
A

Optimal-Time Dictionary-Compressed Indexes

Anders Roy Christiansen, The Technical University of Denmark, Denmark
Mikko Berggren Ettienne, The Technical University of Denmark, Denmark
Tomasz Kociumaka, Bar-Ilan University, Israel, and University of California, Berkeley, US
Gonzalo Navarro, CeBiB and University of Chile, Chile
Nicola Prezza, Ca’ Foscari University of Venice, Italy

We describe the first self-indexes able to count and locate pattern occurrences in optimal time within a
space bounded by the size of the most popular dictionary compressors. To achieve this result we combine
several recent findings, including string attractors — new combinatorial objects encompassing most known
compressibility measures for highly repetitive texts —, and grammars based on locally-consistent parsing.

More in detail, let γ be the size of the smallest attractor for a text T of length n. The measure γ is an
(asymptotic) lower bound to the size of dictionary compressors based on Lempel–Ziv, context-free grammars,
and many others. The smallest known text representations in terms of attractors use space O(γ log(n/γ)),
and our lightest indexes work within the same asymptotic space. Let ε > 0 be a suitably small constant
fixed at construction time, m be the pattern length, and occ be the number of its text occurrences. Our
index counts pattern occurrences in O(m + log2+ε n) time, and locates them in O(m + (occ + 1) logε n)
time. These times already outperform those of most dictionary-compressed indexes, while obtaining the
least asymptotic space for any index searching within O((m + occ)polylogn) time. Further, by increasing
the space to O(γ log(n/γ) logε n), we reduce the locating time to the optimal O(m + occ), and within
O(γ log(n/γ) logn) space we can also count in optimal O(m) time. No dictionary-compressed index had
obtained this time before. All our indexes can be constructed in O(n) space and O(n logn) expected time.

As a byproduct of independent interest, we show how to build, in O(n) expected time and without
knowing the size γ of the smallest attractor (which is NP-hard to find), a run-length context-free grammar
of size O(γ log(n/γ)) generating (only) T . As a result, our indexes can be built without knowing γ.

Additional Key Words and Phrases: Repetitive string collections; Compressed text indexes; Attractors;
Grammar compression; Locally-consistent parsing

1. INTRODUCTION

The need to search for patterns in large string collections lies at the heart of many text re-
trieval, analysis, and mining tasks, and techniques to support it efficiently have been studied

T. Kociumaka was supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant no. 2018364, and
by an ERC grant MPM under the EU’s Horizon 2020 Research and Innovation Programme (agreement no.
683064). G. Navarro was supported by Fondecyt grant 1-200038, Chile, and Basal Funds FB0001, ANID,
Chile. N. Prezza was supported by the project MIUR-SIR CMACBioSeq (“Combinatorial methods for
analysis and compression of biological sequences”) grant no. RBSI146R5L.
A preliminary version of this article appeared in Proc. LATIN’18 [Christiansen and Ettienne 2018].
Author’s addresses: Anders Roy Christiansen, The Technical University of Denmark, Denmark,
aroy@dtu.dk. Mikko Berggren Ettienne, The Technical University of Denmark, Denmark, miet@dtu.dk.
Tomasz Kociumaka, Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel and IEOR
Department, University of California, Berkeley, US, kociumaka@mimuw.edu.pl. Gonzalo Navarro, CeBiB –
Center for Biotechnology and Bioengineering, Chile and Department of Computer Science, University of
Chile, Chile, gnavarro@dcc.uchile.cl. Nicola Prezza, Department of Environmental Sciences, Informatics
and Statistics, Ca’ Foscari University of Venice, Italy, nicola.prezza@unive.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1549-6325/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 M. B. Ettienne et al.

for decades: the suffix tree, which is the landmark solution, is over 40 years old [Weiner 1973;
McCreight 1976]. The recent explosion of data in digital form led the research since 2000
towards compressed self-indexes, which support text access and searches within compressed
space [Navarro and Mäkinen 2007]. This research, though very successful, is falling short
to cope to a new wave of data that is flooding our storage and processing capacity with
volumes of higher orders of magnitude that outpace Moore’s Law [Stephens et al. 2015].
Interestingly enough, this massive increase in data size is often not accompanied with a
proportional increase in the amount of information that data carries: much of the fastest-
growing data is highly repetitive, for example thousands of genomes of the same species,
versioned document and software repositories, periodic sky surveys, and so on. Dictionary
compression of those datasets typically reduces their size by two orders of magnitude [Gagie
et al. 2018]. Unfortunately, previous self-indexes build on statistical compression, which is
unable to capture repetitiveness [Kreft and Navarro 2013]; therefore, a new generation of
compressed self-indexes based on dictionary compression is emerging.

Examples of successful compressors from this family include (but are not limited to) the
Lempel–Ziv factorization [Lempel and Ziv 1976], of size z; context-free grammars [Kieffer
and Yang 2000] and run-length context-free grammars [Nishimoto et al. 2016], of size g;
bidirectional macro schemes [Storer and Szymanski 1982], of size b; and collage systems
[Kida et al. 2003], of size c. Other compressors that are not dictionary-based but also perform
well on repetitive text collections are the run-length Burrows–Wheeler transform [Burrows
and Wheeler 1994], of size ρ, and the CDAWG [Blumer et al. 1987], of size e. A number
of compressed self-indexes have been built on top of those compressors; Gagie et al. [2018]
give a thorough review.

Recently, Kempa and Prezza [2018] showed that all the above-mentioned repetitiveness
measures (i.e., z, g, b, c, ρ, e) are never asymptotically smaller than the size γ of a new
combinatorial object called string attractor. This and subsequent works [Kempa and Prezza
2018; Navarro and Prezza 2019; Prezza 2019] showed that efficient access and searches can
be supported within O(γ log(n/γ)) space. By the nature of this new repetitiveness measure,
such data structures are universal, in the sense that they can be used on top of a wide set
of dictionary-compressed representations of T .

Our results. In this article we obtain the best results on attractor-based indexes, including
the first optimal-time search complexities within space bounded in terms of γ, z, g, b, or c.
We combine and improve upon three recent results:

(1) Navarro and Prezza [2019, Thm. 2] presented the first index that builds on an attractor
of size γ of a text T [1..n]. It uses O(γ log(n/γ)) space and finds the occ occurrences of a
pattern P [1..m] in time O(m log n+ occ(log log(n/γ) + logε γ)) for any constant ε > 0.

(2) Christiansen and Ettienne [2018, Thm. 2(3)] presented an index that builds on the
Lempel–Ziv parse of T , of z ≥ γ phrases, which uses O(z log(n/z)) space and searches
in time1 O(m+ logε(z log(n/z)) + occ(log log n+ logε z)).

(3) Navarro [2019, Thm. 5] presented the first index that builds on the Lempel–Ziv parse
of T and counts the number of occurrences of P in T (i.e., computes occ) in time
O(m log n+m log2+ε z), using O(z log(n/z)) space.

Our contributions are as follows:

1This is the conference version of the present article, where we mistakenly claim a slightly better time of
O(m + logε z + occ(log logn + logε z)). The error can be traced back to the wrong claim that our two-
sided range structure, built on O(z log(n/z)) points, answers queries in O(logε z) time (the correct time is,
instead, O(logε(z log(n/z)))). The second occurrence of logε z, however, is correct, because the missing term
is absorbed by O(log logn).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:3

(1) We obtain, in space O(γ log(n/γ)), an index that lists all the occurrences of P in
T in time O(m + logε γ + occ logε(γ log(n/γ))), thereby obtaining the best space and
improving the time from previous works [Christiansen and Ettienne 2018; Navarro and
Prezza 2019].

(2) We obtain, in space O(γ log(n/γ)), an index that counts the occurrences of P in T in
time O(m+ log2+ε(γ log(n/γ))), which outperforms the previous result [Navarro 2019]
both in time and space.

(3) Using more space, O(γ log(n/γ) logε n), we list the occurrences in optimal O(m + occ)
time, and within space O(γ log(n/γ) log n), we count them in optimal O(m) time.

We can build all our structures in O(n log n) expected time and O(n) working space,
without the need to know the size γ of the smallest attractor.

Our first contribution uses the minimum known asymptotic space, O(γ log(n/γ)), for any
dictionary-compressed index searching in time O((m + occ) polylog n) [Gagie et al. 2018].
Only recently [Navarro and Prezza 2019], it has been shown that it is possible to search
within this space. Indeed, our new index outperforms most dictionary-compressed indexes,
with a few notable exceptions like Gagie et al. [2014], who use O(z log(n/z)) space and
O(m logm + occ log log n) search time (but, unlike us, assume a constant alphabet), and
Bille et al. [2018], who use O(z log(n/z) log log z) space and O(m+occ log log n) search time
without making any assumption on the alphabet size. Our second contribution lies on a
less explored area, since the first index able to count efficiently within dictionary-bounded
space is very recent [Navarro 2019].

Our third contribution yields the first indexes with space bounded in terms of γ, z, g,
b, or c, multiplied by any O(polylogn), that searches in optimal time. Such optimal times
have been obtained, instead, by using O(ρ log(n/ρ)) space [Gagie et al. 2018], or using O(e)
space [Belazzougui and Cunial 2017]. Various experiments [Belazzougui et al. 2015; Gagie
et al. 2018], however, show that measures ρ and e are usually considerably larger than z on
repetitive texts.

As a byproduct of independent interest, we show how to build a run-length context-free
grammar (RLCFG) of size O(γ log(n/γ)) generating (only) T , where γ is the size of the
smallest attractor, in O(n) expected time and without the need to know the attractor.
We use this result to show that our indexes do not need to know an attractor, nor its
minimum possible size γ (which is NP-hard to obtain [Kempa and Prezza 2018]) in order
to achieve their attractor-bounded results. This makes our results much more practical.
Another byproduct is the generalization of our results to arbitrary CFGs and, especially,
RLCFGs, yielding slower times in O(g) space, which can potentially be o(γ log(n/γ)).

Techniques. A key component of our result is the fact that one can build a locally-
consistent and locally-balanced grammar generating (only) T such that only a few splits
of a pattern P must be considered in order to capture all of its “primary” occurrences
[Kärkkäinen and Ukkonen 1996]. Previous parsings had obtained O(logm log∗ n) [Nishimoto
et al. 2019] and O(log n) [Gawrychowski et al. 2018] splits, but now we build on a parsing
by Mehlhorn et al. [1997] to obtain O(logm) splits with a grammar of size O(γ log(n/γ)).

Our first step is to define a variant of Mehlhorn et al.’s randomized parsing and prove,
in Section 3, that it enjoys several locality properties we require later for indexing. In Sec-
tion 4, we use the parsing to build a RLCFG with the local balancing and local consistency
properties we need. We then show, in Section 5, that the size of this grammar is bounded by
O(γ log(n/γ)), by proving that new nonterminals appear only around attractor positions.

In that section, we also show that the grammar can be built without knowing the mini-
mum size γ of an attractor of T . This is important because, unlike z, which can be computed
in O(n) time, finding γ is NP-hard [Kempa and Prezza 2018]. For this sake we define a new

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 M. B. Ettienne et al.

measure of compressibility, δ ≤ γ, which can be computed in O(n) time and can be used to
bound the size of the grammar.

Section 6 describes our index. We show how to parse the pattern in linear time using
the same text grammar, and how to do efficient substring extraction and Karp–Rabin
fingerprinting from a RLCFG. Importantly, we prove that only O(logm) split points are
necessary in our grammar. All these elements are needed to obtain time linear in m. We also
build on existing techniques [Claude and Navarro 2012] to obtain time linear in occ for the
“secondary” occurrences; the primary ones are found in a two-dimensional data structure
and require more time. Finally, by using a larger two-dimensional structure and introducing
new techniques to handle short patterns, we raise the space to O(γ log(n/γ) logε n) but
obtain the first dictionary-compressed index using optimal O(m+ occ) time.

In Section 7 we use the fact that only O(logm) splits must be considered to reduce the
counting time of Navarro [2019], while making its space attractor-bounded as well. This
requires handling the run-length rules of RLCFGs, which turns out to require new ideas
exploiting string periodicities. Further, by handling short patterns separately and raising
the space to O(γ log(n/γ) log n), we obtain the first dictionary-compressed index that counts
in optimal time, O(m).

Along the article we obtain various results on accessing and indexing specific RLCFGs.
We generalize them to arbitrary CFGs and RLCFGs in Appendix A.

An earlier version of this article appeared in Proc. LATIN’18 [Christiansen and Ettienne
2018]. This article is an exhaustive rewrite where we significantly extend and improve upon
the conference results. We use a slightly different grammar, which requires re-proving all
the results, in particular correcting and completing many of the proofs in the conference
paper. We have also reduced the space by building on attractors instead of Lempel–Ziv
parsing, used better techniques to report secondary occurrences and handle short patterns,
and ultimately obtained optimal locating time. All the results on counting are also new.

2. BASIC CONCEPTS

Strings and texts. A string is a sequence S[1 . . `] = S[1]S[2] · · ·S[`] of symbols. The
symbols belong to an alphabet Σ, which is a finite subset of the integers. The length of S
is written as |S| = `.

A string Q is a substring of S if Q is empty or Q = S[i] · · ·S[j] for some indices 1 ≤ i ≤
j ≤ `. The occurrence of Q at position i of S is a fragment of S denoted S[i . . j]. We then
also say that S[i . . j] matches Q. We assume implicit casting of fragments to the underlying
substrings so that S[i . . j] may also denote S[i] · · ·S[j] in contexts requiring strings rather
than fragments.

A suffix of S is a fragment of the form S[i . . `], and a prefix is a fragment of the form
S[1 . . i]. The juxtaposition of strings and/or symbols represents their concatenation, and
the exponentiation denotes the iterated concatenation. The reverse of S[1 . . `] is Srev =
S[`]S[`− 1] · · ·S[1].

We will index a string T [1 . . n], called the text. We assume our text to be flanked by
special symbols T [1] = # and T [n] = $ that belong to Σ but occur nowhere else in T . This,
of course, does not change any of our asymptotic results, but it simplifies matters.

Karp–Rabin signatures. Karp–Rabin fingerprinting [Karp and Rabin 1987] assigns to ev-
ery string S[1 . . `] a signature κ(S) = (

∑`
i=1 S[i] · ci−1) mod µ for a suitable integer c and

a prime number µ. It is possible to build a signature formed by a pair of functions 〈κ1, κ2〉
guaranteeing no collisions between substrings of T [1 . . n], in O(n log n) expected time [Bille
et al. 2014].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:5

With high probability. The term with high probability (w.h.p.) means with probability
at least 1 − n−c for an arbitrary constant parameter c, where n is the input size (in our
case, the length of the text).

Model of computation. We use the RAM model with word size w = Ω(log n), allowing
classic arithmetic and bit operations on words in constant time. Our logarithms are to the
base 2 by default.

3. LOCALLY-CONSISTENT PARSING

A string S[1 . . n] can be parsed in a locally consistent way, meaning that equal substrings
are largely parsed in the same form. We use a variant of the parsing of Mehlhorn et al.
[1997].

Let us define a run in a string as a maximal substring repeating one symbol. The parsing
proceeds in two passes. First, it groups the runs into metasymbols, which are seen as single
symbols. The resulting sequence is denoted Ŝ[1 . . n̂]. The following definition describes the
process precisely and defines mappings between S and Ŝ.

Definition 3.1. The string Ŝ[1 . . n̂] is obtained from a string S[1 . . n] by replacing every

distinct run a` in S by a special metasymbol a` so that two occurrences of the same run
a` are replaced by the same metasymbol. The alphabet Σ̂ of Ŝ consists of the metasymbols

that represent runs in S, that is Σ̂ = { a` : a` is a run in S}.
A position S[i] that belongs to a run a` is mapped to the position Ŝ [̂i] of the corresponding

metasymbol a` , denoted î = map(i). A position Ŝ [̂i] is mapped back to the maximal range
map−1(̂i) = [map−F(̂i) . .map−L(̂i)] of positions in S that map to î. That is, if S[i . . i+`−1]

is a run in S that maps to î, then map−F(̂i) = i and map−L(̂i) = i+ `− 1.

The string Ŝ is then parsed into blocks. A bijective function π : Σ → [1 . . |Σ|] is chosen

uniformly at random; we call it a permutation. We then extend π to Σ̂ so that π( a` ) = π(a),
that is, the value on a metasymbol is inherited from the underlying symbol. Note that no
two consecutive symbols in Ŝ have the same π value. We then define local minima in Ŝ,
and these are used to parse Ŝ (and S) into blocks.

Definition 3.2. Given a string S, its corresponding string Ŝ[1 . . n̂], and a permutation π
on the alphabet of S, a local minimum of Ŝ is defined as any position î such that 1 < î < n̂
and π(Ŝ [̂i− 1]) > π(Ŝ [̂i]) < π(Ŝ [̂i+ 1]).

Definition 3.3. The parsing of Ŝ partitions it into a sequence of blocks. The blocks end
at position n̂ and at every local minimum. The parsing of Ŝ induces a parsing on S: If a
block ends at Ŝ [̂i], then a block ends at S[map−L(̂i)].

Note that, by definition, the first block starts at S[1]. When applied on texts S[1 . . n], it
will hold that Ŝ[1] = # and Ŝ[n̂] = $, so Ŝ will also be a text (i.e., it will have distinct sentinel
symbols at the beginning and at the end). Further, we will always force that π($) = 1 and
π(#) = 2, which guarantees that there cannot be local minima in Ŝ[1 . . 2] nor in Ŝ[n̂−1 . . n̂].
Together with the fact that there cannot be two consecutive local minima, this yields the
following observation.

