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Johannes Fischera,1, Veli Mäkinenb,2, Gonzalo Navarroc,3

aCenter for Bioinformatics (ZBIT), University of Tübingen. fischer@informatik.uni-tuebingen.de.
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Abstract

Suffix trees are among the most important data structures in stringology, with a number
of applications in flourishing areas like bioinformatics. Their main problem is space
usage, which has triggered much research striving for compressed representations that
are still functional. A smaller suffix tree representation could fit in a faster memory,
outweighing by far the theoretical slowdown brought by the space reduction. We present
a novel compressed suffix tree, which is the first achieving at the same time sublogarithmic
complexity for the operations, and space usage that asymptotically goes to zero as the
entropy of the text does. The main ideas in our development are compressing the longest
common prefix information, totally getting rid of the suffix tree topology, and expressing
all the suffix tree operations using range minimum queries and a novel primitive called
next/previous smaller value in a sequence. Our solutions to those operations are of
independent interest.
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1. Introduction

Suffix trees are probably the most important structure ever invented in stringology.
They have been said to have a myriad of virtues [3], and also have a myriad of applications
in many areas, most prominently bioinformatics [26]. One of the main drawbacks of suffix
trees is their considerable space requirement, which is usually close to 20n bytes for a
sequence of n symbols, and at the very least 10n bytes [34]. For example, the human
genome, containing approximately 3 billion bases, could easily fit in the main memory
of a desktop computer (as each DNA symbol needs just 2 bits). However, its suffix tree
would require 30GB to 60GB, too large to fit in normal main memories. Although there
has been some progress in managing suffix trees in secondary storage [28] and it is an
active area of research [33], it is always faster to operate in main memory.
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This situation has stimulated research on compressed representations of suffix trees,
which operate without need of decompression. That is, the goal is not traditional data
compression, where data must be decompressed before accessing it, but compressed data
structures, which operate within reduced space. Even if many more operations are needed
to carry out the operations on the compressed representation, this is clearly advantageous
compared to having to manage it on secondary memory. A large body of research fo-
cuses on compressed suffix arrays [41], which offer a reduced suffix tree functionality. In
particular, they miss the important suffix-link operation. The same restrictions apply to
early compressed suffix trees [40, 25].

The first fully-functional (i.e., supporting a thorough standard set of operations)
compressed suffix tree is due to Sadakane [45]. It builds on top of a compressed suffix
array [44] that uses 1

ǫ
nH0 + O(n log log σ) bits of space, where H0 is the zero-order

empirical entropy of the text T1,n, σ is the size of the alphabet of T , and 0 < ǫ < 1 is
any constant. In addition, the compressed suffix tree needs 6n+ o(n) bits of space. Most
of the suffix tree operations can be carried out in constant time, except for knowing the
string-depth of a node and the string content of an edge, which take O(logǫ n) time, and
moving to a child, which costs O(logǫ n log σ). One could replace the compressed suffix
array they use by Grossi et al.’s [24], which requires less space: 1

ǫ
nHk + o(n log σ) bits

for any k ≤ α logσ n, where Hk is the k-th empirical entropy of T [38] and 0 < α < 1

is any constant. However, the O(logǫ n) time complexities become O(log
ǫ

1−ǫ

σ n log σ) [24,
Theorem 4.1]. In addition, the extra 6n bits in the space complexity remain, despite any
reduction we can achieve in the compressed suffix array. The 6n bit-term can be split
into 2n bits to represent (with a bitmap called H) the longest common prefix information
(LCP, called Hgt in that work [45]), plus 4n bits to represent the suffix tree topology
with parentheses. Many operations are solved via constant-time rank- and select queries
in the parentheses sequence.

Russo et al. [43] recently achieved fully-compressed suffix trees, that is, requiring
nHk + o(n log σ) bits of space (with the same limits on k as before), which is essentially
the space required by the smallest compressed suffix array, and asymptotically optimal
under the k-th entropy model. The main idea is to sample some suffix tree nodes and use
the compressed suffix array as a tool to find nearby sampled nodes. The most adequate
compressed suffix array for this task is the alphabet-friendly FM-index [14]. The time
complexities for most operations are logarithmic at best, more precisely, betweenO(log n)
and O(log n log logn). Others are slightly more expensive, for example moving to a child
costs an additional O(log logn) factor, and some less common operations are as costly
as O((log n log logn)2).

We present a new fully-compressed suffix tree, which removes the 6n term in Sadakane’s
space complexity. The space we achieve is not as good as that of Russo et al., but
most of our time complexities are sublogarithmic. More precisely, our index needs
nHk(2 log 1

Hk
+ 1

ǫ
+ O(1)) + o(n log σ) bits of space. Note that, although this is not

the ideal nHk, it still goes to zero as Hk → 0, unlike the incompressible 6n bits in
Sadakane’s structure. Indeed this is a crude upper bound that makes sense only when
Hk < 1; see point (1) next for a more refined formula. At worst, our space is still
2n+ nHk(

1
ǫ

+O(1)) + o(n log σ) bits, that is, we need 2n instead of 6n bits.
Our solution builds on two novel algorithmic ideas to improve Sadakane’s compressed

suffix tree. The first takes care (with success depending on the compressibility of the
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text, as explained) of the 2n bits of the LCP information, whereas the second removes the
4n bits of the tree topology at the price of converting constant times into sublogarithmic.

1. We show that array H , which encodes LCP information in 2n bits [45, Section 4.1],
actually contains 2R runs, where R is the number of runs in ψ [41]. We show how
to run-length compressH into 2R log n

R
+O(R)+o(n) bits while retaining constant-

time access. In order to relate R with nHk, we use the result R ≤ nHk+σk for any
k [36], although sometimes it is extremely pessimistic (and is meaningful only for
Hk < 1, as obviously R ≤ n). This gives the nHk(2 log 1

Hk
+O(1)) upper bound to

store H , and in any case the actual space is ≤ 2n bits.

2. We get rid of the suffix tree topology and identify suffix tree nodes with suffix
array intervals. All the tree traversal operations are simulated with range minimum
queries (RMQs) on LCP (represented with H), plus a new type of queries called
“Next/Previous Smaller Value” (NSV/PSV). An RMQ from i to j ≥ i over a
sequence S[1, n] of numbers asks for RMQS(i, j) := argmini≤ℓ≤jS[ℓ]. In an NSV-
/PSV-query, we wish to find the first cell in S following/preceding i whose value is
smaller than S[i]. We show how to solve these queries in sublogarithmic time while
spending only o(n) extra bits of space on top of S.

These latter operations have independent interest. Computing RMQs is a well studied
problem, including very recent findings related to achieving constant time with O(n) bits
of extra space [6, 2, 4, 16, 45, 46, 17]. We give sublogarithmic-time solutions using o(n)
bits of extra space, leaving open the challenge of achieving constant time within this
space.

