
Improved Approximate Pattern Matchingon HypertextGonzalo NavarroDept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl.AbstractThe problem of approximate pattern matching on hypertext is de�ned and solvedby Amir et al. in O(m(n logm+ e)) time, where m is the length of the pattern, nis the total text size and e is the total number of edges. Their space complexity isO(mn). We present a new algorithm which is O(m(n+e)) time and needs only O(n)extra space. This improves all previous results in both time and space complexity.Key words: Approximate structure matching, graph algorithms1 IntroductionApproximate string matching problems appear in a number of important areasrelated to string processing: text searching, pattern recognition, computationalbiology, audio processing, etc.The edit distance between two strings a and b, ed(a; b), is de�ned as the mini-mum number of edit operations that must be carried out to make them equal.The allowed operations are insertion, deletion and substitution of charactersin a or b. The problem of approximate string matching is de�ned as follows:given a text of length n, and a pattern of length m, both being sequences overan alphabet of size �, and a maximum number of allowed errors k < m, �ndall segments (or \occurrences") in text whose edit distance to pattern is atmost k. That is, report all text positions j such that there is a su�x x oftext[1::j] such that ed(x; patt) � k.? This work has been supported in part by Fondecyt grant 1-990627.Preprint submitted to Elsevier Preprint 11 June 1999

The classical solution is O(mn) time and involves dynamic programming [12].This solution is the most
exible to allow di�erent distance functions. For theparticular case of ed(), a number of algorithms have been presented to improvethe worst case to O(kn) or the average case, e.g. [7,13,4,14,15,3,9]Pattern matching on hypertext [5] has been considered only recently. Themodel is that the text forms a graph of N nodes and E edges, where a stringis stored inside each node, and the edges indicate alternative texts that mayfollow the current node. The pattern is still a simple string of length m. It isalso customary to transform this graph into one where there is exactly onecharacter per node (by converting each node containing a text of length ` intoa chain of ` nodes). This graph has n nodes and e edges (note that n is thetext size and e = n�N + E).Approximate string matching over hypertext is not only motivated by thestructure of the World-Wide-Web and the possibility to search sequences ofelements across paths of references, but also because graphs model naturallycomplex processes. In [6] it is considered the possibility of using approximatestring matching as a model for data mining, where the symbols are in factevents and sequences of interesting events (perhaps separated by uninterest-ing events) are sought. This corresponds to allowing only insertions into thepattern. A graph may be a functional description of a process (paths repre-senting possible alternative sequences of events), and we may want to identifypotentially dangerous sequences of events in the process under analysis.The �rst attempt to de�ne pattern matching on hypertext is due to Manberand Wu [8], which view a hypertext as a graph of �les with no links inside (itis easy to transform any hypertext to that form, by cutting the node at its�rst reference). They solve the problem for an acyclic graph in O(N +mE +R log logm) time (where R is the size of the answer).Akutsu [1] solved the problem of exact pattern matching on a hypertext whichhas a tree structure in O(n) time, while Park and Kim [11] extended this resultto an O(n + mE) algorithm for directed acyclic graphs and for graphs withcycles where no text node can match the pattern in two places.Amir et al. [2] were the �rst in considering approximate string matching overhypertext. In this case they consider the graph with n nodes and e edgesand want to report all nodes v where in the text graph there is a su�x xending at node v (included) such that ed(x; patt) � k. We say that x is a textsu�x ending at v if there is a path in the graph ending at v such that theconcatenation of all characters of the traversed nodes yields x.Amir et al. prove that the problem is NP-Complete if the errors can occur inthe text. For the case of errors only in the pattern, they give an algorithmwhich is O(m(n logm+ e)) time and O(mn) space on cyclic or acyclic graphs.2