Observation 3.4. Every block in S or Ŝ is formed by at least two consecutive elements
(symbols or metasymbols, respectively).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 M. B. Ettienne et al.

Definition 3.5. We say that a position p < n of the parsed text S is a block boundary
if a block ends at position p. For every non-empty fragment S[i . . j] of S, we define

B(i, j) = {p− i : i ≤ p < j and p is a block boundary}.
Moreover, for every integer c ≥ 0, we define subsets L(i, j, c) and R(i, j, c) of B(i, j) con-
sisting of the min(c, |B(i, j)|) smallest and largest elements of B(i, j), respectively.

Observe that any fragment S[i . . j] intersects a sequence of 1 + |B(i, j)| blocks (the first
and the last block might not be contained in the fragment). We are interested in locally
contracting parsings, where this number of blocks is smaller than the fragment’s length by
a constant factor.

Definition 3.6. A parsing is locally contracting if there exist constants α and β < 1 such
that |B(i, j)| ≤ α+ β|S[i . . j]| for every fragment S[i . . j] of S.

Lemma 3.7. The parsing of S from Definition 3.3 is locally contracting with α = 0 and
β = 1

2 .

Proof. By Observation 3.4, adjacent positions in S cannot both be block boundaries.
Hence, |B(i, j)| ≤ d j−i2 e = b j−i+1

2 c = b 1
2 |S[i . . j]|c ≤ 1

2 |S[i . . j]|.
We formally define locally consistent parsings as follows.

Definition 3.8. A parsing is locally consistent if there exists a constant cp such that
for every pair of matching fragments S[i . . j] = S[i′ . . j′] it holds that B(i, j) \ B(i′, j′) ⊆
L(i, j, cp)∪R(i, j, cp), that is B(i, j) and B(i′, j′) differ by at most cp smallest and cp largest
elements.

Next, we prove local consistency of our parsing.

Lemma 3.9. The parsing of S from Definition 3.3 is locally consistent with cp = 1. More
precisely, if S[i . . j] = S[i′ . . j′] are matching fragments of S, then

B(i, j) \ {map−L(map(i))− i} = B(i′, j′) \ {map−L(map(i))− i}.
Proof. By definition, a block boundary is a position q such that q = map−L(q̂) for a local

minimum Ŝ[q̂] in Ŝ. Hence, a position q, with 1 < q < n, is a block boundary if and only if
π(S[q]) < π(S[q+1]) and π(S[q]) < π(S[r]), where r = map−F(map(q))−1 is the rightmost
position to left of q with S[r] 6= S[q].

Consider a position p, with i < p < j, and the corresponding position p′ = p−i+i′. If p >
map−L(map(i)), then the positions r = map−F(map(p))− 1 and r′ = map−F(map(p′))− 1
satisfy r′ − i′ = r − i ≥ 0. Hence, p is a block boundary if and only if p′ is one. On the
other hand, if p < map−L(map(i)), then neither p nor p′ is a block boundary because
S[p] = S[p+ 1] and S[p′] = S[p′ + 1].

Consequently, only the position p = map−L(map(i)) is a block boundary not necessarily if
and only if p′ is one. That is, B(i, j)\{map−L(map(i))−i} = B(i′, j′)\{map−L(map(i))−i}.
Moreover, since map−L(map(i))− i may only be the leftmost element of B(i, j), this yields
B(i, j) \B(i′, j′) ⊆ L(i, j, 1), and therefore the parsing is locally consistent with cp = 1.

We conclude this section by defining block extensions and proving that they are suffi-
ciently long to ensure that the block is preserved within the occurrences of its extension.
This property will be used several times in subsequent sections.

Definition 3.10. Let S[i . . j], with 1 < i < j < n, be a block in S. The extension of the
block S[i . . j] is defined as S[ie . . je], where ie = map−F(map(i− 1))− 1 and je = j + 1.

Note that the first and last blocks cannot be extended. For the remaining blocks S[i . . j],
the definition is sound because map(i− 1) > 1 and j < n since map(i− 1) and map(j) are

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:7

… cc ddd aaa bb c aaa cc bb  ...

ie i j j e

r ' r s s '

… bbb dd aaa bb c aaa cccc d ...

Fig. 1. Illustration of Lemma 3.11. Local minima are shown in gray. Recall r′ = re and s′ = se.

local minima of S′. Further, note that the block extension spans only the last symbol of the
metasymbol Ŝ[map(ie)] and the first of Ŝ[map(je)].

Lemma 3.11. Let S[ie . . je] be the extension of a block S[i . . j]. If S[r′ . . s′] matches
S[ie . . je], then S[r′ . . s′] contains the same block S[r . . s] = S[i . . j], whose extension is
precisely S[re . . se] = S[r′ . . s′]. Furthermore, r − re = i− ie and se − s = je − j.

Proof. Observe that map−L(map(ie)) = ie, so Lemma 3.9 yields B(r′, s′) \ {0} =
B(ie, je) \ {0}. Moreover, map(ie) = map(i − 1) − 1 and map(je) = map(j) + 1, so
B(ie, je) = {i−1−ie, j−ie} due to Observation 3.4. Hence, B(r′, s′)\{0} = {i−1−ie, j−ie},
and therefore S[r . . s] is a block, where r = i− ie + r′ and s = j − ie + r′. Figure 1 gives an
example.

To complete the proof, notice that se = s+ 1 = s′ and re = map−L(map(r− 1))− 1 = r′

follows from the fact that S[r′ . . s′] and S[ie . . je] match.

4. GRAMMARS WITH LOCALITY PROPERTIES

Consider a context-free grammar (CFG) that generates a string S and only S [Kieffer and
Yang 2000]. Each nonterminal must be the left-hand side in exactly one production, and
the size g of the grammar is the sum of the right-hand sides of the productions. It is NP-
complete to compute the smallest grammar for a string S [Charikar et al. 2005], but it
is possible to build grammars of size g = O(z log(|S|/z)) if the Lempel–Ziv parsing of S
consists of z phrases [Gawrychowski 2011, Lemma 8].2

If we allow, in addition, rules of the form A→ As1, where s ≥ 2, taken to be of size 2 for
technical convenience, the result is a run-length context-free grammar (RLCFG) [Nishimoto
et al. 2016]. These grammars encompass CFGs and are intrinsically more powerful; for
example, the smallest CFG for the string family S = an is of size Θ(log n) whereas already
an RLCFG of size O(1) can generate it.

The parse tree of a CFG has internal nodes labeled with nonterminals and leaves labeled
with terminals. The root is the initial symbol and the concatenation of the leaves yields S:
the ith leaf is labeled S[i]. If A→ A1 · · ·As, then any node labeled A has s children, labeled
A1, . . . , As. In the parse tree of a RLCFG, rules A→ As1 are represented as a node labeled
A with s children nodes labeled A1. The following definition describes the substring of S
generated by each node.

Definition 4.1. If the leaves descending from a parse tree node v are the ith to the jth
leaves, we say that v generates S[i . . j] and that v is projected to the interval proj(v) =
[i . . j].

The subtrees of equally labeled nodes are identical and generate the same strings, so we
speak of the strings generated by the grammar symbols. We call exp(A) the expansion of
nonterminal A, that is, the string it generates (or the concatenation of the leaves under

2There are older constructions [Rytter 2003; Charikar et al. 2005], but they refer to a restricted Lempel–Ziv
variant where sources and phrases cannot overlap.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 M. B. Ettienne et al.

any node labeled A in the parse tree), and |A| = | exp(A)|. For terminals a, we assume
exp(a) = a.

A grammar is said to be balanced if the parse tree is of height O(log n). A stricter concept
is the following one.

Definition 4.2. A grammar is locally balanced if there exists a constant b such that, for
any nonterminal A, the height of any parse tree node labeled A is at most b · log |A|.

4.1. From parsings to balanced grammars

We build an RLCFG on a text T [1 . . n] using our parsing of Section 3. In the first pass,
we collect the distinct runs a` with ` ≥ 2 and create run-length nonterminals of the form
A → a` to replace the corresponding runs in T . The resulting sequence is analogous to T̂ ,

where a nonterminal A→ a` stands for the metasymbol a` , and the terminal a stands for

the metasymbol a1 .
Next, we choose a permutation π and perform a pass on the new text T̂ , defining the

blocks based on local minima according to Definition 3.3. Each distinct block A1 · · ·Ak is
replaced by a distinct nonterminal A with the rule A→ A1 · · ·Ak (each Ai can be a symbol
of Σ or a run-length nonterminal created in the first pass). The blocks are then replaced
by those created nonterminals A, which results in a string T ′. The string T ′ is of length
n′ ≤ bn/2c, by Observation 3.4. Note that the first and last symbols of T ′ expand to blocks
that contain # and $, respectively, and thus they are unique too. We can then regard T ′ as
a text, by having its first nonterminal, T ′[1], play the role of #, and the last, T ′[n′], play
the role of $.

The process is then repeated again on T ′, and iterated for h ≤ blog nc rounds, until a
single nonterminal is obtained. This is the initial symbol of the grammar. We denote by
Tr[1 . . nr] the text created in round r, so T0 = T and T1 = T ′. We also denote by T̂r[1 . . n̂r]
the intermediate text obtained by collapsing runs in Tr. Figure 2 exemplifies the grammars
we build and the corresponding parse tree.

The height of the grammar is at most 2h ≤ 2blog nc, because we create run-length rules
and then block-rules in each round. This grammar is then balanced because, by Observa-
tion 3.4, nr ≤ n/2r. Moreover, the grammar is locally balanced.

Lemma 4.3. The grammar we build from our parsing is locally balanced with b = 2.

Proof. Because of Observation 3.4, any subtree rooted at a nonterminal A in the parse
tree (at least) doubles the number of nodes per round towards the leaves. If A is formed in
round r, then the subtree has height at most 2r, and the expansion satisfies |A| ≥ 2r. The
height of the subtree rooted at A is thus at most 2r ≤ 2 log |A|.

4.2. Local consistency properties

We now formalize the concept of local consistency for our grammars. For each r ∈ [0 . . h],
the subsequent characters of Tr naturally correspond to nodes of the parse tree of T , and
the fragments T [i . . j] generated by these nodes form a decomposition of T . We denote this
parsing of T by Pr. In other words, T [i . . j] is a block of Pr if and only if [i . . j] = proj(v)
for some node v labeled by a symbol in Tr. We refer to the blocks and block boundaries in
this parsing as level-r blocks and level-r block boundaries. Analogously, we define a parsing
P̂r with blocks corresponding to subsequent symbols of T̂r, and we refer to the underlying
blocks and block boundaries as level-r runs and level-r run boundaries; see Figure 2.

Note that every level-r run boundary is also a level-r block boundary, and every level-
(r + 1) block boundary is also a level-r run boundary. Moreover, by Observation 3.4, at
most one out of every two subsequent level-r run boundaries can be a level-(r + 1) block
boundary.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:9

Permutations Grammar
π($3) = 1

π(#3) = 2

π($2) = 1

π(#2) = 2

π(E) = 3

π(D) = 4

π($1) = 1

π(#1) = 2

π(A) = 3

π(C) = 4

π(B) = 5

π($) = 1

π(#) = 2

π(d) = 3

π(c) = 4

π(b) = 5

π(a) = 6

S→ #3$3

$3 → DD$2

#3 → #2DDE

$2 → B$1

#2 → #1BAA

E→ BBAA

D→ BC

$1 → c$

#1 → #ad

A→ aac

C→ aabc

B→ bd

Parse tree

#a d b d a a c a a c b d a a b c b d a a b c b d b d a a c a a c b d a a b c b d a a b c b d c $

#1 B A A B C B C B B A A B C B C B $1

#2 D D E D D $2

#3 $3

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Fig. 2. An example of the construction of our grammar. The top-left part shows the permutations
π assigned in each level, and the top-right part gives the complete grammar built (for simplicity we
omit run-length nonterminals). The parse tree, shown on the bottom, also omits run-length nonter-
minals. The texts Tr correspond to the subsequent levels of the parse tree (starting from the bot-
tom). Level-r block boundaries that are not run boundaries are depicted using dotted lines. For
example, T2 = #2DDEDD$2, n2 = 7, and the level-2 block boundaries are 11, 17, 23, 33, 39, 45.
On the other hand, n̂2 = 5 and the level-2 run boundaries are 11, 23, 33, 45. The corresponding
parsings P2 and P̂2 decompose T as #adbdaacaac|bdaabc|bdaabc|bdbdaacaac|bdaabc|bdaabc|bdc$ and
#adbdaacaac|bdaabcbdaabc|bdbdaacaac|bdaabcbdaabc|bdc$, respectively.

Definition 4.4. For every non-empty fragment T [i . . j] of T , the sets defined according to
Definition 3.5 for the parsing Pr are denoted Br(i, j), Lr(i, j, c), and Rr(i, j, c). Analogously,
we denote by B̂r(i, j), L̂r(i, j, c), and R̂r(i, j, c) the sets defined for the parsing P̂r.

These notions let us reformulate Lemma 3.9 so that it is directly applicable at every
level r.

Lemma 4.5. If matching fragments T [i . . j] and T [i′ . . j′] both consist of full level-r
blocks, then the corresponding fragments of Tr also match, so Br(i, j) = Br(i

′, j′) and
B̂r(i, j) = B̂r(i

′, j′). Moreover, Br+1(i, j) \ {min B̂r(i, j)} = Br+1(i′, j′) \ {min B̂r(i, j)} if
B̂r(i, j) 6= ∅, and Br+1(i, j) = Br+1(i′, j′) = ∅ otherwise.

Proof. We proceed by induction on r. The first two claims hold trivially for r = 0:
the fragments T [i . . j] and T [i′ . . j′] of T0 = T clearly match, and B0(i, j) = [0 . .
j − i− 1] = B0(i′, j′). For r > 0, on the other hand, T [i . . j] and T [i′ . . j′] consist of
full level-(r − 1) blocks, so the inductive assumption yields that the corresponding frag-
ments of Tr−1 also match and that Br(i, j) = Br(i

′, j′) = ∅ or Br(i, j) \ {min B̂r−1(i, j)} =

Br(i
′, j′)\{min B̂r−1(i, j)}. In the latter case, we observe that i−1 and i+min B̂r−1(i, j) are

subsequent level-(r− 1) run boundaries while i− 1 is a level-r block boundary, or i = 1 and
i+ min B̂r−1(i, j) is the leftmost level-(r − 1) run boundary. Either way, i+ min B̂r−1(i, j)

cannot be a level-r block boundary due to Observation 3.4, so Br(i, j) \ {min B̂r−1(i, j)} =

Br(i, j). A symmetric argument proves that Br(i′, j′) \ {min B̂r−1(i, j)} = Br(i
′, j′), which

lets us conclude that Br(i, j) = Br(i
′, j′). Hence, the matching fragments of Tr−1 corre-

sponding to T [i . . j] and T [i′ . . j′] are parsed into the same blocks so the corresponding
fragments of Tr also match.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 M. B. Ettienne et al.

To prove the other two claims for arbitrary r ≥ 0, notice that the fragments of Tr
corresponding to T [i . . j] and T [i′ . . j′] are occurrences of the same string, denoted Pr.
Hence, B̂r(i, j) and B̂r(i′, j′) are equal as they both correspond to the run boundaries in Pr.
If Pr consists of a single run (i.e., if B̂r(i, j) = ∅), then clearly Br+1(i, j) = Br+1(i′, j′) = ∅.
Otherwise, Lemma 3.9 implies Br+1(i, j) \ {min B̂r(i, j)} = Br+1(i′, j′) \ {min B̂r(i, j)}.

Nevertheless, we define local consistency of a grammar as a stronger property than the
one expressed in Lemma 4.5: we require that Br(i, j) and Br(i′, j′) resemble each other even
if the matching fragments T [i . . j] and T [i′ . . j′] do not consist of full blocks.

Definition 4.6. The grammar we build is locally consistent if there is a constant cg such
that the parsings Pr are all locally consistent with constant cg.

In the rest of this section, we prove that our grammar is locally consistent with constant
cg = 3. Our main tool is the following construction of sets Br(P ) and B̂r(P ), consisting
of the positions (relative to P ) of context-insensitive level-r block and run boundaries that
are common to all occurrences of P in T . Despite these sets being defined based on an
occurrence of P in T , we show in Lemma 4.10 that they do not depend on the choice of the
occurrence.

Definition 4.7. Let P be a substring of T and let T [i . . j] be its arbitrary occurrence in T .
The sets Br(P ) and B̂r(P ) for r ≥ 0 are defined recursively, with X + δ = {x+ δ : x ∈ X}.

Br(P ) =


[0 . . |P | − 2] if r = 0,

Br(i+ 1 + min B̂r−1(P ), i+ maxBr−1(P )) + 1 + min B̂r−1(P ) if B̂r−1(P ) 6= ∅,
∅ if B̂r−1(P ) = ∅;

B̂r(P ) =

{
B̂r(i+ 1 + minBr(P ), i+ maxBr(P )) + 1 + minBr(P ) if Br(P ) 6= ∅,
∅ if Br(P ) = ∅.

Our index also relies on a set M(P ) designed as a superset of Br(i, j) \ Br(P ) for every r
and every occurrence T [i . . j] of P . In other words, M(P ) contains, for each r, positions
within P that may be level-r block boundaries in some but not necessarily all occurrences
of P .

Definition 4.8. For a substring P of T , the set M(P ) is defined to contain minBr(P )

and maxBr(P ) for every r ≥ 0 with Br(P ) 6= ∅, and min B̂r(P ) for every r ≥ 0 with
B̂r(P ) 6= ∅.

