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Abstract

We present a radically new indexing approach for approximate string matching.
The scheme uses the metric properties of the edit distance and can be applied to
any other metric between strings. We build a metric space where the sites are the
nodes of the suffix tree of the text, and the approximate query is seen as a proximity
query on that metric space. This permits us finding the occ occurrences of a pattern
of length m, permitting up to r differences, in a text of length n over an alphabet
of size o, in average time O(m!™¢ + occ) for any e > 0, if r = o(m/log, m) and
m > % log, n. The index works well up to r < (3—+v/2)m/ log, m, where it achieves
its maximum average search complexity O(mH\@JF6 + occ). The construction time
of the index is O(m'™VZ nlogn) and its space is O(m! V2 ep). This is the first
index achieving average search time polynomial in m and independent of n, for r =
O(m/ log, m). Previous methods achieve this complexity only for » = O(m/ log, n).
We also present a simpler scheme needing O(n) space.
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1 Introduction and Related Work

Indexing text to permit efficient approximate searching on it is one of the
main open problems in combinatorial pattern matching. The approximate
string matching problem is: Given a long text T of length n, a (comparatively
short) pattern P of length m, and a threshold r to the number of “errors” or
“differences” permitted in the matches, retrieve all the pattern occurrences,
that is, text substrings whose edit distance to the pattern is at most r. Text and
pattern are sequences over an alphabet of size 0. The edit distance between two
strings is defined as the minimum number of character insertions, deletions
and substitutions needed to make them equal. This distance is used in many
applications, but several other distances are of interest.

In the on-line version of the problem, the pattern can be preprocessed but the
text cannot. There are numerous solutions to this problem [36], but none is
acceptable when the text is too long since the search time is proportional to
the text length. Indexing text for approximate string matching has received
attention only recently. Despite some progress in the last decade, the indexing
schemes for this problem are still rather immature [37].

There exist some indexing schemes specialized on word-wise searching on nat-
ural language text [32,5]. These indexes perform quite well but they cannot
be extended to handle the general case, which includes extremely important
applications such as DNA, proteins, music or Oriental languages.

The indexes that solve the general problem can be divided into three classes.
Backtracking techniques [24,47,14,20] use the suffix tree [2], suffix array [31] or
DAWG [16] of the text to factor out its repetitions. A sequential algorithm on
the text is simulated by backtracking on the data structure. These algorithms
achieve worst-case time O((mo)") or O(¢™*"), and average-case time o©().
Those are exponential in m or r but independent of n, the text size. This

makes them attractive when searching for very short patterns.

Partitioning methods [44,43,4] extract pattern pieces to ensure that some of
the pieces must appear without alterations inside every occurrence. An index
able of exact searching is used to detect the pieces and the text areas that have
enough evidence of containing an occurrence are checked with a sequential
algorithm. These algorithms achieve average search times as low as O(m), but
they work only when r/m = O(1/log, n), which is too restrictive in many
applications.

Hybrid algorithms [35,6,38] extract from the pattern large pieces that can still
contain (less) errors, they are searched for using backtracking, and the poten-
tial text occurrences are checked as in partitioning methods. These methods
can balance between length of the pieces to search for and error level permit-



ted. They achieve on average O(mn?) search time, for some 0 < A\ < 1 that
depends on 7. They tolerate high error ratios, r/m = O(1).

All the methods above use for approximate searching a data structure aimed
at exact searching. There are a few proposals of structures specifically de-
signed for approximate searching, and which require more than O(n) space
for the index. Some are restricted to r = 1, requiring O(nlogn) space and
time to build the index, and O(mloglogn + occ) search time [9]; or re-
quiring O(nlogn) average space, O(nlog®n) average construction time, and
O(mo + occ) search time [30]. Others work for any r, requiring O(nlog" n)
space and O(m + log" nloglogn + occ) search time [15].

We propose in this paper a brand new approach to the problem, which is in the
line of designing a specific index for this type of search. We take into account
that the edit distance satisfies the triangle inequality and hence it defines a
metric space on the set of text substrings. We can re-express the approximate
search problem as a range search problem on this metric space. This approach
has been attempted before [10,3,18], but in those cases the particularities of
the application made it possible to index O(n) elements. In the general case
we have O(n?) text substrings.

The main contribution of this paper is to devise a method (based on the
suffix tree of the text) to meaningfully collapse the O(n?) text substring into
O(n) sets, to find a way to build a metric space out of those sets, and to
devise a pivot selection policy that ensures good complexities. The result is
an indexing method that, for any constant ¢ > 0 and some constant 0 < o <
1, requires O(m!'/**n) space and O(m'/**nlogn) worst-case construction
time, and it permits finding the occ approximate occurrences of the pattern in
O(m!/*F 4 occ) average time, for any (r+2)log, (m)/m = v < 3—2v/2 ~ 0.172
and m > %. For example, if r = o(m/log, m), that is, v = o(1),
we achieve O(m!**) average search time for m > <log, n, with O(m'*n)
space and O(m!'*t*nlogn) construction time. As v approaches its maximum
permissible value, the search complexity reaches O(m!tV2te) = O(m?241422)
for small e.