In this work we improve both in time and space the previous results for ap-proximate pattern matching on hypertext. We present an algorithm which isO(m(n+e)) time and O(n) space for cyclic or acyclic graphs. An early versionof this work was O(mk(n+ e)) time on cyclic graphs [10].2 Rethinking the Classical AlgorithmThe classical algorithm to solve the general approximate string matching prob-lem [12] is de�ned in terms of a matrix Ci;j. When used to compute editdistance between two strings a and b, we have that Ci;j is the edit distancebetween a[1::i] and b[1::j]. Therefore Ci;0 = C0;i = i for all i, and the updateformula isCi;j = if (a[i] = b[j]) then Ci�1;j�1else 1 + min(Ci�1;j; Ci;j�1; Ci�1;j�1) ;where in the minimization the term Ci�1;j corresponds to deleting the currentcharacter of a, Ci;j�1 to inserting the current character of b into a, and Ci�1;j�1to replacing the current character of a by that of b.Now, if a turns out to be a short pattern of length m and b a long text oflength n, and we want to search the approximate occurrences of the patterninto the text (i.e. text positions j such that the pattern occurs with at most kerrors in a su�x of text[1::j]), almost the same algorithm can be applied. Theonly modi�cation needed is to set C0;j = 0 for all j (so as to give each textposition a chance to start a match). Notice that we are in fact computing theedit distance, not only determining whether or not it is � k. This is a featureof this algorithm that translates into our generalizations.The problem with a large text is space. In principle, we should store theO(mn) size matrix C, which is prohibitively expensive. It is not hard to see,however, that to compute the column j of the matrix we only need to keep thecolumn j � 1. Therefore, it is enough to keep and \old" and a \new" column,at a total space complexity O(m), which is very low. The time complexitydoes not change. For obvious reasons, the other alternative of computing thematrix row by row, keeping old and new rows at a space complexity of O(n),has never been considered. However, this is what we propose if the text is agraph (see Figure 1). The formula for a row-wise update keeping the old andnew rows isC 0j = if (patt char = text[j]) then Cj�1else 1 + min(Cj ; C 0j�1; Cj�1) : (1)3

our processingdirectionpattern textC[i; j] directionprogrammingprocessingdynamicFig. 1. The classical and our traversal of the dynamic programming matrix.3 Applying the Algorithm to a HypertextFollowing [2], we �rst consider hypertexts where each node has just one char-acter (it is easy to convert any hypertext to this form). Since the pattern keepsits linear structure but the text does not, implementing the classical algorithmcolumn-wise is di�cult, because in a graph the notion of \advancing" in thetext is not clear as in the linear version.However, we take advantage of the fact that the pattern is still linear andapply the classical algorithm row-wise. That is, we perform m long iterations.At the end of iteration i, we have computed for every node v of the graph thebest edit distance between pattern[1::i] and any text su�x in the graph whichends at node v. We recall that x is a text su�x ending at v if there is a pathin the graph ending at v such that the concatenation of all characters of thetraversed nodes gives x. We denote by t[v] the text character at node v.The algorithm needs to keep a state per node, called Cv. At each iteration thenew values for all Cv, denoted C 0v, are computed. This accounts for our O(n)extra space. The pseudocode for the algorithm is presented in Figure 2.Search (V ,E,patt)1. for all v 2 V , Cv 0.2. for i = 1 to m3. for all v 2 V , C 0v f(v; i)4. for all v 2 V , Cv C 0vFig. 2. First version of the algorithm for approximate string matching on hypertext.To follow the classical formula of Eq. (1), the f function of the algorithmshould be de�ned as 4

f(v; i) = if (patt[i] = t[v]) then min(fCu=(u; v) 2 Eg [fig)else 1 + min(Cv; minu=(u;v)2EC 0u; minu=(u;v)2ECu) ; (2)where the minima taken over empty sets yield an arbitrarily large value, andthe mention of i stands for nodes with no arriving edges (which correspondsto the �rst column of the dynamic programming matrix). It is not hard to seethat this algorithm takes O(m(n+ e)) time and needs O(n) extra space.The problem is to ensure that C 0u have been already computed. If the graph hasno loops this is easily achieved by computing the new C 0 values in topologicalorder (a topological sorting takes O(n + e) time). However, this does notwork in case of loops. The problem is that the insertion of the current textcharacter into the pattern makes the current value of Cv to depend on thecurrent value of its predecessors in the graph. In a matrix, we solve this bycomputing the row from left to right, so that all the predecessors are alreadycomputed. But this is not the case of a graph with loops. We call this a \zero-time dependency" (using the metaphor that the matrix row represents thetime). Figure 3 illustrates this case. C3 = 1C 03 = 2C4 = 1C 04 = 1C 01 = 3 C2 = 2C 02 = 3 (2) C5 = 1C 05 = 21 4 3 52C1 = 2 bbb abFig. 3. A loop showing a zero-time dependency after processing the pattern "bbbb".We show the Cv values before considering the last character, and the C 0v values afterconsidering it. The number in parenthesis in C 02 shows the change in the value thatoccurs when considering C 04 again (after updating the loop).Since an insertion which is propagated adds one error per step and we areinterested in matches with up to k errors, we are only interested in the currentvalues of the predecessors up to k nodes away. In a loop of length less thank, there seems not to be easy way to determine the proper place to start thecomputation of the values of the loop.The problem can be solved by not considering insertions in the f function.Instead, insertions are simulated by modifying the pattern. We take a newcharacter t that does not belong to the alphabet. This character can be deletedat zero cost, but replacing it costs the same as an insertion. We insert k such5