Example 4.9. Consider P = dbdaacaacbdaabcbdaabcbd with occurrences T [3 . . 25] and
T [25 . . 47] in the text T of Figure 2. For r = 0, we define B0(P ) = [0 . . 21] and set B̂0(P ) =

{1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20} = 1 + B̂0(4, 24) = 1 + B̂0(26, 46). For r = 1,
we set B1(P ) = {2, 5, 8, 10, 14, 16, 20} = 2 + B1(5, 24) = 2 + B1(27, 46) and B̂1(P ) =

{8, 10, 14, 16} = 3 + B̂1(6, 23) = 3 + B̂1(28, 45). For r = 2, we set B2(P ) = {14} =

9 + B2(12, 23) = 9 + B2(34, 45) and B̂2(P ) = ∅ = 15 + B̂2(18, 17) = 15 + B̂2(40, 39).
For r ≥ 3, we have Br(P ) = B̂r(P ) = ∅. Consequently, M(P ) = {0, 1, 2, 8, 14, 20, 21}; see
Figure 3.

We now show Br(P ) contains all the level-r block boundaries in any occurrence of P in T
except possibly the first 3 and the last one, but those missing boundaries belong to M(P ).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:11

Parse tree

#a d b d a a c a a c b d a a b c b d a a b c b d b d a a c a a c b d a a b c b d a a b c b d c $

#1 B A A B C B C B B A A B C B C B $1

#2 D D E D D $2

#3 $3

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Fig. 3. The construction of M(P ) for the pattern P analyzed in Example 4.9, illustrated on the occurrence
of P at T [3 . . 25]. In light gray, we show the area between minBr(P ) + 1 and maxBr(P ), and in dark gray
the area between min B̂r(P ) + 1 and max B̂r(P ). At each level r, the parsing between those extremes is
always the same for every occurrence of P ; see T [25 . . 47] for example. The set M(P ) contains the relative
position of minBr(P ), maxBr(P ), and min B̂r(P ) for every r, marked by dotted lines between indices.

Lemma 4.10. For every substring P of T and every r ≥ 0, the sets Br(P ) and B̂r(P )
do not depend on the choice of an occurrence T [i . . j] of P . Moreover,

Br(P ) ∪ Lr(i, j, 3) ∪Rr(i, j, 1) = Br(i, j) ⊆ Br(P ) ∪M(P ). (1)

Proof. We proceed by induction on r, proving the independence of B̂r(P ) only at step
r+1. In the base case, B0(P ) = [0 . . |P |−2] does not depend on the choice of the occurrence,
and Eq. (1) is satisfied because B0(P ) = B0(i, j).

For the inductive step, we assume the claims hold for Br(P ). If Br(P ) = ∅, then B̂r(P ) =
Br+1(P ) = ∅ do not depend on the occurrence of P . The inductive assumption yields
Br+1(i, j) ⊆ Br(i, j) ⊆M(P ) = Br+1(P )∪M(P ) and |Br+1(i, j)| ≤ |Br(i, j)| = |Lr(i, j, 3)∪
Rr(i, j, 1)| ≤ 4, so Lr+1(i, j, 3) ∪Rr+1(i, j, 1) = Br+1(i, j) and Eq. (1) is satisfied.

We henceforth assume that Br(P ) 6= ∅. Since Br(P ) ⊆ Br(i, j), both i+minBr(P ) and i+
maxBr(P ) are level-r block boundaries, and therefore T [i+minBr(P )+1 . . i+maxBr(P )]

consists of full level-r blocks. We conclude from Lemma 4.5 that B̂r(P ), as defined in
Definition 4.7, does not depend on the occurrence of P . Moreover, the only position between
i + minBr(P ) and i + maxBr(P ) that may or may not be a level-(r + 1) block boundary
depending on the context of T [i . . j] is i+min B̂r(P ) provided that B̂r(P ) 6= ∅. In particular,
Br+1(P ), as defined in Definition 4.7, also does not depend on the occurrence of P .

To prove that Br+1(P ) satisfies Eq. (1), we consider two cases. First, suppose that
B̂r(P ) = ∅, that is, there are no level-r run boundaries between i + minBr(P ) and
i + maxBr(P ). Since B̂r(i, j) ⊆ Br(i, j), the inductive assumption Br(i, j) = Br(P ) ∪
Lr(i, j, 3) ∪ Rr(i, j, 1) implies B̂r(i, j) ⊆ {minBr(P ),maxBr(P )} ∪ Lr(i, j, 3) ∪ Rr(i, j, 1),
while Br(i, j) ⊆ Br(P )∪M(P ) yields B̂r(i, j) ⊆ {minBr(P ),maxBr(P )}∪M(P ) = M(P ),
where the equality follows from Definition 4.8. The former assertions yields |B̂r(i, j)| ≤ 6,
and since Br+1(i, j) ⊆ B̂r(i, j) cannot contain two consecutive elements of B̂r(i, j) by Obser-
vation 3.4, we conclude that |Br+1(i, j)| ≤ 3. In particular, since Br+1(P ) = ∅ according to
Definition 4.7, we have Br+1(P )∪Lr+1(i, j, 3)∪Rr+1(i, j, 1) = Br+1(i, j) ⊆ Br+1(P )∪M(P )
as claimed.

Next, suppose that B̂r(P ) 6= ∅. Definition 4.7 clearly implies Br+1(P ) ⊆ Br+1(i, j), so it
remains to prove that Br+1(i, j) is a subset of both Br+1(P ) ∪ Lr+1(i, j, 3) ∪ Rr+1(i, j, 1)
and Br+1(P ) ∪M(P ). We take q ∈ Br+1(i, j) and consider three cases.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 M. B. Ettienne et al.

(1) If q ≤ min B̂r(P ), then q ∈ (Lr(i, j, 3)∩M(P ))∪{minBr(P ),min B̂r(P )} and therefore
q ∈ L̂r(i, j, 5).3 Since Br+1(i, j) cannot contain two consecutive elements of B̂r(i, j)
due to Observation 3.4, q ∈ Br+1(i, j) ∩ L̂r(i, j, 5) implies q ∈ Lr+1(i, j, 3). Finally,
q ∈M(P ) ∪ {minBr(P ),min B̂r(P )} = M(P ), where the equality holds due to Defini-
tion 4.8.

(2) If q ≥ maxBr(P ), then q ∈ (Rr(i, j, 1) ∩ M(P )) ∪ {maxBr(P )} and therefore q ∈
R̂r(i, j, 2).4 Since Br+1(i, j) cannot contain two consecutive elements of B̂r(i, j) due
to Observation 3.4, q ∈ Br+1(i, j) ∩ Rr(i, j, 2) implies q ∈ Rr+1(i, j, 1). Finally, q ∈
M(P ) ∪ {maxBr(P )} = M(P ), where the equality holds due to Definition 4.8.

(3) If min B̂r(P ) < q < maxBr(P ), then q + i is a level-(r + 1) block boundary and
q ∈ Br+1(P ) by Definition 4.7.

Lemma 4.10 implies that the grammar constructed in this section is locally consistent
with cg = 3. We conclude this section with a further characterization of the set M(P ).

Lemma 4.11. For each substring P = T [i . . j], the set M(P ) satisfies the following
properties:

(1) If Br(i, j) 6= ∅ for some r ≥ 0, then minBr(i, j) ∈M(P ),
(2) If B̂r(i, j) 6= ∅ for some r ≥ 0, then min B̂r(i, j) ∈M(P ),
(3) |M(P )| ≤ 3dlog |P |e.

Proof. To prove (1) for any r, note that Br(P ) ⊆ Br(i, j) ⊆ Br(P ) ∪ M(P ) by
Lemma 4.10. If minBr(i, j) /∈ Br(P ), then it belongs to M(P ). Otherwise, it must be
equal to minBr(P ), which is in M(P ) by Definition 4.8.

The proof of (2) is similar: Since B̂r(i, j) ⊆ Br(i, j), either min B̂r(i, j) ∈ Br(i, j) \
Br(P ) ⊆ M(P ), or min B̂r(i, j) ∈ Br(P ). If min B̂r(i, j) ∈ {minBr(P ),maxBr(P )}, then
it is in M(P ) by Definition 4.8. Otherwise, minBr(P ) < min B̂r(i, j) < maxBr(P ) and,
by the choice of B̂r(P ) in Definition 4.7, min B̂r(i, j) = min B̂r(P ) is also in M(P ) by
Definition 4.8.

To prove (3), notice that |Br(P )| ≤ 1
2 |Br−1(P )| holds for all r due to Definition 4.7,

Observation 3.4, and minBr−1(P ) /∈ Br(P ). This implies |Br(P )| ≤ |B0(P )|·2−r < |P |·2−r,
and therefore B̂r(P ) = Br(P ) = ∅ for r ≥ log |P |. Definition 4.8 now yields the claim.

5. BOUNDING OUR GRAMMAR IN TERMS OF ATTRACTORS

Let us first define the concept of attractors in a string [Kempa and Prezza 2018].

Definition 5.1 ([Kempa and Prezza 2018]). An attractor of a string S is a set Γ ⊆ [1 . . n]
of positions in S such that each non-empty substring Q of S has an occurrence S[i . . j]
containing an attractor position, i.e., satisfying i ≤ p ≤ j for some p ∈ Γ.

In this section, we show that the RLCFG of Section 4 is of size g = O(γ log(n/γ)), where
γ is the size of a smallest attractor of T . The key is to prove that distinct nonterminals are
formed only around the attractor elements. For this, we first prove that T ′[1 . . n′], where
the blocks of T are converted into nonterminals, contains an attractor of size at most 3γ.

3By the choice of B̂r(P ) in Definition 4.7, there are no level-r run boundaries between minBr(P ) and
min B̂r(P ). Note that q < minBr(P ) yields q 6∈ Br(P ). Since q ∈ Br(i, j), by the inductive assumption
q /∈ Br(P ) implies q ∈ Lr(i, j, 3) ∩M(P ) (q /∈ Rr(i, j, 1) because q < minBr(P ) ∈ Br(i, j)). For the same
reason, Lr(i, j, 3) ∪ {minBr(P )} ⊆ Lr(i, j, 4) and min B̂r(P ) ∈ L̂r(i, j, 5).
4Note that q > maxBr(P ) yields q 6∈ Br(P ). Since q ∈ Br(i, j), by the inductive assumption q /∈ Br(P )

implies q ∈ Rr(i, j, 1) ∩M(P ) (q /∈ Lr(i, j, 3) because q > maxBr(P ) > min B̂r(P ) > minBr(P ) and these
3 elements belong to Br(i, j)). For the same reason, Rr(i, j, 1) ∪ {maxBr(P )} ⊆ Rr(i, j, 2).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:13

����������������������������������������������������������������������������������������

�
	
����
������������������
�������������
��������������
����
�����������������
�������������
��������������
�����

	

�

� � � � � �

�
�

�
���

��
� 	




� � 	 �
 �

� �

Fig. 4. Illustration of Lemma 5.2. We underlined positions in T corresponding to a particular string at-
tractor.

Lemma 5.2. Let Γ be an attractor of T , and let Γ′ =
⋃
p∈Γ[p′ − 1 . . p′ + 1], where p′ is

the position in T ′ of the nonterminal that covers p in T . Then Γ′ is an attractor of T ′.

Proof. Figure 4 illustrates the proof. Consider an arbitrary substring T ′[x′ . . y′], with
x′ ≥ 3 and y′ ≤ n′ − 2; otherwise the substring crosses an attractor because 1 and n are in
Γ. This is a sequence of consecutive nonterminals, each corresponding to a block in T . Let
T [x . . y] be the substring of T formed by all the blocks that map to T ′[x′ . . y′]. The union
of their extensions is also a substring T [xe . . ye] of T . Since Γ is an attractor in T , there
exists a copy T [r∗ . . s∗] = T [xe . . ye] that includes an element p ∈ Γ, r∗ ≤ p ≤ s∗.

Consider any block T [i . . j] inside T [x . . y]. Its extension T [ie . . je] is contained in
T [xe . . ye], so a copy T [r′ . . s′] of T [ie . . je] appears inside T [r∗ . . s∗]. By Lemma 3.11, the
block T [i . . j] also forms a block T [r . . s] inside T [r′ . . s′], at the same relative position;
furthermore, T [r′ . . s′] = T [re . . se] is the extension of T [r . . s].

Since this happens for every block T [i . . j] inside T [x . . y], which is a sequence of blocks,
it follows that T [x . . y] appears inside T [r∗ . . s∗], as a subsequence T [u . . v] of blocks; fur-
thermore, its extension T [ue . . ve] coincides with T [r∗ . . s∗] and thus contains p. Moreover,
T [u . . v] maps to a substring T ′[u′ . . v′] = T ′[x′ . . y′].

Since ve = v+1 and ue = map−F(map(u−1))−1, due to Observation 3.4, the fragments
T [ue . . u−1] and T [v+ 1 . . ve] are contained within single blocks. Therefore, the position p′

to which p is mapped in T ′ belongs to T ′[u′ − 1 . . v′ + 1]. Consequently, T ′[u′ . . v′] contains
a position in Γ′.

We now show that the first round contributes O(γ) to the size of the final RLCFG. In
this bound, we only count the the sizes of the generated rules; the whole accounting will
be done in Theorem 5.4. The idea is to show that the 3 distinct blocks formed around each
attractor element have expected length O(1).

Lemma 5.3. The first round of parsing contributes O(γ) to the grammar size, in expec-
tation. Further, a parsing producing a grammar of size O(γ) is found in O(n) expected time
provided that γ is known.

Proof. Let us first focus on block-forming rules; we consider the run-length rules in the
next paragraph. The right-hand sides of the block-forming rules correspond to the distinct
blocks formed in T̂ , that is, to single symbols in T ′. All the distinct symbols in T ′, in turn,
appear at positions of Γ′. By Theorem 5.2, Γ′ is of size at most 3γ; therefore, there are
at most 3γ distinct blocks in T̂ and in T (i.e., those containing attractor elements of T
and their neighboring blocks), and thus at most 3γ distinct nonterminals are formed in the
grammar.

We must also show, however, that the sum of the sizes of the right-hand sides of those
3γ productions also add up to O(γ). Consider a block of T̂ of length `. The right-hand side
of its corresponding production is `. Each element of T̂ can be a metasymbol, however, so
the grammar may indeed include ` further run-length nonterminals, contributing up to 2`

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 M. B. Ettienne et al.

to the grammar size. Therefore, each distinct block of length ` in T̂ contributes at most 3`
to the grammar size. We now show that ` = O(1) in expectation for the 3γ blocks specified
above.

Consider an attractor element p and its position p̂ = map(p) when mapped to T̂ . Let
T [i . . j] be the block containing p and let T [i′..j′] be its concatenation with the adjacent
blocks (T [i′ . . i−1] and T [j+1 . . j′]). Moreover, let T̂ [̂i . . ĵ] and T̂ [̂i′ . . ĵ′] be the correspond-
ing fragments of T̂ , with î = map(i), ĵ = map(j), î′ = map(i′), and ĵ′ = map(j).

Let `+ = ĵ′ − p̂ + 1, `− = p̂ − î′, and ` = `+ + `−. Then, 3` is the maximum possible
contribution of attractor element p to the grammar size via nonterminals that represent
these blocks.

The area T̂ [p̂ . . ĵ′] contains at most 2 local minima, at ĵ and ĵ′ (unless ĵ′ = n̂). Note that,
between two consecutive local minima, we have a sequence of nondecreasing values of π and
then a sequence of nonincreasing values of π. Our area can be covered by 2 such ranges.
Hence, if we split the substring of length `+ into 4 equal parts of length `+/4, at least one
of them must be monotone (i.e., nondecreasing or nonincreasing) with respect to π.

Note that consecutive symbols in T̂ are always different. Further, if there are repeated
symbols in a length-d substring of T̂ , then it cannot be monotone with respect to π. If
all the symbols are different, instead, exactly one out of d! permutations π will make the
substring increasing and one out of d! will make it decreasing, where d is the length of the
substring.

As a result, at most 2 out of (`+/4)! permutations can make one of our length-(`+/4)
substrings monotone. If we choose permutations π uniformly at random, then the probability
that at least one of our 4 substrings is monotone is at most 8/(`+/4)!. Since this upper-
bounds the probability that ĵ′ ≥ p̂+ `+, the expected value of `+ is O(1).5

An analogous argument holds for `− since T̂ [̂i′ . . p̂− 1] can also be covered by at most 2
ranges between consecutive local minima. Adding the expectations of the contributions 3`
over the γ attractor elements, we obtain O(γ).

If the expectation is of the form c · γ, then at least half of the permutations produce
a grammar of size at most 2c · γ, and thus a Las Vegas algorithm finds a permutation
producing a grammar of size at most 2c ·γ after O(1) attempts in expectation. Since at each
attempt we parse T [1 . . n] in time O(n), we find a suitable permutation in O(n) expected
time provided we know γ.

We now perform O(log(n/γ)) rounds of locally-consistent parsing, where the output T ′

of each round is the input to the next. The length of the string halves in each iteration, and
the grammar grows only by O(γ) in each round.

Theorem 5.4. Let T [1 . . n] have an attractor of size γ. Then there exists a locally-
balanced locally-consistent RLCFG of size g = O(γ log(n/γ)) and height O(log(n/γ)) that
generates (only) T , and it can be built in O(n) expected time and O(g) working space if γ
is known.

Proof. We apply the grammar construction described in Section 4.1, which by Lem-
mas 4.3 and 4.10, is locally balanced and locally consistent.

