
New Algorithms on Wavelet Trees
and Applications to Information Retrieval 1

Travis Gagiea, Gonzalo Navarrob, Simon J. Puglisic,d

a Department of Computer Science
Aalto University, Finland.

b Department of Computer Science
University of Chile, Chile.

c School of Computer Science and Information Technology
Royal Melbourne Institute of Technology, Australia

d Newton Fellow, Department of Informatics
King’s College London, United Kingdom

Abstract

Wavelet trees are widely used in the representation of sequences, permutations, text collections, binary relations,
discrete points, and other succinct data structures. We show, however, that this still falls short of exploiting all of
the virtues of this versatile data structure. In particular we show how to use wavelet trees to solve fundamental
algorithmic problems such as range quantile queries, range next value queries, and range intersection queries.
We explore several applications of these queries in Information Retrieval, in particular document retrieval in
hierarchical and temporal documents, and in the representation of inverted lists.

Keywords: Information retrieval, Document retrieval, Data structures, 1D range queries, Wavelet trees

1. Introduction

The wavelet tree [3] is a versatile data structure that stores a sequence S [1, n] of elements from a symbol
universe [1, σ] within asymptotically the same space required by a plain representation of the sequence, n logσ (1+

o(1)) bits.2 Within that space, the wavelet tree is able to return any sequence element S [i], and also to answer two
queries on S that are fundamental in compressed data structures for text retrieval:

rankc(S , i) = number of occurrences of symbol c in S [1, i],
selectc(S , j) = position of the jth occurrence of symbol c in S .

The time for these three queries is O
(
logσ

)
.3 Originally designed for compressing suffix arrays [3], the

usefulness of the wavelet tree for many other scenarios was quickly realized. For example, it was soon adopted as
a fundamental component of a large class of compressed text indexes — the FM-index family [5] — giving birth
to most of its modern variants [6, 7, 4, 8].

The connection between the wavelet tree and an old geometric structure by Chazelle [9] made it evident that
wavelet trees could be used for range counting and reporting points in the plane. More formally, given a set of t
points P = {(xi, yi), 1 ≤ i ≤ t} on a discrete grid [1, n] × [1, σ], wavelet trees answer the following basic queries:

range count(P, xs, xe, ys, ye) = number of pairs (xi, yi) ∈ P such that xs ≤ xi ≤ xe, ys ≤ yi ≤ ye,

range report(P, xs, xe, ys, ye) = list of those pairs (xi, yi) ∈ P in some order.

1Early parts of this work appeared in SPIRE 2009 [1] and SPIRE 2010 [2]. The second author was partially supported by Fondecyt Grant
1-110066, Chile. The third author was partially supported by the Australian Research Council.

Email addresses: travis.gagie@gmail.com (Travis Gagie), gnavarro@dcc.uchile.cl (Gonzalo Navarro),
simon.puglisi@rmit.edu.au (Simon J. Puglisi)

2Our logarithms are in base 2 unless otherwise stated. Moreover, within a time complexity, log x should be understood as max(1, log x).
3This can be reduced to O

(
1 +

logσ
log log n

)
[4] using multiary wavelet trees, but, as we will explain later, these do not merge well with the new

algorithms we develop in this article.

Preprint submitted to Theoretical Computer Science November 15, 2011

Query range count is solved in time O
(
logσ

)
, whereas range report takes time O

(
(1 + occ) logσ

)
to report occ

points [10].4 These new capabilities were subsequently used to design powerful succinct representations of two-
dimensional point grids [10, 11, 12], permutations [13], and binary relations [14], with applications to other
compressed text indexes [15, 16, 17], document retrieval problems [18] and many others.

In this paper we show, by uncovering new capabilities, that the full potential of wavelet trees is far from
realized. In particular, we show that the wavelet tree allows us to solve the following fundamental queries:

range quantile(S , i, j, k) = kth smallest value in S [i, j],
range next value(S , i, j, x) = smallest S [r] ≥ x such that i ≤ r ≤ j,

range intersect(S , i1, j1, . . . , ik, jk) = distinct common values in S [i1, j1], S [i2, j2], . . . , S [ik, jk].

The first two are solved in time O
(
logσ

)
, whereas the cost of the latter is O

(
logσ

)
per delivered value plus the

size of the intersection of the k tries built on the binary representations the values in S [i1, j1], . . . , S [ik, jk]. A crude
upper bound for the latter is O(min(σ, j1 − i1 + 1, . . . , jk − ik + 1)). However, we give an adaptive analysis of our
method, showing it requires O

(
αk log σ

α

)
time, where α is the so-called alternation complexity of the problem [19].

All these algorithmic problems are well known. Har-Peled and Muthukrishnan [20] describe applications
of range median queries (a special case of range quantile) to the analysis of Web advertising logs. Stolinski et
al. [21] use them for noise reduction in grey scale images. Similarly, Crochemore et al. [22] use range next value
queries for interval-restricted pattern matching, and Keller et al. [23] and Crochemore et al. [24] use them for
many other sophisticated pattern matching problems. Hon et al. [25] use range intersect queries for generalized
document retrieval, and in a simplified form the problem also appears when processing conjunctive queries in
inverted indexes.

We further illustrate the importance of these fundamental algorithmic problems by uncovering new applica-
tions in several Information Retrieval (IR) activities. We first consider document retrieval problems on general
sequences. This generalizes the classical IR problems usually dealt with on Natural Language (NL), and defines
them in a more general setting where one has a collection C of strings (i.e., the documents), and queries are strings
as well. Then one is interested in any substring of the collection that matches the query, and the following IR
problems are defined (among several others):

doc listing(C, q) = distinct documents in C where query q appears,
doc frequency(C, q, d) = number of occurrences of query q in document d ∈ C,

doc intersect(C, q1, . . . , qk) = distinct documents in C where all queries q1, . . . , qk appear.

These generalized IR problems have applications in text databases where the concept of words does not exist
or is difficult to define, such as in Oriental languages, DNA and protein sequences, program code, music and other
multimedia sequences, and numeric streams in general. The interest in carrying out IR tasks on, say, Chinese or
Korean is obvious despite the difficulty of automatically delimiting the words. In those cases one resorts to a model
where the text is seen as a sequence of symbols and one must be able to retrieve any substring. Agglutinating
languages such as Finnish or German present similar problems to a certain degree. While indexes for plain
string matching are well known, supporting more sophisticated IR tasks such as ranked document retrieval is a
very recent research area. It is not hard to imagine that similar capabilities would be of interest in other types of
sequences: for example listing the functions where two given variables are used simultaneously in a large software
development system, or ranking a set of gene sequences by the number of times a given substring marker occurs.

By constructing a suffix array A [26] on the text collection, one can obtain in time O
(
|q| log |C|

)
(where |C|

denotes the sum of document lengths in C) the range of A where all the occurrence positions of q in C are listed.
The classical solution to document retrieval problems [27] starts by defining a document array D giving the
document to which each suffix of A belongs. Then problems like document listing reduce to listing the distinct
values in a range of D, and intersection of documents becomes the intersection of values in a range of D. Both
are solved with our new fundamental algorithms (the former with range quantile queries). Other queries such as
computing frequencies reduce to a pair of rankd queries on D.

Second, we generalize document retrieval problems to other scenarios. The first scenario is temporal docu-
ments, where the document numbers are consistent with increasing version numbers of the document set. Then
one is interested in restricting the above queries to a given interval of time (i.e., of document numbers). A sim-
ilar case is that of hierarchical documents, which contain each other as in the case of an XML collection or a

4Again, this can be reduced to O
(
1 +

logσ
log log n

)
using multiary wavelet trees [11].

2

1 0 1

r dr

a a a a a bb

abc dr

ab c

a

d

r r

r aa c a aa

0 1 0 0 0 00 0 0 11

b d br

d

r

c

0 1 0

a ba

0 0 1 0

a aa b

b

0 0 1 0 0 0 00

a ba c a aa b

Figure 1: A balanced wavelet tree for the sequence S = "abracadabra". The grayed texts at each node v correspond to subsequence S v of
S , whereas the black bitmaps refer to Bv. The symbols on the edge arriving at a node list the labels of the node. Only the structure and the
bitmaps are actually represented.

file system. Here, restricting the query to a subtree of the hiearchy can be reduced to restricting it to a range of
document numbers. However, one can consider more complex queries in the hierarchical case, such as marking a
set of retrievable nodes at query time and carrying out the operations with respect to those nodes. We show how
to generalize our algorithms to handle this case as well.

Finally, we show that variants of our new fundamental algorithms are useful to enhance the functionality of
inverted lists, the favorite data structures for both ranked and full-text retrieval in NL. Each of these retrieval
paradigms requires a different variant of the inverted list, and one has to maintain both in order to support all
the activities usually required in an IR system. We show that a wavelet tree representation of the inverted lists
supports not only the basic functionality of both representations within essentially the space of one, but also several
enhanced functionalities such as on-the-fly stemming and restriction of documents, and most list intersection
algorithms.

The article is structured as follows. In Section 2 we review the wavelet tree data structure and its basic
algorithmics. Section 3 then describes the new solutions to fundamental algorithmic problems. Then we move
on to applications of those basic results in IR scenarios. We first review some basic IR concepts in Section 4.
Then Section 5 explores generalized IR problems and Section 6 considers inverted list representations for NL
applications. We conclude in Section 7.

2. Wavelet Trees

A wavelet tree T [3] for a sequence S [1, n] over an ordered alphabet [1, σ] is an ordered, strictly binary tree
whose leaves are labeled with the distinct symbols in S in order from left to right, and whose internal nodes Tv

store binary strings Bv. The binary string at the root contains n bits and each is set to 0 or 1 depending on whether
the corresponding character of S is the label of a leaf in T ’s left or right subtree. For each internal node v of T , the
subtree Tv rooted at v is itself a wavelet tree for the subsequence S v of S consisting of the occurrences of the leaf
labels in Tv. In this article we only consider balanced wavelet trees, where the number of leaves to the left and to
the right of any node differ at most by 1. Figure 1 gives an example.

The wavelet tree stores just the tree structure and the bitmaps Bv, together with data structures to carry out
binary rank and select queries on them (these are essential to navigate the tree, as seen soon). The important
properties of such a data structure for this article, in terms of space and construction cost, are summarized in the
following lemma.

Lemma 1. The wavelet tree T for a sequence S [1, n] on alphabet [1, σ] with u distinct symbols requires at most
n logσ + O(n) bits of space, and can be constructed in O

(
n log u

)
time.

Proof. It is easy to see by induction that the leaves of a (balanced) wavelet tree are at depth blog uc or dlog ue. Thus
the wavelet tree has height dlog ue and, following the description above, it can be easily built in time O

(
n log u

)
(we

need to determine the u ≤ min(n, σ) distinct values first, but this is straightforward within the same complexity).
As for the space, note that the total length of the Bv bitmaps is at most n at each level of the wavelet tree,

which adds up to ndlog ue. Those ndlog ue bits can be represented using a data structure [28] that requires n log u +

O(n) bits and gives constant-time access to any bit, as well as constant-time support for (binary) rank and select
operations.