This is a complexity breakthrough over previous work, as we are able to obtain
complexities polynomial in m and independent of n for r/m = O(m/ log, m),
instead of the much stricter limit r/m = O(m/log, n) given by partitioning
methods. We are still unable to reach r/m = O(1) as hybrid methods, but
those have the much higher O(mn?) search time complexity. Fig. 1 illustrates.

Moreover, our index represents an original approach to the problem that opens
a number of possibilities for improvements. For example, it is easier than
in other approaches to extend our idea to other distance functions such as
reversals.
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Fig. 1. Existing search complexities and our contribution in context.

The main drawbacks of our index is that it needs superlinear space and that it
needs to know m and r at index construction time. We also present a simpler
version of the index needing O(n) space and that, despite not involving a
complexity breakthrough, promises to be interesting in practice.

We use the following notation in the paper. Given a string s € ¥* we denote
its length as |s|. We also denote s; the i-th character of s, for an integer
i € {1..]s|}. We denote s;_; = $;Si+1...s; (which is the empty string e if
i > j) and s;. = s;_|s. A string x is said to be a prefiz of xy, a suffiz of yx
and a substring of yxz.

2 Metric Spaces and Edit Distance

We describe in this section some concepts related to searching metric spaces.
We have concentrated only in the part that is relevant for this paper. There
exist recent surveys if more complete information is desired [13,23].

A metric space is, informally, a set of black-box objects and a distance func-
tion defined among them, which satisfies the triangle inequality. The problem
of proximity searching in metric spaces consists of indexing the set such that
later, given a query, all the elements of the set that are close enough to the
query can be quickly found. This has applications in a vast number of fields,
such as non-traditional databases (where the concept of exact search is of
no use and we search for similar objects, e.g. databases storing images, fin-
gerprints or audio clips); machine learning and classification (where a new
element must be classified according to its closest existing element); image
quantization and compression (where only some vectors can be represented
and those that cannot must be coded as their closest representable point);
text retrieval (where we look for documents that are similar to a given query
or document); computational biology (where we want to find a DNA or pro-
tein sequence in a database allowing some errors due to typical variations);
function prediction (where we want to search for the most similar behavior of
a function in the past so as to predict its probable future behavior); etc.



Formally, a metric space is a pair (X,d), where X is a “universe” of objects
and d: X x X — RT is a distance function defined on it that returns non-
negative values. This distance satisfies the properties of reflexivity (d(x,z) =
0), strict positiveness (x # y = d(z,y) > 0), symmetry (d(z,y) = d(y,z))
and triangle inequality (d(z,y) < d(z,z2)+d(z,y)).

A finite subset U of X, of size n = |U|, is the set of objects we search. Among
the many queries of interest on a metric space, we are interested in the so-
called range queries: Given a query ¢ € X and a tolerance radius r, find the set
of all elements in U that are at distance at most r to ¢. Formally, the outcome
of the query is (¢,7)g = {u € U, d(q,u) <r}. The goal is to preprocess the
set so as to minimize the computational cost of producing the answer (g, 7)4.

The plethora of existing algorithms to index metric spaces can be roughly
divided into two classes. The first, pivot-based techniques, are built on a single
general idea: Select k elements {p, ..., px} from U (called pivots), and identify
each element u € U with a k-dimensional point (d(u,p1),...,d(u,px)) (i.e. its
distances to the pivots). The index is basically the set of kn coordinates. At
query time, map ¢ to the k-dimensional point (d(q,p1),...,d(q, pr)). With this
information at hand, we can filter out using the triangle inequality any element
u such that |d(q,p;) — d(u,p;)| > r for some pivot p;, since in that case we
know that d(q,u) > r without need to evaluate d(u,q). Those elements that
cannot be filtered out using this rule are directly compared against g. The
more pivots we use, the more elements are discarded, but the index needs
more space and computing the coordinates of the query gets more expensive.

If one is not only interested in the number of distance evaluations performed
but also in the total CPU time required, then scanning all the n elements to
filter out some of them may be unacceptable. In that case, one needs multi-
dimensional range search methods, which include data structures such as the
kd-tree, R-tree, X-tree, etc. [49,19,8]. Those structures permit indexing a set
of objects in k-dimensional space in order to process range queries.

The second class of techniques for metric space searching is compact partition-
ing, where the set U is partitioned into classes which are spatially as compact
as possible, that is, trying to reduce intra-class distances. Some information
on the classes is stored so as to discard them wholly with a few compar-
isons. For example, one can store minimum an maximum distances, m(c) and
M (c), between the class and a distinguished element ¢ € U. At query time, if
d(q,c) +r < mf(c) or d(q,c) —r > M(c), then no element in the class can be
relevant for the query (q,r)q. Otherwise, the class must be inspected.

In this paper we are interested in a metric space where the universe is the set
of strings over some alphabet, i.e. X = ¥* and the distance function is the
so-called edit distance or Levenshtein distance. This is defined as the minimum



number of character insertions, deletions and substitutions necessary to make
two strings equal [29,36]. The edit distance, and in fact any other distance de-
fined as the best way to convert one element into the other, is reflexive, strictly
positive (as long as there are no zero-cost operations), symmetric (as long as
the operations allowed are symmetric), and satisfies the triangle inequality.

