbol S [i] can be obtained from S ′ and C in time O

(
log2 n

)
, as follows. First check if F[i] = 1;

if so then S [i] = S ′[rank1(F, i)]. Else, do i ← C[i], which sends us to the previous occurrence in S of the (yet
unknown) symbol c = S [i], and iterate. Due to our sampling invariants, after O

(
log log n

)
steps we will find a

sampled position i such that F[i] = 1 (actually we need to make sure that the first occurrence of each symbol is
sampled, which adds σ log n bits). Note this technique applies also in the static case, where also with just σ log n
extra bits we can obtain any S [i] from our representation, in time O

(
log n log log n

)
.

5. Concluding Remarks

We have presented new and efficient solutions for three natural colored range queries: colored range listing,
colored range top-k queries, and colored range counting. Our solutions for colored range listing lead to the fastest
compressed data structures for that problem and for document listing; our (approximate) solution for colored
range top-k queries is, as far as we know, the first efficient data structure for that problem; and our solution
for colored range counting reduces the space bound from O

(
n log n

)
bits to nH0(S ) + O(n) + o(nH0(S )) bits while

simultaneously improving query time toO
(
log `

)
, where ` is the size of the query range. Although our solutions for

general colored range top-k queries and colored range counting do not give improved bounds for the corresponding
document retrieval problems, our more general data structures may find applications to other information retrieval
scenarios beyond ranges induced by searching for exact patterns in suffix trees or arrays.

A simple example of natural queries not fitting in the restricted model are lexicographic range queries. Imagine
we look for patterns lexicographically in the range ["1969", "2010"] in documents; the result is a suffix array
range that does not correspond to any suffix tree node. In this case, existing techniques for document retrieval based
on suffix tree properties (such as for computing top-k queries [32] and for computing document frequencies [55])
will not work. The general techniques we have introduced in this article do.

Yet another scenario that is not captured by the suffix tree model is inverted indices for natural language text
(as opposed to the general texts addressed in this paper) [3]. Consider that we store the list of documents where
each vocabulary word appears, consecutively according to the order of the words in the vocabulary. If queries
are simple words, then all the document retrieval problems we have considered are easily solved by storing the
documents of each list ordered by decreasing term frequency. Yet, imagine we wish to provide also the same
functionality on stemmed searching, upon user request at query time. One solution is to group together the
vocabulary words sharing the same stem so that, while individual word queries can be handled as usual, stemmed
queries are handled by considering the concatenation of the lists of the words sharing the same stem. Then we
can regard the concatenation of all inverted lists as the array E and use the general techniques developed in this
paper to answer various document queries on stems: Document listing and counting algorithms apply verbatim,
while those involving frequencies pose further challenges as each entry in the inverted lists is weighted by the
term frequency of the word in the document. Other query operations, from case folding to thesauri expansion, can
also be reduced to a proper grouping of lists.

Finally, there are information retrieval scenarios completely different from the text search framework. For
example, colored range queries seem a natural tool for query mining [2], where logs of queries posed to search
engines are recorded over periods of time, and then analyzed to discover trends in user behavior. By considering
that each different query is a color, we can find the most popular queries or the number of distinct queries within
any given time period; by considering each visitor as a color, we can find the number of unique visitors within any
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given time period. There are many other potential queries of interest, which could in turn become new challenging
colored range queries.

5.1. Postscript
Document retrieval is an active research topic, as demonstrated by some very recent publications improving

(and in some cases building upon) our results. Apart from the results described in Section 2, Belazzougui and
Navarro [6] built on our work in Section 3.1, and improved our time bounds for the document top-k problem to
O
(
search(m) + k log k log(D/k) logε n

)
while keeping the same space bounds, and also gave a solution that takes

O
(
n log log log D

)
extra bits and answers queries in O

(
search(m) + k lookup(n) log k log1+ε n

)
time. Hon, Shah

and Thankachan [31] and Navarro and Nekrich [49] also gave solutions for document top-k problem that use more
space than ours but answer queries faster. Hon et al.’s first solution takes 2n log D+o(n log D) extra bits on top of a
CSA and answers queries inO

(
search(m) + k log k

)
time; their second solution takes n log D+o(n log D) extra bits

and answers queries in O
(
search(m) + k(log k + (log log n)2+ε)

)
time. Navarro and Nekrich’s solution takes a total

of O
(
n(logσ + log D + log log n)

)
bits, where σ is the size of the alphabet of the documents, and answers queries

in optimal O(m + k) time. On the practical side, Navarro, Puglisi and Valenzuela [50] implemented the idea in
our Theorem 3 and showed it was competitive in practice, achieving significantly less space than the alternative
solutions.
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[57] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval, in: Proceedings of the 18th Symposium on Combinatorial

Pattern Matching, Springer, 2007, pp. 205–215.
[58] P. Weiner, Linear pattern matching algorithm, in: Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, IEEE,

1973, pp. 1–11.

16