Apart from the bitmaps, one should store the O(u) nodes, which can be an issue if u = ω(n/ log n). In this
case, instead of storing the pointers explicitly, one can concatenate all the bitmaps of the same level and store one
level after the other. If all the leaves of depth dlog ue are put to the left of those of depth blog uc, the nodes can be
easily simulated with no pointers [10].

3

Algorithm 1 Basic wavelet tree algorithms: On the wavelet tree of sequence S , access(vroot, i) returns S [i];
rank(vroot, c, i) returns rankc(S , i); and select(vroot, c, i) returns selectc(S , i).

access(v, i)

if v is a leaf then
return label(v)

else if Bv[i] = 0 then

return access(vl, rank0(Bv, i))
else

return access(vr, rank1(Bv, i))
end if

rank(v, c, i)

if v is a leaf then
return i

else if c ∈ labels(vl) then

return rank(vl, c, rank0(Bv, i))
else

return rank(vr, c, rank1(Bv, i))
end if

select(v, c, i)

if v is a leaf then
return i

else if c ∈ labels(vl) then

return select0(Bv, select(vl, c, i))
else

return select1(Bv, select(vr, c, i))
end if

The u distinct values must be stored as well. Indeed, if σ ≤ n, we can just assume that all the σ values exist,
so the wavelet tree will have dlogσe levels and the lemma holds. Otherwise, we can store a mapping between the
universe of σ possible values and the u ≤ n actual values using an “indexable dictionary” data structure [29]. This
requires u log σ

u +O
(
u + log logσ

)
bits and maps in both directions (telling also whether a value from the universe

appears in S or not) in constant time. Thus we can act as if S were a sequence over the alphabet [1, u].
Adding up all the spaces we get n log u + O(n) + u log σ

u + O
(
u + log logσ

)
≤ n logσ + O(n) bits, and the

construction time is O
(
n log u

)
.

The most basic operation of T is to replace S , by retrieving any S [i] value in O
(
log u

)
time. The algorithm

is as follows. We first examine the ith bit of the root bitmap Broot. If Broot[i] = 0, then symbol S [i] corresponds
to a leaf descending from the left child of the root, and from the right otherwise. In the first case we continue
recursively on the left child, Tl. However, position i must now be mapped to the subsequence S l handled at Tl.
Precisely, if the 0 at Broot[i] is the jth 0 in Broot, then S [i] is mapped to S l[j]. In other words, when we go left, we
must recompute i← rank0(Broot, i). Similarly, when we go right we set i← rank1(Broot, i).

When the tree nodes are not explicit, we find out the intervals corresponding to Bv in the levelwise bitmaps
Bd, where d is the depth of v, as follows. Broot = B0 is a single bitmap. If Bv corresponds to interval Bd[l, r], then
its left child corresponds to Bd+1[l, k] and its right child to Bd+1[k + 1, r], where k = rank0(Bd, r)− rank0(Bd, l− 1)
[10].

The wavelet tree can also answer rankc(S , i) queries on S with a mechanism similar to that for retrieving S [i].
This time one decides whether to go left or right depending on which subtree of the current node the leaf labeled
c appears in, and not on the bit values of Bv. The final i value when one reaches the leaf is the answer. Again, the
process requires O

(
log u

)
time.

Finally, selectc(S , j) is also supported in O
(
log u

)
time using the wavelet tree. This time we start from position

j at the leaf labeled c; this indeed corresponds to the jth occurrence of symbol c in S . If the leaf is a left child of
its parent v, then the position of that c in S v is select0(Bv, j), and select1(Bv, j) if the leaf is a right child of v. We
continue recursively from this new j value until reaching the root, where j is the answer. If the tree nodes are not
explicitly stored, we first descend to the node labeled c in order to delimit the interval corresponding to the leaf
and to all of its ancestors in the levelwise bitmaps.

Algorithm 1 gives pseudocode for the basic access, rank and select algorithms on wavelet trees. For all the
pseudocodes in this article we use the following notation: v is a wavelet tree node and vroot is the root node. If v
is a leaf then its symbol is label(v) ∈ [1, σ]. Otherwise vl and vr are its left and right children, respectively, Bv is
its bitmap. For all nodes v, labels(v) is the range of leaf labels that descend from v; labels(v) = [label(v), label(v)]
if v is a leaf. Note that the recursive code for select first descends and then ascends, which is compatible with the
way to handle the case when nodes are not explicitly represented.

As we make use of range count and a form of range report queries in this article, we give pseudocode for
them as well, in Algorithm 2. The code is simplified for point sets of the form P = {(i, yi), 1 ≤ i ≤ n} on grid
[1, n] × [1, σ], where the wavelet tree is built on the sequence P = y1y2 . . . yn. The techniques are easily extended
to handle general point grids [12].

In Section 3 we develop new algorithms based on wavelet trees to solve fundamental algorithmic problems.
We prove now a few simple lemmas that are useful for analyzing range count and range report, as well as many
other algorithms we introduce throughout the article. Most results are folklore but we reprove them here for
completeness.

Definition 1. A node v is said to cover all the leaves that descend from it. A set of leaves L is covered by a set of
nodes V if L is the union of the leaves covered by the nodes in V.

4

Algorithm 2 Range algorithms: count(vroot, xs, xe, [ys, ye]) returns range count(P, xs, xe, ys, ye) on the wavelet tree
of sequence P; and report(vroot, xs, xe, [ys, ye]) outputs all pairs (y, f), where ys ≤ y ≤ ye and y appears f > 0
times in P[xs, ys], this way extending range report(P, xs, xe, ys, ye).

count(v, xs, xe, rng)
if xs > xe ∨ labels(v) ∩ rng = ∅ then

return 0
else if labels(v) ⊆ rng then

return xe − xs + 1
else

xs
l ← rank0(Bv, xs − 1) + 1

xe
l ← rank0(Bv, xe)

xs
r ← xs − xs

l , xe
r ← xe − xe

l
return count(vl, xs

l , x
e
l , rng)+

count(vr, xs
r , x

e
r , rng)

end if

report(v, xs, xe, rng)
if xs > xe ∨ labels(v) ∩ rng = ∅ then

return
else if v is a leaf then

output (label(v), xe − xs + 1)
else

xs
l ← rank0(Bv, xs − 1) + 1

xe
l ← rank0(Bv, xe)

xs
r ← xs − xs

l , xe
r ← xe − xe

l
report(vl, xs

l , x
e
l , rng)

report(vr, xs
r , x

e
r , rng)

end if

Lemma 2. Any contiguous range of ` leaves in a wavelet tree is covered by O
(
log `

)
nodes.

Proof. First assume u is a power of 2, so all the leaves are at the same depth. We start with a cover V formed by
the ` leaves. For each consecutive pair of leaves in V that shares the same parent, replace the pair by their parent.
At most two leaves are left in V , and at most `/2 parents are inserted in V . Repeat the operation on the parents just
inserted in V (which are also contiguous in their level), and so on. After working on dlog `e levels, no more nodes
are inserted and V has at most two nodes per level considered, for a total of O

(
log `

)
nodes covering the original

interval.
If u is not a power of 2, we note that leaves at level dlog ue come in sibling pairs, and thus a preliminary

iteration of the algorithm on that level also leaves at most two such leaves in V and creates `/2 new nodes at level
blog uc. Then we go on with the algorithm for powers of 2.

Lemma 3. Any set of r nodes in a wavelet tree of u leaves has at most O
(
r log u

r

)
ancestors.

Proof. Consider the paths from the root to each of the r nodes. They cannot be all disjoint. They share the least
if they diverge from depth dlog re. In this case, all the O(r) tree nodes of depth up to dlog re belong to some path,
and from that depth each of the r paths is disjoint, adding at most dlog ue − dlog re distinct ancestors. The total is
O
(
r + r log u

r

)
.

Lemma 4. Any set of r nodes covering a contiguous range of leaves in a wavelet tree of u leaves has at most
O
(
r + log u

)
ancestors.

Proof. First assume u is a power of 2, so all the leaves are at the same depth. We first count all the ancestors of the `
consecutive leaves covered and then subtract the sizes of the subtrees rooted at the r nodes v1, v2, . . . , vr. Start with
marking the ` leaves, and then mark all their parents. At most 2+b`/2c distinct parents are marked, as most pairs of
consecutive leaves will share the same parent. Mark the parents of the parents. At most 2 + b(2 + `/2)/2c ≤ 3 + `/4
parents of parents are marked. In the next level, at most 7/2 + `/8 nodes are marked, and so on. At height h, the
number of marked nodes is at most 4 + `/2h. Adding over all heights, we have that the total number of ancestors
is at most 4 log u + 2`. Now let `i be the number of leaves covered by node vi, so that

∑
1≤i≤r `i = `. The subtree

rooted at each vi has 2`i − 1 nodes. By subtracting those subtree sizes and adding back the r root nodes we get
4 log u + 2` − (2` − r) + r = O

(
r + log u

)
.

If u is not a power of 2 we can apply the argument ignoring the nodes at depth dlog ue. This only makes a
difference if some of the nodes vi are leaves of depth dlog ue, in which case the result changes only by O(r).

From the lemmas we conclude that count in Algorithm 2 takes time O
(
log u

)
: it finds the O

(
log(ye − ys + 1)

)
nodes that cover the range [ys, ye] (Lemma 2), by working in time proportional to the number of ancestors of those
nodes, O

(
log(ye − ys + 1) + log u

)
= O

(
log u

)
(Lemma 4). Interestingly, report in Algorithm 2 can be analyzed

in two ways. On one hand, it takes time O
(
ye − ys + log u

)
as it arrives at most at ye − ys + 1 consecutive leaves

and thus it works on all of their ancestors (Lemma 4). On the other hand, if it outputs r results (which are not
necessarily consecutive), it also works proportionally to the number of their ancestors, O

(
r log u

r

)
(Lemma 3). The

latter is an output-sensitive analysis. The following lemma shows that the cost is indeed O
(
log u + r log ye−ys+1

r

)
.

Lemma 5. Any set of r nodes covering subsets of ` contiguous leaves, on a wavelet tree of u leaves, has at most
O
(
log u + r log `

r

)
ancestors.

5

Proof. Let v1, . . . , vr be the r nodes. By Lemma 2 the ` leaves are covered by c = O
(
log `

)
disjoint nodes

u1, . . . , uc. Let node u j cover ` j leaves, so
∑
` j = `. Note that each vi must descend from exactly one u j. Say that

r j nodes vi descend from u j, so
∑

r j = r. Then by Lemma 3 the number of ancestors inside u j of those r j nodes

is O
(
r j log ` j

r j

)
. By the log-sum inequality5 the sum of those numbers is O

(
r log `

r

)
. Finally, the ancestors that lie

above the subtrees u j are O
(
c + log u

)
= O

(
log u

)
by Lemma 4, for a total of O

(
log u + r log `

r

)
.