The algorithm to compute the edit distance ed() is based on dynamic pro-
gramming. Imagine that we need to compute ed(a,b). A matrix Co_jq|0. 5 i3
filled, where C;; = ed(ay.4,b1.5), 50 Cjq) 5 = ed(a,b). This is computed as

Ci,O = 2.7 CO,j = j> (1)
Oi,j = if (CI,Z' = b]) then Oi—l,j—l else 1 + min(C’i_Lj, Ci,j—la Ci—l,j—l)

The algorithm takes O(|a||b]) time. The matrix can be filled column-wise or
row-wise. If we choose row-wise filling, for example, the space required is only
O(]b]), since only the previous row must be stored in order to compute the
new one, and therefore we just keep one row and update it.

3 Text Indexing

Suffix trees are widely used data structures for text processing [1,21]. Any
position 7 in a text T' defines a suffix of T', namely T; . A suffiz trie is a trie
data structure built over all the suffixes of T'. At the leaf nodes the pointers
to the suffixes are stored. Every substring of T can be found by traversing a
path from the root. Roughly speaking, each suffix trie leaf represents a suffix
and each internal node represents a different repeated substring of T'.

To improve space utilization, this trie is compacted into a Patricia tree [34]
by compressing unary paths. The edges that replace a compressed path store
the whole string that they represent (via two pointers to their initial and final
text position). Once unary paths are not present the trie, now called suffiz
tree, has O(n) nodes instead of the original worst-case O(n?). The suffix tree
can be directly built in O(n) time [33,48]. Any algorithm on a suffix trie can
be simulated at the same cost in the suffix tree.

We call explicit those suffix trie nodes that survive in the suffix tree, and
implicit those that are collapsed. Fig. 2 shows the suffix trie and tree of the
text "abracadabra". Note that a special endmarker "$", smaller than any
other character, is appended to the text so that all the suffixes are external
nodes.

The figure shows the internalnodes of the trie (numbered 0 to 9 in italics inside
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Fig. 2. The suffix trie, suffix tree and suffix array of the text "abracadabra".

circles, and that will be called (0) to (9)), which represent text substrings
that appear more than once, and the ezternal nodes (numbered 1 to 11 inside
squares, and that will be called e(1) to e(11)), which represent text substrings
that appear just once. Those leaves do not only represent the unique substrings
but all their extensions until the full suffix. In the suffix tree, only some internal
nodes are left, and they represent the same substring as before plus some
prefixes of it that may have been collapsed. For example node i(7) of the
suffix tree represents now the compressed nodes i(5) and i(6), and hence the
strings "b", "br" and "bra". The node e(1) represents "abrac", but also
"abraca", "abracad", etc. until the full suffix "abracadabra".

The suffix array [31] is a more compact version of the suffix tree, which requires
much less space and poses a small penalty over the search time. If the leaves of
the suffix tree are traversed in left-to-right order, all the suffixes of the text are
retrieved in lexicographical order. A suffix array is simply an array containing
all the pointers to the text suffixes listed in lexicographical order, as shown in
Fig. 2. The suffix array stores one pointer per text position.

The suffix array can be directly built (without building the suffix tree) in O(n)
time [26-28]. While suffix trees are searched as tries, suffix arrays are binary
searched. However, almost every algorithm on suffix trees can be adapted to
work on suffix arrays at an O(logn) penalty factor in the time cost. This is
because each subtree of the suffix tree corresponds to an interval in the suffix
array, namely the one containing all the leaves of the subtree. To follow an
edge of the suffix trie, we use binary search to find the new limits in the suffix
array. For example, the node i(7) in the suffix tree corresponds to the interval



(6,7) in the suffix array. Note that implicit nodes have the same interval than
their representing explicit node.

4 Our Algorithm

4.1 Indexing

A straightforward approach to text indexing for approximate string matching
using metric space techniques has the problem that, in principle, there are
O(n?) different substrings in a text, and therefore we should index O(n?)
objects, which is unacceptable.

The suffix tree provides a concise and implicit representation of all the sub-
strings of a text in O(n) space. So instead of indexing all the text substrings
explicitly, we index only the (explicit) suffix tree nodes. This is equivalent
to a compact partitioning method, where we have derived O(n) classes from
O(n?) objects. This particular partitioning has several interesting properties
that will become apparent soon.

Each explicit internal node represents itself and the nodes that descend to it
by a unary path. Hence, each explicit node that corresponds to a string zy,
where its parent corresponds to the string x, represents the following set of
strings

.T[y] = {xyb TY1Y2, -, .Ty}

where z[y] is a notation we have just introduced. For example, the node i(4)
in Fig. 2 represents the strings "a[bral" = {"ab”, "abr”, "abra”}.

The leaves of the suffix tree represent a unique text substring and all its
extensions until the full text suffix is obtained. Hence, if T" = zzcy, for a
character ¢, so that xc is a unique text substring and z is not unique, then the
suffix tree node for zc is an explicit leaf, which for us represents the set x[cy].
Table 1 shows the substrings represented by each node in our running example.
Note that the external nodes that descend by the terminator character "$",
i.e. e(8-11), represent a substring that is also represented at its parent and
hence it can be disregarded.