Interest in PSV/NSV-like queries is more recent. It has been considered earlier in
parallel computing [5], yet not in the static scenario. This latter case is our focus. We
show that PSV/NSV can be solved in constant time using Θ(n) bits of space, and in
sublogarithmic time using o(n) bits of space. The challenge of achieving constant time
with sublinear space remains open.

Crochemore et al. [11, 10] have studied a related problem called “Range Next Value”
(RNV), where on a given range [i, j] and value ℓ one needs to find the cell in S[i, j]
whose value is smallest among those greater than or equal to ℓ. The best constant time
solution to RNV requires O(n1+ǫ) space, for any constant ǫ > 0 [10]. It is an interesting
open question whether RNV could be solved in space close to that of our PSV/NSV
solutions. That would have direct consequences for several problems, for example in
solving position-restricted pattern searches [37].

The outline of the paper is as follows. In Section 2 we explain some basic concepts
on suffix trees, compressed text indexes, and compact data structures. In Section 3 we
show how LCP can be compressed to less than 2n bits when T is compressible, while
retaining constant-time access. In Section 4 we give sublogarithmic-time solutions to
PSV/NSV queries using o(n) extra space, and a constant-time solution using 4n bits of
space. Section 5 gives novel sublogarithmic time solutions to RMQs using o(n) bits of
space. Section 6 shows how all the suffix tree operations can be solved in compressed
space using the new primitives. Finally, Section 7 discusses the theoretical achievements
in the context of related work on compressed suffix trees, and Section 8 discusses possible
practical implementations of our theoretical proposal.
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2. Basic Concepts

The suffix tree S of a text T1,n over an alphabet Σ of size σ is a compact trie storing
all the suffixes Ti,n where the leaves point to the corresponding i values [3, 26]. For
technical convenience we assume that T is terminated with a special symbol, so that all
lexicographical comparisons are well defined. For a node v in S, π(v) denotes the string
obtained by reading the edge-labels when walking from the root to v (the path-label of v
[43]). The string-depth of v is the length of π(v).

Definition 1. A suffix tree representation supports the following operations:

• Root(): the root of the suffix tree.

• Locate(v): the suffix position i if v is the leaf of suffix Ti,n, otherwise null.

• Ancestor(v, w): true if v is an ancestor of w.

• SDepth(v)/TDepth(v): the string-depth/tree-depth of v.

• Count(v): the number of leaves in the subtree rooted at v.

• Parent(v): the parent node of v.

• FChild(v): the alphabetically first child of v.

• NSibling(v): the alphabetically next sibling of v.

• SLink(v): the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for
a ∈ Σ.

• SLinki(v): the iterated suffix-link of v; (node w s.th. π(w) = β if π(v) = αβ for
α ∈ Σi).

• LCA(v, w): the lowest common ancestor of v and w.

• Child(v, a): the node w s.th. the first letter on edge (v, w) is a ∈ Σ.

• Letter(v, i): the ith letter of v’s path-label, π(v)[i].

• LAQs(v, d)/LAQt(v, d): the highest ancestor of v with string-depth/tree-depth
≥ d.

Existing compressed suffix tree representations include a compressed full-text index
[41, 44, 24, 14], which encodes in some form the suffix array SA[1, n] of T , with access
time tSA. Array SA is a permutation of [1, n] storing the pointers to the suffixes of T (i.e.,
the Locate values of the leaves of S) in lexicographic order. Most full-text indexes also
support access to permutation SA

−1 in time O(tSA), as well as the efficient computation
of permutation ψ[1, n], where ψ(i) = SA

−1[SA[i] + 1] for 1 ≤ i ≤ n if SA[i] 6= n and
SA

−1[1] otherwise. ψ(i) is computed in time tψ, which is at most O(tSA), but usually
less. Compressed suffix tree representations also include array LCP[1, n], which stores the
length of the longest common prefix (lcp) between consecutive suffixes in lexicographic
order, LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| for i > 1 and LCP[1] = 0. The access time for
LCP is tLCP.
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We make heavy use of the following complementary operations on bit arrays: rank(B, i)
is the number of bits set in B[1, i], and select(B, j) is the position of the j-th 1 in B.
Bit vector B[1, n] can be preprocessed to answer both queries in constant time using
o(n) extra bits of space [39]. If B contains only m bits set, then the representation of
Raman et al. [42] compresses B to m log n

m
+O(m+ n log logn

logn ) bits of space and retains
constant-time rank and select queries.

By log x we mean log2 x. By logt h(n) we mean (log h(n))t.

3. Compressing LCP Information

Sadakane [45] describes an encoding of the LCP array that uses 2n+ o(n) bits. The
encoding is based on the fact that values i+LCP[i] are nondecreasing when listed in text
position order: Sequence S = s1, . . . , sn−1, where sj = j+LCP[SA

−1[j]], is nondecreasing.
To represent S, Sadakane encodes each diff(j) = sj−sj−1 in unary: 1 0diff(j), where

s0 = 0 and 0d denotes repetition of 0-bit d times. This encoding, call it H (following
Sadakane [45, Section 4.1]), takes at most 2n bits. Thus LCP[i] = select(H, j+1)−2j+1,
where j = SA[i], is computed in time O(tSA).

Let us now consider how to represent H in a yet more space-efficient form, that
is, in nHk(2 log 1

Hk

+ O(1)) + o(n) bits, for small enough k. The result follows from

the observation (to be shown below, in Lemma 1) that the number of 1-bit runs in
H is bounded by the number of runs in ψ. We call a run in ψ a maximal sequence
of consecutive i values where ψ(i) − ψ(i − 1) = 1 and TSA[i−1] = TSA[i], including one
preceding i where this does not hold [36]. Note that an area in ψ where the differences
are not 1 corresponds to several length-1 runs. Let us call R ≤ n the overall number of
runs in ψ.

We will represent H in run-length encoded form, coding each maximal run of both 0
and 1 bits. We show soon that there are at most R 1-runs, and hence at most R 0-runs
(as H starts with a 1). If we encode the 1-run lengths o1, o2, . . . and the 0-run lengths
z1, z2, . . . separately (cf. [12, Section 3.2]), it is easy to compute select(H, j) by finding
the largest r such that

∑r
i=1 oi < j and then answering select(H, j) = j+

∑r
i=1 zi. This

so-called searchable partial sums problem is easy to solve. Store bitmap O[1, n] setting
the bits at positions

∑r
i=1 oi, hence max{r,

∑r
i=1 oi < j} = rank(O, j − 1). Likewise,

bitmap Z[1, n] representing the zi’s solves
∑r
i=1 zi = select(Z, r). Since both O and Z

have at most R 1’s, O plus Z can be represented using 2R log n
R

+O(R+ n log log n
logn ) bits

[42].
We now prove the connection between runs in H and runs in ψ, and conclude by

formalizing the result of this section.