characters after each letter of the pattern. Therefore, if the algorithm wouldinsert a text character between two pattern characters, what it does now isto replace one of the t characters. The others can be deleted at zero cost.We insert k special characters at each position to allow all the k insertions tooccur at the same place, if necessary. Therefore, if the pattern is aloha andk = 3, we search for a t t t l t t t o t t t h t t t a t ttand we just change the f function to f 0:f 0(v; i) = if (patt[i] = t[v]) then min(fCu=(u; v) 2 Eg [fig)else min(del(v; i); minu=(u;v)2E1 + Cu)del(v; i) = if (pattern[i] = t) then Cv else 1 + Cv :Since our pattern is now of length mk, the cost of the algorithm becomesO(mk(n+ e)) when the graph has loops. This improves the previous result of[2] especially in space, since we need O(n) extra space and they need O(mn)extra space. It also improves their O(m(n logm+ e)) time complexity for thecase k = O(logm) if e = O(n), and kn = O(e logm) otherwise. However, thistechnique can be improved as shown in the next section.4 Improving the Algorithm for Cyclic GraphsWe present now a di�erent technique to cope with cyclic graphs. The tech-nique shown in the previous section simulates in fact a process of insertionpropagation. To see this, consider a given node v. After updating Cv to C 0vwithout allowing insertions, we process k times the special character (\t").This translates to the following update formula (iterated k times over all edges(u; v)) C 0v = min(Cv; 1 + Cu)This formula represents the insertion operations (which are propagated in thesame row of the dynamic programming matrix, i.e. in \zero time"). This showsthat we can, instead of using the special characters technique, avoid the use ofthe insertion operation in a �rst pass and then perform k passes propagatinginsertions. This is equivalent to the previous algorithm (although the previousone may be more intuitive). 6

As said, however, we can do better. We can keep track of which edges may needthis update (i.e. those (u; v) where Cv > Cu + 1). A �rst list of candidates isobtained by exhaustive search. Then, after the Cv value of a node v is reduced,all the edges leaving v may need the update too. As we show later, this reducesthe complexity of the algorithm.The new algorithm is shown in Figure 4. It is similar to the �rst version ofFigure 2, except because of the propagation. The routine Propagate takes anedge (u; v) and determines if the edge needs insertion propagation. If it does,it changes the value of the target node v and recursively checks whether thechange a�ects the edges with origin in v. The function g used is de�ned asg(v; i) = if (patt[i] = t[v]) then min(fCu=(u; v) 2 Eg [fig)else 1 + min(Cv; minu=(u;v)2ECu) ; (3)where the insertion operation (and hence the zero-time dependency) has beeneliminated. In fact, lines 3 to 5 aim at computing the f function correctly.Search (V ,E,patt)1. for all v 2 V , Cv 0.2. for i = 1 to m3. for all v 2 V , C 0v g(v; i)4. for all v 2 V , Cv C 0v5. for all (u; v) 2 E, Propagate (u,v)Propagate (u,v)if Cv > 1 + CuCv 1 + Cufor all z = (v; z) 2 EPropagate (v,z)Fig. 4. Final algorithm for approximate string matching on hypertext.Notice that Propagate only works O(1) time per edge whenever a reductionis made in its source node. That is, we perform a constant amount of work onall nodes of the form (u; v) each time Cu is reduced. This is the basis for theanalysis that follows.5 Analysis of the AlgorithmIt is natural to wonder whether the algorithm of Figure 4 terminates at all inthe propagation chain, especially in presence of loops. We prove not only that7

it terminates, but moreover, that it works O(e) per character of the pattern.This is an amortized analysis over all graph edges.For each (u; v) 2 E, letDuv = Cu. That is, consider that theD value of an edgeis the C value of its source node. We call C iu and Diuv the respective valuesafter reading i characters of the pattern (assuming that they are correctlycomputed). Call Gi and Fi the sum of all Diuv, before and after propagatingthe insertions (line 5), respectively. We have that F0 = G0 = 0. Since for eachunit of work done in the insertion propagation process we decrement a Diuvvalue, we cannot do more than Gi � Fi operations in total. We prove now(a) Fi � Fi�1 + eThis is easily seen using the deletion operation of Eq. (2). For each (u; v) 2E,Diuv = C iu � C i�1u +1 = Di�1uv +1. Summing over all edges gives the result.(b) Gi � Fi�1 � eTo see this, we consider the three possible cases for the Duv obtainedwithout using insertions (the cases come from Eq. (3)). In all the threecases we prove that Diuv � Di�1uv � 1 for all (u; v) 2 E. The result follows bysimple summation over all the edges.� (match) Diuv = C iu = C i�1z for some (z; u) 2 E.Up to the character i � 1 we correctly computed Eq. (2). Hence theinsertion rule yields the relation C i�1u � C i�1z + 1. This shows that C iu �C i�1u � 1, and therefore Diuv � Di�1uv � 1. If u has no arriving edges, thenC iu � i� 1 and C i�1u � i� 1 and the relation also holds.� (replacement) Diuv = C iu = C i�1z + 1 for some (z; u) 2 E.Trivial once (match) is proved, since we can even prove Diuv � Di�1uv .� (deletion) Diuv = C iu = C i�1u + 1Also immediate, since we obtain the stronger result Diuv = Di�1uv + 1.We are ready for the analysis now. For each character of the pattern, the totalamount of work due to insertion propagation is at most Gi�Fi � 2e = O(e).We also add the e initial calls to the routine but the order does not change.Hence, for each pattern character we perform a normal iteration (lines 3-4)which costs O(n+ e) and the propagation of iterations which costs O(e). Thetotal cost is therefore O(m(n+ e)).As a �nal remark, notice that the depth of the stack in the Propagate routinecannot exceedm, since the value which is propagated is incremented in one ateach new invocation and all the values are upper bounded by m. Hence, thespace requirements remain the same.In practical terms, the original algorithm of Figure 2 is still preferably onacyclic graphs (if the updates are performed on topological order), or on acyclicregions of the graph. However, the important result is that complexity doesnot change if we allow loops in the graph.8