Hence, instead of indexing all the O(n?) text substrings individually, we first
partition them into O(n) sets of strings, which are the sets represented by the
explicit internal and the external nodes of the suffix tree. In our example, this
set is



Node | Suffix trie | Suffix tree || Node | Suffix trie/tree
i(0) |e€ € e(l) | abralcadabral
i(l) |a [a] e(2) | bral[cadabral
i(2) | ab e(3) | ralcadabra]
i(3) | abr e(4) | alcadabra]
i(4) | abra a[bral e(5) | [cadabral
i(5) | Db e(6) | aldabral
i(6) | br e(7) | [dabra]
i(7) | bra [bra] e(8) | abra
i(8) |r e(9) | bra
i(9) | ra [ral e(10) | ra

e(11) | a

Table 1
The text substrings represented by each node of the suffix trie and tree of Fig. 2.
The suffix tree has only the explicit internal nodes.

U={e, [a], a[bra], [bra], [ra], abra]cadabral, brajcadabral,
ralcadabra|, a[cadabral, [cadabra|, a[dabra|, [dabra]}

We have now to decide how to index these O(n) sets of strings. Many options
are possible, but we have chosen a pivot based approach. We select k different
text substrings that will be our pivots. We consider in the next section how
to choose the pivots. For each explicit suffix tree node z[y| and each pivot p;,
we compute the distance between p; and all the strings represented by z[y].
From the set of distances from a node z[y| to p;, we store the minimum and
maximum ones. Since all these strings are of the form {zy; ...y;, 1 <j <|y|},
all the edit distances can be computed in O(|p;||zy|) time. In Eq. (1), take
a = xzy and b = p;. The computation of ed(zy, p;) will also yield Ciyj4jp; =
ed(xy, . ..yj,p;) for all j.

Following our example, let us assume that we have selected k& = 5 pivots
p1 = €&, pp = "a", p3 = "br", py = "cad" and p5; = "raca". Fig. 3 (left)
shows the computation of the edit distances between i(4) = "a[bral" and
ps = "cad". The result shows that the minimum and maximum values of this
node with respect to this pivot are 2 and 4, respectively.

In the case of external suffix tree nodes, the string y tends to be quite long
(O(n) length on average), which yields a very high computation time for
all the edit distances and anyway a very large value for the maximum edit
distance (note that ed(p;,zy) > |zy| — |pi|). We solve this by pessimisti-



C a d
abra | 4 4 3 4

C a d
c 5 4 4 4

0 1 2 3
a 6 5 4 5

a 1 1 1 2
d 7 6 5 4

b 2 2 2 2
a 8 7 6 5

r 3 3 3 3
b 9 8 7 6

a 4 4 3 4
r 10 9 8 7
a 11 10 9 8

Fig. 3. The dynamic programming matrix to compute the edit distance between
"cad" and "a[bral" (left) or "abral[cadabral" (right). The emphasized area is
where the minima and maxima are taken from.

cally assuming that the maximum distance is n when the suffix tree node
is external. The minimum edit distance can be found in O(|p;| max(|p:|, |z]))
time, because it is not necessary to consider arbitrarily long strings xy;...y;:
If we compute the matrix row by row, then after having processed xy;...y;
we have a minimum value seen up to now, v; = minj<j<; Clz|4jr,|p,|- Then
there is no point in considering rows |z| 4+ j” such that |z| + 7" — |pi| > v,
as ed(zyy. ju,pi) > |x| + " — |pil > v, and this gives us an early ter-
mination criterion. In particular, just considering 7 = 1 we have that we
work at most until row ;7 = v + |p;| — |z| = ed(zyr,pi) + |pi| — |z] <
max(|p;| + 1,2|pi| — |z|) (as ed(zyy,p;) < max(|z| 4+ 1,|p;|)). Thus the total
amount of work is O(|p;|(|z| + 7)) = O(|p:| max(|ps|, |z])).

Fig. 3 (right) illustrates this case with e(1) = "abra[cadabral " and the same
ps = "cad". Note that it is not necessary to compute the last 4 rows, since
they measure the edit distance between strings of length 8 or more against one
of length 3. The distance cannot be smaller than 5 and we have found at that
point a minimum equal to 4 (actually we could have even avoided computing
the row for "d"). As we assume that the maximum is 11, the minimum and
maximum value for this external node and this pivot are 4 and 11.

Note also that to compute the new set of edit distances we have started from
i(4), which is the parent node of e(1) in the suffix tree. This can always be done
in a depth first traversal of the suffix tree and saves construction time. Since
when indexing external nodes x[y| we always have ed(p;, z) already computed,
the cost to index an external node becomes O(|p;|j”) = O(|p:]?).

Once the distances are computed between all the suffix tree nodes and all the
pivots, we have a set of £ minimum and maximum values for each explicit

10



suffix tree node. This can be regarded as a hyperrectangle in k& dimensions:

2yl — ( (mined(z[y], p1)), . .., min(ed(z[y], pr))),
(max(ed(z[yl, p1)), . . ., max(ed(z[y], pi))) )

<

where we are sure that all the strings in z[y| lie inside its rectangle. In our
example, the minima and maxima for i(4) with respect to pi 5 are (2,4),
(1,3), (1,2), (2,4) and (3, 3). Therefore i(4) is represented by the hyperrect-
angle ((2,1,1,2,3),(4,3,2,4,3)). On the other hand, the ranges for e(1) are
(5,11), (4,11), (3,11), (4,11) and (2,11) and its hyperrectangle is therefore
((5,4,3,4,2), (11,11,11,11, 11)).