3. New Algorithms

3.1. Range Quantile

Two näive ways of solving query range quantile(i, j, k) are by sequentially scanning the range in timeO(j − i + 1)
[30], and by storing the answers to the O

(
n3

)
possible queries in a table and returning answers in O(1) time. Nei-

ther of these solutions is really satisfactory.
Until recently there was no work on range quantile queries, but several authors wrote about range median

queries, the special case in which k is half the length of the interval between i and j. Krizanc et al. [31] introduced
the problem of preprocessing for range median queries and gave four solutions, three of which require time
superlogarithmic in n. Their fourth solution requires almost quadratic space, storing O

(
n2 log log n/ log n

)
words

to answer queries in constant time (a word holds logσ bits). Bose et al. [32] considered approximate queries, and
Har-Peled and Muthukrishnan [20] and Gfeller and Sanders [33] considered batched queries. Recently, Krizanc
et al.’s fourth solution was superseded by one due to Petersen and Grabowski [34, 35], who slightly reduced the
space bound to O

(
n2(log log n)2/ log2 n

)
words.

At about the same time we presented the early version of our work [1], Gfeller and Sanders [33] gave a similar
O(n)-word data structure that supports range median queries in O

(
log n

)
time and observed in a footnote that “a

generalization to arbitrary ranks will be straightforward”. A few months later, Brodal and Jørgensen [36] gave a
more involved data structure that still takes O(n) words but only O

(
log n/ log log n

)
time for queries. These two

papers have now been merged [37]. Very recently, Jørgensen and Larsen [38] proved a matching lower bound for
any data structure that takes n logO(1) n space.

In the sequel we show that, if S is represented using a wavelet tree, we can answer general range quantile
queries in O

(
log u

)
time, where u ≤ min(σ, n) is the number of distinct symbols in S . As explained in Section 2,

within these n logσ + O(n) bits of space we can also retrieve any element S [i] in time O
(
log u

)
, so our data

structure actually replaces S (requiring only O(n) extra bits). The latest alternative structure [38] may achieve
slightly better time but it requires O

(
n log n

)
extra bits of space, apart from being significantly more involved.

Theorem 6. Given a sequence S [1, n] storing u distinct values over alphabet [1, σ], we can represent S within
n logσ + O(n) bits, so that range quantile queries are solved in time O

(
log u

)
. Within that time we can also know

the number of times the returned value appears in the range.

Proof. We represent S using a wavelet tree T , as in Lemma 1. Query range quantile(i, j, k) is then solved as
follows. We start at the root of T and consider its bitmap Broot. We compute nl = rank0(Broot, j)−rank0(Broot, i−1),
the number of 0s in Broot[i, j]. If nl ≥ k, then there are at least k symbols in S [i, j] that label leaves descending
from the left child Tl of T , and thus we must find the kth symbol on Tl. Therefore we continue recursively on Tl

with the new values i← rank0(Broot, i−1)+1, j← rank0(Broot, j), and k unchanged. Otherwise, we must descend
to the right child, mapping the range to i ← rank1(Broot, i − 1) + 1 and j ← rank1(Broot, j). In this case, since we
have discarded nl numbers that are already to the left of the kth value, we set k ← k − nl. When we reach a leaf,
we just return its label. Furthermore, we have that the value occurs j − i + 1 times in the original range. Since T
is balanced and we spend constant time at each node as we descend, our search takes O

(
log u

)
time.

Algorithm 3 (rqq) gives pseudocode. Note that, if u is constant, then so is our query time. On the other hand,
we are not aware of a way to reduce this O

(
log u

)
time with a multiary wavelet tree (actually, it is not trivial to

avoid increasing the complexity as the arity grows).

5Given n pairs of numbers a j, b j > 0, it holds
∑

a j log
a j
b j
≥

(∑
a j

)
log

∑
a j∑
b j

.

6

Algorithm 3 New wavelet tree algorithms: rqq(vroot, i, j, k) returns (range quantile(S , i, j, k), f) on the wavelet
tree of sequence S , assuming k ≤ j − i + 1, and where f is the frequency of the returned element in S [i, j];
rnv(vroot, i, j, 1, x) returns (range next value(S , i, j, x), f , p), where f is the frequency and p is the smallest rank of
the returned element in the multiset S [i, j] (the element is⊥ if no answer exists); and rint(vroot, i1, j1, i2, j2, [ys, ye])
solves an extension of query range intersect(S , i1, j1, i2, j2) outputting triples (y, f1, f2), where y are the common
elements, f1 is their frequency in S [i1, j1], f2 is their frequency in S [i2, j2], and moreover ys ≤ y ≤ ye.

rqq(v, i, j, k)

if v is a leaf then
return (label(v), j − i + 1)

else
il ← rank0(Bv, i − 1) + 1
jl ← rank0(Bv, j)
ir ← i − il, jr ← j − jr
nl ← jl − il + 1
if k ≤ nl then

return rqq(vl, il, jl, k)
else

return rqq(vr, ir, jr, k −
nl)

end if
end if

rnv(v, i, j, p, x)

if i > j then
return (⊥, 0, 0)

else if v is a leaf then
return (x, j − i + 1, p)

else
il ← rank0(Bv, i − 1) + 1
jl ← rank0(Bv, j)
ir ← i − il, jr ← j − jr
nl ← jl − il + 1
if x ∈ labels(vr) then

return rnv(vr, ir, jr, p + nl, x)
else

(y, f , p′)← rnv(vl, il, jl, p, x)
if y ,⊥ then

return (y, f , p′)
else

return rnv(vr, ir, jr, p + nl,
min labels(vr))

end if
end if

end if

rint(v, i1, j1, i2, j2, rng)
if i1 > j1 ∨ i2 > j2 then

return
else if labels(v) ∩ rng = ∅

then
return

else if v is a leaf then
output (label(v),

j1−i1+1, j2−i2+1)
else

i1l ← rank0(Bv, i1 − 1) + 1
j1l ← rank0(Bv, j1)
i1r ← i1 − i1l, j1r ← j1 − j1r

i2l ← rank0(Bv, i2 − 1) + 1
j2l ← rank0(Bv, j2)
i2r ← i2 − i2l, j2r ← j2 − j2r

rint(vl, i1l, j1l, i2l, j2l, rng)
rint(vr, i1r, j1r, i2r, j2r, rng)

end if

3.2. Range Next Value

Again, two naive ways of solving query range next value(i, j, x) on sequence S [1, n] are scanning inO(j − i + 1)
worst-case time, and precomputing all the possible answers in O

(
n3

)
space to achieve constant time queries.

Crochemore et al. [22] reduced the space to O
(
n2

)
words while preserving constant query time. Later, Crochemore

et al. [24] further improved the space to O
(
n1+ε

)
words. Mäkinen et al. [39, Lemma 4] give a simple O(n)-

words space solution based on an augmented binary search tree, with query time O
(
log u

)
, where once again

u ≤ min(n, σ) is the number of distinct symbols in S and [1, σ] is the domain of values. Yu et al. [40] improved
the time to O

(
log n/ log log n

)
, within linear space. For the special case of semi-infinite queries (i.e., i = 1 or

j = n) one can use an O(n)-words and O
(
log log n

)
time solution by Gabow et al. [41].

By using wavelet trees, we also solve the general problem in time O
(
log u

)
. Our space is better than the simple

linear-space solution, n + O
(
n/ logσ

)
words (n of which actually replace the sequence).

Theorem 7. Given a sequence S [1, n] storing u distinct values over alphabet [1, σ], we can represent S within
n logσ + O(n) bits, so that range next value queries are solved in time O

(
log u

)
. Within the same time we can

return the position of the first occurrence of the value in the range.

Proof. We represent S using a wavelet tree T , as in Lemma 1. Query range next value(i, j, x) is then solved as
follows. We start at the root of T and consider its bitmap Broot. If x labels a leaf descending by the right child Tr,
then the left subtree is irrelevant and we continue recursively on Tr, with the new values i← rank1(Broot, i− 1) + 1
and j← rank1(Broot, j). Otherwise, we must descend to the left child Tl, mapping the range to i← rank0(Broot, i−
1) + 1 and j← rank0(Broot, j). If our interval [i, j] becomes empty at any point, we return with no value.

When the recursion returns from Tr with no value, we return no value as well. When it returns from Tl with
no value, however, there is still a chance that a number ≥ x appears on the right in the interval [i, j]. Indeed, if we
descend to Tr and map i and j accordingly, and the interval is not empty, then we want the minimum value of that
interval. Thus from this node we change x by min labels(Tr) and we are sure to find the value on the leftmost leaf
of Tr, without further backtracking. The overall time is O

(
log u

)
.

7

Algorithm 3 (rnv) gives pseudocode. While our space gain may not appear very impressive, we point out
that our solution requires only O(n) extra bits on top of the sequence (if we accept the logarithmic slowdown in
accessing S via the wavelet tree). Moreover, we can use the same wavelet tree to carry out the other algorithms,
instead of requiring a different data structure for each. This is relevant for applications that need support for several
operations simultaneously, as we see later in this article. Again, it is not obvious whether multiary wavelet trees
could help reduce the time complexity.

3.3. Range Intersection

The query range intersect(i1, j1, i2, j2), which finds the common symbols in two ranges of a sequence S [1, n]
over alphabet [1, σ], appears naturally in many cases. In particular, a simplified variant where the two ranges to
intersect are sorted in increasing order arises when intersecting full-text inverted lists, when solving intersection,
phrase, or proximity queries (see Section 4).

Worst-case complexity measures depending only on the range sizes are of little interest for this problem, as
an adversary can always force us to completely traverse both ranges, and time complexity O(j1 − i1 + j2 − i2 + 1)
is easily achieved through merging6. More interesting are adaptive complexity measures, which define a finer
difficulty measure for problem instances. For example, in the case of sorted ranges, an instance where the first
element of the second range is larger than the last element of the first range is easier (one can establish the
emptiness of the result with just one well-chosen comparison) than another where elements are mixed.

A popular measure for this case is called alternation, denoted α [19]. For two sorted sequences without
repetitions, α can be defined as the number of switches from one sequence to the other in the sorted union of the
two ranges. Equivalently, α is the time complexity of a nondeterministic program that guesses which comparisons
to carry out. This definition can be extended to intersecting k ranges [ir, jr]. Formally, the measure α is defined
through a function G : [1, σ]→ [0, k], where G[c] can be the number of any range (1 to k) in which symbol c does
not appear, and G[c] = 0 if c appears in all ranges. Then α is the number of zeros in G plus the minimum possible
number of switches (i.e., G[c] , G[c + 1]) in such a function. A lower bound in terms of alternation (holding even
for randomized algorithms) [19] is Ω

(
α ·

∑
1≤r≤k log nr

α

)
, where nr = jr − ir + 1. There exist adaptive algorithms

matching this lower bound [42, 19, 43].
We show now that the wavelet tree representation of S [1, n] allows a rather simple intersection algorithm that

approaches the lower bound, even if one starts from ranges of disordered values, possibly with repetitions. For
k = 2, we start from both ranges [i1, j1] and [i2, j2] at the root of the wavelet tree. If either range is empty, we stop.
Otherwise we map both ranges to the left child of the root using rank0, and to the right child using rank1. We
continue recursively on the branches where both intervals are nonempty. If we reach a leaf, then its corresponding
symbol is in the intersection, and we know that there are j1 − i1 + 1 copies of the symbol in the first range, and
j2 − i2 + 1 in the second. For k ranges [ir, jr], we maintain them all at each step, and abandon a path as soon as
any of the k ranges becomes empty. Algorithm 3 (rint) gives pseudocode for the case k = 2.

