Improved Approximate Pattern Matching
on Hypertext

Gonzalo Navarro

Dept. of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile.
gnavarro@dcc.uchile.cl.

Abstract

The problem of approximate pattern matching on hypertext is defined and solved
by Amir et al. in O(m(nlogm + e)) time, where m is the length of the pattern, n
is the total text size and e is the total number of edges. Their space complexity is
O(mn). We present a new algorithm which is O(m(n+e)) time and needs only O(n)
extra space. This improves all previous results in both time and space complexity.

Key words: Approximate structure matching, graph algorithms

1 Introduction

Approximate string matching problems appear in a number of important areas
related to string processing: text searching, pattern recognition, computational
biology, audio processing, etc.

The edit distance between two strings a and b, ed(a,b), is defined as the mini-
mum number of edit operations that must be carried out to make them equal.
The allowed operations are insertion, deletion and substitution of characters
in a or b. The problem of approzimate string matching is defined as follows:
given a text of length n, and a pattern of length m, both being sequences over
an alphabet of size o, and a maximum number of allowed errors &k < m, find
all segments (or “occurrences”) in text whose edit distance to pattern is at
most k. That is, report all text positions 7 such that there is a suffix = of
text[l..j] such that ed(z, patt) < k.

* This work has been supported in part by Fondecyt grant 1-990627.

Preprint submitted to Elsevier Preprint 11 June 1999



The classical solution is O(mn) time and involves dynamic programming [12].
This solution is the most flexible to allow different distance functions. For the
particular case of ed(), a number of algorithms have been presented to improve
the worst case to O(kn) or the average case, e.g. [7,13,4,14,15,3,9]

Pattern matching on hypertext [5] has been considered only recently. The
model is that the text forms a graph of IV nodes and E edges, where a string
is stored inside each node, and the edges indicate alternative texts that may
follow the current node. The pattern is still a simple string of length m. It is
also customary to transform this graph into one where there is exactly one
character per node (by converting each node containing a text of length £ into
a chain of £ nodes). This graph has n nodes and e edges (note that n is the
text size and e =n — N + E).

Approximate string matching over hypertext is not only motivated by the
structure of the World-Wide-Web and the possibility to search sequences of
elements across paths of references, but also because graphs model naturally
complex processes. In [6] it is considered the possibility of using approximate
string matching as a model for data mining, where the symbols are in fact
events and sequences of interesting events (perhaps separated by uninterest-
ing events) are sought. This corresponds to allowing only insertions into the
pattern. A graph may be a functional description of a process (paths repre-
senting possible alternative sequences of events), and we may want to identify
potentially dangerous sequences of events in the process under analysis.

The first attempt to define pattern matching on hypertext is due to Manber
and Wu [8], which view a hypertext as a graph of files with no links inside (it
is easy to transform any hypertext to that form, by cutting the node at its
first reference). They solve the problem for an acyclic graph in O(N + mE +
Rloglog m) time (where R is the size of the answer).

Akutsu [1] solved the problem of ezact pattern matching on a hypertext which
has a tree structure in O(n) time, while Park and Kim [11] extended this result
to an O(n + mFE) algorithm for directed acyclic graphs and for graphs with
cycles where no text node can match the pattern in two places.

Amir et al. [2] were the first in considering approximate string matching over
hypertext. In this case they consider the graph with » nodes and e edges
and want to report all nodes v where in the text graph there is a suffiz z
ending at node v (included) such that ed(z, patt) < k. We say that z is a text
suffix ending at v if there is a path in the graph ending at v such that the
concatenation of all characters of the traversed nodes yields .

Amir et al. prove that the problem is NP-Complete if the errors can occur in
the text. For the case of errors only in the pattern, they give an algorithm
which is O(m(nlog m + e)) time and O(mn) space on cyclic or acyclic graphs.



In this work we improve both in time and space the previous results for ap-
proximate pattern matching on hypertext. We present an algorithm which is
O(m(n+e)) time and O(n) space for cyclic or acyclic graphs. An early version
of this work was O(mk(n + €)) time on cyclic graphs [10].

2 Rethinking the Classical Algorithm

The classical algorithm to solve the general approximate string matching prob-
lem [12] is defined in terms of a matrix C;;. When used to compute edit
distance between two strings a and b, we have that C;; is the edit distance
between a[l..t] and b[1..j]. Therefore C; o = Co; = ¢ for all ¢, and the update
formula is

Oi’j = if (a[z] == b[]]) then Oi—l,j—l
else 1 + min(Ci_lyj, Oz’,j—l, Oi—l,j—l) y

where in the minimization the term C;_; ; corresponds to deleting the current
character of a, C; ;_; to inserting the current character of b into a, and C;_; ;_1
to replacing the current character of a by that of b.