We first show that we can build an attractor Γr for each Tr formed by γ runs of mr ∈ O(1)
consecutive positions. This is clearly true for T0, with m0 = 1. Now assume this holds for Tr.
When parsing Tr into blocks to form Tr+1, each run of mr consecutive attractor positions
is parsed into at most 1 + bmr/2c consecutive symbols p′ in Tr+1, as seen in the proof of
Lemma 3.7. Lemma 5.2 then shows that, if we expand each such mapped attractor positions
p′ to [p′ − 1 . . p′ + 1], we obtain an attractor Γr+1 for Tr+1. The union of the expansions

5Because
∑
k≥1 1/k! = e− 1.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:15

of 1 + bmr/2c consecutive positions p′ creates a run of length mr+1 = 3 + bmr/2c. It then
holds that Γr+1 is formed by γ runs of at most mr+1 positions.

The sequence of values mr stabilizes. If we solve m = 3 + bm/2c, we obtain dm/2e = 3.
This solves for m = 5 or m = 6. Indeed, the value is 5 and is reached soon: m0 = 1, m1 = 3,
m2 = 4, m3 = 5, m4 = 5. Therefore, we safely use mr ≤ 5 in the following.

The only distinct blocks in each Tr are those forming Γr+1. Therefore, the parsing of each
text Tr produces at most 5γ distinct nonterminal symbols. By Theorem 5.3, we can find in
O(nr) expected time a permutation πr such that the contribution of the rth round to the
grammar size is O(|Γr|) = O(γ).

The sum of the lengths of all Trs is at most 2n, thus the total expected construction cost
is O(n). We stop after r∗ = log(n/γ) rounds. By then, Tr∗ is of length at most γ and the
cumulative size of the grammar is O(γ · r∗) = O(γ log(n/γ)). We add a final rule S → Tr∗ ,
which adds γ to the grammar size. The height of the grammar is O(r∗) = O(log(n/γ)).

As for the working space, at each new round r we generate a permutation πr of |Σr| cells.
Since the alphabet size is a lower bound to the attractor size, it holds that |Σr| ≤ 5γ. We
store the distinct blocks that arise during the parsing in a hash table. These are at most 5γ
as well, and thus a hash table of size O(γ) is sufficient. The rules themselves, which grow
by O(γ) in each round, add up to O(g) total space.

5.1. Building the grammar without an attractor

Since finding the size γ of the smallest attractor is NP-complete [Kempa and Prezza 2018],
it is interesting that we can find a RLCFG similar to that of Theorem 5.4 without having
to find an attractor nor knowing γ. The key idea is to build on another measure, δ, that
lower-bounds γ and is simpler to compute.

Definition 5.5. Let T (`) be the total number of distinct substrings of length ` in T .
Then

δ = max{T (`)/`, ` ≥ 1}.
Measure δ is related to the expression d`(w)/`, used by Raskhodnikova et al. [2013] to

approximate z. Analogously to their result [Raskhodnikova et al. 2013, Lem. 4], we have
the following bound in terms of attractors.

Lemma 5.6. It always holds δ ≤ γ.

Proof. Since every length-` substring of T must have a copy containing an attractor
position, it follows that there are at most ` · γ distinct such substrings, that is, T (`)/` ≤ γ
for all `.

Lemma 5.7. Measure δ can be computed in O(n) time and space from T [1 . . n].

Proof. Computing δ boils down to computing T (`) for all 1 ≤ ` ≤ n. This is easily
computed from a suffix tree on T [Weiner 1973] (which is built in O(n) time). We first
initialize all the counters T (`) at zero. Then we traverse the suffix tree: for each leaf with
string depth ` we add 1 to T (`), and for each non-root internal node with k children and
string depth `′ we subtract k−1 from T (`′). Finally, for all the ` values, from n−1 to 1, we
add T (`+ 1) to T (`). Thus, the leaves count the unique substrings they represent, and the
latter step accumulates the leaves descending from each internal node. The value subtracted
at internal nodes accounts for the fact that their k distinct children should count only once
toward their parent.

We now show that δ can be used as a replacement of γ to build the grammar.

Theorem 5.8. Let T [1 . . n] have a minimum attractor of size γ. Then we can build a
locally-balanced locally-consistent RLCFG of size g = O(γ log(n/γ)) and height O(log n)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 M. B. Ettienne et al.

that generates (only) T in O(n) expected time and O(n) working space, without knowing
γ.

Proof. We carry out log n iterations instead of log(n/γ), and the grammar is still of size
O(γ log(n/γ)); the extra iterations add only O(γ) to the size.

The only other place where we need to know γ is when applying Lemma 5.3, to check that
the total length of the distinct blocks resulting from the parsing, using a randomly chosen
permutation, is at most 2c ·γ. A workaround to this problem is to use measure δ ≤ γ, which
(unlike γ) can be computed efficiently.

To obtain a bound on the sum of the lengths of the blocks formed, we add up all the
possible substrings multiplied by the probability that they become a block. Consider a
substring Ŝ[1 . . `+3] of T̂ . Whether Ŝ occurs as a mapped block extension, that is, whether
it occurs with Ŝ′ = Ŝ[3 . . ` + 2] being a block, depends only on π and Ŝ, because by
Lemma 3.11, if Ŝ′ forms a block inside one occurrence of Ŝ, it must form a block inside each
occurrence of Ŝ. Let us now consider the probability that Ŝ′ forms a block. As in the proof of
Lemma 5.3, Ŝ[3 . . `/2 + 2] must have an increasing sequence of π-values or Ŝ[`/2 + 3 . . `+ 2]
must have a decreasing sequence of π-values, and this holds for at most two out of (`/2)!
permutations π.

Therefore, any distinct substring of length `+ 3 (of which there are T (`+ 3) ≤ (`+ 3)δ)
contributes a block of length ` to the grammar size with probability at most 2/(`/2)! (note
that we may be counting the same block several times within different block extensions). The
total expected contribution to the grammar size is therefore

∑
`≥2(`+3)δ ·`·2/(`/2)! = O(δ).

As in the proof of Lemma 5.3, given the expectation of the form c · δ, we can try out
permutations until the total contribution to the grammar size is at most 2c · δ. After O(1)
attempts, in expectation, we obtain a grammar of size O(δ) ⊆ O(γ) without knowing γ.

We repeat the same process for each text Tr, since we know from Theorem 5.4 that every
Tr has an attractor of size at most 5γ, so the value δr we compute on Tr satisfies δr ≤ 5γ.
The sizes of all texts Tr add up to O(n).

6. AN INDEX BASED ON OUR GRAMMAR

Let G be a locally-balanced RLCFG of r rules and size g ≥ r on text T [1 . . n], formed with
the procedure of Section 5, thus g = O(γ log(n/γ)) with γ being the smallest size of an
attractor of T . We show how to build an index of size O(g) that locates the occ occurrences
of a pattern P [1 . .m] in time O(m+ (occ+ 1) logε n).

We make use of the parse tree and the partial parse-tree [Rytter 2003]. We call the latter
“grammar tree” and extend the concept to RLCFGs.

Definition 6.1. For CFGs, the grammar tree is obtained by pruning the parse tree: all
but the leftmost occurrence of each nonterminal is converted into a leaf and its subtree is
pruned. Then the grammar tree has exactly one internal node per distinct nonterminal and
the total number of nodes is g + 1: r internal nodes and g + 1− r leaves. For RLCFGs, we
treat rules A → As1 as A → A1A

[s−1]
1 , where the node labeled A

[s−1]
1 is always a leaf (A1

may also be a leaf, if it is not the leftmost occurrence of A1). Since we define the size of As1
as 2, the grammar tree is still of size g + 1.

We will identify a nonterminal A with the only internal grammar tree node labeled A.
When there is no confusion on the referred node, we will also identify terminal symbols a
with grammar tree leaves.

We extend an existing approach to grammar indexing [Claude and Navarro 2012] to the
case of our RLCFGs. We start by classifying the occurrences in T of a pattern P [1 . .m]
into primary and secondary.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:17

Definition 6.2. The leaves of the grammar tree induce a partition of T into f = g+1−r
phrases. An occurrence of P [1 . .m] at T [t . . t+m−1] is primary if the lowest grammar tree
node deriving a range of T that contains T [t . . t + m − 1] is internal (or, equivalently, the
occurrence crosses the boundary between two phrases); otherwise it is secondary.

6.1. Finding the primary occurrences

Let nonterminal A be the lowest (internal) grammar tree node that covers a primary occur-
rence T [t . . t+m− 1] of P [1 . .m]. Then, if A→ A1 · · ·As, there exists some i ∈ [1 . . s− 1]
and q ∈ [1 . .m − 1] such that (1) a suffix of exp(Ai) matches P [1 . . q], and (2) a pre-
fix of exp(Ai+1) · · · exp(As) matches P [q + 1 . .m]. The idea is to index all the pairs
(exp(Ai)

rev, exp(Ai+1) · · · exp(As)) and find those where the first and second component
are prefixed by (P [1 . . q])rev and P [q + 1 . .m], respectively. Note that there is exactly one
such pair per border between two consecutive phrases (or leaves in the grammar tree).

Definition 6.3. Let v be the lowest (internal) grammar tree node that covers a primary
occurrence T [t . . t + m − 1] of P , [t . . t + m − 1] ⊆ proj(v). Let vi be the leftmost child of
v that overlaps T [t . . t + m − 1], [t . . t + m − 1] ∩ proj(vi) 6= ∅. We say that node v is the
parent of the primary occurrence T [t . . t+m− 1] of P , and node vi is its locus.

We build a multiset G of f−1 = g−r string pairs containing, for every rule A→ A1 · · ·As,
the pairs (exp(Ai)

rev, exp(Ai+1) · · · exp(As)) for 1 ≤ i < s. The ith pair is associated with
the ith child of the (unique) A-labeled internal node of the grammar tree. The multisets X
and Y are then defined as projections of G to the first and second coordinate, respectively.
We lexicographically sort these multisets, and represent each pair (X,Y ) ∈ G by the pair
(x, y) of the ranks of X ∈ X and Y ∈ Y, respectively. As a result, G can be interpreted as
a subset of the two-dimensional integer grid [1 . . g − r]× [1 . . g − r].

Standard solutions [Claude and Navarro 2012] to find the primary occurrences in gram-
mars consider the partitions P [1 . . q]·P [q+1 . .m] for 1 ≤ q < m. For each such partition, we
search for (P [1 . . q])rev in X to find the range [x1 . . x2] of symbols Ai whose suffix matches
P [1 . . q], search for P [q + 1 . .m] in Y to find the range [y1 . . y2] of rule suffixes Ai+1 · · ·As
whose prefix matches P [q + 1 . .m], and finally search the two-dimensional grid for all the
points in the range [x1 . . x2] × [y1 . . y2]. This retrieves all the primary occurrences whose
leftmost intersected phrase ends with P [1 . . q].

From the locus Ai associated with each point (x, y) found, and knowing q, we have
sufficient information to report the position in T of this primary occurrence and all of its
associated secondary occurrences; we describe this process in Section 6.4.

This arrangement follows previous strategies to index CFGs [Claude and Navarro 2012].
To include rules A → As1, we just index the pair (exp(A1)rev, exp(A1)s−1), which cor-
responds precisely to treating the rule as A → A1A

[s−1]
1 to build the grammar tree.

It is not necessary to index other positions of the rule, since their pairs will look like
(exp(A1)rev, exp(A1)s

′
) with s′ < s− 1, and if P [q + 1 . .m] matches a prefix of exp(A1)s

′
,

it will also match a prefix of exp(A1)s−1. The other occurrences inside exp(A1)s−1 will be
dealt with as secondary occurrences.

Finally note that, by definition, a pattern P of length m = 1 has no primary occurrences.
We can, however, find all of its occurrences at the end of a phrase boundary by searching
for P [1 . . 1]rev = P [1] in X , to find [x1 . . x2], and assuming [y1 . . y2] = [1 . . g − r]. We can
only miss the end of the last phrase boundary, but this is symbol $, which (just as #) is not
present in search patterns. We can just treat these points (x, y) as the primary occurrences
of P , and report them and their associated secondary occurrences with the same mechanism
we will describe for general patterns in Section 6.4.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 M. B. Ettienne et al.

A geometric data structure can represent our grid of size (g − r) × (g − r) with g − r
points in O(g− r) ⊆ O(g) space, while performing each range search in time O(logε g) plus
O(logε g) per primary occurrence found, for any constant ε > 0 [Chan et al. 2011].

6.2. Parsing the pattern

In most previous work on grammar-based indexes, all the m − 1 partitions P = P [1 . . q] ·
P [q+ 1 . .m] are tried out. We now show that, in our locally-consistent parsing, the number
of positions that must be tried is reduced to O(logm).

Lemma 6.4. Using our grammar of Section 5, there are only O(logm) positions q yield-
ing primary occurrences of P [1 . .m]. These positions belong to M(P )+1 (see Definition 4.8).

Proof. Let A be the parent of a primary occurrence T [t . . t + m − 1], and let r be the
round where A is formed. There are two possibilities:

(1) A → A1 · · ·As is a block-forming rule, and for some 1 ≤ i < s, a suffix of exp(Ai)

matches P [1 . . q], for some 1 ≤ q < m. This means that q− 1 = min B̂r−1(t, t+m− 1).
(2) A→ As1 is a run-length nonterminal, and a suffix of exp(A1) matches P [1 . . q], for some

1 ≤ q < m. This means that q − 1 = minBr(t, t+m− 1).

In either case, q ∈M(P ) + 1 by Lemma 4.11.

In order to construct M(P ) using Definitions 4.8 and 4.7, we need to already have an
occurrence of P , which is not feasible in our context. Hence, we imagine parsing two texts,
T and P ∗ = #P$, simultaneously using the permutations πr we choose for T at each round
r. It is easy to verify that the results of Sections 3 and 4 remain valid across substrings of
both T and P ∗, because they do not depend on how the permutations are chosen.

Hence, our goal is to parse P ∗ at query time in order to build M(P ) using the occurrence
of P in P ∗. We now show how to implement this step in O(m) time. To carry out the
parsing, we must preserve the permutations πr of the alphabet used at each of the O(log n)
rounds of the parsing of T , so as to parse P ∗ in the same way. The alphabets in each
round are disjoint because all the blocks are of length 2 at least. Therefore the total size of
these permutations coincides with the total number of terminals and nonterminals in the
grammar, thus by Lemma 5.3 and Theorem 5.4 they require O(γ) space per round and O(g)
space overall.

Let us describe the first round of the parsing. We first traverse P ∗ = P ∗0 left-to-right
and identify the runs a`. Those are sought in a perfect hash table where we have stored
all the first-round pairs (a, `) existing in the text, and are replaced by their corresponding
nonterminal A→ a` (see below for the case where a` does not appear in the text). The result
of this pass is a new sequence P̂ ∗ = P̂ ∗0 . We then traverse P̂ ∗, finding the local minima (and
thus identifying the blocks) in O(m) time. For this, we have stored the values π(a) = π0(a)
associated with each terminal a in another perfect hash table (for the nonterminals A→ a`

just created, we have π(A) = π(a); recall Section 3). To convert the identified blocks A →
A1 · · ·Ak into nonterminals for the next round, such tuples (A1 · · ·Ak) have been stored in
yet another perfect hash table, from which the nonterminal A is obtained. This way, we
can identify all the blocks in time O(m), and proceed to the next round on the resulting
sequence of nonterminals, P ∗1 . The size of the first two hash tables is proportional to the
number of terminals and nonterminals in the level, and the size of the tuples stores in the
third table is proportional to the right-hand-sides of the rules created during the parsing.
By Theorem 5.4, those sizes are O(γ) per round and O(g) added over all the rounds.

Since the grammar is locally balanced, P ∗ is parsed in O(logm) iterations, where at the
rth iteration we parse P ∗r−1 into a sequence of blocks whose total number is at most half of
the preceding one, by Observation 3.4. Since we can find the partition into blocks in linear

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:19

time at any given level, the whole parsing takes time O(m). Construction of the sets Br(P ),
B̂r(P ), and M(P ) from Definitions 4.7 and 4.8, respectively, also takes O(m) time.

Note that P ∗r might contain blocks and runs that do not occur in Tr. By Lemma 4.10, if
a block in P ∗r is not among the leftmost 4 or rightmost 2 blocks, then it must also appear
within any occurrence of P in T , and as a result, the same must also be true for runs in
P ∗r+1. Consequently, if a block (or a run) is not among those 6 extreme ones yet it does not
appear in the hash table, we can abandon the search. As for the O(1) allowed new blocks
(and runs), we gather them in order to consistently assign new nonterminals and (in case
of blocks) arbitrary unused πr-values. We then proceed normally with subsequent levels of
the parsing. Note that the newly formed blocks cannot appear anymore since distinct levels
use distinct symbols, so we do not attempt to insert them into the perfect hash tables.

6.3. Searching for the pattern prefixes and suffixes

As a result of the previous section, we need only search for τ = O(logm) (reversed) prefixes
and suffixes of P in X or Y, respectively. In this section we show that the corresponding
ranges [x1 . . x2] and [y1 . . y2] can be found in time O(m + τ log2m) = O(m). We build on
the following result.

Lemma 6.5 (cf. [Belazzougui et al. 2010; Gagie et al. 2014; Gagie et al. 2018]). Let S
be a set of strings and assume we have a data structure supporting extraction of any length-
` prefix of strings in S in time fe(`) and computation of a given Karp–Rabin signature κ of
any length-` prefix of strings in S in time fh(`). We can then build a data structure of O(|S|)
words such that, later, we can solve the following problem in O(m+τ(fh(m)+logm)+fe(m))
time: given a pattern P [1 . .m] and τ > 0 suffixes Q1, . . . , Qτ of P , find the ranges of strings
in (the lexicographically-sorted) S prefixed by Q1, . . . , Qτ .