Lemma 1. Let H and R be as defined in this section. Then bitmap H has at most R
runs of 1’s (where even isolated 1’s count as a run).

Proof. Let us call position i a stopper if i = 1 or ψ(i)−ψ(i−1) 6= 1 or TSA[i−1] 6= TSA[i].
Hence ψ has exactly R stoppers by the definition of runs in ψ. Now say that a chain in
ψ is a maximal sequence i, ψ(i), ψ(ψ(i)), . . . such that each ψj(i) is not a stopper except
the last one. As ψ is a permutation with just one cycle, it follows that in the path of
ψj [SA

−1[1]], 0 ≤ j < n, we will find the R stoppers, and hence there are also R chains
in ψ [23].
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We now show that each chain in ψ induces a run of 1’s of the same length in H .
Let i, ψ(i), . . ., ψℓ(i) be a chain. Hence ψj(i) − ψj(i − 1) = 1 for 0 ≤ j < ℓ. Let
x = SA[i − 1] and y = SA[i]. Then SA[ψj(i − 1)] = x + j and SA[ψj(i)] = y + j. Also,
LCP[i] = |lcp(TSA[i−1],n, TSA[i],n)| = |lcp(Tx,n, Ty,n)|. Note that Tx+LCP[i] 6= Ty+LCP[i], and

hence SA
−1[y+LCP[i]] = ψLCP[i](i) is a stopper, thus ℓ ≤ LCP[i]. Moreover, LCP[ψj(i)] =

|lcp(Tx+j,n, Ty+j,n)| = LCP[i] − j ≥ 0 for 0 ≤ j < ℓ. Now consider sy+j = y + j +
LCP[SA

−1[y + j]] = y + j + LCP[ψj(i)] = y + j + LCP[i] − j = y + LCP[i], all equal for
0 ≤ j < ℓ. This produces ℓ− 1 diff values equal to 0, that is, a run of ℓ 1-bits in H . By
traversing all the chains in the cycle of ψ we sweep S left to right, producing at most R
runs of 1’s. �

Theorem 1. The LCP array of a text of length n whose ψ function has R runs, can be
represented using 2R log n

R
+Θ(R)+O(n log logn

logn ) = nHk(2 log 1
Hk

+Θ(1))+O(n log logn
logn )

bits, for any k ≤ α logσ n and any constant 0 < α < 1. Access to LCP[i] takes constant
time given the value of SA[i], the corresponding suffix array cell.

Proof. We showed how LCP is represented using H (so that SA[i] is needed to retrieve
LCP[i]), and this is in turn represented using Z and O. This already gives the result in
terms of R.

To express the result in terms of Hk, we have the bound R ≤ nHk + σk for any
k [41], which for k ≤ α logσ n is at most nHk + nα, α < 1. Let us first consider the
uninteresting case R = Θ(n). The space formula 2R log n

R
+Θ(R)+o(n) becomes simply

Θ(n). Since nHk + nα ≥ R = Θ(n), it follows that Hk = Θ(1) and thus it also holds
nHk(2 log 1

Hk
+O(1)) + o(n) = Θ(n).

The interesting case is Hk = o(1), and therefore R = o(n). Since 2R log n
R

is an in-
creasing function of R for R < n/e, we have 2R log n

R
+Θ(R) ≤ 2(nHk+n

α) log n
nHk+nα +

Θ(nHk + nα). This is at most 2nHk log 1
Hk

+ Θ(nHk) + O(nα logn), which is upper

bounded by 2nHk(log 1
Hk

+ Θ(1)) +O(n log logn
log n ). �

We emphasize that, although our somewhat crude upper bounds do not show it,
our representation is asymptotically never larger than the original H , that is, at most
2n+ o(n) bits.

Finally, we note that, given SA and LCP, the construction time of our data structure
is linear. This is not the case for the original solution to compressed bitmaps [42], which
need perfect hashing. However, the only essential part of their solution is the (c, o)
entropy-bounded encoding which, coupled with a directory using O(n log logn

logn ) extra bits,

can obviously be built in linear time and allows extracting any O(log n)-bits block from
the bitmap in constant time. On top of that, one can add the O(n log logn

logn ) extra bits

needed to answer rank [39] and select [22] in constant time on uncompressed bitmaps,
replacing their accesses to the bitmap by those to the (c, o) encoding. Those structures
can also be built in linear time. Indeed one can use encodings that achieve higher-order
compression of the bitmap [15], albeit our analysis does not take advantage of such a
result.

4. Previous/Next Smaller Value Queries

In this section we consider queries next smaller value (NSV) and previous smaller
value (PSV), and show that they can be solved in sublogarithmic time using only a
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sublinear number of extra bits on top of the raw data. We make heavy use of these
queries in the design of our new compressed suffix tree, and they are also of independent
interest. At the end we extend our results to achieve constant time and a linear number
of extra bits of space.

Definition 2. Let S[1, n] be a sequence of elements drawn from a set with a total order
� (where one can also define a ≺ b⇔ a � b ∧ b 6� a). We define the query next smaller
value and previous smaller value as follows: NSVS(i) = min{j, (i < j ≤ n ∧ S[j] ≺
S[i])∨ j = n+1} and PSVS(i) = max{j, (1 ≤ j < i∧S[j] ≺ S[i])∨ j = 0}, respectively.

The key idea to solve these queries reminds that for findopen and findclose opera-
tions in balanced parentheses, in particular the recursive version [21]. However, there
are several differences because we have to deal with a sequence of generic values, not
parentheses.

We will describe the solution for NSV, as that for PSV is symmetric. For shortness
we will write NSV(i) for NSVS(i). We split S[1, n] into consecutive blocks of b values.
A position i will be called near if NSV(i) is within the same block of i. The first step
when solving a NSV query will be to scan the values S[i + 1 . . . b · ⌈i/b⌉], that is from
i+ 1 to the end of the block, looking for an S[j] ≺ S[i]. This takes O(b) time and solves
the query for near positions.

Positions that are not near are called far. We note that the far positions within a
block, i1 < i2 . . . < is form a nondecreasing sequence of values S[i1] � S[i2] . . . � S[is].
Moreover, their NSV values form a nonincreasing sequence NSV(i1) ≥ NSV(i2) . . . ≥
NSV(is).

A far position i will be called a pioneer if NSV(i) is not in the same block of NSV(j),
being j the largest far position preceding i (the first far position is also a pioneer). It
follows that, if i is not a pioneer and j is the last pioneer preceding i, then NSV(i) is
in the same block of NSV(j) ≥ NSV(i). Hence, to solve NSV(i), we find j and then
scan (left to right) the block S[⌈NSV(j)/b⌉− b+1 . . .NSV(j)], in time O(b), for the first
value S[j′] ≺ S[i].