Now, if a turns out to be a short pattern of length m and b a long text of
length n, and we want to search the approximate occurrences of the pattern
into the text (i.e. text positions j such that the pattern occurs with at most %
errors in a suffix of text[l..5]), almost the same algorithm can be applied. The
only modification needed is to set Cop; = 0 for all j (so as to give each text
position a chance to start a match). Notice that we are in fact computing the
edit distance, not only determining whether or not it is < k. This is a feature
of this algorithm that translates into our generalizations.

The problem with a large text is space. In principle, we should store the
O(mn) size matrix C, which is prohibitively expensive. It is not hard to see,
however, that to compute the column j of the matrix we only need to keep the
column j — 1. Therefore, it is enough to keep and “o0ld” and a “new” column,
at a total space complexity O(m), which is very low. The time complexity
does not change. For obvious reasons, the other alternative of computing the
matrix row by row, keeping old and new rows at a space complexity of O(n),
has never been considered. However, this is what we propose if the text is a
graph (see Figure 1). The formula for a row-wise update keeping the old and
new rows is

C; = if (patt_char = text[j]) then C;_,
else 14 min(C;,C;_;,Cj4) . (1)



Cli,j] text

dynamic

pattern programming
processing

direction

our processing

direction

Fig. 1. The classical and our traversal of the dynamic programming matrix.

3 Applying the Algorithm to a Hypertext

Following [2], we first consider hypertexts where each node has just one char-
acter (it is easy to convert any hypertext to this form). Since the pattern keeps
its linear structure but the text does not, implementing the classical algorithm
column-wise is difficult, because in a graph the notion of “advancing” in the
text is not clear as in the linear version.

However, we take advantage of the fact that the pattern is still linear and
apply the classical algorithm row-wise. That is, we perform m long iterations.
At the end of iteration 2, we have computed for every node v of the graph the
best edit distance between pattern[l..;] and any text suffix in the graph which
ends at node v. We recall that = is a text suffix ending at v if there is a path
in the graph ending at v such that the concatenation of all characters of the
traversed nodes gives . We denote by t[v] the text character at node v.

The algorithm needs to keep a state per node, called C,. At each iteration the
new values for all C,, denoted C), are computed. This accounts for our O(n)
extra space. The pseudocode for the algorithm is presented in Figure 2.

Search (V,FE,patt)

1. for all veV, C, + 0.

for t=1 tom
for all v €V, C) «+ f(v,1)
for allveV, C, «+ C)]

=W N

Fig. 2. First version of the algorithm for approximate string matching on hypertext.

To follow the classical formula of Eq. (1), the f function of the algorithm
should be defined as



f(v,3) = if (patt[t] = t[v]) then min({C,/(u,v) € E} U {i})

)
else 1 + min(C,, min C., min C,), (2)
u/(u,v)€EE u/(u,v)€EE

where the minima taken over empty sets yield an arbitrarily large value, and
the mention of ¢ stands for nodes with no arriving edges (which corresponds
to the first column of the dynamic programming matrix). It is not hard to see
that this algorithm takes O(m(n + €)) time and needs O(n) extra space.

The problem is to ensure that C), have been already computed. If the graph has
no loops this is easily achieved by computing the new C’ values in topological
order (a topological sorting takes O(n + e) time). However, this does not
work in case of loops. The problem is that the insertion of the current text
character into the pattern makes the current value of C, to depend on the
current value of its predecessors in the graph. In a matrix, we solve this by
computing the row from left to right, so that all the predecessors are already
computed. But this is not the case of a graph with loops. We call this a “zero-
time dependency” (using the metaphor that the matrix row represents the
time). Figure 3 illustrates this case.

4 3
Co=1 a Cs =1
¢y =1 Cs =2
D2
O—)
01:2 02:2 05:]_
cl =3 cr=3(2)  Cl=2

Fig. 3. A loop showing a zero-time dependency after processing the pattern "bbbb".
We show the C, values before considering the last character, and the C}, values after
considering it. The number in parenthesis in C shows the change in the value that
occurs when considering C} again (after updating the loop).

Since an insertion which is propagated adds one error per step and we are
interested in matches with up to k errors, we are only interested in the current
values of the predecessors up to k nodes away. In a loop of length less than
k, there seems not to be easy way to determine the proper place to start the
computation of the values of the loop.