Theorem 8. Given a sequence S [1, n] storing u distinct values over alphabet [1, σ], we can represent S within
n logσ + O(n) bits, so that range intersection queries are solved in time O

(
αk log u

α

)
, where k is the number of

ranges intersected and α is the alternation complexity of the problem.

Proof. Consider the function p : [1, u]→ {0, 1}∗, so that p(c) is a bit stream of length equal to the depth of the leaf
representing symbol c in the wavelet tree. More precisely, p[i] is 0 if the leaf descends from the left child of its
ancestor at depth i, and 1 otherwise. That is, p(c) describes the path from the root to the wavelet tree leaf labeled
c.

Now let Tr be the trie (or digital tree) formed by the strings p(c) for all those c appearing in S [ir, jr], and let
T∩ be the trie formed by the branches present in all Tr, 1 ≤ r ≤ k. It is easy to see that T∩ contains precisely
the wavelet tree nodes where our intersection algorithm goes beyond line 5. As at most two further children can
be visited from those nodes, Algorithm rint visits O(|T∩|) wavelet tree nodes. Thus its complexity is O(k · |T∩|)
because we maintain up to k intervals as we traverse O(|T∩|) nodes.

We first show that T∩ has at most α leaves of T . The leaves of T∩ that are also leaves of T correspond to
the symbols that belong to the intersection, and thus to the number of 0s in any function G. This is accounted
for in measure α. Let us now focus on the other leaves of T∩. Assume that G is decomposed into O(α) ranges
G[si, ei] = ri. Then each range of leaves [si, ei] is covered, by Lemma 2, by O

(
log(ei − si + 1)

)
nodes of T . The

union of all those covers gives a cover V of [1, u] of size O
(∑

log(ei − si + 1)
)
, which by convexity is O

(
α log u

α

)
.

The leaves in T∩ also cover the leaf interval [1, u] in T , and no node in this second cover can descend from a node

6If the ranges are already ordered; otherwise a previous sorting is necessary.

8

v ∈ V (as the recursion would have stopped at node v, since it contains no elements appearing in the rith interval).
The exceptions are the areas where G[si, ei] = 0, where T∩ reaches the leaves of T , but those leaves have already
been counted. Therefore T∩ also has O

(
α log u

α

)
leaves. By Lemma 4, T∩ has O

(
log u + α log u

α

)
= O

(
α log u

α

)
nodes overall.

Our algorithm complexity is pretty close to the lower bound, matched when all nr = u. Note also that our
algorithm is easily extended to handle the so-called (t, k)-thresholded problem [19], where we return any symbol
appearing in at least t of the k ranges. It is simply a matter of abandoning a range only when more than k− t ranges
have become empty.

An alternative way to carry out the intersection is by means of the query range next value(S , i, j, x): Start with
x1 ← range next value(S , i1, j1, 1) and x2 ← range next value(S , i2, j2, x1). If x2 > x1 then continue with x1 ←

range next value(S , i1, j1, x2); if now x1 > x2 then continue with x2 ← range next value(S , i2, j2, x1); and so on. If
at any moment x1 = x2 then output it as part of the intersection and continue with x1 ← range next value(S , i1, j1, x2+

1). It is not hard to see that there must be a switch in G for each step we carry out, and therefore the cost is
O
(
α log u

)
.

To reduce the cost toO
(
α log u

α

)
, we carry out a fingered search in range next value queries, that is, we remem-

ber the path traversed from the last time we called range next value(S , i, j, x) and only retraverse the necessary
part upon calling range next value(S , i, j, x′) for x′ > x. For this purpose we move upwards from the leaf where
the query for x was solved until reaching the first node v such that x′ ∈ labels(v), and complete the rnv procedure
from that node. Since the total work done by this variant is proportional to the number of distinct ancestors of the
α leaves arrived at, the complexity is O

(
α log u

α

)
by Lemma 3.

This second procedure is the basis of most algorithms for intersecting two or more lists [44]. The rint method
we have presented has the same complexity, yet it is simpler, potentially faster, and more flexible (e.g., it is easily
adapted to t-thresholded queries). Moreover, it is specific to the wavelet tree.

4. Information Retrieval Concepts

4.1. Suffix and Document Arrays

Let C be a collection of documents (which are actually strings over an alphabet [1, σ]) D1,D2, . . . ,Dm. Assume
strings are terminated by a special character “$”, which does not occur elsewhere in the collection. Now we define
C as the concatenation of all the documents, C[1, n] = D1D2 . . .Dm. Each position i defines a suffix C[i, n]. A
suffix array [26] of C is an array A[1, n] where the integers [1, n] are ordered in such a way that the suffix starting
at A[i] is lexicographically smaller than that starting at A[i + 1], for all 1 ≤ i < n.

Put another way, the suffix array lists all the suffixes of the collection in lexicographic order. Since any
substring of C is the prefix of a suffix, finding the occurrences of a query string q in C is equivalent to finding
the suffixes that start with q. These form a lexicographic range of suffixes, and thus can be found via two binary
searches in A (accessing C for the string comparisons). As each step in the binary search may require comparing up
to |q| symbols, the total search time is O

(
|q| log n

)
. Once the interval A[sp, ep] is determined, all the occurrences

of q start at A[i] for sp ≤ i ≤ ep. Compressed full-text self-indexes permit representing both C and A within
the space required to represent C in compressed form, and for example determine the range [sp, ep] within time
O
(
|q| logσ

)
and list each A[i] in time O

(
log1+ε n

)
for any constant ε > 0 [4, 45].

For listing the distinct documents where q appears, one option is to find out the document to which each A[i]
belongs and remove duplicates. This, however, requires Ω(ep − sp + 1) time; that is, it is proportional to the total
number of occurrences of q, occ = ep − sp + 1. This may be much larger than the number of distinct documents
where q appears, docc.

Muthukrishnan [27] solved this problem optimally by defining a so-called document array D[1, n], so that D[i]
is the document suffix A[i] belongs to. Other required data structures in his solution are an array E[1, n], so that
E[i] = max{ j < i,D[j] = D[i]}, and a data structure to compute range minimum queries on E, RMQE(i, j) =

argmini≤k≤ jE[k]. Muthukrishnan was able to list all the distinct documents where q appears in time O(docc) once
the interval A[sp, ep] was found. However, the data structures occupied O

(
n log n

)
bits of space, which is too

much if we consider the compressed self-indexes that solve the basic string search problem. Another problem is
that the resulting documents are not retrieved in ascending order, which is inconvenient for several purposes.

Välimäki and Mäkinen [18] were the first to illustrate the power of wavelet trees for this problem. By repre-
senting D with a wavelet tree, they simulated E[i] = selectD[i](D, rankD[i](D, i − 1)) without storing it. By using a
2n-bit data structure for RMQ [46], the total space was reduced to n log m + O(n) bits, and still Muthukrishnan’s
algorithm was simulated within reasonable time, O

(
docc log m

)
.

9

Ranked document retrieval is usually built around two measures: term frequency, tf d,q = doc frequency(C, q, d),
is the number of times the query q appears in document d, and the document frequency, df q, is the number of
different documents where q appears. For example a typical weighting formula is wd,q = tf d,q × idf q, where
idf q = log m

df q
is called the inverse document frequency. Term frequencies are computed with wavelet trees as

doc frequency(C, q, d) = rankd(D, ep) − rankd(D, sp − 1). Document frequencies can be computed with just
2n + o(n) more bits for the case of the D array [47], and on top of a wavelet tree for the E array for more general
scenarios [48].

In Section 5 we show how our new algorithms solve the document listing problem within the same time com-
plexity O

(
docc log m

)
, without using any RMQ data structure, while reporting the documents in increasing order.

This is the basis for a novel algorithm to list the documents where two (or more) queries appear simultaneously.
We extend these solutions to temporal and hierarchical document collections.

4.2. Inverted Indexes

The inverted index is a classical IR structure [49, 50], lying at the heart of most modern Web search engines
and applications handling natural-language text collections. By “natural language” texts one refers to those that
can be easily split into a sequence of words, and where queries are also limited to words or sequences thereof
(phrases). An inverted index is an array of lists. Each array entry corresponds to a different word of the collection,
and its list points to the documents where that word appears. The set of different words is called the vocabulary.
Compared to the document retrieval problem for general strings described above, the restriction of word queries
allows inverted indexes to precompute the answer to each possible word query.

Two main variants of inverted indexes exist [51, 52]. Ranked retrieval is aimed at retrieving documents that
are most “relevant” to a query, under some criterion. As explained, a popular formula for relevance is wd,q =

tf d,q × idf q, but others built on tf and df , as well as even more complex ones, have been used (see, e.g., Zobel and
Moffat [53]). In inverted indexes for ranked retrieval, the lists point to the documents where each word appears,
storing also the weight of the word in that document (in the case of tf × idf , only tf values are stored, since idf
depends only on the word and is stored with the vocabulary). IR queries are usually formed by various words,
so the relevance of the documents is obtained by some form of combination of the various individual weights.
Algorithms for this type of query have been intensively studied, as well as different data organizations for this
particular task [54, 50, 52, 55, 56]. List entries are usually sorted by descending weights of the term in the
documents.

Ranked retrieval algorithms try to avoid scanning all the involved inverted lists. A typical scheme is Persin’s
[54]. It first retrieves the shortest list (i.e., with highest idf), which becomes the candidate set, and then considers
progressively longer lists. Only a prefix of the subsequent lists is considered, where the weights are above a
threshold. Those documents are merged with the candidate set, accumulating relevance values for the documents
that contain both terms. The longer the list, the least relevant is the term (as the tf s are multiplied by a lower idf),
and thus the shorter the considered prefix of its list. The threshold provides a time/quality tradeoff.

The second variant is the inverted indexes for so-called full-text retrieval (also known as boolean retrieval).
These simply find all the documents where the query appears. In this case the lists point to the documents where
each term appears, usually in increasing document order. Queries can be single words, in which case the retrieval
consists simply of fetching the list of the word; or disjunctive queries, where one has to fetch the sorted lists of all
the query words and merge them; or conjunctive queries, where one has to intersect the lists. Intersection queries
are nowadays more popular, as this is Google’s default policy to treat queries of several words. Another important
query where intersection is essential is the phrase query, where intersecting the documents where the words appear
is the first step.

While intersection can be achieved by scanning all the lists in synchronization, faster approaches aim to exploit
the phenomenon that some lists are much shorter than others [57]. This general idea is particularly important when
the lists for many terms need to be intersected. The amount of recent research on intersection of inverted lists
witnesses the importance of the problem [42, 19, 58, 59, 60, 61, 62, 43] (see Barbay et al. [44] for a comprehensive
survey). In particular, in-memory algorithms have received much attention lately, as large main memories and
distributed systems make it feasible to hold the inverted index entirely in RAM.