So the problem boils down to efficiently finding the pioneer preceding each position i,
and to storing the answers for pioneers. We mark pioneers in a bitmap P [1, n]. We note
that, since there are O(n/b) pioneers overall [27], P can be represented using O(n log b

b
)+

O(n log logn
logn ) bits of space [42]. With this representation, we can easily find the last

pioneer preceding a far position i, as j = select(P, rank(P, i)). We could now store the
NSV answers for the pioneers in an answer array A[1, n′] (n′ = O(n/b)), so that if j
is a pioneer then NSV(j) = A[rank(P, j)]. This already gives us a solution requiring
O(n log b

b
) + O(n log logn

logn ) + O(n logn
b

) bits of space and O(b) time. For example, we can

have O( n
log logn ) bits of space and O(log n log log n) time.

However, we can do better by applying the idea recursively. Instead of storing the
answers explicitly in array A, we will form a (virtual) reduced sequence S′[1, 62n′] con-
taining all the pioneer values i and their answers NSV(i). Sequence S′ is not explicitly
stored. Rather, we set up a bitmap R[1, n] where the selected values of S are marked.
Hence we can retrieve any value S′[i] = S[select(R, i)]. Again, this can be computed in
constant time using O(n log b

b
+ n log logn

log n ) bits to represent R [42].

Because S′ is a subsequence of S, it holds that the answers to NSV in S′ are the
same answers mapped from S. That is, if i is a pioneer in S, mapped to i′ = rank(R, i)
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in S′, and NSV(i) is mapped to j′ = rank(R,NSV(i)), then j′ = NSVS′(i′), because
all values in S′[i′ + 1 . . . j′− 1] correspond to values within S[i+ 1 . . .NSV(i)− 1], which
by definition of NSV are not smaller than S[i]. Hence, we can find NSV(i) for pioneers
i by the corresponding recursive query on S′, NSV(i) = select(R,NSVS′(rank(R, i))).
We are left with the problem of solving queries NSVS′(i).

We proceed again by splitting S′ into blocks of b values. Near positions in S′ are
solved in O(b) time by scanning the block. Recall that S′ is not explicitly stored, but
rather we have to use select on R to get its values from S. For far positions we define
again pioneers, and solve NSV on far positions in time O(b) using the answer for the
preceding pioneer. Queries for pioneers are solved in a third level by forming the virtual
sequence S′′[1, 62n′′], n′′ = O(n′/b) = O(n/b2).

We continue the process recursively for r levels before storing the explicit answers in
array A[1, n(r)], n(r) = O(n/br). We remark that the P ℓ and Rℓ bitmaps at each level
ℓ map positions directly to S, not to the reduced sequence of the previous level. This
permits accessing the Sℓ[i] values at any level ℓ in constant time, Sℓ[i] = S[select(Rℓ, i)].
The pioneer preceding i in Sℓ is found by first mapping to S with i′ = select(Rℓ, i), then
finding the preceding pioneer directly in the domain of S, j′ = select(P ℓ, rank(P ℓ, i′)),
and finally mapping the pioneer back to Sℓ by j = rank(Rℓ, j′).

Let us now analyze the time and space of this solution. Because we pay O(b) time at
each level and might have to resort to the next level in case our position is far, the total
time is O(rb) because the last level is solved in constant time. As for the space, all we
store are the P ℓ and Rℓ bitmaps, and the final array A. Array A takes O(n logn

br ) bits.

As there are O(n/bℓ) elements in Sℓ, both P ℓ and Rℓ require O( n
bℓ log(bℓ) + n log logn

logn )

bits of space (actually P ℓ can be as small as half the size of Rℓ). The sum of all the P ℓ

and Rℓ takes order of

∑

1≤ℓ≤r

(

n

bℓ
log(bℓ) +

n log logn

logn

)

≤ n log b





∑

ℓ≥1

ℓ

bℓ



 + r
n log logn

logn

= O

(

n log b

b
+ r

n log log n

logn

)

.

We now state the main result of this section.

Theorem 2. Let S[1, n] be a sequence of elements drawn from a set with a total order,
such that access to any S[i] and any comparison S[i] ≺ S[j] can be computed in constant
time. Then, for any 1 ≤ r, b ≤ n, it is possible to build a data structure on S taking
O(n log b

b
+rn log logn

logn + n logn
br ) bits, so that queries NSV and PSV can be solved in worst-

case time time O(rb). In particular, for any f(n) = O( log n
log logn ), one can achieve O( n

f(n) )

bits of extra space and O(f(n) log log n) time.

Proof. The general formula for any r, b has been obtained throughout this section.
As for the formulas in terms of f(n), let us set the space limit to O( n

f(n) ). Then
n log b
b

= O( n
f(n) ) implies b = Ω(f(n) log f(n)). Also, n logn

br = O( n
f(n)) implies r ≥

log log n+log f(n)−O(1)
log b . Hence rb ≥ b

log b (log logn+log f(n)−O(1)). Thus it is best to min-

imize b. By setting b = f(n) log f(n), we get rb = f(n) log f(n)
log f(n)+log log f(n) (log logn+log f(n)−
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O(1)) = Θ(f(n)(log logn+log f(n))). The final constraint is rn log log n
logn = O( n

f(n) ), which,

by means of substituting r = log logn+log f(n)
log b and considering that b = Ω(f(n) log f(n)),

yields the condition f(n) = O( logn
log logn ). Thus log logn+ log f(n) = O(log logn). �

Note that it is possible to get any time complexity of the form ω(log logn) while using
o(n) bits of space. In particular we highlight some cases of interest:

• f = log logn: with a data structure taking O( n
log log n ) bits of space, the queries are

solved in time O(log2 logn).

• f = logǫ n
log log n : with a data structure taking O(n log logn

logǫ n
) bits, for any constant 0 <

ǫ ≤ 1, the queries can be solved in time O(logǫ n). The least space we can use
corresponds to ǫ = 1, where we reach logarithmic time.

• f = log∗ n: with a data structure taking O( n
log∗ n

) bits of space (still o(n) but

pushing it to the extreme), we achieve time O(log∗ n log logn).

As for construction time, we note that each level of the structure can be built in time
proportional to the length of its array: We traverse the sequence and keep in a stack the
positions whose NSV has not yet been found. Each new integer pops those larger than
it before pushing itself in the stack. The last far position popped before the end of each
block is a pioneer. As the recursive structure considers exponentially decreasing array
sizes (n/bℓ), all the sizes add up to O(n). However, we must build compressed bitmaps
P ℓ and Rℓ. Each can be built in time linear on its nominal size, which is always n,
and therefore the total construction time amounts to O(rn). According to our previous
computations, this is O(n(1 + log logn

log f(n) )), which can be as bad as O(n log logn).

4.1. Achieving Constant Time with Linear Space

If we use Θ(n) bits of space in Theorem 2, the time is still O(log logn). However, we
can do better within that space.