Proof. The proof simplifies a lemma from Gagie et al. [2018, Lem 5.2].
First, we require a Karp–Rabin function κ that is collision-free between equal-length text

substrings whose length is a power of two. We can find such a function at index construction
time in O(n log n) expected time and O(n) space [Bille et al. 2014]. We extend the collision-
free property to pairs of equal-letter strings of arbitrary length by switching to the hash
function κ′ defined as κ′(T [i . . i+ `− 1]) = 〈κ(T [i . . i+ 2blog `c− 1]), κ(T [i+ `− 2blog `c . . i+
`− 1]), `〉.

Z-fast tries [Belazzougui et al. 2010, Sec. H.2] solve the weak part of the lemma in
O(m log(σ)/w + τ logm) time. They have the same topology of a compact trie on S, but
use function κ′ to find a candidate node for Qi in time O(log |Qi|) = O(logm). We compute
the κ′-signatures of all pattern suffixes Q1, . . . , Qτ in O(m) time, and then search the z-fast
trie for the τ suffixes Qi in time O(τ logm).

By weak we mean that the returned answer for each suffix Qi is not guaranteed to be
correct if Qi does not prefix any string in S: we could therefore have false positives among
the answers, though false negatives cannot occur. A procedure for discarding false positives
[Gagie et al. 2014] requires extracting substrings and their signatures from S. We describe
and simplify this strategy in detail in order to analyze its time complexity in our scenario.

Let Q1, . . . , Qj be the pattern suffixes for which the z-fast trie found a candidate node.
Order the pattern suffixes so that |Q1| < · · · < |Qj |, that is, Qi is a suffix of Qi′ whenever
i < i′. In addition, let v1, . . . , vj be the candidate nodes (explicit or implicit) of the z-fast
trie such that all substrings below them are prefixed by Q1, . . . , Qj (modulo false positives),
respectively, and let ti = string(vi) be the substring read from the root of the trie to vi.
Our goal is to discard all nodes vk such that tk 6= Qk.

Note that it is easy to check (in O(τ ·fh(m)) time) that κ′(Qi) = κ′(ti) for all i = 1, . . . , j.
If a string ti does not pass this test, then clearly vi needs to be discarded because it must
be the case that Qi 6= ti. We can thus safely assume that κ′(Qi) = κ′(ti) for all i = 1, . . . , j.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 M. B. Ettienne et al.

As a second simplification, we note that it is also easy to check (again in O(τ · fh(m))
time) that ta is a suffix of tb whenever 1 ≤ a < b ≤ j. Starting from a = 1 and b = 2, we
check that κ′(ta) = κ′(tb[|tb| − |ta| + 1 . . |tb|]). If the test succeeds, we know for sure that
ta is a suffix of tb, since κ′ is collision-free among text substrings: we increment b← b+ 1,
set a to the next index such that va was not discarded (at the beginning of the procedure,
no va has been discarded), and repeat. Otherwise, we clearly need to discard vb since
κ′(Qb[|tb| − |ta|+ 1 . . |tb|]) = κ′(Qa) = κ′(ta) 6= κ′(tb[|tb| − |ta|+ 1..|tb|]), therefore Qb 6= tb.
Then, we discard vb and increment b← b+ 1. From now on we can thus safely assume that
ta is a suffix of tb whenever 1 ≤ a < b ≤ j.

The last step is to compare explicitly tj and Qj in O(fe(m)) time. Since we established
that (i) ta is a suffix of tb whenever 1 ≤ a < b ≤ j, (ii) by definition, Qa is a suffix of
Qb whenever 1 ≤ a < b ≤ j, and (iii) |Qi| = |ti| for all i = 1, . . . , j (since function κ′

includes the string’s length and we know that κ′(Qi) = κ′(ti) for all i = 1, . . . , j), checking
tj = Qj is enough to establish that ti = Qi for all i = 1, . . . , j. However, tj 6= Qj is not
enough to discard all vi: it could also be the case that only a proper suffix of tj matches
the corresponding suffix of Qj , and some vi pass the test. We therefore compute the longest
common suffix s between tj and Qj , and discard only those vi such that |ti| > s.

To analyze the running time, note that we compute κ′-signatures of strings that are
always suffixes of prefixes of length at most m of strings in S (because our candidate nodes
v1, . . . , vj are always at depth at most m). By definition, to retrieve κ′(ti) we need to
compute the two κ-signatures of the length-2e prefix and suffix of ti, for some e ≤ log |ti| ≤
logm, 1 ≤ i ≤ j. Computing the required κ′-signatures reduces therefore to the problem
of computing κ-signatures of suffixes of prefixes of length at most m of strings in S. Let
R′ = tb[|tb|−s+1 . . |tb|] be such a length-s string of which we need to compute κ(R′). Then,
κ(R′) = κ(tb) − κ(tb[1 . . |tb| − s]) · cs mod µ. Both signatures on the right-hand side are
prefixes of suffixes of length at most m of strings in S. The value cs mod µ can moreover be
computed in O(logm) time using the fast exponentiation algorithm. It follows that, overall,
computing the required κ′-signatures takes O(fh(m) + logm) time per candidate node. For
the last candidate, we extract the prefix tj of length at most m (O(fe(m)) time) of one of the
strings in S and compare it with the longest candidate pattern suffix (O(m) time). There
are at most τ candidates, so the verification takes time O(m+ τ · (fh(m) + logm) + fe(m)).
Added to the time to find the candidates in the z-fast trie, we obtain the claimed bounds.

Therefore, when S is X or Y, we need to extract length-` prefixes of reverse phrases (i.e.,
of some exp(Ai)

rev) or prefixes of consecutive phrases (i.e., of some exp(Ai+1) · · · exp(As))
in time fe(`). The next result implies that we can obtain fe(`) = O(`).

Lemma 6.6 (cf. [Gasieniec et al. 2005], [Claude and Navarro 2012, Sec. 4.3]). Given a
RLCFG of size g, there exists a data structure of size O(g) such that any prefix or suf-
fix of exp(A) can be obtained from any nonterminal A in real time.

Proof. Gasieniec et al. [2005] show how to extract any prefix of any exp(A) in a CFG of
size g in Chomsky Normal Form, in real time, using a data structure of size O(g). This was
later extended to general CFGs [Claude and Navarro 2012, Sec. 4.3]. We now extend the
result to RLCFGs.

Let us first consider prefixes. Define a forest of tries TG with one node per distinct
nonterminal or terminal symbol. Let us identify symbols with nodes of TG. Terminal symbols
are trie roots, and A1 is the parent of A in TG iff A1 is the leftmost symbol in the rule
that defines A, that is, A → A1 · · · . For the rules A → As1, we also let A1 be the parent
of A. We augment TG to support constant-time level ancestor queries [Bender and Farach-
Colton 2004], which return the ancestor at a given depth of a given node. To extract `
symbols of exp(A), we start with the node A of TG and immediately return the terminal a
associated with its trie root (found with a level ancestor query). We now find the ancestor

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:21

of A at depth 2 (a child of the trie root). Let B be this node, with B → aB2 · · ·Bs. We
recursively extract the symbols of exp(B2) until exp(Bs), stopping after emitting ` symbols.
If we obtain the whole exp(B) and still do not emit ` symbols, we go to the ancestor of
A at depth 3. Let C be this node, with C → BC2 · · ·Cr, then we continue with exp(C2),
exp(C3), and so on. At the top level of the recursion, we might finally arrive at extracting
symbols from exp(A2), exp(A3), and so on. In this process, when we have to obtain the
next symbols from a nonterminal D → Es, we treat it exactly as D → E · · ·E of size s,
that is, we extract exp(E) s− 1 further times.

Overall, we output ` symbols in time O(`). The extraction is not yet real-time, however,
because there may be several returns from the recursion between two symbols output. To
ensure O(1) time between two consecutive symbols obtained, we avoid the recursive call for
the rightmost child of each nonterminal, and instead move to it directly.

Suffixes are analogous, and can be obtained in real-time in reverse order by defining a
similar tree T ′G where As is the parent of A iff As is the rightmost symbol in the rule that
defines A, A→ · · ·As. For rules A→ As1, A1 is still the parent of A.

By slightly extending the same structures, we can compute any required signature in time
fh(`) = O(log2 `) in our grammars.

Lemma 6.7. In the grammar of Section 5, we can compute Karp–Rabin signatures of
prefixes of length ` of strings in X or Y in time fh(`) = O(log2 `).

Proof. Analogously as for extraction (Lemma 6.6), we consider the O(log `) levels of the
grammar subtree containing the desired prefix. For each level, we find in O(log `) time the
prefix/suffix of the rule contained in the desired prefix. Fingerprints of those prefixes/suffixes
of rules are precomputed.

Strings in X are reversed expansions of nonterminals. Let every nonterminal X store the
signatures of the reverses of all the suffixes of exp(X) that start at X’s children. That is, if
X → X1 · · ·Xs, store the signatures of (exp(Xi) · · · exp(Xs))

rev for all i. We use the trie T ′G
of the proof of Lemma 6.6, where each trie node is a grammar nonterminal and its parent is
the rightmost symbol of its defining rule. To extract the signature of the reversed prefix of
length ` of a nonterminal X, we go to the node of X in T ′G and run an exponential search
over its ancestors, so as to find in time O(log `) the lowest one whose expansion length is
≤ `. Let B be that nonterminal, then B is the first node in the rightmost path of the parse
tree from X with |B| ≤ `. Note that the height of B is O(log `) because the grammar is
locally balanced (Lemma 4.3), and moreover the parent A → B1 · · ·Bs−1B of B satisfies
|A| > `. We then exponentially search the preceding siblings of B until we find the largest
i such that |Bi|+ · · ·+ |B| > ` (we must store these cumulative expansion lengths for each
Bi). This takes O(log `) time. We collect the stored signature of (exp(Bi+1) · · · exp(B))rev;
this is part of the signature we will assemble. Now we repeat the process from Bi, collecting
the signature from the remaining part of the desired suffix. Since the depth of the involved
nodes decreases at least by 1 at each step, the whole process takes O(log2 `) time.

The case of Y is similar, now using the trie TG of the proof of Lemma 6.6 and computing
prefixes of signatures. The only difference is that we start from a given child Yi of a nonter-
minal Y → Y1 · · ·Yt and the signature may span up to the end of Y . So we start with the
exponential search for the leftmost Yj such that |Yi|+ · · ·+ |Yj | > `; the rest of the process
is similar.

When we have rules of the form A → As1, we find in constant time the desired copy Ai,
from ` and |A1|. Similarly, we can compute the signature κ of the last i copies of A1 as

κ(exp(A1)i) =
(
κ(exp(A1)) · c

|A1|·i−1
c|A1|−1

)
mod µ: c|A1| mod µ and (c|A1|−1)−1 mod µ can be

stored with A1, and the exponentiation can be computed in O(log i) ⊆ O(log `) time.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 M. B. Ettienne et al.

Overall, we find the m ranges in the grid in time O(m + τ(fh(m) + logm) + fe(m)) =
O(m+ τ log2m) = O(m+ log3m) = O(m), as claimed.

6.4. Reporting secondary occurrences

We report each secondary occurrence in constant amortized time, by adapting and extending
an existing scheme for CFGs [Claude and Navarro 2012] to RLCFGs. Our data structure
enhances the grammar tree with some fields per node v labeled A (where A is a terminal
or a nonterminal):

(1) v.anc = u is the nearest ancestor of v, labeled B, such that u is the root or B labels
more than one node in the grammar tree. Note that, since u is internal in the grammar
tree, it has the leftmost occurrence of label B in preorder. This field is undefined in the
nodes labeled A[s−1] we create in the grammar tree (these do not appear in the parse
tree).

(2) v.offs = vi − ui, where proj(v) = [vi . . vj ] and proj(u) = [ui . . uj ], is the offset of the
projection exp(A) of v inside the projection exp(B) of u. This field is also undefined in
the nodes labeled A[s−1].

(3) v.next = v′ is the next node in preorder labeled A, our null if v is the last node labeled A
(those next appearances of A are leaves in the grammar tree). If B → As, the internal
node u labeled B has two children: v labeled A and v′ labeled A[s−1]. In this case,
v.next = v′, and v′.next points to the next occurrence of a node labeled A, in preorder.

Let u, labeled A, be the parent of primary occurrence of P , with A → A1 · · ·As, and v,
labeled Ai, be its locus. The grid defined in Section 6.1 gives us the pointer to v. We then
know that the relative offset of this primary occurrence inside Ai is |Ai| − q + 1. We then
move to the nearest ancestor of v we have recorded, u′ = v.anc, where the occurrence of
P starts at offset offs = |Ai| − q + 1 + v.offs (note that u′ can be u or an ancestor of it).
From now on, to find the offset of this occurrence in T , we repeatedly add u′.offs to offs
and move to u′ ← u′.anc. When u′ reaches the root, offs is the position in T of the primary
occurrence.

At every step of this upward path to the root, we also take the rightward path to u′′ ←
u′.next . If u′′ 6= null, we recursively report the copy of the primary occurrence inside u′′,
continuing from the same current value of offs we have for u′.

In other words, from the node u′ = v.anc we recursively continue by u′.anc and u′.next ,
forming a binary tree of recursive calls. All the leaves of this binary tree that are “left”
children (i.e., by u′.anc) reach the root of the grammar tree and report a distinct offset
in T each time. The total number of nodes in this tree is proportional to the number of
occurrences reported, and therefore the amortized cost per occurrence reported is O(1).

In case A→ As1, the internal grammar tree node u labeled A has two children: v labeled
A1 and v′ = v.next labeled A[s−1]

1 . If P has a primary occurrence where P [1 . . q] matches a
suffix of exp(A1), the grid will send us to the node v, where the occurrence starts at offset
|A1|− q+ 1. This is just the leftmost occurrence of P within exp(A), with offset |A1|− q+ 1
as well. We must also report all the secondary occurrences inside exp(A), that is, all the
offsets i · |A1| − q + 1, for i = 1, 2, . . . as long as i · |A1| − q + m ≤ s · |A1|. For each such
offset we continue the reporting from u′ = v.anc, with offset offs = i · |A1| − q + 1 + v.offs.

We might also arrive at such a node v by a next pointer, in which case the occurrence of
P is completely inside exp(A1), with offset offs. In this case, we must similarly propagate all
the other s− 1 copies of A1 upwards, and then continue to the right. Precisely, we continue
from u′ = v.anc and offset offs + i · |A1| + v.offs, for all 0 ≤ i < s. Finally, we continue
rightward to node v′.next and with the original value offs.

Our amortized analysis stays valid on these run-length nodes, because we still do O(1)
work per new occurrence reported (these are s-ary nodes in our tree of recursive calls).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:23

6.5. Short patterns

All our data structures use O(g) space. After parsing the pattern to find the τ = O(logm)
relevant cutting points q in time O(m) (Section 6.2), and finding the τ grid ranges
[x1 . . x2] × [y1 . . y2] by searching X and Y in time O(m) as well (Section 6.3), we look
for the primary and secondary occurrences. Finding the former requires O(logε g) time for
each of the τ ranges, plus O(logε g) time per primary occurrence found (Section 6.1). The
secondary occurrences require just O(1) time each (Section 6.4). This yields total time
O(m+ logm logε g + occ logε g) to find the occ occurrences of P [1 . .m].

Next we show how to remove the additive term O(logm logε g) by dealing separately with
short patterns: we use O(γ) further space and leave only an additive O(logε g)-time term
needed for short patterns that do not occur in T ; we then further reduce this term.

The cost O(logm logε g) comes from the O(logm) geometric searches, each having a
component O(logε g) that cannot be charged to the primary occurrences found [Chan et al.
2011]. That cost, however, impacts on the total search complexity only for short patterns:
it can be ω(m) only if m = O(`), with ` = logε g log log g.

We can then store sufficient information to avoid this cost for the short patterns. Since T
has an attractor of size γ, there can be at most γ` substrings of length ` crossing an attractor
element, and all the others must have a copy crossing an attractor element. Thus, there are
at most γ` distinct substrings of length ` in T , and at most γ`2 distinct substrings of
length up to `. We store all these substrings in a succinct perfect hash table H [Belazzougui
et al. 2009], using the function κ′ of Lemma 6.5 as the key. The associated value for each
such substring are the O(log `) = O(log log g) split points q that are relevant for its search
(Section 6.2) and have points in the corresponding grid range (Section 6.1). Since each
partition position q can be represented in O(log `) = O(log log g) bits, we encode all this
information in O(γ`2 log2 `) bits, which is O(γ) space for any ε < 1

2 . Succinct perfect hash
tables require only linear-bit space on top of the stored data [Belazzougui et al. 2009],
O(γ`2) bits in our case. Avoiding the partitions that do not produce any result effectively
removes the O(logm logε g) additive term on the short patterns, because that cost can be
charged to the first primary occurrence found.

Note, however, that function κ′ is collision-free only among the substrings of T , and
therefore there could be short patterns that do not occur in T but still are sent to a position
in H that corresponds to a short substring of T (within O(g) space we cannot afford to
store a locus to disambiguate). To discard those patterns, we proceed as follows. If the first
partition returned by H yields no grid points, then this was due to a collision with another
pattern, and we can immediately return that P does not occur in T . If, on the other hand,
the first partition does return occurrences, we immediately extract the text around the first
one in order to verify that the substring is actually P . If it is not, then this is also due to a
collision and we return that P does not occur in T .

Obtaining the locus v of the first primary occurrence from the first partition q takes
time O(logε g), and extracting m symbols around it takes time O(m), by using Lemma 6.6
around v. Detecting that a short pattern P does not occur in T then costs O(m+ logε g).