4.2 Searching

Let us now consider a given query pattern P;_,, searched for with at most r
errors. This is a range query with radius r in the metric space of the substrings
of T1.,,. As for pivot based algorithms, we compare the pattern P against the
k pivots and obtain a k-dimensional coordinate (ed(P, p;),...,ed(P, p)), and
as for compact partitioning algorithms, we use bounds to discard the whole
classes (that is, suffix tree nodes).

Let p; be a given pivot and x[y] a given node. If it holds that
ed(P,p;) +r < min(ed(z[y],p;)) V ed(P,p;) —r > max(ed(z[y],p;)) (2)

then, by the triangle inequality, we know that ed(P, zy’) > r for any zy’ € z[y|.
The elimination can be done using any pivot p;. In fact, the nodes that are
not eliminated are those whose rectangle has nonempty intersection with the
rectangle ((ed(P,py) —r,...,ed(P,py) — 1), (ed(P,p1) +1,...,ed(P,py) +1)).

Fig. 4 illustrates. The node contains a set of points and we store their minimum
and maximum distance to two pivots. These define a (2-dimensional) rectangle
where all the distances from any substring of the node to the pivots lie. The
query is a pattern P and a tolerance r, which defines a circle around P. After
taking the distances from P to the pivots we create a hypercube (a square in
this case) of width 2r 4 1. If the square does not intersect the rectangle, then
no substring in the node can be close enough to P.

We have to solve the problem of finding all the k-dimensional rectangles that
intersect a given query rectangle. This is a classical multidimensional range
search problem [49,19,8]. We could for example use some variant of R-trees
[22,7], which would also yield a good data structure to work on secondary
memory.

11
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Fig. 4. The elimination rule using two pivots.

Those nodes x[y] that cannot be eliminated using any pivot must be directly
compared against P. For those whose minimum distance to P is at most 7,
we report all their occurrences, whose starting points are written in the leaves
of the subtree rooted by the node that has matched. In our running example,
if we are searching for "cab" with tolerance r = 1, then implicit node i(2)
matches, and thus explicit node i(4) qualifies, so we report the text positions
in the corresponding tree leaves: 1 and 8. Node e(5) also qualifies and we
report text position 5.

Observe that, in order to compare P against a given suffix tree node x[y], the
edit distance algorithm forces us to compare it against every prefix of x as well.
Those prefixes correspond to suffix tree nodes in the path from the root to
x[y]. In order not to repeat work, we first mark in the suffix tree the nodes that
we have to compare explicitly against P, and also mark every node in their
path to the root. Then, we backtrack on the suffix tree entering every marked
node and keeping track of the edit distance between P and the node. The new
row is computed using the row of the parent, just as done with the pivots.
This avoids recomputing the same prefixes for different suffix tree nodes, and
incidentally is similar to the simplest backtracking approach [20], except that
in this case we only follow marked paths. In this respect, our algorithm can be
thought of as a preprocessing to a backtracking algorithm, which filters out
some paths.

As a practical matter, note that this is the only step where the suffix tree
is required. We can even print the text substrings that match the pattern
without the help of the suffix tree, but we need it in order to report all their
text positions. For this sake, a suffix array is much cheaper and does a better
job (because all the text positions are listed in a contiguous interval). In fact,
the suffix array can also replace the suffix tree at indexing time, leaving the
suffix tree just as a conceptual device to group text substrings.

12



4.8 Indezing only Suffizes

A simpler index considers only the n text suffixes and no internal nodes. Each
set [T}..] represents all the text substrings starting at j, and it is indexed
according to the minimum distance between those substrings and each pivot.

The good point of the approach is reduced space. Not only the set U can have
up to half the elements of the original approach, but also only & values (not 2k)
are stored for each element, since all the maximum values are the same. This
permits using up to four times the number of pivots of the previous approach
at the same memory requirement. Note that we do not even need to build or
store the suffix tree or array: We just read the suffixes from the text and index
them. Our only storage need is that of the metric index.

The bad point is that the selectivity of the pivots is reduced and some re-
dundant work is done. The first is a consequence of storing only minimum
values, while the second is a consequence of not factoring out repeated text
substrings. That is, if some substring P’ of T is close enough to P and it
appears many times in 7', we will have to check all its occurrences one by one.

Without using a suffix tree structure, the construction of the index can be
done in worst case time O(k|p;|n) as follows. The algorithm depicted in Sec-
tion 2 to compute edit distance can be modified so as to make Cj; = 0, in
which case C; ; becomes the minimum edit distance between z;_,; and a suffix
of y1..j. If x is the reverse of p; and y the reverse of T', then Cj,, ; will be
the minimum edit distance between p; and a prefix of 7;,_;1;., which is pre-
cisely min(ed(p;, [T5—j+1..]))- So we need O(|p;|n) time per pivot. The space
to compute this is just O(|p;|) by doing the computation column-wise.

5 Analysis and a Specific Index

Although our approach is general, obtaining a given complexity requires care-
ful pivot selection. We start with a general analysis of our method. Then, we
give a specific pivot selection technique, which yields our final complexities.

5.1 Index Space and Construction Time

The index space is just the necessary to store the suffix tree, the set of &
pivots, and the R-tree. Assume our pivots are of length ¢. The suffix tree is
O(n) size, the pivots require k¢ characters (unless they are implicit somehow),
and the R-tree requires O(kn) space, as it stores O(n) objects of k coordinates
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each. Thus the overall space is O(kn). This is the same space complexity of
the simplified version of Section 4.3, where we do not need any suffix tree or
array.