Theorem 3. Queries PSV and NSVcan be solved in constant time by using 4n+ o(n)
bits of space.

Proof. We reduce PSV and NSV queries to O(1) findopen and findclose operations
in balanced parentheses [21]. For NSV, for 1 ≤ i ≤ n + 1 in this order, write a
’(’ and then x ’)’s if there are x cells S[j] for which NSV(j) = i. The resulting
sequence B is balanced if a final ’)’ is appended, and NSV(i) can be obtained by
rank(B, findclose(B, select(B, i))), where a 1 in B represents ’(’. The solution is sym-
metric for PSV, needing other 2n+ o(n) bits. �

5. Range Minimum Queries in Sublinear Space

In this section we show how to preprocess a sequence S[1, n] of arbitrary symbols
(which can be compared with �) such that RMQS can be answered in sublogarithmic
time, using o(n) bits of additional space.

9



Definition 3. Let S[1, n] be a sequence of elements drawn from a set with a total order
�. The range minimum query is defined as follows: RMQS(i, j) = argmini≤ℓ≤jS[ℓ],
where argmin refers to order �.

A well-known strategy [17, 45] divides S iteratively into blocks of decreasing size
n > b1 > b2 > · · · > br. On level i, 1 ≤ i ≤ r, compute all answers to RMQS that
exactly span over blocks of size bi, but not over blocks of size bi−1 (set b0 = n for handling

the border case). This takes O( n
bi

log( bi−1

bi
) log(bi−1)) = O( n

bi
log2(bi−1)) bits of space if

the answers are stored relative to the beginning of the blocks on level i−1, and if we only
precompute queries that span 2j blocks for all j ≤ ⌊log( bi−1

bi
)⌋ (this is sufficient because

each query can be decomposed into at most 2 possibly overlapping sub-queries whose
lengths are a power of 2).

A general range minimum query is then decomposed into at most 2r+1 non-overlapping
sub-queries q1, . . . , q2r+1 such that q1 and q2r+1 lie completely inside of blocks of size br,
q2 and q2r exactly span over blocks of size br, and so on. Queries q1 and q2r+1 are solved
by scanning in time O(br), and all other queries can be answered by table-lookups in
total time O(r).4 The final answer is obtained by comparing (using �) at most 2r + 1
minima.

The next lemma gives a general result for RMQs using o(n) extra space.

Lemma 2. Having constant-time access to elements in S[1, n] and to compute operation
�, it is possible to answer range minimum queries on S in time O(f(n) log2 f(n)) using

O( n
f(n) ) bits of space, for any f(n) = Ω(log[r] n) and any constant r ≥ 0. (By log[r] n we

denote r applications of log to n.)

Proof. We use r+1 = O(1) levels 1 . . . r+1, so it is sufficient that n
bi

log2 bi−1 = O( n
f(n) )

for all 1 ≤ i ≤ r + 1, where b0 = n. From the condition n
b1

log2 b0 = O( n
f(n) ) we get

b1 = Θ(f(n) log2 n) (the smallest possible bi values are best). From n
b2

log2 b1 = O( n
f(n) )

we get b2 = Θ(f(n) log2 b1) = Θ(f(n)(log f(n) + log logn)2). In turn, from n
b3

log2 b2 =

O( n
f(n) ) we get b3 = Θ(f(n) log2 b2) = Θ(f(n)(log f(n) + log log logn)2). This continues

until br+1 = Θ(f(n) log2 br) = Θ(f(n)(log f(n) + log[r+1] n)2) = Θ(f(n) log2 f(n)). �

Some interesting tradeoffs follow:

• f = log logn: with O( n
log logn ) bits of space, we answer queries in time O(log logn ·

log2 log logn).

• f = logǫ n
log log n : with O(n log log n

logǫ n
) bits of space, for any constant 0 < ǫ ≤ 1, the query

time is O(logǫ n log logn).

• f = log∗ n: although not directly covered by the lemma, it is not hard to see that
one can get O((log∗ n log log∗ n)2) time and O( n

log∗ n
) bits of space, by choosing

r = (log∗ n)− 1 and f = (log∗ n)2.

4The constant-time solutions [45, 17] also solve q1 and q2r+1 by accessing tables that require Θ(n)
bits.
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vl vr x y

NSV
PSV

h h−1

RMQ

k

(x+1,y)

ψ ψ

Figure 1: Left: Illustration to the representation of suffix tree nodes. The lengths of the bars indicate
the LCP values. All leaves in the subtree rooted at v = [vl, vr ] share a longest common prefix of length
at least h. Right: Schematic view of the SLink operation. From v, first follow ψ, then perform an RMQ
to find an (h− 1)-index k, and finally locate the defining points of the desired interval by a PSV/NSV
query from k.

Construction time for this structure is O(n). This is dominated by the time to scan the
array in order to fill the last level, r+1. All the rest is filled using dynamic programming
in constant time per cell stored. These add up to O( n

bi
log bi−1) = O( n

f(n) ) per level, and

the total number of levels is r + 1 = O(1).

6. An Entropy-Bounded Compressed Suffix Tree

Let v be a node in the (virtual) suffix tree S for text T1,n. As in previous works
[1, 9, 43], we represent v by an interval [vl, vr] in SA such that SA[vl, vr] are exactly the
leaves in S that are in the subtree rooted at v. Let us first consider internal nodes, so
vl < vr. Because S does not contain unary nodes, it follows from the definition of LCP

that at least one entry in LCP[vl+1, vr] is equal to the string-depth h of v; such a position
is called h-index of [vl, vr]. We further have LCP[vl] < h, LCP[i] ≥ h for all vl < i ≤ vr,
and LCP[vr + 1] < h. Fig. 1 (left) illustrates. We state the easy yet fundamental

Lemma 3. Let [vl, vr] be an interval in SA that corresponds to an internal node v in S.
Then the string-depth of v can be obtained as h = LCP(k), where k = RMQLCP(vl+1, vr).

For leaves v = [vl, vl], the string-depth of v is simply given by n− SA[vl] + 1.
Now we have all the ingredients for navigating in the suffix tree. The operations are

described in the following. We will make use of RMQ and PSV/NSV queries on the array
LCP. The intuitive reason why an RMQ is often followed by a PSV/NSV query is that
the RMQ gives us an h-index of the (yet unknown) interval, and the PSV/NSV takes
us to the delimiting points of this interval. Apart from tSA, tLCP, and tψ, we denote by
tRMQ and tPNSV the time to solve, respectively, RMQs or PSV/NSV queries. As these
are carried out on LCP, and their dominating cost is the number of access to the array,
their times will be multiplied by tLCP, the cost to access any LCP cell.

Root/Count/Ancestor: Root() returns the interval [1, n], Count(v) is simply vr −
vl+1, Ancestor(w, v) is true iff wl ≤ vl ≤ vr ≤ wr. All these can be computed in O(1)
time.