Needless to say, space is an issue in inverted indexes, especially when combined with the goal of operating
in main memory. Much research has been carried out on compressing inverted lists [50, 63, 52, 62], and on
the interaction of compression with query algorithms, including list intersections. Most of the list compression
algorithms for full-text indexes rely on the fact that the document identifiers are increasing, and that the differences
between consecutive entries are smaller on the longer lists. The differences are thus represented with encodings
that favor small numbers [50]. Random access is supported by storing sampled absolute values. For lists sorted

10

by decreasing weights, these techniques can still be adapted: most documents in a list have small weight values,
and within the same weight one can still sort the documents by increasing identifier.

A serious problem of the current state of the art is that an IR system usually must support both types of
retrieval: ranked and full-text. For example, this is necessary in order to provide ranked retrieval on phrases. Yet,
to maintain reasonable space efficiency, the list must be ordered either by decreasing weights or by increasing
document number, but not both. Hence one type of search will be significantly slower than the other, if affordable
at all.

In Section 6 we show that wavelet trees allow one to build a data structure that permits, within the same space
required for a single compressed inverted index, retrieving the list of documents of any term in either decreasing-
weight or increasing-identifier order, thus supporting both types of retrieval. Moreover, we can efficiently support
the operations needed to implement any of the intersection algorithms, namely: retrieve the ith element of a list,
retrieve the first element larger than x, retrieve the next element, and several more complex ones.

In addition, our structure offers novel ways of carrying out several operations of interest. These include, among
others, the support for stemming and for structured document retrieval without any extra space cost. Stemming is
a useful tool to enhance recall [64, 65] in which terms having the same root word are treated as the same term.
For example, an IR system using stemming would treat ironing, ironed and irons all as the same term: iron.
One common way to support stemming is by coalescing terms having the same root at index construction time.
However, the index is then unable to provide non-stemmed searching. One can of course index the stemmed and
non-stemmed occurrence of each term, but this costs space. Once again, our method can provide both types of
search without using any extra space, provided all the variants of the same stemmed word be contiguous in the
vocabulary (this is in many cases automatic as stemmed terms share the same root, or prefix).

5. Document Listing and Intersections

The algorithm for range report(P, xs, xe, ys, ye) queries described in Section 2 can be used to solve doc listing(C, q),
as follows. As explained in Section 4.1, use a (compressed) suffix array A to find the range A[sp, ep] correspond-
ing to query q, and use a wavelet tree on the document array D[1, n] on alphabet [1,m], so that the answer is the set
of distinct document numbers d1 < d2 < . . . < ddocc in D[sp, ep]. Then range report(D, sp, ep, 1,m) returns the
docc document numbers, in order, in total time O

(
log m + docc log m

docc

)
, due to Lemma 5. Moreover, procedure

report in Algorithm 2 also retrieves the frequencies of each di in D[sp, ep], outputting the pairs (di, tf di,q) within
the same cost. (As explained, arbitrary frequencies tf d,q = doc frequency(C, q, d) can also be obtained in time
O
(
log m

)
by two rankd queries on D.)

Corollary 9. Let C be a text collection of m documents and C[1, n] their concatenation. Then, given the suffix
array interval of a query q in C, we can solve query doc listing(C, q) in time O

(
log m + docc log m

docc

)
, where docc

is the size of the output, using a data structure that occupies n log m +O(n) bits. Within the same time we also give
the term frequencies tf di,q of the retrieved documents di.

As explained in Section 4.1, this solution is simpler and requires less space than various previous ones7, and
has the additional benefit of delivering the documents in increasing document identifier order. This enables us to
extend the algorithm to more complex scenarios, as shown in Section 6. In those scenarios, alternative solutions
using range quantile or range next value queries, instead of range report, will be of interest.

Now consider k queries q1, q2, . . . , qk, and the problem of listing the documents where all those queries appear
(i.e., problem doc intersect(C, q1, . . . , qk)). With the suffix array we can map the queries to ranges [spr, epr],
and then the problem is that of finding the distinct document numbers that appear in all those ranges. This
corresponds exactly to query range intersect(D, sp1, ep1, . . . , spk, epk), which we have solved in Section 3.3 (rint
in Algorithm 3). We also delivered the tf d,qr

values.

Corollary 10. Let C be a text collection of m documents and C[1, n] their concatenation. Then, given the suffix
array intervals of queries q1, . . . , qk in C, we can solve query doc intersect(C, q1, . . . , qk) in time O

(
αk log m

α

)
,

where α is the alternation complexity of the intersection problem, using a data structure that occupies n log m +

O(n) bits. Within the same time we also give the term frequencies tf di,qr
of the delivered documents di.

We have indeed solved a more general variant where we list the documents where at least t of the k terms
appear. This corresponds to the disjunctive query for the case t = 1 and to a conjunctive query for t = k. Note that
the data structure referred to in both corollaries is the same.

7It is even better than our previous solution based on range quantile queries [1], which takes time O
(
docc log m

)
.

11

5.1. Temporal and Hierarchical Documents

The simplest extension when we have versioned or hierarchical documents is to restrict queries doc listing(C, q)
and doc intersect(C, q1, . . . , qk) to a range of documents [dmin, dmax], which represents a temporal interval or a sub-
tree of the hierarchy in which we are interested. Such a restricted document listing and intersection is easily sup-
ported by setting rng = [dmin, dmax] in procedures report (Algorithm 2) and rint (Algorithm 3), respectively. The
complexities are O

(
log m + docc log dmax−dmin+1

docc

)
for listing (due to Lemma 5), and O

(
k
(
log m + α log dmax−dmin+1

α

))
for intersections (due to a simple adaptation of Theorem 8).

When the hierarchical documents represent nodes in an XML collection, other queries become of obvious
interest. Indeed, how to carry out ranking on XML collections is an unresolved issue, with very complex ranking
proposals counterweighted by others advocating simple measures. Rather than trying to cover such a broad topic,
we refer the reader to comprehensive surveys and discussions in the article by Hiemstra and Mihajlović [66], the
PhD thesis of Pehcevski [67, Ch. 2], and the recent book by Lalmas [68, Ch. 6].

In most models, the frequency of a term within a subtree, and the size of such subtree, are central to the defi-
nition of ranking strategies. The latter is usually easy to compute from the sequence representation. The former,
a generalization of doc frequency to ranges, can actually be computed with query range count(D, sp, ep, dl, dr)
(see Algorithm 2), where [sp, ep] is the suffix array range corresponding to query q, and [dl, dr] is the range of
documents corresponding to our structural element. This query also takes time O

(
log m

)
.

5.2. Restricting to Retrievable Units

We focus now on a more complex issue that is also essential for XML ranked retrieval. Query languages such
as XPath and XQuery define structural constraints together with terms of interest. For example, one might wish to
retrieve books about the term cryptography, or rather book sections about that term, in each case ranked by the
relevance of the term. Thus the definition of the retrievable unit (books, sections) comes in the query together with
the terms (cryptography) whose relevance is to be computed with respect to the retrievable units that contain it.
We show now how to support a simple model where the retrievable units are defined by an XML tag name, and
consider other models at the end. We assume that retrievable units of the same type do not nest.

Following common models of XML data, we consider that text data can appear only at the leaves of the XML
structure (the general case is easily managed with this model [69]). Thus, each leaf of the XML tree will be
associated with a document number, 1 to m, so that d will be the document associated to the dth leaf. The XML
tree, containing n nodes, will be represented using a sequence P[1, 2n] of parentheses [70]. These are obtained
through a preorder traversal, by appending an opening parenthesis when we reach a node and a closing one when
we leave it. A tree node will be identified with the position of its opening parenthesis in P. Several succinct data
structures can represent the parentheses within 2n + o(n) bits and simulate a wealth of tree operations in constant
time (e.g., [71]).

In addition we represent a sequence Tag[1, 2n] giving the tag name associated to each parenthesis in P. Se-
quence Tag is represented using a data structure that requires 2n log τ + O(n) bits of space, where τ is the number
of distinct tags in the collection, and answers rank/select queries on Tag in time O

(
log log τ

)
[72].

A first task we can carry out is, given an occurrence in document number (i.e., leaf) d, compute expand(t, d),
the range of documents (i.e., leaves) corresponding to its ancestor tagged t, or determine there is no such ancestor.
We use operation j = selectLeaf (P, d) to find the dth leaf of P. Then p = selectt(Tag, rankt(Tag, j)) finds the
rightmost parenthesis preceding j corresponding to a node tagged t. If P[p] = ′(′, then p is the ancestor of d tagged
t. Otherwise, there is no ancestor of d tagged t and the next node tagged t is p = selectt(Tag, rankt(Tag, j) + 1). In
either case, we return the range of leaves corresponding to p, expand(t, d) = leaf range(p) = [rankLeaf (P, p) +

1, rankLeaf (P, p+2 ·subtreeSize(P, p)−1)], where rankLeaf (P, s) counts the number of leaves contained in P[1, s]
and subtreeSize(P, p) counts the number of nodes of the subtree rooted at p. The process takes O

(
log log τ

)
time,

dominated by the costs to operate on Tag. Algorithm 4 (exp and leafRange) gives pseudocode.
If we now want to count the number of occurrences of our query q in a retrievable node p, we need to count the

number of occurrences of leaves (i.e., document numbers) below p within the interval D[sp, ep] corresponding
to query q. Such a range is easily obtained in constant time as [dl, dr] = leaf range(p). Then the result is
range count(D, sp, ep, dl, dr), as explained (see hdfreq in Algorithm 4).

To carry out document listing restricted to structural elements tagged t, we build on range next value queries.
We start with d1 = range next value(D, sp, ep, 1), which gives us the smallest (leaf) document number in D[sp, ep].
Now we compute [dl1, dr1] = expand(t, d1), the range of the node tagged t that contains d1 (or the leftmost follow-
ing it). If d1 ∈ [dl1, dr1] we report the range and find the next document using d2 = range next value(D, sp, ep, dr1+

1), otherwise we do not report the range and compute d2 = range next value(D, sp, ep, dl1). We continue until no
more occurrences are found. Algorithm 4 (hdlist) gives pseudocode.