Let us now consider construction cost. We have first to build the suffix tree
of T, which can be done in O(n) time. We have then to compute minimum
and maximum distances from each p; and each suffix tree node z[y|. Let us
first consider internal tree nodes. As we start the matrix computation of node
x[y] starting from its parent string =, we pay only O(|p;||y|) time for each
pivot p;, in node x[y]. Since the pivot lengths are ¢ and there are k such
pivots, we pay overall O(kf|y|) in internal suffix tree node z[y]. This suffix
tree node represents precisely |y| suffix trie nodes zy;, xy;y2, and so on until
xy. Thus, the construction cost for internal suffix tree nodes is O(kf) times
the number of suffix trie nodes. This number of nodes is O(n) on average and
with high probability [45,42], thus the construction cost for internal nodes is
O(kfn) on average. In worst case, there could be O(n?) suffix trie nodes and
our construction would take time O(kfn?).

Consider now external suffix tree nodes. As explained, for node x[y] we pay
O(|pi| max(|p:|, |z])). Yet, we have node x already computed at its parent, so
the time becomes O(|p;|?) = O(¢?). Multiplied by the k pivots and the O(n)
external nodes, we get O(k¢?n) construction time for external nodes.

Overall, construction cost is O(kf?n) on average and O(k¢n?) in the worst
case. To this we must add the cost to populate the R-tree with the O(n)
hyperrectangles, O(knlogn). In the simpler version of Section 4.3, the worst-
case cost is O(kfn) plus the cost to populate the R-tree, O(knlogn).

5.2 Query Time

The query cost has four parts: (1) computing distances against the pivots, (2)
searching for the candidates in the R-tree, (3) comparing the query against
the candidates found, (4) reporting all the occ positions.

The first part is simply k times the cost to compute a distance between the
query and a pivot, O(kém).

The second part is the search for the hyperrectangles that intersect the query
hyperrectangle. Many analyses of the performance of R-trees exist in the liter-
ature [46,25,39,40,17]. Despite that most of them deal with the exact number
of disk accesses, their abstract result is that the expected amount of work on
the R-tree (and variants such as the KDB-tree [41]) is O(nplogn), where p
is the probability that the query hyperrectangle intersects a random hyper-
rectangle in the set of O(n) elements we index. Put another way, p is the
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probability that the & pivots do not permit us discarding a random suffix tree
node. This probability depends on m, k, and r, and we consider it soon.

The third part, is the direct verification of the pattern against the suffix tree
nodes whose rectangles intersect the query rectangle. Since the probability
of not discarding a node with the pivots is p, and there are O(n) suffix tree
nodes, we check on average O(pn) nodes. This is true even if the suffix tree
nodes are not independent of each other, since the expectation commutes with
the sum even on dependent random variables. The overall verification work
can be seen as the sum of random variables X, with value 1 if suffix tree node
v is not discarded. Those O(pn) verifications yield a total verification cost of
O(pnm?). The m? is the cost to compute the edit distance between a pattern
of length m and a candidate whose length must be between m —r and m + r
(otherwise we know that the candidate is irrelevant). Note that one suffix tree
node might correspond to several substrings, but those are of the form z[y],
and all those can be computed in time O(m|zy|).

At the end, we report the occ results in O(occ) time using a suffix tree traversal.
Hence our total average cost is bounded by kmf + np(logn + m?) + occ. The
problem we address next is how to choose pivots to obtain a given p. This
analysis applies verbatim to the simpler structure of Section 4.3, where now p
is the probability that we cannot discard a suffix [T} _].

5.3 Choosing Pivots

Not any pivot selection strategy gives good performance. In particular, choos-
ing k£ random pivots does not work well, as a term of the form ¢” appears in
the average time complexity.

A strategy that works well is as follows. Choose a small positive integer ¢
(according to some bounds to be derived later). Pad T with dummy characters
at the end so that its length is a multiple of ¢. Create a new text 7" as
the sequence of g-grams of T, that is, 7" = T\ Ty+1.2q---Tn—gt1..n (€ach
character in 7" is a g-gram in T"). This is equivalent to having a text of length
[n/q| over alphabet 34, of size 0/ = 0. To search for P, _,, we truncate P to
length m;, m — q < m; < m, so that ¢ divides m; + 1, and then perform ¢
searches for the patterns P° = Py s4qPsiqr1.512¢ - - - Pstmi—2q+2...s4mi—q+15
0 < s < q. All those P*® are of length m’ = (m; +1)/¢ —1 > m/q — 2
(measured in g-grams). It is necessary to perform the ¢ searches to account
for all the possible different alignments of an occurrence of P in the g-grams
of T". Finally, we must maintain the same threshold r, since if P is at distance
d to T;. j, then their g-gram versions can be at distance at most d too (each
error modifying a different g-gram).
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For text 1", we choose k = ¢’ pivots of the form p; = ¢™ (that is, a sequence of
m’ g-grams ¢;), for each ¢; € X% In this case, ed(P?, p;) is m’ minus the number
of occurrences of ¢; in P® (note that we regard ¢; as a character, not as a string
of length ¢). All those distances to all the P*® patterns can be computed in
O(qo? + m) time: We initialize all the go? distances at ed(P*,p;) = m’ and
then traverse all the m; —q+1 ¢g-grams of P once, so that at step j we decrease
by 1 the distance ed(P?*,p;) such that P; ;1,1 = ¢; and s = j mod ¢. This
is different from our general analysis, as we take advantage of the particular
structure of our pivots to pay less than O(kfm).