11



SDepth(v)/Locate(v): According to Lemma 3, SDepth(v) can be computed in time
O(tRMQ · tLCP) for internal nodes, and both operations need time O(tSA) for leaves. One
knows in constant time that v = [vl, vr] is a leaf iff vl = vr.

Parent(v): If v is the root, return null. Otherwise, since the suffix tree is compact, we
must have that the string-depth of Parent(v) is either LCP[vl] or LCP[vr+1], whichever
is greater [43]. So, by setting k = if LCP[vl] > LCP[vr+1] then vl else vr+1, the parent
interval of v is [PSV(k),NSV(k)− 1]. Time is O(tPNSV · tLCP).

FChild(v): If v is a leaf, return null. Otherwise, because the minima in [vl, vr] are
v’s h-indices [17], the first child of v is given by [vl,RMQ(vl + 1, vr)− 1], assuming that
RMQs always return the leftmost minimum in the case of ties (which is easy to arrange).
Time is O(tRMQ · tLCP).

NSibling(v): First move to the parent of v by w = Parent(v). If vr = wr , return
null, since v does not have a next sibling. If vr + 1 = wr, v’s next sibling is a leaf, so
return [wr, wr]. Otherwise, return [vr + 1,RMQ(vr + 2, wr) − 1]. The overall time is
O((tRMQ + tPNSV) · tLCP).

SLink(v): If v is the root, return null. Otherwise, first follow the suffix links of the
leaves vl and vr, x = ψ(vl) and y = ψ(vr). Then locate an h-index of the target interval
by k = RMQ(x + 1, y) (the first character of all strings in {TSA[i],n : vl ≤ i ≤ vr} is
the same, so the h-indices in [vl, vr] appear also as (h − 1)-indices in [ψ(vl), ψ(vr)]; see
also [1, Lemma 7.5]). The final result is then given by [PSV(k),NSV(k) − 1]. Time is
O(tψ + (tPNSV + tRMQ) · tLCP)). Fig. 1 (right) illustrates.

SLinki(v): Same as above with x = ψi(vl) and y = ψi(vr). If the first Letter of x
and y are different, then the answer is Root. Otherwise we go on with k as before.
Computing ψi can be done in O(tSA) time using ψi(v) = SA

−1[SA[v] + i] [43]. Time is
thus O(tSA + (tPNSV + tRMQ) · tLCP).

LCA(v, w): If one of v or w is an ancestor of the other, return this ancestor node.
Otherwise, w.l.o.g., assume vr < wl. The h-index of the target interval is given by
an RMQ between v and w [45]: k = RMQ(vr + 1, wl). The final answer is again
[PSV(k),NSV(k)− 1]. Time is O((tRMQ + tPNSV) · tLCP).

Child(v, a): If v is a leaf, return null. Otherwise, the minima in LCP[vl + 1, vr] define
v’s child intervals, so we need to find the position p ∈ [vl + 1, vr] where LCP[p] =
mini∈[vl+1,vr] LCP[i], and TSA[p]+LCP[p] = Letter([p, p], LCP[p] + 1) = a. Then the final
result is given by [p,RMQ(p + 1, vr) − 1], or null if there is no such position p. To
find this p, split [vl, vr] into three sub-intervals [vl, x − 1], [x, y − 1], [y, vr], where x (y)
is the first (last) position in [vl, vr] where a block of size br starts (br is the smallest
block size for precomputed RMQs, recall Section 5). Intervals [vl, x − 1] and [y, vr] can
be scanned for p in time O(tRMQ · (tLCP + tSA)). The big interval [x, y− 1] can be binary
searched in time O(log σ · tSA), provided that we also store exact median positions of
the minima in the precomputed RMQs [45] (within the same space bounds). The only
problem is how these precomputations are carried out in O(n) time, as it is not obvious
how to compute the exact median of an interval from the medians in its left and right
half, respectively. However, a solution to this problem exists [18, Section 3.2]. Overall
time is O((tLCP + tSA) · tRMQ + log σ · tSA).
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Letter(v, i): If i = 1 we can easily solve the query in constant time with very little
extra space. Mark in a bitmap C[1, n] the first suffix in SA starting with each different
letter, and store in a string L[1, σ] the different letters that appear in T1,n in alphabetical
order. Hence, if v = [vl, vr], Letter(v, 1) = L[rank(C, vl)]. L requires O(σ log σ) bits
and C, represented as a compressed bitmap [42], requires O(σ log n

σ
+ n log logn

logn ) bits

of space. Hence both add up to O(σ logn + n log logn
log n ) bits. Now, for i > 1, we just

use Letter(v, i) = Letter(ψi−1(vl), 1), in time O(min(tSA, i · tψ)). We remark that
structures L and C are already present, in one form or another, in all compressed text
indexes implementing SA [24, 44, 14].

TDepth(v): Tree-depth can be maintained while performing some traversal operations
such as Root, FChild, NSibling, Child, Parent, LAQt. However, other operations
are not easily handled.

Yet, there is also a direct way to support TDepth, using other nHk(2 log 1
Hk

+

O(1)) + o(n) bits of space. The idea is similar to Sadakane’s representation of LCP

[45]: the key insight is that the tree depth can decrease by at most 1 if we move from
suffix Ti,n to Ti+1,n (i.e., when following ψ). Define TDE[1, n] such that TDE[i] holds
the tree-depth of the LCA of leaves SA[i] and SA[i − 1] (similar to the definition of
LCP). Then the sequence k + TDE[ψk(SA

−1[1])], for 0 ≤ k < n, is nondecreasing and in
the range [1, n], and can hence be stored using 2n+ o(n) bits. Further, the repetitions
appear in the same way as in H (Section 3), so the resulting sequence can be compressed
to nHk(2 log 1

Hk

+ O(1)) + o(n) bits using the same mechanism as for LCP. The time

is thus O(tRMQ · tLCP), just as for SDepth. Leaves can be solved in O(tSA) time by
TDepth(v) = 1 + max(TDE[SA[v]],TDE[SA[v + 1]]).

LAQs(v, d): Let u = [ul, ur] = LAQs(v, d) denote the (yet unknown) result. Because u
is an ancestor of v, we must have ul ≤ vl and vr ≤ ur. We further know that LCP[i] ≥ d
for all ul < i ≤ ur. Thus, ul is the largest position in [1, vl] with LCP[ul] < d. So
the search for ul can be conducted in a binary manner by means of RMQs: Letting
k = RMQ(⌊vl/2⌋, vl), we check if LCP[k] ≥ d. If so, ul cannot be in [⌊vl/2⌋, vl], so we
continue searching in [1, ⌊vl/2⌋ − 1]. If not, we know that ul must be in [⌊vl/2⌋, vl], so
we continue searching in there. The search for ur is handled symmetrically. Total time
is O(log n · tRMQ · tLCP).