The problem can be solved by not considering insertions in the f function.
Instead, insertions are simulated by modifying the pattern. We take a new
character L that does not belong to the alphabet. This character can be deleted
at zero cost, but replacing it costs the same as an insertion. We insert k such



characters after each letter of the pattern. Therefore, if the algorithm would
insert a text character between two pattern characters, what it does now is
to replace one of the LI characters. The others can be deleted at zero cost.
We insert k special characters at each position to allow all the &k insertions to
occur at the same place, if necessary. Therefore, if the pattern is aloha and
k = 3, we search for

alllluluddeddthila L UL

and we just change the f function to f:

f(v,1) = if (patt[i] [v]) then min({C,/(u,v) € E} U {i})

=1
else min(del(v,7), min 14 C,)
u/(u,v)€EE

del(v,i) = 1if (pattern[i] =) then C, else 1 + C, .

Since our pattern is now of length mk, the cost of the algorithm becomes
O(mk(n + e)) when the graph has loops. This improves the previous result of
[2] especially in space, since we need O(n) extra space and they need O(mn)
extra space. It also improves their O(m(nlogm + €)) time complexity for the
case k = O(logm) if e = O(n), and kn = O(elog m) otherwise. However, this
technique can be improved as shown in the next section.

4 Improving the Algorithm for Cyclic Graphs

We present now a different technique to cope with cyclic graphs. The tech-
nique shown in the previous section simulates in fact a process of insertion
propagation. To see this, consider a given node v. After updating C, to C}
without allowing insertions, we process k times the special character (“U”).
This translates to the following update formula (iterated k times over all edges

(u,v))
C! = min(C,,1+ C,)

This formula represents the insertion operations (which are propagated in the
same row of the dynamic programming matrix, i.e. in “zero time”). This shows
that we can, instead of using the special characters technique, avoid the use of
the insertion operation in a first pass and then perform k passes propagating
insertions. This is equivalent to the previous algorithm (although the previous
one may be more intuitive).



As said, however, we can do better. We can keep track of which edges may need
this update (i.e. those (u,v) where C, > C, + 1). A first list of candidates is
obtained by exhaustive search. Then, after the C, value of a node v is reduced,
all the edges leaving v may need the update too. As we show later, this reduces
the complexity of the algorithm.

The new algorithm is shown in Figure 4. It is similar to the first version of
Figure 2, except because of the propagation. The routine Propagate takes an
edge (u,v) and determines if the edge needs insertion propagation. If it does,
it changes the value of the target node v and recursively checks whether the
change affects the edges with origin in v. The function g used is defined as

g(v,t) = if (patt[i] = t[v]) then min({C,/(u,v) € E} U {i})

else 1 + min(C,, min C,), (3)
u/(u,v)€EE

where the insertion operation (and hence the zero-time dependency) has been
eliminated. In fact, lines 3 to 5 aim at computing the f function correctly.

Search (V,FE,patt)
for all veV, C, + 0.
for t=1 tom
for all v eV, C} « g(v,1)
for allveV, C, « C!
for all (u,v) € E, Propagate (u,v)

[S2 TNV VI O I

Propagate (u,v)
if O, >1+C,
C,+1+0C,
for all z / (v,2) € E
Propagate (v,z)

Fig. 4. Final algorithm for approximate string matching on hypertext.

Notice that Propagate only works O(1) time per edge whenever a reduction
is made in its source node. That is, we perform a constant amount of work on
all nodes of the form (u,v) each time C, is reduced. This is the basis for the

analysis that follows.

5 Analysis of the Algorithm

It is natural to wonder whether the algorithm of Figure 4 terminates at all in
the propagation chain, especially in presence of loops. We prove not only that



it terminates, but moreover, that it works O(e) per character of the pattern.
This is an amortized analysis over all graph edges.

For each (u,v) € E,let D,, = C,. That is, consider that the D value of an edge
is the C' value of its source node. We call ¢ and D, the respective values
after reading ¢ characters of the pattern (assuming that they are correctly
computed). Call G; and F; the sum of all Di_, before and after propagating
the insertions (line 5), respectively. We have that Fo = Go = 0. Since for each
unit of work done in the insertion propagation process we decrement a D!,
value, we cannot do more than GG; — F; operations in total. We prove now

(a) ;, < Fi_1+e
This is easily seen using the deletion operation of Eq. (2). For each (u,v) €
E,D!, = C. < Co'41 = Dt 4 1. Summing over all edges gives the result.

(b) Gi > F_1—e
To see this, we consider the three possible cases for the D,, obtained
without using insertions (the cases come from Eq. (3)). In all the three
cases we prove that D! > D~ —1 for all (u,v) € E. The result follows by
simple summation over all the edges.
e (match) D!, = C! = C'~! for some (z,u) € E.