Let us concentrate on one of those P* patterns for a while. Assume pes-
simistically that, for the O(n') suffix tree nodes z[y|, we discard them only
if ed(P?®,p;) + r < mined([zy],p;), instead of the more relaxed condition
of Eq. (2). In complexity terms, this is equivalent to indexing only the n’
text suffixes [T] ]. In particular, this is precisely the case of the simpler in-
dex of Section 4.3. For our pivots, it is easy to see that mined([T} ],p;) >
ed(T ;im—1,pi). Thus we discard text position j whenever ed(P®,p;) + 17 <

ed(j—‘](...j—i-m/—lapi)'

Given that we use all the ¢’ pivots to discard, text position j will be discarded
if, for some ¢-gram ¢;, the number of occurrences of ¢; in P* plus r still does
not reach the number of occurrences of ¢; in T ;,,.,_,. Given a pattern P,
the set of different strings it is unable to discard is obtained by permuting its
g-grams in every possible way, then choosing r positions, and changing the
g-grams at those positions (possibly by themselves). An upper bound to the
number of such strings is m’!(’:f)(a’)r = O((m/)™+r+1/2(g")r Jem).

The probability of a suffix [T ] not being discarded is precisely that of string
T! ;4w belonging to the set above, that is, at most

p = plm',r) = O((m’)m’+r+1/2(g')r> . ((m/q)m/qwﬂ/zgq,«)

em’(o—l)m’ em/agm—2q

We recall that we have to perform ¢ searches for different P* patterns. Fol-
lowing the general analysis of the previous section, the overall search cost
is

O(qo? +m + qn'p(m’, r)(m?* + logn')) (3)

where we note that gn’ = n. We examine now for which ¢ can we make the
third term insignificant. It is sufficient that p(m’,r) = O(1/(nmlogn)). Taking
logarithms, we get

m 1 m m
<— +7r+ 5) log, —+qr——log, e—m+2q < —log, n—log, m—1log, logn,
q q q
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or, slightly more stringent,
m 3
m > log, n+log,logn + q(r+2)+ <— +r+ 5) log, m,
q

where we remark that it is sufficient that this condition holds for sufficiently
large m.

It is clear that, if (m/q)log, m > m, the condition cannot hold. Therefore,
we require ¢ > (1/a)log, m for some constant o < 1. Similarly, we need
q < Bm/(r + 2) for some constant § < 1, so that ¢(r + 2) is bounded away
from m. These conditions on ¢ together imply r + 2 < afm/log, m. If, in
addition, it holds oo + 6 + a8 < 1, then the condition is satisfied for

S log, n + log, logn
~ l-a—-f—-af

m

Note that the limit on r, together with condition oo+ 3+ a8 < 1, implies that
r+2 < (3—2v2)m/log, m (3 —2v/2 = 0.172). Given an r satisfying this
condition, we can always find proper oo and [ values so that there is a feasible
q in the interval [(1/a)log, m, fm/(r + 2)].

Thus, we have found the conditions for the third term in Eq. (3) to be
O(m). The first term is go? Thus we wish to keep ¢ as small as possible,
q = (1/a)log, m, thus go? = O(m'/*log, m). This term dominates the com-
plexity, so we wish to make « as close as possible to 1. This maximum possible
value is a < (1 — v+ /72 — 67+ 1)/2, where v = (r + 2) loga(q&)/m. There-

fore the complexity we can achieve is O(m!/o+) = O(m1—7+\/72—67+1+6), for
any constant € > (0. This is O(m!*) if r = o(m/log, m) (that is, v = o(1)).
As vy grows until v < 3 — 2v/2, we have decreasing « limits, up to o < v/2 — 1.

Hence, the maximum complexity we can have, for the highest error level we
can handle, is O(m!'tV2t¢) (1 4+ /2 & 2.4142).

Note that the applicability condition on m depends on the complexity we
wish. If r = o(m/log, m), then we can obtain search time O(m!/**+<) for

m > %2 that is, O(m'*¢) for m > <log n. For constant v, the limit is

log, n

m > l—a—(14+1/a)y"

Let us consider construction time and space. It is not hard to compute the
distances to all the pivots simultaneously in a single suffix tree traversal, as
these are just counts of how many occurrences of each character are there
in the path from the root to the current node. Therefore this part is just
O(0%+n) time on average and O(0?+n?) in the worst case, using our specific
pivots. However, the simpler index of Section 4.3 requires only O(c? + n)
time, by sliding a window of length m’ over 7", so as to update in O(q)

17



time the number of occurrences of the ¢;’s for [T} | from those of [Tj_; ]. As
the index of Section 4.3 gives improved construction time and similar search
complexity, we stick to its analysis. Thus, construction time is dominated by
the time to load the R-tree, O(c?(n/q)logn) = O(m!*nlogn). The space is
O(0(n/q)) = O(m"/*n).