LAQt(v, d): The same idea as for LAQs can be applied here, using the array TDE

instead of LCP, and RMQs on TDE. Time is also O(log n · tRMQ · tLCP).

7. Discussion

The final performance of our compressed suffix tree (CST) depends on the compressed
full-text index used to implement SA. Among the best choices we have Sadakane’s
compressed suffix array (SCSA) [44], which is not so attractive for its O(n log log σ)
extra bits of space in a context where we are focusing on using o(n) extra space. The
alphabet-friendly FM-index (AFFM) [14] gives the best space, but our CST over AFFM
is worse than Russo et al.’s CST (RCST) [43] both in time and space. Instead, we focus
on using Grossi et al.’s compressed suffix array (GCSA) [24], which is larger than AFFM
but lets our CST achieve better times than RCST. (Interestingly enough, RCST does

13



not benefit from using the larger GCSA.) Our resulting CST is a space/time tradeoff
between Sadakane’s CST (SCST) [45] and RCST. Within this context, it makes sense to
consider SCST on top of GCSA, to remove the huge O(n log log σ) extra space of SCSA.

GCSA uses |GCSA| = (1+ 1
ǫ
)nHk+O(n log logn

log
σ
n

) bits of space for any k ≤ α logσ n and

constant 0 < α < 1, and offers times tψ = O(1) and tSA = O(logǫ n log1−ǫ σ). On top of
|GCSA|, SCST needs 6n+o(n) bits, whereas our CST needs nHk(2 log 1

Hk

+O(1))+o(n)

extra bits. Our CST times are tLCP = tSA (recall Section 3), whereas tRMQ and tPNSV

depend on how large is o(n). Instead, RCST needs |AFFM |+o(n) bits, where |AFFM | =
nHk +O(n log logn

log
σ
n

)+O(n logn
γ

) bits, for some γ = ω(logσ n), to maintain the extra space

o(n log σ). AFFM offers times tψ = O(1 + log σ
log logn ) and tSA = O(γ(1 + log σ

log logn )). In

addition, RCST uses o(n) = O(n logn
δ

) bits for a parameter δ = ω(logσ n).
An exhaustive comparison is complicated, as it depends on ǫ, γ, δ, σ, the nature of

the o(n) extra bits in our CST, etc. In general, our CST loses to RCST if they use the
same amount of space, yet our CST can achieve sublogarithmic times by using some extra
space, whereas RCST cannot. We opt for focusing on a particular setting that exhibits
this space/time tradeoff. The reader can easily derive other settings. We focus on the
case σ = O(1) and all extra spaces not related to entropy limited to O( n

logǫ′ n
) bits, for

constant 0 < ǫ′ < 1 (so f(n) = logǫ
′

n in Theorem 2 and Lemma 2). Thus, our times are

tRMQ = logǫ
′

n log2 log n and tPNSV = logǫ
′

n log logn. RCST’s γ and δ are O(log1+ǫ′ n).
Table 1 shows a comparison under this setting. The first column also summarizes the
general complexities of our operations, with no assumptions on σ nor extra space except
tψ ≤ tSA = tLCP, as these are intrinsic of our structure.

Clearly SCST is generally faster than the others, but it requires 6n + o(n) non-
compressible extra bits on top of |CSA|. RCST is smaller than the others, but its time is

typically O(log1+ǫ′ n) for some constant 0 < ǫ′ < 1. The space of our CST is in between,
with typical time O(logλ n) for any constant λ > ǫ+ǫ′. This can be sublogarithmic when
ǫ+ ǫ′ < 1. To achieve this, the space used in the entropy-related part will be larger than
2(1 + log 1

Hk
)nHk. With less than that space our CST is slower than the smaller RCST,

but using more than that space our CST can achieve sublogarithmic times (except for
level ancestor queries), being the only compressed suffix tree achieving it within o(n)
extra space.

We have assumed σ = o(n), so that σ logn = o(n log σ). Yet, we remark that our
scheme is not so attractive on large alphabets. If σ = Θ(nβ) for constant β, then our
extra space includes a term Θ(n log logn), just as in SCST over SCSA, while the latter
is clearly faster.

Both the suffix array SA and the longest common prefix sequence LCP can be built
in linear time [31, 32, 29, 30]. From it, arrays SA

−1 and Ψ are easily built in linear time.
The compressed suffix array GCSA, on the other hand, needs O(n log σ) construction
time [24]. Most of the data structures we have added are built in O(n) time, except for
the O(rn) of Theorem 2. This can be as high as O(n log logn), but not for our CST:
As there is already a cost of the form Ω(logǫ n) per operation coming from GCSA, there

is no point in using f(n) smaller than logǫ
′

n as in our comparison. For this setting we
have O(rn) = O(n/ǫ′) = O(n). Overall, we achieve our results with a construction time
bounded by O(n log σ). This cost depends on GCSA, and it is also needed to build the
other k-th order compressed suffix array (AFFM) [14].
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Operation Our suffix tree Other suffix trees
General over GCSA [24] SCST [45] RCST [43]

Space nHk(2 log 1
Hk

+ 1
ǫ

+ O(1)) + o(n) (1 + 1
ǫ
)nHk + 6n + o(n) nHk + o(n)

Root,Count,Ancestor 1 1 1 1

Locate tSA logǫ n logǫ n log1+ǫ′
n

SDepth tSA · tRMQ logǫ+ǫ
′

n log2 log n logǫ n log1+ǫ′
n

Parent tSA · tPNSV logǫ+ǫ
′

n log log n 1 log1+ǫ′
n

FChild tSA · tRMQ logǫ+ǫ
′

n log2 log n 1 log1+ǫ′
n

NSibling tSA(tRMQ + tPNSV) logǫ+ǫ
′

n log2 log n 1 log1+ǫ′
n

SLink,LCA tSA(tRMQ + tPNSV) logǫ+ǫ
′

n log2 log n 1 log1+ǫ′
n

SLink,LCA tSA(tRMQ + tPNSV) logǫ+ǫ
′

n log2 log n 1 log1+ǫ′
n

SLinki tSA(tRMQ + tPNSV) logǫ+ǫ
′

n log2 log n logǫ n log1+ǫ′
n

Child tSA(tRMQ + log σ) logǫ+ǫ
′

n log2 log n logǫ n log1+ǫ′
n log log n

Letter tSA logǫ n logǫ n log1+ǫ′
n

TDepth tSA · tRMQ
(∗) logǫ+ǫ

′

n log2 log n 1 log2+2ǫ′
n

LAQs tSA · tRMQ · log n log1+ǫ+ǫ′
n log2 log n Not supported log1+ǫ′

n

LAQt tSA · tRMQ · log n
(∗) log1+ǫ+ǫ′

n log2 log n 1 log2+2ǫ′
n

(∗) Our CST needs other nHk(2 log 1
Hk

+ O(1)) + o(n) extra bits to implement TDepth and LAQt.