Up to the character ¢ — 1 we correctly computed Eq. (2). Hence the
insertion rule yields the relation C?~! < ("~ 4 1. This shows that C¢ >
(=1 — 1, and therefore Di, > D: ! — 1. If u has no arriving edges, then
C?>i—1and C:"! <i—1 and the relation also holds.

o (replacement) D! = C% = Ci~! + 1 for some (z,u) € E.
Trivial once (match) is proved, since we can even prove D!, > D' 1.
e (deletion) D!, = Ci =C:t 41

Also immediate, since we obtain the stronger result D}, = D! + 1.

We are ready for the analysis now. For each character of the pattern, the total
amount of work due to insertion propagation is at most G; — F; < 2e = O(e).
We also add the e initial calls to the routine but the order does not change.
Hence, for each pattern character we perform a normal iteration (lines 3-4)
which costs O(n + e) and the propagation of iterations which costs O(e). The
total cost is therefore O(m(n + €)).

As a final remark, notice that the depth of the stack in the Propagate routine
cannot exceed m, since the value which is propagated is incremented in one at
each new invocation and all the values are upper bounded by m. Hence, the
space requirements remain the same.

In practical terms, the original algorithm of Figure 2 is still preferably on
acyclic graphs (if the updates are performed on topological order), or on acyclic
regions of the graph. However, the important result is that complexity does
not change if we allow loops in the graph.



6 Generalizations

We consider now the case where the text has a string at each node, instead of
a single character. In this case we distinguish the total text size, n, from the
number of nodes, N.

Since inside each node the text is linear, we can search at O(kn) worst-case
cost inside the node. The state of the search at character j of a node depends
only on characters from j —m—k+1 to j. Therefore, although the first (m + k)
text characters of each node still depend on the state of the global search (i.e.
previous characters in the graph), the rest of the search at each node can be
computed independently (beforehand, for example). Hence, we separate the
first m + k text characters of large nodes into nodes of one letter, therefore
making sure that in what rests of the large node we can work independently
of the global algorithm.

Therefore, if originally there are N nodes we end up with at most min(n, N(m-+
k)) = O(min(n, Nm)) nodes and O(min(e, E + Nm)) edges after the separa-
tion of initial characters. The rest of the search on the whole text proceeds
internally at each node at O(kn) total cost.

Since our algorithm pays O(m) per node and per edge of the graph, our search
cost is O(m(min(n,mN) + min(e, E + mN)) + kn). This is O(kn) provided
N = O(nk/m?) and E = O(nk/m). This is the case of all but very fine-grained
text graphs.

The distance function can be easily modified to allow exact searching, or
searching allowing only matches and insertions (which is the case in data
mining) or to give a particular cost to each edit operation.

7 Conclusions and Further Work

We have addressed the problem of approximate string matching when the
text is a hypertext and the pattern is a string. Previous algorithms achieved
O(m(nlog m+e)) time and O(mn) space [2], or O(mk(n+e)) time and O(m)
space [10]. We improved both previous algorithms to O(m(n + e)) time and
O(n) space, for cyclic and acyclic graphs. This is a complexity breakthrough
over previous work.

We plan to consider other types of edit operations (e.g. transpositions) and
search for a lower bound for this problem.



References

[1] T. Akutsu. A linear time pattern matching algorithm between a string and a
tree. In Proc. CPM’93, pages 1-10, 1993.

[2] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hypertext.
In Proc. WADS’97, LNCS 1272, pages 160-173, 1997.

[3] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string
matching. In Proc. CPM’96, LNCS 1075, pages 1-23, 1996.

[4] W. Chang and J. Lampe. Theoretical and empirical comparisons of
approximate string matching algorithms. In Proc. CPM’92, LNCS 644, pages
172-181, 1992.

[6] J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17-
41, September 1987.

[6] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Karkainen. Episode
matching. In Proc. CPM’97, LNCS 1264, pages 12-27, 1997.

[7] G. Landau and U. Vishkin. Fast string matching with k differences. J. of
Computer Systems Science, 37:63-78, 1988.

[8] U. Manber and S. Wu. Approximate string matching with arbitrary costs for
text and hypertext. In Proc. IAPR Workshop on Structural and Syntactic
Pattern Recognition, pages 22-33, Bern, Switzerland, 1992.

[9] G. Myers. A fast bit-vector algorithm for approximate pattern matching based
on dynamic progamming. In Proc. CPM’98, LNCS 1448, pages 1-13, 1998.

[10] G. Navarro. Improved approximate pattern matching on hypertext. In Proc.
LATIN’98, LNCS 1380, pages 352-357, 1998.

[11] K. Park and D. Kim. String matching in hypertext. In Proc. CPM’95, pages
318-329, 1995.

[12] P. Sellers. The theory and computation of evolutionary distances: pattern
recognition. J. of Algorithms, 1:359-373, 1980.

[13] Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms,
6:132-137, 1985.

[14] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83-
91, October 1992.

[15] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.

10