We can slightly reduce this cost to O(m+ logε γ), as follows. Since g = O(γ log(n/γ)), we
have logε g ∈ O(logε γ + log log(n/γ)). Let `′ = log log(n/γ). We store all the γ`′ distinct
text substrings of length `′ in a compact trie C, using perfect hashing to store the children
of each node, and associating the locus v of a primary occurrence with each trie node. The
internal trie nodes represent all the distinct substrings shorter than `′. The compact trie C
requires O(γ`′) ⊆ O(γ log(n/γ)) space. A search for a pattern of length m ≤ `′ that does
not occur in T can then be discarded in O(m) time, by traversing C and then verifying the
pattern around the locus. Thus the additive term O(logε g) is reduced to O(logε γ).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 M. B. Ettienne et al.

6.6. Construction

Theorem 5.4 shows that we can build a suitable grammar in O(n) expected time and O(g)
working space, if we know γ. If not, Theorem 5.8 shows that the working space rises to
O(n).

The grammar tree is then easily built in O(g) time by traversing the grammar top-down
and left-to-right from the initial symbol, and marking nonterminals as we find them for the
first time; the next times they are found correspond to leaves in the grammar tree, so they
are not further explored. By recording the sizes |A| of all the nonterminals A, we also obtain
the positions where phrases start.

Let us now recapitulate the data structures used by our index:

(1) The grid of Section 6.1 where the points of X and Y are connected.
(2) The perfect hash tables storing the permutations π, the runs a`, and the blocks gener-

ated, for each round of parsing, used in Section 6.2.
(3) The z-fast tries on X and Y, for Section 6.3. This includes finding a collision-free Karp–

Rabin function κ′.
(4) The tries TG and T ′G, provided with level-ancestor queries and with the Karp–Rabin

signatures of all the prefixes and suffixes of A1 · · ·As for any rule A→ A1 · · ·As.
(5) The extra fields on the grammar tree to find secondary occurrences in Section 6.4.
(6) The structures H and C for the short patterns, in Section 6.5

Navarro and Prezza [2019, Sec. 4] carefully analyze the construction cost of points 1 and
3:6 The multisets X and Y can be built from a suffix array in O(n) time and space, but
also from a sparse suffix array in O(n

√
log g) expected time and O(g) space [Gawrychowski

and Kociumaka 2017]; this time drops to O(n) if we allow the output to be correct w.h.p.
only. A variant of the grid structure of point 1 is built in O(g

√
log g) time and O(g) space

[Belazzougui and Puglisi 2016]. The z-fast tries of point 3 are built in O(g) expected time
and space. However, ensuring that κ′ is collision-free requires O(n log n) expected time and
O(n) space [Bille et al. 2014], which is dominant. Otherwise, we can build in O(n) expected
time and no extra space a signature that is collision-free w.h.p.

The structures of point 2 are of total size O(g) and are already built in O(g) expected
time and space during the parsing of T . It is an easy exercise to build the structures of
points 4 and 5 in O(g) time; the level-ancestor data structure is built in O(g) time as well
[Bender and Farach-Colton 2004].

To build the succinct perfect hash table H of point 6, we traverse the text around the
g− r phrase borders; this is sufficient to spot all the primary occurrences of all the distinct
patterns. There are at most g`2 substrings of length up to ` crossing a phrase boundary,
where ` = logε g log log g. All their Karp–Rabin signatures κ′ can be computed in time
O(g`2) as well, and inserted into a regular hash table to obtain the O(γ`2) distinct sub-
strings. We then build H on the signatures, in O(γ`2) expected time [Belazzougui et al.
2009]. Therefore, the total expected time to create H is O(g`2), whereas the space is O(γ`2)
(we can obtain this space even without knowing γ, by progressively doubling the size of the
hash table as needed).

This construction space can be reduced to O(γ`) by building a separate table Hm for
each distinct length m ∈ [1 . . `]. Further, since we can spend O(m) time when searching
for a pattern of length m, we can split Hm into up to m subtables Hm,i, which can then
be built separately within O(g) total space: We stop our traversal each time we collect g
distinct substrings of length m, build a separate succinct hash table Hm,i on those, and start
afresh to build a new table Hm,i+1. Since there are at most γm ≤ gm distinct substrings,
we will build at most m tables Hm,1, . . . ,Hm,m. Note that, in order to detect whether each

6Their w corresponds to our g: an upper bound to the number of phrases in T .

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:25

substring appeared previously, we must search all the preceding tables Hm,1, . . . ,Hm,i−1 for
it, which raises the construction time to O(g`3). At search time, our pattern may appear in
any of the m tables Hm,i, so we search them all in O(m) time.

In order to compute the information on the partitions of each distinct substring, we can
simulate its pattern search. Since we only need to find its relevant split points q (Section 6.2),
their grid ranges (Section 6.3), and which of these are nonempty (Section 6.1), the total
time spent per substring of length up to ` is O(`+log ` logε γ) = O(`). Added over the up to
γ`2 distinct substrings, the time is O(γ`3). The whole process then takes O(g`3) expected
time and O(g) space. We enforce ε < 1

6 to keep the time within O(g
√

log g).
We also build the compact trie C on all the distinct substrings of length `′ = log log(n/γ).

We can collect their signatures κ′ in O(g`′) time around phrase boundaries, storing them in a
temporary hash table that collects at most O(γ`′) distinct signatures. For each such distinct
signature we find, we insert the corresponding substring in C, recording its corresponding
locus, in O(`′) time. The locus must also be recorded for the internal trie nodes v we traverse,
if the substring represented by v also crosses the phrase boundary; this must happen for
some descendant leaf of v because v must have a primary occurrence. Since we insert
at most γ`′ distinct substrings, the total work on the trie is O(γ`′2). Then the expected
construction time of C is O(g`′ + γ`′2) ⊆ O(g`′2) ⊆ O(γ log(n/γ)(log log(n/γ))2) ⊆ O(n).
The construction space is O(γ`′) = O(γ log log(n/γ)) ⊆ O(γ log(n/γ)).

Note that we need to know γ to determine `′. If we do not know γ, we can try out
all the lengths, from `′ = log log(n/g) to log log n; note that the unknown correct value
is in this range because γ ≤ g. For each length, we build the structures to collect the
distinct substrings of length `, but stop if we exceed g distinct ones. Note that we cannot
exceed g distinct substrings for `′ ≤ log log(n/γ) because, in the grammar of Section 5,
it holds that g ≥ γ log(n/γ) ≥ γ log log(n/γ) ≥ γ`′, and this is the maximum number of
distinct substrings of length `′ we can produce. We therefore build the trie C for the value
`′ such that the construction is stopped for the first time with `′ + 1. This value must be
`′ ≥ log log(n/γ), sufficiently large to ensure the time bounds of Section 6.5, and sufficiently
small so that the extra space is in O(g). The only penalty is that we carry out `′ iterations
in the construction of the hash table (the trie itself is built only after we find `′), which costs
O(g`′2) time. This is the same construction cost we had, but now `′ can be up to log log n;
therefore the construction cost is O(g(log log n)2). The construction space stays in O(g) by
design.

The total construction cost is then O(n log n) expected time and O(n) space, essentially
dominated by the cost to ensure a collision-free Karp–Rabin signature.

Theorem 6.8. Let T [1 . . n] have an attractor of size γ. Then, there exists a data structure
of size g = O(γ log(n/γ)) that can find the occ occurrences of any pattern P [1 . .m] in T
in time O(m + logε γ + occ logε g) ⊆ O(m + (occ + 1) logε n) for any constant ε > 0. The
structure is built in O(n log n) expected time and O(n) space, without the need to know γ.

An index that is correct w.h.p. can be built in O(n + g
√

log g + g(log log n)2) ⊆ O(n +
g
√

log g) expected time. If we know γ, such an index can be built with O(log(n/γ)) expected
left-to-right passes on T (to build the grammar) plus O(γ log(n/γ)) main-memory space.

Finally, note that if we want to report only k < occ occurrences of P , their locating time
does not anymore amortize to O(1) as in Section 6.4. Rather, extracting each occurrence
requires us to climb up the grammar tree up to the root. In this case, the search time
becomes O(m+ (k + 1) log n).

6.7. Optimal search time

We now explore various space/time tradeoffs for our index, culminating with a variant that
achieves, for the first, time, optimal search time within space bounded by an important

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 M. B. Ettienne et al.

Table I. Space-time tradeoffs for searching within attractor-bounded space; formulas are
slightly simplified (see the corresponding theorems and corollaries for the precise expressions).

Source Space Time
Baseline [Navarro and Prezza 2019] O(γ log(n/γ)) O(m logn+ occ logε n)
Theorem 6.8 O(γ log(n/γ)) O(m+ (occ+ 1) logε n)
Corollary 6.9 O(γ logn) O(m+ occ logε n)
Corollary 6.10 O(γ log(n/γ) log logn) O(m+ (occ+ 1) log logn)
Corollary 6.11 O(γ logn log logn) O(m+ occ log logn)
Theorem 6.12 O(γ log(n/γ) logε n) O(m+ occ)

family of repetitiveness measures. The tradeoffs are obtained by considering other data
structures for the grid of Section 6.1 and for the perfect hash tables of Section 6.5. Ta-
ble I summarizes the results in a slightly simplified form; the construction times stay as in
Theorem 6.8.

A first tradeoff is obtained by discarding the table H of Section 6.5 and using only a
compact trie C ′, now to store the locus of a primary occurrence and the relevant split
points of each substring of length up to ` = logε g log log g. This adds O(γ`) to the space,
but it allows verifying that the short patterns actually occurs in T in time O(m) without
using the grid. As a result, the additive term O(logε γ) disappears from the search time.

As seen in Section 6.6, the extra construction time for C ′ is now O(g`2), plus O(γ`3)
to compute the relevant split points. This is within the O(g`3) time bound obtained for
Theorem 6.8. The construction space is O(γ`), which we can assume to be O(n) because it
is included in the final index size; if this is larger than n then the result holds trivially by
using instead a suffix tree on T .

Corollary 6.9. Let T [1 . . n] have an attractor of size γ. Then, there exists a data structure
of size g = O(γ(log(n/γ) + logε(γ log(n/γ)) log log(γ log(n/γ)))) ⊆ O(γ log n) that can find
the occ occurrences of any pattern P [1 . .m] in T in timeO(m+occ logε g) ⊆ O(m+occ logε n)
for any constant ε > 0. The structure is built in O(n log n) expected time and O(n) space,
without the need to know γ.

By using O(g log log g) space for the grid, the range queries run in time O(log log g)
per query and per returned item [Chan et al. 2011]. This reduces the query time to
O(m + logm log log g + occ log log g), which can be further reduced with the same tech-
niques of Section 6.5: The additive term can be relevant only if m = O(`) with ` =
log log g log log log g. We then store in H all the γ`2 patterns of length up to `, with their
relevant partitions, using O(γ`2(log `)2) = O(γ(log log g)2(log log log g)4) bits, which is O(γ)
space. We may still need O(log log g) time to determine that a short pattern does not occur
in T . By storing the patterns of length `′ = log log log(n/γ) in trie C, this time becomes
O(log log γ).

The grid structure can be built in time O(g log g). The construction time for H and C is
lower than in Section 6.6, because ` and `′ are smaller here.

Corollary 6.10. Let T [1 . . n] have an attractor of size γ. Then, there exists a data struc-
ture of size g = O(γ log(n/γ) log log(γ log(n/γ))) ⊆ O(γ log(n/γ) log log n) that can find
the occ occurrences of any pattern P [1 . .m] in T in time O(m+ log log γ + occ log log g) ⊆
O(m+(occ+1) log log n). The structure is built in O(n log n) expected time and O(n) space,
without the need to know γ.

By discarding H and building C ′ on the substrings of length ` = log log g log log log g,
we increase the space by O(γ`2) and remove the additive term in the search time. The
construction time for the grid is still O(g log g), but that of C is within the bounds of
Corollary 6.9, because ` is smaller here.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:27

Corollary 6.11. Let T [1 . . n] have an attractor of size γ. Then, there
exists a data structure of size g = O(γ(log(n/γ) log log(γ log(n/γ)) +
(log log(γ log(n/γ)) log log log(γ log(n/γ)))2)) ⊆ O(γ log n log log n) that can find the occ
occurrences of any pattern P [1 . .m] in T in time O(m+occ log log g) ⊆ O(m+occ log log n).
The structure is built in O(n log n) expected time and O(n) space, without the need to
know γ.

Finally, a larger geometric structure [Alstrup et al. 2000] uses O(g logε g) space, for any
constant ε > 0, and reports in O(log log g) time per query and O(1) per result. This yields
O(m+ logm log log g+ occ) search time. To remove the second term, we again index all the
patterns of length m ≤ `, for ` = log log g log log log g, of which there are at most γ`2. Just
storing the relevant split points q is not sufficient this time, however, because we cannot
even afford the O(log log g) time to query the nonempty areas.

Still, note that the search time can be written as O(m+`+occ). Thus, we only care about
the short patterns that, in addition, occur less than ` times, since otherwise the third term,
O(occ), absorbs the second. Storing all the occurrences of such patterns requires O(γ`2)
space: An enriched version C ′′ of the compact trie C records the number of occurrences in T
of each node. Only the leaves (i.e., the patterns of length exactly `) store their occurrences
(if they are at most `). Since there are at most γ` leaves, the total space to store those
occurrences is O(γ`2), dominated by the grid size. Shorter patterns correspond to internal
trie nodes, and for them we must traverse all the descendant leaves in order to collect their
occurrences.

To handle a pattern P of length up to `, then, we traverse C ′′ and verify P around its
locus. If P occurs in T , we see if the trie node indicates it occurs more than ` times. If it does,
we use the normal search procedure using the geometric data structure and propagating
the secondary occurrences. Otherwise, its (up to `) occurrences are obtained by traversing
all the leaves descending from its trie node: if an internal node occurs less than ` times, its
descendant leaves also occur less than ` times, so all the occurrences of the internal node
are found in the descendant leaves. The search time is then always O(m+ occ).

The expected construction time of the geometric structure [Alstrup et al. 2000] is
O(g log g), and its construction space is O(g logε g). Note that if the construction space
exceeds O(n), then so does the size of our index. In this case, a suffix tree obtains linear
construction time and space with the same search time. Thus, we can assume the construc-
tion space is O(n).

The trie C ′′ is not built in the same way C is built in Section 6.6, because we need to
record the number of occurrences of each string of length up to `. We slide the window of
length ` through the whole text T instead of only around phrase boundaries. We maintain
the distinct signatures κ′ found in a regular hash table, with the counter of how many times
they appear in T . When a new signature appears, its string is inserted in C ′′, a pointer
from the hash table to the corresponding trie leaf is set, and the list of occurrences of the
substring is initialized in the trie leaf, with its first position just found. Further occurrence
positions of the string are collected at its trie leaf, until they exceed `, in which case they are
deleted. Thus we spend O(n) expected time in the hash table and collecting occurrences,
plus O(γ`2) time inserting strings in C ′′. From the number of occurrences of each leaf we
can finally propagate those counters upwards in the trie, in O(γ`) additional time.

Theorem 6.12. Let T [1 . . n] have an attractor of size γ. Then, there exists a data struc-
ture of size O(γ log(n/γ) logε(γ log(n/γ))) ⊆ O(γ log(n/γ) logε n), for any constant ε > 0,
that can find the occ occurrences of any pattern P [1 . .m] in T in time O(m + occ). The
structure is built in O(n log n) expected time and O(n) space, without the need to know γ.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 M. B. Ettienne et al.

7. COUNTING PATTERN OCCURRENCES

Navarro [2019] shows how an index like the one we describe in Section 6 can be used for
counting the number of occurrences of P [1 . .m] in T . First, he uses the result of Chazelle
[1988] that a p×p grid can be enhanced by associating elements of any algebraic semigroup
to the points, so that later we can aggregate all the elements inside a rectangular area in
time O(log2+ε p), for any constant ε > 0, with a structure using O(p) space.7 The structure
is built in O(p log p) time and O(p) space [Chazelle 1988]. Then, Navarro [2019] shows that
one can associate with a CFG the number of secondary occurrences triggered by each point
in a grid analogous to that of Section 6.1, so that their sums can be computed as described.

We now improve upon the space and time using our RLCFG of Section 6. Three obser-
vations are in order (cf. [Claude and Navarro 2012; Navarro 2019]):

(1) The occurrences reported are all those derived from each point (x, y) contained in the
range [x1 . . x2]× [y1 . . y2] of each relevant partition P [1 . . q] · P [q + 1 . .m].

(2) Even if the same point (x, y) appears in distinct overlapping ranges [x1 . . x2]× [y1 . . y2],
each time it corresponds to a distinct value of q, and thus to distinct final offsets in T .
Therefore, all the occurrences reported are distinct.

(3) The number of occurrences reported by our procedure in Section 6.4 depends only on
the initial locus associated with the grid point (x, y). This will change with run-length
nodes and require special handling, as seen later.

Therefore, we can associate with each point (x, y) in the grid (and with the corresponding
primary occurrence) the total number of occurrences triggered with the procedure of Sec-
tion 6.4. Then, counting the number of occurrences of a partition P = P [1 . . q] ·P [q+1 . .m]
corresponds to summing up the number of occurrences of the points that lie in the appro-
priate range of the grid.

As seen in Section 6.2, with our particular grammar there are only O(logm) partitions
of P that must be tried in order to recover all of its occurrences. Therefore, we use our
structures of Sections 6.1 to 6.3 to find the O(logm) relevant ranges [x1 . . x2] × [y1 . . y2],
all in O(m) time, and then we count the number of occurrences in each such range in time
O(log2+ε p) ⊆ O(log2+ε g). The total counting time is then O(m+logm log2+ε g). When the
second term dominates, m ≤ logm log2+ε g, it holds logm log2+ε g ∈ O(log2+ε g log log g),
which is O(log2+ε g) by infinitesimally adjusting ε.