Table 1: Comparison between ours and alternative compressed suffix trees. The column labeled ‘General’ assumes tψ ≤ tSA = tLCP. All other columns
further assume σ = O(1), and that the o(n) space is O( n

logǫ′ n
). SCST is assumed to run over GCSA.
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Construction space is O(n log n) bits, and reducing it is a challenging issue for future
work, as well as handling dynamic text collections (there exists some work on this track for
SCST [7]). Others are related to achieving improved results on our basic data structures
of Theorems 2/3 and Lemma 2, or proving this is not possible. Finally, we leave open
the challenge of achieving sublogarithmic time for the suffix tree operations while using
optimal space, nHk + o(n log σ) bits.

8. Towards a Practical Implementation

A practice-oriented future work direction is to implement our proposal. A first concern
is how to choose a practical compressed full-text index, so that ψ, SA, SA

−1, and so on,
are well supported. This topic has been studied in depth [13], and there exist several
alternatives known to work well in practice.

When considering the suffix-tree-specific part, a crucial point, where a practical im-
plementation might have to differ from the theoretical proposal, is in the representation
of LCP information. The time to access LCP array is the key to the overall performance,
and if implemented verbatim from the theoretical proposal, it is likely to be high.

An interesting practical alternative, for which however we have not been able to find
sufficiently good theoretical space guarantees, is to represent LCP array more directly, in
a way that offers fast access and at the same time compressed space.

8.1. Re-Pair Based Compression

Re-Pair [35] is a grammar-based compression method, which proceeds as follows: (1)
Find the most repeated pair ab in the sequence; (2) Replace all its occurrences by a new
symbol s; (3) Add a rule s→ ab to a dictionary; (4) Iterate until every pair is unique.

The reason to choose Re-Pair as a compression method is not arbitrary. In recent
work [23], Re-Pair is used to compress the differentially encoded suffix array, SA

′[i] =
SA[i]− SA[i− 1]. It is shown that Re-Pair achieves O(R log n

R
logn) bits of space, being

R the number of runs in ψ. The rationale is that, except on the first cell of each run, it
holds SA

′[i]SA
′[i+ 1] = SA

′[ψ(i)]SA
′[ψ(i) + 1], and therefore there are at most 2R cells

in SA
′ where this does not hold. From that it can be shown that Re-Pair will compress

SA
′ to at most 8R log n

4R +O(R) integers (counting both dictionary and sequence [23]).
Now, within a run in ψ (except for the first cell) it also holds that LCP[ψ(i)] =

LCP[i] − 1, and thus a differential encoding LCP
′[i] = LCP[i] − LCP[i − 1] also satisfies

LCP
′[i]LCP

′[i + 1] = LCP
′[ψ(i)]LCP

′[ψ(i) + 1] within runs (this is related to our devel-
opment in Section 3). Thus the analysis done for SA

′ applies verbatim, showing that
Re-Pair would compress LCP

′ to O(R log n
R

logn) bits. Considering that R ≤ nHk + σk

[36], we get a (crude) upper bound of O(nHk log 1
Hk

logn) bits. This is worse by an

O(log n) factor than our result in Section 3, yet still goes to zero when Hk → 0, and
may offer much faster access to individual values, by adding some extra data structures
that use negligible extra space [23]. Some experimental results on access time to suffix
arrays are given in the same article. Although the time is not constant, it is very low in
practice and enjoys a local access pattern.

A brief experiment to show the potential of this idea was carried out on the 50MB
English collection of site Pizza&Chili5 . Including the necessary structures to provide

5http://pizzachili.dcc.uchile.cl or http://pizzachili.di.unipi.it.

16



random access to the LCP array, Re-Pair compressed it to less than 49MB, that is, almost
the same size of the original text (and 25% the size of a plain integer representation).

The other structures to complete the suffix tree are a compressed suffix array (which
in practice takes 30%-60% of the original text, and replaces it [13]) and other structures
that can be made as small as desired, in exchange for time. We anticipate that, within
2 times the space of the original text (so that the text can be discarded), we could have
a fully-functional compressed suffix tree, which would operate rather efficiently.

What is also intriguing is that the differential LCP
′, despite this entropy bound,

could compress better when the text is less compressible. An incompressible text yields
a balanced suffix tree, where most of the nodes are at depth near logσ n [47]. Hence the
differences between consecutive LCP values tend to be small, and the differential sequence
becomes more compressible.

8.2. Entropy-Bounded Sequence Compression

An alternative direct representation of LCP achieves entropy bounds on sequence
LCP, not on the original text, and as such does not offer a theoretical space guarantee
comparable to those seen in Section 3. In exchange, it achieves constant access time to
LCP in theory.

The idea is to encode LCP using a recent compressed sequence representation [15],
which applied on a sequence S over alphabet σ achieves |S|Hk(S) + o(|S| log σ) bits of
space, for any k = o(logσ |S|). This idea entails a significant overhead in the sublin-
ear part. However, this compression method has already been tested successfully on
preprocessing schemes for O(1)-RMQs on LCP-arrays [19], though not on LCP-arrays
themselves.

A more serious problem, in our case, is that σ = |S| = Θ(n), and thus the result
gives us just nH0(LCP) + o(n log n) bits of space. For the sake of compressing to zero-
order entropy, one could equivalently represent LCP using a wavelet tree designed for
large alphabets [8], and achieve very little sublinear overhead, albeit access time raises
to O(log σ) = O(log n).

8.3. Reducing Sublinear Terms

In practice, the terms of the form o(n) can be significant and should be considered
carefully. One alternative to exchange time for sublinear space would be to consider the
relationship between PSV/NSV and RMQ queries, so as to spend space for one of them
and answer the other in terms of the first.

For example, RMQS(i, j) can be solved by iteratively applying i ← NSVS(i) until
i > j, then the answer is the previous i value. This could replace the scanning of the
smallest RMQ blocks, and this faster scanning could allow us using larger blocks in
practice. Alternatively, j ← NSVS(i) could be solved by applying RMQS(i, i+ 2k) for
increasing k until finding a value smaller than S[i], and then binary searching for the
first j ∈ [i+ 2k−1, i+ 2k] such that S[RMQS(i, j)] ≺ S[i]. PSV could obviously be dealt
with similarly, and polylogarithmic time guarantees would be maintained.

Other intriguing possibilities are, for example, implementing the RMQ mechanism
over the Re-Pair phrases instead of over fixed-sized blocks, as then the dictionary could
factor out repeated blocks across the text.
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[28] J. Kärkkäinen and S. Rao. Algorithms for Memory Hierarchies, chapter 7: Full-text indexes in
external memory, pages 149–170. LNCS 2625. Springer, 2003.
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