A problem with our approach is that we must know m and r at indexing time
in order to choose ¢q. Other m and r different from those used at indexing
time are correctly handled, but may not yield the complexities we give here if
the differences are significant. In many applications it is perfectly reasonable
to assume that tight bounds on the m and r values of interest are known.
Another alternative is to use different sets of pivots to reasonably cover the
range of relevant m, r values.

6 A Linear Space Index

The index we have presented has another drawback, namely its superlinear
space requirement. We now present a variant which, although does not give
relevant complexity bounds, takes linear space and promises to be practical.

The space of strings has a distance distribution that is rather concentrated
around its mean g [36]. The same happens to the distances between a pivot
p; and sets [T} ] or the pattern P. If we only discard sets [T}, ] such that
ed(p;, P)+r < min(ed(p;, [T}..])), only the suffixes with a large min(ed(p;, [1}..]))
value are likely to be discarded using p;. Storing all the other O(n) distances
to p; is likely to be a waste of space. Moreover, we can use that memory to
introduce more pivots. Fig. 5 illustrates.

| } ed(p,[T(..)])
ed(p,P)

—
+r

Fig. 5. The distance distribution to a pivot p, including that of pattern P. The
grayed area represents the suffixes that can be discarded using p.
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The idea is to fix a number s and, for each pivot p;, store only the s largest
min(ed(p;, [Tj.])) values. Only those suffixes can be discarded using pivot p;.
The space of this index is O(ks) and its construction time is unchanged. We
can still use an R-tree for the search, although the rectangles will cover all the
space except on s coordinates. The selectivity is likely to be similar since we
have discarded uninteresting coordinates, and we can tune number £k versus
selectivity s of the pivots for the same space usage O(ks).

One can go further to obtain O(n) space as follows. Choose the first pivot and
determine its s farthest suffixes. Store a list (in increasing distance order) of
those suffixes and their distance to the first pivot and remove them from fur-
ther consideration. Then choose a second pivot and find its s farthest suffixes
from the remaining set. Continue until every suffix has been included in the
list of some pivot. Note that every suffix appears exactly in one list. At search
time, compare P against each pivot p;, and if ed(P, p;) + r is smaller than the
smallest (first) distance in the list of p;, skip the whole list. Otherwise traverse
the list until its end or until ed(P, p;)+ is smaller than the next element. Each
traversed suffix must be directly compared against P. A variant of this idea
has proven extremely useful to deal with concentrated histograms [12]. It also
permits efficient secondary storage implementation by packing the pivots in
disk pages and storing the lists consecutively in the same order of the pivots.

Since we choose k = n/s pivots, the construction time is high, O(n?|p;|/s).
However, the space is O(n), with a low constant (close to 5 in practice) that
makes it competitive against the most economical structures for the problem.
The search time is O(|p;|mn/s) to compare P against the pivots, whereas the
time to traverse the lists is difficult to analyze.

The pivots chosen must not be very short, because their minimum distance to
any [T} ] is at most |p;|. In fact, any pivot not longer than (m+r)/2 is useless,
as ed(p;, P) > m—|p;| > m—(m+r)/2 = (m—r)/2,s0 ed(P, p;)+r > (m+r)/2,
which can never be smaller than min ed(p;, [T;.]) < |pi| < (m +7)/2.

We can complement the information given by the metric index with knowledge
of the string properties we are indexing to increase suffix pruning. For example,
if the set [1}. ] is proven to be at distance r+t from P, then we can also discard

sets [Tj—tr1... .- Tjse—1..]-

Another idea is to compute the edit distance between the reverse pivot and
the reverse pattern. Although the result is the same, we learn also the dis-
tances between the pivot and suffixes of the pattern, thus we learn lower
bounds to ed(P;. ,[Ty11..]) for all £. This can be useful to discard suffixes
at verification time: If we are verifying [T} ]| and, at some point, it holds
minged(Py. o1, T;. i) + ed(P,.,[Ty11..]) > r, then a match is not possible
starting at text position <.
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7 Conclusions

We have presented a novel approach to the approximate string matching prob-
lem. The idea is to give the set of text substrings the structure of a metric space
and then use an algorithm for range queries on metric spaces. The suffix tree
is used as a conceptual device to map the O(n?) text substrings to O(n) sets
of strings. For (roughly) r = O(m/ log, m) and m = Q(log, n), we can search
at an average cost lower than O(m?*® + occ) using less than O(m?°n) space.
This is a breaktrhough over previous methods, which achieved complexities
polynomial in m and independent of n only for r = O(m/ log, n).

Moreover, our technique can be extended to any other distance function among
strings, some of which, like the reversals distance, are problematic to handle
with the previous approaches.

The proposal opens a number of possibilities for future work. We plan to
explore other methods to reduce the number of substrings (we have used the
suffix tree nodes and the suffixes), other metric space indexing methods (we
have used a combination of pivots and compact partitions, but there are many
choices [13,23]), other multidimensional range search techniques (we have used
R-trees, but there are better choices for higher dimensions [8]), other pivot
selection techniques (which might work better in practice), etc. In particular,
we are interested in an index that does not need knowledge on m or r at
construction time and that requires linear space. A setup needing O(n) space
has been described in Section 6.

Finally, the method promises an efficient implementation on secondary mem-
ory (e.g., with R-trees), which is a weak point in most current approaches.
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