12

Algorithm 4 Algorithms for hierarchical document listing and intersections: exp(Tag, P, t, d) computes the node
in P for expand(t, d) and leafRange(P, p) computes leaf range(p); hdfreq(P,D, sp, ep, p) computes the frequency
of p in D[sp, ep]; and hdlist(A,D,Tag, P, t, q, rng) lists the retrievable units where q appears (pattern search(A,q)
returns the interval of the suffix array A where the occurrences of the pattern q lie). hdlist only reports documents
in range rng (which is assumed not to split any retrievable unit).

exp(Tag, P, t, d)
j← selectLeaf (P, d)
r ← rank(Tag, t, j)
p← select(Tag, t, r)
if P[p] = ′)′ then

p← select(Tag, t, r + 1)
end if
return p

leafRange(P, p)
return [rankLeaf (P, p) + 1,
rankLeaf (P, p+2·subtreeSize(P, p)−1)]

hdfreq(P,D, sp, ep, p)

[dl, dr]← leafRange(P, p)
return count(D, sp, ep, [dl, dr])

hdlist(A,D,Tag, P, t, q, [dmin, dmax])
[sp, ep]← pattern search(A, q)
v← root(D)
(d, f , r)← rnv(v, sp, ep, 1, dmin)
while d ,⊥ ∧ d ≤ dmax do

p← exp(Tag, P, t, d)
[dl, dr]← leafRange(P, p)
if d ∈ [dl, dr] then

output [dl, dr]
(d, f , r)← rnv(v, sp, ep, 1, dr+1)

else
(d, f , r)← rnv(v, sp, ep, 1, dl)

end if
end while

The cost per step is O
(
log log τ + log m

)
, and it is easy to see that the total number of steps is O(α), where

α is the alternation complexity of the problem of intersecting the list of endpoints of nodes tagged t and the
leaf documents where q occurs. Using the fingered search on rnv outlined in Section 3.3, the overall cost
is O

(
log m + α

(
log log τ + log m

α

))
. If we wish to additionally restrict the retrieval to documents in the range

[dmin, dmax], we simply start with d1 = range next value(D, sp, ep, dmin) and stop when we retrieve a document
larger than dmax. The cost improves to O

(
log m + α

(
log log τ + log dmax−dmin+1

α

))
due to Lemma 5. The complexity

returns to O
(
α(log log τ + log m)

)
if we compute also the frequency in each retrievable unit using hdfreq.

Corollary 11. Let C be a hierarchical text collection of n tree nodes with tags in [1, τ] and m text nodes at the
leaves, being C[1,N] the concatenation of all the texts, and where tags do not nest. Then, given a tag t and the
suffix array interval of a query q in C, we can list the distinct tree nodes tagged t that contain an occurrence of q,
restricted to any desired subtree containing m′ text nodes, in time O

(
log m + α

(
log log τ + log m′

α

))
, using a data

structure that occupies N log m + 2n log τ + O(N) bits. Here α is the alternation complexity of the problem of
intersecting the tag endpoints and the document leaves where q appears.

Finally, to carry out intersections restricted to retrievable units, we proceed in principle as rint in Algorithm 3
(Section 3.3). The only difference is that, instead of outputting each result, we expand it and report the retrievable
unit, if any. Then we advance as in algorithm hdlist, to dr + 1 or to dl. It is not hard to see that the complexity is
O
(
α
(
log log τ + log m

α

))
, where now α refers to the alternation complexity of the k sequences to intersect plus the

sequence of starting at ending points of tag t.
Other possibilities for marking the retrievable documents can be supported, as long as one is able to expand

any leaf. For example we could mark retrievable nodes in a bitmap B[1, 2n] aligned with P, where we set to 1
the opening and closing parentheses of retrievable nodes. Then we can compute expand(B, i) via rank and select
operations on B in constant time as follows. We start with j = selectLeaf (P, d), then p = select1(rank1(B, j)), then
if P[p] = ′)′ position d has no covering retrievable unit, else expand(B, d) = leaf range(p).

6. Inverted Lists

Recall m is the total number of documents in the collection and let ν be the number of different terms. Let
Lt[1, df t] be the list of document identifiers where term t appears, in decreasing weight order (for concreteness we
will assume we store tf values in the lists as weights, but any weight will do). Let n =

∑
t df t be the total number of

occurrences of distinct terms in the documents, and N =
∑

t,d tf d,t the total length, in words, of the text collection
(thus m ≤ n ≤ min(mν,N)). Finally, let |q| be the number of terms in query q.

13

We propose to concatenate all the lists Lt into a unique sequence L[1, n], and store for each term t the starting
position st of list Lt within L. The sequence L of document identifiers is then represented with a wavelet tree.

According to Lemma 1, the wavelet tree of L occupies is n log m+O(n) bits. The classical encoding of inverted
files, when documents are sorted by increasing document identifier, records the consecutive differences using Rice
codes [50]. This needs at most

∑
t df t log m

df t
+ O

(
df t

)
≤ n log mν

n + O(n) bits, which is asymptotically less than
our space. If, however, the lists are sorted by decreasing tf values, then differential encoding can only be used on
some parts of the lists. Yet, n log m + O(n) is still an upper bound to the space required to list the documents. As
can be seen, no inverted index representation takes more space than our wavelet tree. However, our wavelet tree
will offer the combined functionality of both inverted indexes, and more.

Sequence st is represented using a bitmap S [1, n] providing rank/select operations. Thus we can recover
st = select1(S , t), and also rank1(S , i) tells us which list L[i] belongs to. A “fully indexable dictionary” [29]
provides these operations in constant time using ν log n

ν
+ O(ν) + o(n) bits. These spaces are similar to those used

to represent this data in traditional tf -sorted indices.
We will now consider the classical and extended operations that can be carried out with our data structure. In

particular we will show how to give some support for hierarchical document retrieval (as already seen for general
documents) and for stemmed searches without using any extra space.

6.1. Full-Text Retrieval

The full-text index, rather than Lt, requires a list Ft, where the same documents are sorted by increasing
document identifier. Different kinds of access operations need to be carried out on Ft. We now show how all these
can be supported in O

(
log m

)
time or less.

6.1.1. Direct retrieval
First, with our wavelet tree representation of L we can compute any specific value Ft[k] in time O

(
log m

)
.

This is equivalent to finding the kth smallest value in L[st, st+1 − 1], that is, query range quantile(L, st, st+1 − 1, k)
described in Section 3.1.

We can also extract any segment Ft[k, k′], in order, in time O
(
log m + k′ − k

)
. The algorithm is the same as for

range quantile on quantiles k to k′ simultaneously, going just by one branch when both k and k′ choose the same
branch, and splitting the interval into two separate searches when they do not. We arrive at k′ − k + 1 consecutive
leaves of the wavelet tree, thus the cost follows from Lemma 4. The same complexity is achieved using the
fingered search on range next value queries outlined at the end of Section 3.3.

A more general fingered search operation is to find Ft[k′] after having visited Ft[k], for some k′ > k. We need
to store log m values mδ, eδ and vδ, where m0 = ∞ and e1 = 0, and the others are computed as follows when we
obtain Ft[k]: at wavelet tree node v of depth δ (the root being depth 1) we set vδ ← v and, if we must go to the
left child, then we set mδ ← eδ + nl and eδ+1 ← eδ; else we set mδ ← mδ−1 and eδ+1 ← eδ + nl. Here nl is the
value local to the node (recall rqq in Algorithm 3). Therefore eδ counts the values skipped to the left, and mδ is
the maximum k′ value such that the downward paths to compute Ft[k] and Ft[k′] coincide up to depth δ. Now, to
compute Ft[k′], we consider all the δ values, from largest to smallest, until finding the first one such that k′ ≤ mδ.
From there on we recompute the downward path, resetting mδ, eδ, and vδ accordingly.

If we carry out this operation r times, across a range [k, k′], the cost is O
(
log m + r log k′−k+1

r

)
by Lemma 5.

Algorithm 5 depicts the new extended variants of rqq.

6.1.2. Intersection algorithms
The most important operation in the various list intersection algorithms described in the literature is to find the

first k such that Ft[k] ≥ d, given d. This is usually solved with a combination of sampling and linear, exponential,
or binary search. In our case, this operation takes time O

(
log m

)
with query range next value(L, st, st+1 − 1, d)

described in Section 3.2. Our time complexity is not far from the O
(
log(st+1 − st)

)
of traditional approaches.

Moreover, as explained in Section 3.3, we can use fingered searches on rnv to achieve time O
(
log m + r log m

r

)
for

r accesses. Furthermore, if all the accesses are for documents in a range [d, d′] then, by Lemma 5, the cost will be
O
(
log m + r log d′−d+1

r

)
time. This is indeed the time required by r successive searches using exponential search.

Finally, we can intersect the lists Ft and Ft′ using range intersect(L, st, st+1 − 1, st′ , st′+1 − 1), in adaptive time
O
(
α log m

α

)
— recall Section 3.3. As explained, this can be extended to intersecting |q| terms simultaneously, and

to report documents where a minimum number of the terms appear.
The following corollary summarizes the most fundamental results.

14

Algorithm 5 Extended variants of range quantile algorithms: mrqq(vroot, i, j, k, k′) outputs all the (distinct) values
range quantile(S , i, j, k) to range quantile(S , i, j, k′), with their frequencies, on the wavelet tree of sequence S ,
assuming k′ ≤ j − i + 1; frqq1(vroot, i, j, k) returns the same as rqq(vroot, i, j, k) but prepares the iterator for
subsequent fingered searches; those are carried out by calling frqq(vroot, k), where it is assumed that the k values
increase at each call; frqq′ is the recursive procedure that reprocesses the needed part of the path.

mrqq(v, i, j, k, k′)

if v is a leaf then
output (label(v), j − i + 1)

else
il ← rank0(Bv, i − 1) + 1
jl ← rank0(Bv, j)
ir ← i − il, jr ← j − jr
nl ← jl − il + 1
if k ≤ nl then

mrqq(vl, il, jl, k,min(nl, k′))
end if
if k′ > nl then

mrqq(vr, ir, jr,max(k−nl, 1), k′)
end if

end if

frqq1(v, i, j, k)

m0 ← ∞

e1 ← v
i∗ ← i
j∗ ← j
return frrq′(v, i, j, k, 1)

frqq(v, k)

δ← height of v
while k > mδ−1 do
δ← δ − 1

end while

return frqq′(vδ, i∗, j∗, k, δ)

frqq′(v, i, j, k, δ)

if v is a leaf then
output (label(v), j − i + 1)

else
vδ ← v
il ← rank0(Bv, i − 1) + 1
jl ← rank0(Bv, j)
ir ← i − il, jr ← j − jr
nl ← jl − il + 1
if k ≤ nl then

mδ ← eδ + nl

eδ+1 ← eδ
return frqq′(vl, il, jl, k, δ + 1)

else
mδ ← mδ−1
eδ+1 ← eδ + nl

return frrq′(vr, ir, jr, k, δ + 1)
end if

end if

Corollary 12. Let C be a collection over ν distinct words, formed by m documents adding up to N words.
Let df t be the number of distinct documents where term t appears and n =

∑
df t. Call Ft the virtual in-

verted list where the document identifiers are sorted increasingly. Then there exists a data structure using
n log m + O(n) bits carrying out the following operations: (a) extract r values in Ft[k, k′], at increasing posi-
tions, in time O

(
log m + r log k′−k+1

r

)
; (b) extract r values from [d, d′] in Ft, with increasing lower bounds, in time

O
(
log m + r log d′−d+1

r

)
; (c) intersect |q| lists Ft in time O

(
α|q| log m

α

)
, where α is the alternation complexity of the

intersection problem.