6 GeneralizationsWe consider now the case where the text has a string at each node, instead ofa single character. In this case we distinguish the total text size, n, from thenumber of nodes, N .Since inside each node the text is linear, we can search at O(kn) worst-casecost inside the node. The state of the search at character j of a node dependsonly on characters from j�m�k+1 to j. Therefore, although the �rst (m+k)text characters of each node still depend on the state of the global search (i.e.previous characters in the graph), the rest of the search at each node can becomputed independently (beforehand, for example). Hence, we separate the�rst m + k text characters of large nodes into nodes of one letter, thereforemaking sure that in what rests of the large node we can work independentlyof the global algorithm.Therefore, if originally there areN nodes we end up with at most min(n;N(m+k)) = O(min(n;Nm)) nodes and O(min(e;E + Nm)) edges after the separa-tion of initial characters. The rest of the search on the whole text proceedsinternally at each node at O(kn) total cost.Since our algorithm pays O(m) per node and per edge of the graph, our searchcost is O(m(min(n;mN) + min(e;E + mN)) + kn). This is O(kn) providedN = O(nk=m2) and E = O(nk=m). This is the case of all but very �ne-grainedtext graphs.The distance function can be easily modi�ed to allow exact searching, orsearching allowing only matches and insertions (which is the case in datamining) or to give a particular cost to each edit operation.7 Conclusions and Further WorkWe have addressed the problem of approximate string matching when thetext is a hypertext and the pattern is a string. Previous algorithms achievedO(m(n logm+e)) time and O(mn) space [2], or O(mk(n+e)) time and O(m)space [10]. We improved both previous algorithms to O(m(n + e)) time andO(n) space, for cyclic and acyclic graphs. This is a complexity breakthroughover previous work.We plan to consider other types of edit operations (e.g. transpositions) andsearch for a lower bound for this problem.9

References[1] T. Akutsu. A linear time pattern matching algorithm between a string and atree. In Proc. CPM'93, pages 1{10, 1993.[2] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hypertext.In Proc. WADS'97, LNCS 1272, pages 160{173, 1997.[3] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate stringmatching. In Proc. CPM'96, LNCS 1075, pages 1{23, 1996.[4] W. Chang and J. Lampe. Theoretical and empirical comparisons ofapproximate string matching algorithms. In Proc. CPM'92, LNCS 644, pages172{181, 1992.[5] J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17{41, September 1987.[6] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kark�ainen. Episodematching. In Proc. CPM'97, LNCS 1264, pages 12{27, 1997.[7] G. Landau and U. Vishkin. Fast string matching with k di�erences. J. ofComputer Systems Science, 37:63{78, 1988.[8] U. Manber and S. Wu. Approximate string matching with arbitrary costs fortext and hypertext. In Proc. IAPR Workshop on Structural and SyntacticPattern Recognition, pages 22{33, Bern, Switzerland, 1992.[9] G. Myers. A fast bit-vector algorithm for approximate pattern matching basedon dynamic progamming. In Proc. CPM'98, LNCS 1448, pages 1{13, 1998.[10] G. Navarro. Improved approximate pattern matching on hypertext. In Proc.LATIN'98, LNCS 1380, pages 352{357, 1998.[11] K. Park and D. Kim. String matching in hypertext. In Proc. CPM'95, pages318{329, 1995.[12] P. Sellers. The theory and computation of evolutionary distances: patternrecognition. J. of Algorithms, 1:359{373, 1980.[13] Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms,6:132{137, 1985.[14] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, October 1992.[15] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.10