Under the assumption that there are no run-length rules (we remove this assumption
later), our counting time is then O(m+ log2+ε g). This improves sharply upon the previous
result [Navarro 2019] in space (because it builds the grammar on a Lempel–Ziv parse instead
of on attractors) and in time (because it must consider all the m− 1 partitions of P ).

To build the structure, we must count the number of secondary occurrences triggered
from any locus v, and then associate it with every point (x, y) having v as its locus. More
precisely, we will compute the number of times any node u occurs in the parse tree of T .
The process corresponds to accumulating occurrences over the DAG defined by the pointers
u.anc and u.next of the grammar tree nodes u. Initially, let the counter be c(u) = 0 for every
grammar tree node u, except the root, where c(root) = 1. We now traverse all the nodes
u in some order, calling compute(u) on each. Procedure compute(u) proceeds as follows: If
c(u) > 0 then the counter is already computed, so it simply returns c(u). Otherwise, it sets
c(u) = compute(u.anc) + compute(u.next), recursively computing the counters of the two
nodes. Nodes A → As1 are special cases. If u.next is of the form A

[s−1]
1 , then the correct

formula is c(u) = s · compute(u.anc) + compute(u.next .next). On the other hand, we do

7Navarro [2019] gives a simpler explicit construction for groups.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:29

nothing for compute(u) if u is of the form A
[s−1]
1 . The total cost is the number of edges in

the DAG, which is 2 per grammar tree node, O(g).
Finally, the counter of each point (x, y) associated with locus node v is the value c(u),

where u is the parent of v. A special case arises, however, if u corresponds to a run-length
node A→ As1, in which case the locus v is A1. As seen in Section 6.4, the number of times
u is reported is s−d(m−q)/|A1|e, and therefore the correct counter to associate with (x, y)
is (s−d(m− q)/|A1|e) · c(u). The problem is that such a formula depends on m− q, so each
point (x, y) could contribute differently for each alignment of the pattern. We then take a
different approach for counting these occurrences.

Associated with loci A1 with parent A → As1, instead of (x, y), we add to
the grid the points (x, y′) = (exp(A1)rev, exp(A1)) with weight c(u) and (x, y′′) =
(exp(A1)rev, exp(A1)2) with weight (s − 2)c(u), extending the set Y so that it contains
both exp(A1) and exp(A1)2. (Note that there could be various equal string pairs, which can
be stored multiple times, or we can accumulate their counters.) We distinguish three cases.

(1) For the occurrences where P [q+ 1 . .m] lies inside exp(A1) (i.e., m− q ≤ |A1|), the rule
A→ As1 is counted c(u)+(s−2)c(u) = (s−1)c(u) times because both (x, y′) and (x, y′′)
are in the range queried.

(2) For the occurrences where P [q+1 . .m] exceeds the first exp(A1) but does not span more
than two (i.e., |A1| < m − q ≤ 2|A1|), the rule A → As1 is counted (s − 2)c(u) times
because (x, y′′) is in the range queried but (x, y′) is not.

(3) For the occurrences where P [q+1 . .m] spans more than two copies of exp(A1), however,
the rule A→ As1 is not counted at all because neither (x, y′) nor (x, y′′) is in the range
queried.

The key to handle the third case is that, if P [1 . . q] spans a suffix of exp(A1) and P [q +
1 . .m] spans at least two consecutive copies of exp(A1), then it is easy to see that P is
“periodic”, |A1| being a “period” of P [Crochemore and Rytter 2003].

Definition 7.1. A string P [1 . .m] has a period p if P consists of bm/pc consecutive copies
of P [1 . . p] plus a (possibly empty) prefix of P [1 . . p]. Alternatively, P [1 . .m − p] = P [p +
1 . .m]. The string P is periodic if it has a period p ≤ m/2.

We next show an important property relating periods and run-length nodes.

Lemma 7.2. Let there be a run-length rule A → As1 in our grammar. Then |A1| is the
shortest period of exp(A).

Proof. Consider an A-labeled node v in the parse tree of T and let proj(v) = [i . . j] so
that T [i . . j] = exp(A). Denote the shortest period of exp(A) by p and note that |A1| is also
a period of exp(A) = exp(A1)s. We conclude from the Periodicity Lemma [Fine and Wilf
1965] that p = gcd(p, |A1|) and thus d = |A1|/p is an integer. For a proof by contradiction,
suppose that d > 1. Let r denote the level of the run represented by v (so that A is a symbol
in T̂r and A1 is a symbol in Tr).

Claim 7.3. For each level r′ ∈ [0 . . r], both i+p−1 and j−p are level-r′ block boundaries.

Proof. We proceed by induction on r′. The base case for r′ = 0 holds trivially. Thus,
consider a level r′ ∈ [1 . . r] and suppose that the claim holds for r′ − 1. By the inductive
assumption, T [i + p . . j] = T [i . . j − p] consist of full level-(r′ − 1) blocks, so Lemma 4.5
yields B̂r′−1(i + p, j) = B̂r′−1(i, j − p). Since i + dp − 1 is a level-r′ block boundary, this
set is non-empty and its minimum satisfies min B̂r′−1(i+ p, j) < dp− p. The final claim of
Lemma 4.5 thus yields Br′(i+ dp− p, j − p) = Br′(i+ dp, j). Consequently, since i+ dp− 1
is a level-r′ block boundary, p−1 ∈ Br′(i+dp−p, j−p) = Br′(i+dp, j), so i+dp+p−1 is
also a level-r′ block boundary. Iterating this reasoning d(s−1)−2 more times, we conclude

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 M. B. Ettienne et al.

that i + dp + 2p − 1, i + dp + 3p − 1, . . . , j − p are all level-r′ block boundaries. Moreover,
Lemma 4.5 applied to T [i . . j−dp] = T [i+dp . . j], which consist of full level-r′ blocks, implies
p− 1 ∈ Br′(i, j − dp) = Br′(i+ dp, j), so i+ p− 1 is also a level-r′ block boundary.

Note that T [i . . j] consists of s full level-r blocks of length dp each. The claim instantiated to
r′ = r contradicts this statement imposing blocks of length at most p at the extremities.

Lemma 7.2 implies that, in the remaining case to be handled, the length |A1| must be
precisely the shortest period of P .

Lemma 7.4. Let P be contained in exp(A) and contain two consecutive copies of exp(A1),
from rule A→ As1. Then |A1| is the shortest period of P .

Proof. Clearly |A1| is a period of P because P [1 . .m] is contained in a concatenation
of strings exp(A1); further, |A1| ≤ m/2. Now assume P has a shorter period, p < |A1|.
Since |A1| + p < m, P also has a period of length p′ = gcd(|A1|, p) [Fine and Wilf 1965].
This period is smaller than |A1| and divides it. Since P contains exp(A1), this implies that
exp(A1), and thus exp(A), also have a period p′ < |A1|, contradicting Lemma 7.2.

Therefore, all the run-length nonterminals A→ As1, where A1 is a locus of P with offset
q and m ≥ 2|A1|, must satisfy exp(A1) = P [q + 1 . . q + p], where p is the shortest period of
P . The shortest period p is easily computed in O(m) time [Crochemore and Rytter 2003,
Sections 1.7 and 3.1].

It is therefore sufficient to compute the Karp–Rabin fingerprints k = κ′(exp(A1)) (which
we easily retrieve from the data we store for Lemma 6.7) for all the run-length rules A→ As1,
and store them in a perfect hash table with information on A1. Let s(A1) = {s ≥ 3, A→ As1}
be the different exponents associated with A1. To each s ∈ s(A1), we associate two values

c(A1, s) =
∑
{c(A) : A→ As

′

1 , s
′ ≥ s} and c′(A1, s) =

∑
{s′ · c(A) : A→ As

′

1 , s
′ ≥ s}.

where c(A) refers to c(u) for the (only) internal grammar tree node u corresponding to
nonterminal A. The total space to store the sets s(A1) and associated values is O(g).

For each of the O(logm) relevant splits P [1 . . q] · P [q + 1 . .m] obtained in Section 6.2, if
m− q > 2p, then we look for k = κ′(P [q+ 1 . . q+p]) in the hash table. If we find it mapped
to a non-terminal A1, then we add c′(A1, smin)−c(A1, smin)d(m−q)/pe to the result, where
smin = min{s ∈ s(A1), (s−1)|A1| ≥ m−q}. This ensures that each rule A→ As1 with s ≥ 3
and |A1|(s−1) ≥ m−q is counted (s−d(m−q)/pe) ·c(A) times. We find smin by exponential
search on s(A1) in O(logm) time, which over all the splits adds up to O(log2m).

Note that all the Karp–Rabin fingerprints for all the substrings of P can be computed
in O(m) time (see Section 6.3), and that we can easily rule out false positives: Lemma 6.5
filters out any decomposition of P for which P [q+1 . .m] is not a prefix of any string y ∈ Y.
Since exp(A1)s−1 ∈ Y for every rule A → As1 and since Y consists of substrings of T , this
guarantees that κ′ does not admit any collision between P [q+ 1 . . q+ p] and a substring of
T .

Theorem 7.5. Let T [1 . . n] have an attractor of size γ. Then, there exists a data structure
of size g = O(γ log(n/γ)) that can count the number of occurrences of any pattern P [1 . .m]
in T in time O(m+ log2+ε g) ⊆ O(m+ log2+ε n) for any constant ε > 0. The structure can
be built in O(n log n) expected time and O(n) space, without the need to know γ.

An index that is correct w.h.p. can be built in O(n+g log g) expected time (the structures
for secondary occurrences and for short patterns, Sections 6.4 and 6.5, are not needed). If
we know γ, the index can be built in O(log(n/γ)) expected left-to-right passes on T plus
O(g) main memory space.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:31

Table II. Space-time tradeoffs for counting; formulas are slightly sim-
plified (see the corresponding theorems for the precise expressions).

Source Space Time
Baseline [Navarro 2019] O(z log(n/z)) O(m log2+ε n)
Theorem 7.5 O(γ log(n/γ)) O(m+ log2+ε n)
Theorem 7.6 O(γ log(n/γ) logn) O(m)

7.1. Optimal time

Chazelle [1988] offers other tradeoffs for operating the elements in a range, all very sim-
ilar and with the same construction cost: O(log2 p log log p) time and O(p log log p) space,
O(log2 p) time and O(p logε p) space. These yield, for our index, O(m + (log n log log n)2)
time and O(g log log g) space, and O(m+ log2 n log log n) time and O(g logε g) space.

If we use O(p log p) space, however, the cost to compute the sum over a range de-
creases significantly, to O(log p) [Willard 1985; Alstrup et al. 2000]. The expected con-
struction cost becomes O(p log2 p) [Alstrup et al. 2000]. Therefore, using O(g log g) ⊆
O(γ log(n/γ) log n) space, we can count in time O(m+logm log g) ⊆ O(m+log g log log g) ⊆
O(m+ log n log log n), which is yet another tradeoff.

More interesting is that we can reduce this latter time to the optimal O(m). We index in a
compact trie like C ′′ of Section 6.7 all the text substrings of length up to ` = 2 log n log(n/γ),
directly storing their number of occurrences (but not their occurrence lists as in C ′′). Since
there are γ` distinct substrings of length `, this requires O(γ log n log(n/γ)) space.

Consider our counting time O(m+logm log n). If log(n/γ) ≤ log log n, then γ ≥ n/ log n,
and thus a suffix tree using space O(n) = O(γ log n) can count in optimal time O(m). Thus,
assume log(n/γ) > log log n. The counting time can exceed O(m) only if m ≤ logm log n. In
this case, since m ≤ logm log n ≤ log2 n, we have m ≤ 2 log n log log n ≤ 2 log n log(n/γ) =
`. All the queries for patterns of those lengths are directly answered using our variant of
C ′′, in time O(m), and thus our counting time is always O(m).

We can still apply this idea if we do not know γ. Instead, we compute δ (recall Section 5.1)
and use ` = 2 log n log(n/δ). Since there are T (`) ≤ δ` distinct substrings of length ` in T , the
space for C ′′ is O(δ`) = O(δ log n log(n/δ)) ⊆ O(γ log n log(n/γ)), the latter by Lemma 5.6.
The reasoning of the previous paragraph then applies verbatim if we replace γ by δ.

The total space is then O(g log g+ γ log n log(n/γ)) = O(γ log n log(n/γ)). The construc-
tion cost of C ′′ is O(n + γ log2 n log2(n/γ)) time and O(γ log n log(n/γ)) space.8 Alterna-
tively we can obtain it by pruning the suffix tree of T in time and space O(n). The cost
to build the grid is O(g log2 g) ⊆ (g log2 n). Note that, if γ log(n/γ) log n > n, we triv-
ially obtain the result with a suffix tree; therefore the construction time of the grid is in
O(n log n).

Theorem 7.6. Let T [1 . . n] have an attractor of size γ. Then, there exists a data structure
of size O(γ log(n/γ) log n) that can count the number of occurrences of any pattern P [1 . .m]
in T in time O(m). The structure can be built in O(n log n) expected time and O(n) space,
without the need to know γ.

If we know γ, then an index that is correct w.h.p. can be built in O(g log n) space apart
from the passes on T , but we must build C ′′ without using a suffix tree, in additional time
O(γ log2 n log2(n/γ)). Table II summarizes the results.

8If we use ` = 2 logn log(n/δ), then C′′ is built in O(δ log2 n log2(n/δ)) ⊆ O(γ log2 n log2(n/γ)) time and
O(δ logn log(n/δ)) ⊆ O(γ logn log(n/γ)) space, because the costs increase with δ.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 M. B. Ettienne et al.

8. CONCLUSIONS

The size γ of the smallest string attractor of a text T [1..n] is a recent measure of compress-
ibility [Kempa and Prezza 2018] that is particularly well-suited to express the amount of
information in repetitive text collections. It asymptotically lower-bounds many other popu-
lar dictionary-based compression measures like the size z of the Lempel–Ziv parse or the size
g of the smallest context-free grammar generating (only) T , among many others. It is not
known whether one can always represent T in compressed form in less than Θ(γ log(n/γ))
space, but within this space it is possible to offer direct access and reasonably efficient
searches on T [Kempa and Prezza 2018; Navarro and Prezza 2019].

In this article we have shown that, within O(γ log(n/γ)) space, one can offer much faster
searches, in time competitive with, and in most cases better than, the best existing results
built on other dictionary-based compression measures, all of which use Ω(z log(n/z)) space.
By building on the measure γ, our results immediately apply to any index that builds
on other dictionary measures like z and g. Our results are even competitive with self-
indexes based on statistical compression, which are much more mature: we can locate the
occ occurrences in T of a pattern P [1..m] in O(m+ (occ+ 1) logε n) time, and count them
in O(m+ log2+ε n) time, whereas the fastest statistically-compressed indexes obtain O(m+
occ logε n) time to locate and O(m) time to count, in space proportional to the statistical
entropy of T [Sadakane 2003; Belazzougui and Navarro 2014].

Further, we show that our results can be obtained without even knowing an attractor nor
its minimum size γ. Rather, we can compute a lower bound δ ≤ γ in linear time and use
it to achieve O(γ log(n/γ)) space without knowing γ. This is relevant because computing γ
is NP-hard [Kempa and Prezza 2018]. Previous work [Navarro and Prezza 2019] assumed
that, although they obtained indexes bounded in terms of γ, one would compute some
upper bound on it, like z, to apply it in practice. With our result, we obtain data structures
bounded in terms of γ without the need to find it.

Finally, we also obtain for the first time optimal search time using any index bounded by a
dictionary-based compression measure. Within space O(γ log(n/γ) logε n), for any constant
ε > 0, we can locate the occurrences in time O(m + occ), and within O(γ log(n/γ) log n)
space we can count them in time O(m). This is an important landmark, showing that it is
possible to obtain the same optimal time reached by suffix trees in O(n) space, now in space
bounded in terms of a very competitive measure of repetitiveness. Such optimal time had
also been obtained within space bounded by other measures that adapt to repetitiveness
[Gagie et al. 2018; Belazzougui and Cunial 2017], but these are weaker than γ both in theory
and in practice. Further, no statistical-compressed self-index using o(n) space has obtained
such optimal time.

As a byproduct, our developments yield a number of new or improved results on accessing
and indexing on RLCFGs and CFGs; these are collected in Appendix A.

Future work. There are still several interesting challenges ahead:

— While one can compress any text T to O(z) or O(g) space (and even to smaller measures
like O(b) [Storer and Szymanski 1982]), it is not known whether one can compress it
to o(γ log(n/γ)) space. This is important to understand the nature of the concept of
attractor and of measure γ.

— While one can support direct access and searches on T in space O(g), it is not known
whether one can support those in o(z log(n/z)) or o(γ log(n/γ)) space. Again, determin-
ing if this is a lower bound would yield a separation between γ, z, and g in terms of
indexability.

— If we are given the size γ of some attractor, we can build our indexes in a streaming-
like mode, with O(log(n/γ)) expected passes on T plus main-memory space bounded in
terms of γ, with high probability. This is relevant in practice when indexing huge text

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:33

collections. It would be important to do the same when no bound on γ is known. Right
now, if we do not know γ, we need O(n) extra space for a suffix tree that computes the
measure δ ≤ γ.

— It is not clear if we can reach optimal search time in the “minimum” space O(γ log(n/γ)),
or what is the best time we can obtain in this case.