6.1.3. Other operations of interest
If the range of terms [t, t′] represents the derivatives of a single stemmed root, we might wish to act as if we

had a single list Ft,t′ containing all the documents where they occur. Indeed, if we apply our previous algorithm to
obtain Ft[k] from L[st, st+1 − 1], on the range L[st, st′+1 − 1], we obtain precisely Ft,t′ [k], if we understand that a
document d may repeat several times in the list if different terms in [t, t′] appear in d. Still we can obtain the list
of docc distinct documents for a range of terms [t, t′] with exactly the same method as for the D array, described
at the beginning of Section 5, in time O

(
docc log m

docc

)
.

Furthermore, the algorithms to find the first k such that Ft[k] ≥ d, can be applied verbatim to obtain the same
result for Ft,t′ [k] ≥ d. All the variants of these queries are directly supported as well. Our intersection algorithm
can also be applied verbatim in order to intersect stemmed terms.

Additionally, note that we can compute some summarization information. More precisely, we can obtain the
local vocabulary of a document d, that is, the set of different terms that appear in d. By executing rank1(S , selectd(L, i))
for successive i values, we obtain all the local vocabulary, in order, and in time O

(
log m

)
per term. This allows, for

example, merging the vocabularies of different documents. We can also search for a particular term in a particular
document via two rank operations on L: rankd(L, st+1 − 1) − rankd(L, st − 1); then the corresponding position can
be obtained by selectd(L, 1 + rankd(L, st − 1)).

Finally, the data structure provides some basic support for temporal and hierarchical documents, by restricting
the inverted lists Ft to a range of document values [dmin, dmax] (recall Section 5.1). A simple way to proceed is to
first carry out a query range next value(L, st, st+1−1, dmin) with rnv (see Algorithm 3), which will also give us the
rank p of the first document ≥ d. Then any subsequent range quantile query on Ft must increase its argument by
p − 1, and discard answers larger than dmax. Finally, the restriction to retrievable units works exactly the same as
in Section 5.2.

15

6.2. Ranked Retrieval
We focus now on the operations of interest for ranked retrieval, which are also simulated in O

(
log m

)
time or

less. In this case we also need to maintain the tf values. We store them in differential and run-length compressed
form, in a separate sequence, so as to permit powerful operations.

More precisely, we mark the vt ≤ df t different tf d,t values of each list in a bitmap Tt[1,Nt], where Nt =

maxd tf d,t, and the vt points in Lt[1, df t] where value tf d,t changes, in a bitmap Rt[1, df t]. Thus one can obtain
tf Lt[i],t = select1(Tt, vt − rank1(Rt, i) + 1). We use Okanohara and Sadakane’s representation [73]8 for Tt and the
“fully indexable dictionary” [29] for Rt. This gives total space vt log Nt

vt
+ O(vt) + vt log df t

vt
+ o(df t) bits and retain

constant time access to tf values. This space is similar to that needed to represent, in a traditional tf -sorted index,
each new tf d,t value and the number of entries that share it. Overall our extra structures take at most n log Nν

n +O(n)
bits.

6.2.1. Direct access and Persin’s algorithm
The Lt lists used for ranked retrieval are directly concatenated in L, so Lt[i] is obtained by accessing symbol

L[st + i − 1] using the wavelet tree. Recall that the term frequencies tf are available in constant time. A range
Lt[i, i′] is obtained in time O

(
log m + (i′ − i + 1) log m

i′−i+1

)
by using query range report(L, st + i, st + i′, [1,m])

(Algorithm 2), due to Lemma 5.
This algorithm has the problem of retrieving the documents in document order, not in tf order as they are in

Lt. Note, however, that retrieving the highest-tf documents in document order is indeed beneficial for Persin’s
algorithm [54] (recall Section 4.2), where a problem is how to accumulate results across unordered document sets.
More precisely, assume we have the current candidate set as an array ordered by increasing document identifier.
Persin’s algorithm computes a threshold term frequency f , so that the next list to consider, Lt, should be processed
only for tf values that are at least p. Instead of traversing Lt by decreasing tf values and stopping when these
fall below f , we can compute p = select1(Rt, vt − rank1(Tt, f) + 1) − 1, so that Lt[1, p] is precisely the prefix
where the term frequencies are at least f . Now we extract all the values as explained. As they are obtained in
increasing document identifier order, they are easily merged with the current candidate set, in order to accumulate
frequencies in common documents.

Corollary 13. The data structure considered in Corollary 12, joined with a data structure using n log Nν
n + O(n)

bits, can carry out the following operations, where Lt is the virtual list of term t with documents sorted by decreas-
ing tf d,t values: (a) extract the values in Lt[i, i′], in increasing document order and with their tf d,t values, in time
O
(
log m + (i′ − i + 1) log m

i′−i+1

)
; (b) execute Persin’s algorithm in time O

(∑
t∈q pt log m

pt

)
= O

(
p log m|q|

p

)
, where pt

is the length of the prefix of the list of term t considered by the algorithm, and
∑

t∈q pt = p.

6.2.2. Other operations of interest
Any candidate document d in Persin’s algorithm can be directly evaluated, obtaining its tf d,t values, by finding

d within Lt for each t ∈ q (with rankd and selectd on L, as explained), and its tf obtained from Rt and Tt, all in
O
(
|q| log m

)
time.

If we use stemming, we might want to retrieve prefixes of several lists Lt to Lt′ . We may carry out the previous
algorithm to deliver all the distinct documents in these prefixes, now carrying on the t′ − t + 1 intervals as we
descend in the wavelet tree. When we arrive at the relevant leaves labeled d, the corresponding positions will be
contiguous, thus we can naturally return just one occurrence of each d in the union. If we wish to obtain the sum
of the tf values for all the stemmed terms in d, we can traverse the wavelet tree upwards for each interval element
at leaf d, and obtain its tf upon finding its position in L. Alternatively, we could also store the tf values aligned
to the leaves and mark their cumulative values on a compressed bitmap, so as to obtain the sum in constant time
as the difference of two select1 operations on that bitmap. The space, however, raises by n log N

n +O(n) bits. This
method also delivers the results in document order.

Maintaining the tf values aligned to the leaf order yields some support for hierarchical queries. Assume a
retrievable unit (recall Section 5.2) spans the document range [dl, dr], and thus we wish to compute the total tf of t
in range [dl, d f]. Any such range is exactly covered by O

(
log m

)
wavelet tree nodes (Lemma 2). We can descend,

projecting the range of Lt in L, until those nodes, and then add up the accumulated tf values of those O
(
log m

)
nodes, in overall time O

(
log m

)
.

We can also support temporal and hierarchical documents by restricting our accesses in Lt only to documents
within a range [dmin, dmax] (recall Section 5.1). It is sufficient to use [dmin, dmax] as the last argument when we

8We use a constant-time select structure [74] for their internal array H[1, 2vt], which needsO(vt) bits, and thus the overall structure supports
select in constant time.

16

use the range report query that underlies our support for accessing Lt. This automatically yields, for example,
Persin’s algorithm restricted to a range of documents.

7. Conclusions

The wavelet tree data structure [3] has had an enormous impact on the implementation of space-efficient text
databases. In this article we have shown that it has several other under-explored capabilities. We have proposed
three new algorithms on wavelet trees that solve fundamental problems, improving upon the state of the art in
some aspects. For range intersections we achieve an adaptive complexity that matches the one achieved for
sorted ranges. For range quantile and range next value problems, we match or approach the best known time
complexities while using less space: basically that needed to represent the sequence S [1, n] plus O(n) extra bits,
versus the O

(
n log n

)
extra bits required by previous solutions. The wavelet tree methods also adapt gracefully

with the alphabet size. Furthermore, if we use compressed bitmap representations [29] in our wavelet trees, we
retain the time complexities and achieve zero-order compression in the representation of S [3], that is, our overall
space including the sequence becomes nH0(S) + O(n + σ), where [1, σ] is the alphabet of S and H0(S) is its
empirical zero-order entropy.

We have also explored a number of applications of those novel algorithms to two areas of Information Retrieval
(IR): document retrieval on general string databases, and inverted indexes. In both cases we obtained support for
a number of powerful operations without further increasing the space required to support basic ones.

The algorithms are elegant and simple to implement, so they have the potential to be useful in practice. Future
work involves implementing them within an IR framework and evaluating their practical performance. Although
we have used some theoretical data structures for handling bitmaps within convenient space bounds, practical
variants of rank/select-capable plain and compressed bitmaps, as well as various wavelet tree implementations,
are publicly available9. Some preliminary experiments [75] show that an early version of our results [1] do improve
significantly in practice upon the previous state of the art on document retrieval for general strings. Our improved
versions presented in this article should widen the gap. In the case of inverted indexes we do not expect our
representation to be faster for the basic operations, yet it is likely that it requires less space than that of a full-text
plus a ranked-retrieval inverted index, and that it is more efficient on sophisticated operations.

Aknowledgements

We thank Jérémy Barbay for his help in understanding the adaptive complexity measures for intersections, and
Meg Gagie for righting our grammar.

References

[1] T. Gagie, S. Puglisi, A. Turpin, Range quantile queries: another virtue of wavelet trees, in: Proc. 16th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 5721, 2009, pp. 1–6.

[2] G. Navarro, S. J. Puglisi, Dual-sorted inverted lists, in: Proc. 17th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 6393, 2010, pp. 310–322.

[3] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text indexes, in: Proc. 14th Symposium on Discrete Algorithms
(SODA), 2003, pp. 841–850.

[4] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representations of sequences and full-text indexes, ACM Transactions
on Algorithms 3 (2) (2007) article 20.

[5] P. Ferragina, G. Manzini, Indexing compressed texts, Journal of the ACM 52 (4) (2005) 552–581.
[6] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, An alphabet-friendly FM-index, in: Proc. 11th International Symposium on String

Processing and Information Retrieval (SPIRE), LNCS 3246, 2004, pp. 150–160.
[7] V. Mäkinen, G. Navarro, Succinct suffix arrays based on run-length encoding, Nordic Journal of Computing 12 (1) (2005) 40–66.
[8] V. Mäkinen, G. Navarro, Implicit compression boosting with applications to self-indexing, in: Proc. 14th International Symposium on

String Processing and Information Retrieval (SPIRE), LNCS 4726, 2007, pp. 214–226.
[9] B. Chazelle, A functional approach to data structures and its use in multidimensional searching, SIAM Journal on Computing 17 (3)

(1988) 427–462.
[10] V. Mäkinen, G. Navarro, Position-restricted substring searching, in: Proc. 7th Latin American Symposium on Theoretical Informatics

(LATIN), LNCS 3887, 2006, pp. 703–714.
[11] P. Bose, M. He, A. Maheshwari, P. Morin, Succinct orthogonal range search structures on a grid with applications to text indexing, in:

Proc. 11th International Symposium on Algorithms and Data Structures (WADS), 2009, pp. 98–109.
[12] N. Brisaboa, M. Luaces, G. Navarro, D. Seco, A fun application of compact data structures to indexing geographic data, in: Proc. 5th

International Conference on Fun with Algorithms (FUN), LNCS 6099, 2010, pp. 77–88.

9See for example http://libcds.recoded.cl.

17

[13] J. Barbay, G. Navarro, Compressed representations of permutations, and applications, in: Proc. 26th International Symposium on Theo-
retical Aspects of Computer Science (STACS), 2009, pp. 111–122.

[14] J. Barbay, F. Claude, G. Navarro, Compact rich-functional binary relation representations, in: Proc. 9th Latin American Symposium on
Theoretical Informatics (LATIN), LNCS 6034, 2010, pp. 172–185.

[15] G. Navarro, Indexing text using the Ziv-Lempel trie, Journal of Discrete Algorithms 2 (1) (2004) 87–114.
[16] Y.-F. Chien, W.-K. Hon, R. Shah, J. S. Vitter, Geometric Burrows-Wheeler transform: Linking range searching and text indexing, in:

Proc. Data Compression Conference (DCC), 2008, pp. 252–261.
[17] F. Claude, G. Navarro, Self-indexed text compression using straight-line programs, in: Proc. 34th International Symposium on Mathe-

matical Foundations of Computer Science (MFCS), LNCS 5734, 2009, pp. 235–246.
[18] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval, in: Proc. 18th Annual Symposium on Combinatorial Pattern

Matching (CPM), LNCS 4580, 2007, pp. 205–215.
[19] J. Barbay, C. Kenyon, Adaptive intersection and t-threshold problems, in: Proc. 13th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2002, pp. 390–399.
[20] S. Har-Peled, S. Muthukrishnan, Range medians, in: Proc. 16th European Symposium on Algorithms (ESA), LNCS 5193, 2008, pp.

503–514.
[21] S. Stolinski, S. Grabowski, W. Bieniecki, On efficient implementations of median filters in theory and practice, unpublished manuscript

(2010).
[22] M. Crochemore, C. S. Iliopoulos, M. Rahman, Finding patterns in given intervals, in: Proc. 32nd International Symposium on Mathe-

matical Foundations of Computer Science (MFCS), LNCS 4708, 2007, pp. 645–656.
[23] O. Keller, T. Kopelowitz, M. Lewenstein, Range non-overlapping indexing and successive list indexing, in: Proc. 10th International

Workshop on Algorithms and Data Structures (WADS), LNCS 4619, 2007, pp. 625–636.
[24] M. Crochemore, C. S. Iliopoulos, M. Kubica, M. Rahman, T. Walen, Improved algorithms for the range next value problem and applica-

tions, in: Proc. 25th Symposium on Theoretical Aspects of Computer Science (STACS), 2008, pp. 205–216.
[25] W.-K. Hon, R. Shah, S. Thankachan, J. S. Vitter, String retrieval for multi-pattern queries, in: Proc. 17th International Symposium on

String Processing and Information Retrieval (SPIRE), LNCS 6393, 2010, pp. 55–66.
[26] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (5) (1993) 935–948.
[27] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proc 13th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2002, pp. 657–666.
[28] M. Pǎtraşcu, Succincter, in: Proc. 49th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2008, pp. 305–313.
[29] R. Raman, V. Raman, S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Proc. 13th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 233–242.
[30] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan, Time bounds for selection, Journal of Computer and System Sciences 7 (4)

(1973) 448–461.
[31] D. Krizanc, P. Morin, M. H. M. Smid, Range mode and range median queries on lists and trees, Nordic Journal of Computing 12 (1)

(2005) 1–17.
[32] P. Bose, E. Kranakis, P. Morin, Y. Tang, Approximate range mode and range median queries, in: Proc. 22nd Symposium on Theoretical

Aspects of Computer Science (STACS), 2005, pp. 377–388.
[33] B. Gfeller, P. Sanders, Towards optimal range medians, in: Proc. 36th International Colloquium on Automata, Languages and Program-

ming, (ICALP), LNCS 5555, 2009, pp. 475–486.
[34] H. Petersen, Improved bounds for range mode and range median queries, in: Proc. 34th Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM), LNCS 4910, 2008, pp. 418–423.
[35] H. Petersen, S. Grabowski, Range mode and range median queries in constant time and sub-quadratic space, Information Processing

Letters 109 (4) (2009) 225–228.
[36] G. S. Brodal, A. G. Jørgensen, Data structures for range median queries, in: Proc. 20th International Symposium on Algorithms and

Computation (ISAAC), LNCS 5878, 2009, pp. 822–831.
[37] G. S. Brodal, B. Gfeller, A. G. Jørgensen, P. Sanders, Towards optimal range medians, Theoretical Computer Science 412 (24) (2011)

2588–2601.
[38] A. G. Jørgensen, K. D. Larsen, Range selection and median: Tight cell probe lower bounds and adaptive data structures, in: Proc. 22nd

Symposium on Discrete Algorithms (SODA), 2011, pp. 805–813.
[39] V. Mäkinen, G. Navarro, E. Ukkonen, Transposition invariant string matching, Journal of Algorithms 56 (2) (2005) 124–153.
[40] C.-C. Yu, W.-K. Hon, B.-F. Wang, Efficient data structures for the orthogonal range successor problem, in: Proc. 15th International

Computing and Combinatorics Conference (COCOON), 2009, pp. 96–105.
[41] H. Gabow, J. Bentley, R. Tarjan, Scaling and related techniques for geometry problems, in: Proc. 16 ACM Symposium on Theory of

Computing (STOC), 1984, pp. 135–143.
[42] E. Demaine, I. Munro, Adaptive set intersections, unions, and differences, in: Proc. 11th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2000, pp. 743–752.
[43] J. Barbay, C. Kenyon, Alternation and redundancy analysis of the intersection problem, ACM Transactions on Algorithms 4 (1).
[44] J. Barbay, A. López-Ortiz, T. Lu, A. Salinger, An experimental investigation of set intersection algorithms for text searching, ACM

Journal of Experimental Algorithmics 14 (3) (2009) article 7.
[45] G. Navarro, V. Mäkinen, Compressed full text indexes, ACM Computing Surveys 39 (1) (2007) article 2.
[46] J. Fischer, V. Heun, A new succinct representation of RMQ-information and improvements in the enhanced suffix array, in: Proc. 1st

ESCAPE, LNCS 4614, 2007, pp. 459–470.
[47] K. Sadakane, Succinct data structures for flexible text retrieval systems, Journal of Discrete Algorithms 5 (1) (2007) 12–22.
[48] T. Gagie, G. Navarro, S. J. Puglisi, Colored range queries and document retrieval, in: Proc. 17th International Symposium on String

Processing and Information Retrieval (SPIRE), LNCS 6393, 2010, pp. 67–81.
[49] R. Baeza-Yates, B. Ribeiro, Modern Information Retrieval, Addison-Wesley, 1999.
[50] I. Witten, A. Moffat, T. Bell, Managing Gigabytes, 2nd Edition, Morgan Kaufmann Publishers, 1999.
[51] R. Baeza-Yates, A. Moffat, G. Navarro, Searching large text collections, in: Handbook of Massive Data Sets, Kluwer Academic Publish-

ers, 2002, pp. 195–244.
[52] J. Zobel, A. Moffat, Inverted files for text search engines, ACM Computing Surveys 38 (2) (2006) art. 6.
[53] J. Zobel, A. Moffat, Exploring the similarity space, ACM SIGIR Forum 32 (1) (1998) 18–34.
[54] M. Persin, J. Zobel, R. Sacks-Davis, Filtered document retrieval with frequency-sorted indexes, Journal of the American Society for

18

Information Sicence 47 (10) (1996) 749–764.
[55] V. Anh, A. Moffat, Pruned query evaluation using pre-computed impacts, in: Proc. 29th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), 2006, pp. 372–379.
[56] T. Strohman, B. Croft, Efficient document retrieval in main memory, in: Proc. 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR), 2007, pp. 175–182.
[57] G. Zipf, Human Behaviour and the Principle of Least Effort, Addison-Wesley, 1949.
[58] R. Baeza-Yates, A fast set intersection algorithm for sorted sequences, in: Proc. 15th Annual Symposium on Combinatorial Pattern

Matching (CPM), LNCS 3109, 2004, pp. 400–408.
[59] R. Baeza-Yates, A. Salinger, Experimental analysis of a fast intersection algorithm for sorted sequences, in: Proc. 12th International

Symposium on String Processing and Information Retrieval (SPIRE), LNCS 3772, 2005, pp. 13–24.
[60] J. Barbay, A. López-Ortiz, T. Lu, Faster adaptive set intersections for text searching, in: Proc. 5th International Workshop on Experi-

mental Algorithms (WEA), LNCS 4007, 2006, pp. 146–157.
[61] P. Sanders, F. Transier, Intersection in integer inverted indices, in: Proc. 9th Workshop on Algorithm Engineering and Experiments

(ALENEX), 2007.
[62] J. S. Culpepper, A. Moffat, Compact set representation for information retrieval, in: Proc. 14th International Symposium on String

Processing and Information Retrieval (SPIRE), LNCS 4726, 2007, pp. 137–148.
[63] G. Navarro, E. Moura, M. Neubert, N. Ziviani, R. Baeza-Yates, Adding compression to block addressing inverted indexes, Information

Retrieval 3 (1) (2000) 49–77.
[64] D. A. Hull, Stemming algorithms: A case study for detailed evaluation, Journal of the American Society for Information Science 47 (1)

(1996) 70–84.
[65] J. Xu, W. B. Croft, Corpus-based stemming using cooccurrence of word variants, ACM Transactions on Information Systems 16 (1)

(1998) 61–81.
[66] D. Hiemstra, V. Mihajlović, The simplest evaluation measures for XML information retrieval that could possibly work, in: Proc. INEX

Workshop on Element Retrieval Methodology, 2005.
[67] J. Pehcevski, Evaluation of effective XML information retrieval, Ph.D. thesis, RMIT University, Australia (2006).
[68] M. Lalmas, XML Retrieval, Vol. 1, Morgan & Claypool Publishers, 2009.
[69] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro, K. Nguy˜̂en, J. Sirén, N. Välimäki, Fast in-memory XPath search over

compressed text and tree indexes, in: Proc. 26th IEEE International Conference on Data Engineering (ICDE), 2010, pp. 417–428.
[70] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th Symposium on Foundations of Computer Science (FOCS), 1989, pp.

549–554.
[71] K. Sadakane, G. Navarro, Fully-functional succinct trees, in: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2010, pp. 134–149.
[72] A. Golynski, I. Munro, S. Rao, Rank/select operations on large alphabets: a tool for text indexing, in: Proc. 17th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2006, pp. 368–373.
[73] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proc. 9th Workshop on Algorithm Engineering and

Experiments (ALENEX), 2007.
[74] I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),

LNCS 1180, 1996, pp. 37–42.
[75] J. S. Culpepper, G. Navarro, S. J. Puglisi, A. Turpin, Top-k ranked document search in general text databases, in: Proc. 18th Annual

European Symposium on Algorithms (ESA), LNCS 6347, 2010, pp. 194–205 (part II).

19