— The measure δ is interesting on its own, as it lower-bounds γ. It is interesting to find
more precise bounds in terms of γ, and whether we can compress T , and even offer direct
access and indexed searches on it, within space O(δ log(n/δ)). There is some very recent
work in this direction [Kociumaka et al. 2020].

— The fact that only O(logm) partitions of P are needed to spot all of its occurrences,
which outperforms previous results [Nishimoto et al. 2019; Gawrychowski et al. 2018],
was fundamental to obtain our bounds, and we applied them to counting in order to
obtain optimal times as well. It is likely that this result is of even more general interest
and can be used in other problems related to dictionary-compressed indexing and beyond.

— The result we obtain on counting pattern occurrences inO(γ log(n/γ)) space is generalized
to CFGs in Appendix A, but we could not generalize our result on specific RLCFGs to
arbitrary ones. It is open whether this is possible or not.

Acknowledgements

Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years of the
Burrows-Wheeler Transform”. We also thank Travis Gagie for pointing us the early reference
related to δ [Raskhodnikova et al. 2013] and Dmitry Kosolobov, who pointed out that a
referenced result holds for constant alphabets only [Gagie et al. 2014]. Finally, we thank
the reviewers for their thorough reading and useful remarks.

REFERENCES

Alstrup, S., Brodal, G. S., and Rauhe, T. 2000. New data structures for orthogonal range searching. In 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000. 198–207.

Belazzougui, D., Boldi, P., Pagh, R., and Vigna, S. 2010. Fast prefix search in little space, with applications.
In 18th Annual European Symposium Algorithms, ESA 2010. LNCS Series, vol. 6346. 427–438.

Belazzougui, D., Botelho, F. C., and Dietzfelbinger, M. 2009. Hash, displace, and compress. In 17th Annual
European Symposium Algorithms, ESA 2009. LNCS Series, vol. 5757. 682–693.

Belazzougui, D. and Cunial, F. 2017. Representing the suffix tree with the CDAWG. In 28th Annual Sym-
posium on Combinatorial Pattern Matching, CPM 2017. LIPIcs Series, vol. 78. 7:1–7:13.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., and Raffinot, M. 2015. Composite repetition-aware data
structures. In 26th Annual Symposium on Combinatorial Pattern Matching, CPM 2015. LNCS Series,
vol. 9133. 26–39.

Belazzougui, D. and Navarro, G. 2014. Alphabet-independent compressed text indexing. ACM Transactions
on Algorithms 10, 4, 23:1–23:19.

Belazzougui, D. and Puglisi, S. J. 2016. Range predecessor and Lempel–Ziv parsing. In 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016. 2053–2071.

Bender, M. A. and Farach-Colton, M. 2004. The level ancestor problem simplified. Theoretical Computer
Science 321, 1, 5–12.

Bille, P., Ettienne, M. B., Gørtz, I. L., and Vildhøj, H. W. 2018. Time-space trade-offs for Lempel–Ziv
compressed indexing. Theoretical Computer Science 713, 66–77.

Bille, P., Gørtz, I. L., Cording, P. H., Sach, B., Vildhøj, H. ., and Vind, S. 2017. Fingerprints in compressed
strings. Journal of Computer and System Sciences 86, 171–180.

Bille, P., Gørtz, I. L., Sach, B., and Vildhøj, H. W. 2014. Time-space trade-offs for longest common exten-
sions. Journal of Discrete Algorithms 25, 42–50.

Bille, P., Landau, G. M., Raman, R., Sadakane, K., Rao, S. S., and Weimann, O. 2015. Random access to
grammar-compressed strings and trees. SIAM Journal on Computing 44, 3, 513–539.

Blumer, A., Blumer, J., Haussler, D., McConnell, R. M., and Ehrenfeucht, A. 1987. Complete inverted files
for efficient text retrieval and analysis. Journal of the ACM 34, 3, 578–595.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 M. B. Ettienne et al.

Burrows, M. and Wheeler, D. J. 1994. A block-sorting lossless data compression algorithm. Tech. Rep. 124,
Digital Equipment Corporation, Palo Alto, California.

Chan, T. M., Larsen, K. G., and Pătraşcu, M. 2011. Orthogonal range searching on the RAM, revisited. In
27th ACM Symposium on Computational Geometry, SoCG 2011. 1–10.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., and Shelat, A. 2005. The
smallest grammar problem. IEEE Transactions on Information Theory 51, 7, 2554–2576.

Chazelle, B. 1988. A functional approach to data structures and its use in multidimensional searching. SIAM
Journal on Computing 17, 3, 427–462.

Christiansen, A. R. and Ettienne, M. B. 2018. Compressed indexing with signature grammars. In 13th Latin
American Symposium on Theoretical Informatics, LATIN 2018. LNCS Series, vol. 10807. 331–345.

Claude, F. and Navarro, G. 2012. Improved grammar-based compressed indexes. In 19th International
Symposium on String Processing and Information Retrieval, SPIRE 2012. LNCS Series, vol. 7608.
180–192.

Crochemore, M. and Rytter, W. 2003. Jewels of Stringology. World Scientific.
Fine, N. J. and Wilf, H. S. 1965. Uniqueness theorems for periodic functions. Proceedings of the American

Mathematical Society 16, 1, 109–114.
Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J. 2014. LZ77-based self-indexing

with faster pattern matching. In 11th Latin American Symposium on Theoretical Informatics, LATIN
2014. LNCS Series, vol. 8392. 731–742.

Gagie, T., Navarro, G., and Prezza, N. 2018. Optimal-time text indexing in BWT-runs bounded space. In
29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018. 1459–1477.

Gasieniec, L., Kolpakov, R. M., Potapov, I., and Sant, P. 2005. Real-time traversal in grammar-based
compressed files. In 15th Data Compression Conference, DCC 2005. 458.

Gawrychowski, P. 2011. Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and deterministic.
In 19th Annual European Symposium on Algorithms, ESA 2011. LNCS Series, vol. 6942. 421–432.

Gawrychowski, P., Karczmarz, A., Kociumaka, T., Ącki, J., and Sankowski, P. 2018. Optimal dynamic
strings. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018. 1509–1528.

Gawrychowski, P. and Kociumaka, T. 2017. Sparse suffix tree construction in optimal time and space. In
28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017. 425–439.

Kärkkäinen, J. and Ukkonen, E. 1996. Lempel-Ziv parsing and sublinear-size index structures for string
matching. In 3rd South American Workshop on String Processing, WSP 1996. 141–155.

Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development 31, 2, 249–260.

Kempa, D. and Prezza, N. 2018. At the roots of dictionary compression: string attractors. In 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018. 827–840.

Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., and Arikawa, S. 2003. Collage system: a
unifying framework for compressed pattern matching. Theoretical Computer Science 298, 1, 253–272.

Kieffer, J. C. and Yang, E. 2000. Grammar-based codes: A new class of universal lossless source codes. IEEE
Transactions on Information Theory 46, 3, 737–754.

Kociumaka, T., Navarro, G., and Prezza, N. 2020. Towards a definitive measure of repetitiveness. In Proc.
14th Latin American Symposium on Theoretical Informatics (LATIN). To appear.

Kreft, S. and Navarro, G. 2013. On compressing and indexing repetitive sequences. Theoretical Computer
Science 483, 115–133.

Lempel, A. and Ziv, J. 1976. On the complexity of finite sequences. IEEE Transactions on Information
Theory 22, 1, 75–81.

McCreight, E. M. 1976. A space-economical suffix tree construction algorithm. Journal of the ACM 23, 2,
262–272.

Mehlhorn, K., Sundar, R., and Uhrig, C. 1997. Maintaining dynamic sequences under equality tests in
polylogarithmic time. Algorithmica 17, 2, 183–198.

Navarro, G. 2019. Document listing on repetitive collections with guaranteed performance. Theoretical
Computer Science 772, 58–72.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Surveys 39, 1.
Navarro, G. and Prezza, N. 2019. Universal compressed text indexing. Theoretical Computer Science 762,

41–50.
Nishimoto, T., I, T., Inenaga, S., Bannai, H., and Takeda, M. 2016. Fully dynamic data structure for

LCE queries in compressed space. In 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016. LIPIcs Series, vol. 58. 72:1–72:15.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:35

Nishimoto, T., I, T., Inenaga, S., Bannai, H., and Takeda, M. 2019. Dynamic index and LZ factorization in
compressed space. Discrete Applied Mathematics.

Prezza, N. 2019. Optimal rank and select queries on dictionary-compressed text. In 30th Annual Symposium
on Combinatorial Pattern Matching, CPM 2019. LIPIcs Series, vol. 128. 4:1–4:12.

Raskhodnikova, S., Ron, D., Rubinfeld, R., and Smith, A. D. 2013. Sublinear algorithms for approximating
string compressibility. Algorithmica 65, 3, 685–709.

Rytter, W. 2003. Application of Lempel–Ziv factorization to the approximation of grammar-based compres-
sion. Theoretical Computer Science 302, 1-3, 211–222.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays. Journal of Algo-
rithms 48, 2, 294–313.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha,
S., and Robinson, G. E. 2015. Big data: Astronomical or genomical? PLOS Biology 13, 7, e1002195.

Storer, J. A. and Szymanski, T. G. 1982. Data compression via textual substitution. Journal of the
ACM 29, 4, 928–951.

Weiner, P. 1973. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and Au-
tomata Theory, SWAT 1973. 1–11.

Willard, D. E. 1985. New data structures for orthogonal range queries. SIAM Journal on Computing 14, 1,
232–253.

A. NEW RESULTS ON ARBITRARY RUN-LENGTH CONTEXT-FREE GRAMMARS

Along the article we have obtained a number of results for the specific RLCFG we build.
Several of those can be generalized to arbitrary RLCFGs, leading to the same state of the
art that CFGs now enjoy. We believe it is interesting to explicitly state those new results in
general form: not only RLCFGs are always smaller than CFGs (and the difference can be
asymptotically relevant, as in text T = an), but also our results in this article require space
O(γ log(n/γ)), whereas there always exists a RLCFG of size grl = O(γ log(n/γ)). Indexes
of size O(grl) have then the potential to be smaller than those built on attractors (e.g.,
T = an is generated by a RLCFG of size O(1), whereas γ log(n/γ) = Θ(log n)).

A.1. Extracting substrings

The following result exists on CFGs [Bille et al. 2015]. They present their result on straight-
line programs (SLPs, i.e., CFGs where right-hand sides are two nonterminals or one terminal
symbol). While any CFG of size g can be converted into an SLP of size O(g), we start by
describing their structure generalized to arbitrary CFGs, which may be interesting when
the grammar cannot be modified for some reason. We then show how to handle run-length
rules A→ As1 in order to generalize the result to RGCFGs.

Theorem A.1. Let a RLCFG of size grl generate (only) T [1 . . n]. Then there exists a
data structure of size O(grl) that extracts any substring T [p . . p+`−1] in time O(`+log n).

Consider the parse tree T of T [1 . . n]. A heavy path starting at a node v ∈ T with children
v1, . . . , vs chooses the child vi that maximizes |vi|, and continues by vi in the same way, up
to reaching a leaf. We say that vi is the heavy child of v and define h(v) = vi. The edge
connecting v with its heavy child vi is said to be heavy; those connecting v with its other
children are light. Note that, if vj 6= h(v), then |vj | ≤ |v|/2; otherwise vj would be the heavy
child of v. Then, every time we descend by a light edge, the lenght of the node halves, and
as a consequence no path from the root to a leaf may include more than log n light edges.
A decomposition into heavy paths consists of the heavy path starting at the root of T and,
recursively, all those starting at the children by light edges.

A.1.1. Accessing T [p]. For every internal node v with children v1, . . . , vs we define the
starting positions of its children as p1(v) = 1, pi(v) = pi−1(v) + |vi−1|, for 2 ≤ i ≤ s,
and ps+1 = |v|+ 1. We then store the set C(v) = {p1(v), p2(v), . . . , ps+1(v)}. Let us define
c(v) = pi(v), where vi = h(v), as the starting position of the heavy child of v. Then, if v roots
a heavy path v = v0, v1, . . . , vk, where vj = h(vj−1) for 1 ≤ j ≤ k, and vk is a leaf, we define

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 M. B. Ettienne et al.

the starting positions in the heavy path as s1(v) = c(v) and sj(v) = sj−1(v)− 1 + c(vj−1)
for 2 ≤ j ≤ k, and the ending positions as ej(v) = sj(v) + |vj | for 1 ≤ j ≤ k. We then
associate with v the increasing set P (v) = {s1(v), s2(v), . . . , sk(v), ek(v), . . . , e2(v), e1(v)};
note ek(v) = sk(v) + 1.

To find T [p], we start at the root v of T (so 1 ≤ p ≤ |v|) with children v1, . . . , vs. We make
a predecessor search on C(v) to determine that pi(v) ≤ p < pi+1(v). If vi 6= h(v), we traverse
the light edge to vi and continue the search from vi with p← p−pi(v)+1. Otherwise, since
vi = h(v), it holds that p ≥ pi(v) = c(v) = s1(v) and p < pi+1(v) = c(v) + |h(v)| = e1(v).
We then jump to the proper node in the heavy path that starts in v by making a predecessor
search for p in P (v). If we determine that sj(v) ≤ p < sj+1(v) or that ej+1(v) ≤ p < ej(v),
we continue the search from vj and p← p− sj(v) + 1. Otherwise, p = sk(v) and the answer
is the terminal symbol associated with the leaf vk. Note that, when we continue from vj ,
this is not the head of a heavy path, but after searching C(vj) we are guaranteed to continue
by a light edge. In each step, then, we perform two predecessor searches and traverse a light
edge.

Bille et al. [2015] describe a predecessor data structure that, when finding the predecessor
of x in a universe of size u, takes time O(log(u/(x+ − x−))), where x+ and x− are the
predecessor and successor of x, respectively. Thus, when finding vi in C(v), this structure
takes timeO(log(|v|/|vi|)). If vi is a light child, we continue by vi, so the sum over all the light
edges traversed telescopes toO(log |v|). When we descend to the heavy child, instead, we also
find the node vj in P (v), which costs O(log(|v|/(sj+1(v)− sj(v) + 1))) = O(log(|v|/c(vj)))
if sj(v) ≤ p < sj+1(v), or O(log(|v|/(ej(v) − ej+1(v) + 1))) = O(log(|v|/(|vj | − (c(vj) +
|h(vj)|)))) if ej+1(v) ≤ p < ej(v), or O(log |v|) if p = sk(v) (but this happens only once
along the search). In the first two cases, we descend to vj , which always starts descending by
a light edge to some vji at cost O(log(|vj |/|vji |)). Since |vji | ≤ c(vj) (if sj(v) ≤ p < sj+1(v)) or
|vji | ≤ |vj |−(c(vj)+ |h(vj)|) (if ej+1(v) ≤ p < ej(v)), we can upper bound the cost to search
P (v) by O(log(|v|/|vji |)), and the cost to search C(vj) by O(log(|vj |/|vji |)) ⊆ O(log(|v|/|vji |))
too, and then we continue the search from vji . Therefore the cost also telescopes to O(log |v|)
when we search a heavy path. Overall, the cost from the root of the parse tree is O(log n).

The remaining problem is that the structure is of size O(|T |) = O(n), but it can be
made O(g) as follows. The subtrees of T rooted by all the nodes v labeled with the same
nonterminal A are identical, so in all of them the node h(v) has the same label, say the
terminal or nonterminal Ai. Bille et al. [2015] define a forest F with exactly one node
v(X) ∈ F for each nonterminal or nonterminal X. If v ∈ T is labeled A and h(v) ∈ T is
labeled Ai, then v(Ai) is the parent of v(A) in F . The nodes v(a) for terminals a are roots
in F . A heavy path from v ∈ T , with v labeled A, then corresponds to an upward path
from v(A) ∈ F .

The sets C(v) also depend only on the label A of v ∈ T , so we associate them to the
corresponding nonterminal A. The sizes of all sets C(A) add up to the grammar size, because
C(A) has s+1 elements if the rule that defines A is of the form A→ A1 · · ·As.9 The sets P (v)
also depend only on the label A of v ∈ T , but they are not stored completely in A. Instead,
each node v(A) ∈ F , corresponding to the nodes v ∈ T labeled A, and with parent v(Ai) ∈
F , stores values s(v(A)) = s(v(Ai))+c(v)−1 and e(v(A)) = e(v(Ai))+|v|−c(v)−|h(v)|+1.
For the roots v(a) ∈ F , we set s(v(a)) = e(v(a)) = 0. They then build two data structures
for predecessor queries on tree paths, one on the s(·) and one on the e(·) values, which
obtain the same complexities as on arrays. In order to find a position p from v(A), we also
store the position p(A) in
exp(A) of the root in F from where v(A) descends, as well as the character

9To have the grammar size count only right-hand sides, rules A→ ε must be removed or counted as size 1.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:37

exp(A)[p(A)]. If p = p(A), we just return that symbol and finish. Otherwise, if p < p(A),
we search for p(A)− p in the fields s(·) from v(A) to the root, finding s(v(B)) ≥ p(A)− p >
s(v(Bi)), with v(Bi) the parent of v(B) in F . Otherwise, p > p(A) and we search for p−p(A)
in the fields e(·) from v(A) to the root, finding e(v(B)) ≥ p− p(A) > e(v(Bi)), with v(Bi)
the parent of v(B) in F . In both cases, we must exit the heavy path from the node v(B),
adjusting p← p− s(v(A)) + s(v(B)).

A.1.2. Extracting T [p . . q]. To extract T [p . . q] in time O(q− p+ log n), we store additional
information as follows. In each heavy path v0, . . . , vk, each node vj stores a pointer r(vj) =
h(vt), where j < t ≤ k is the smallest value for which h(vt) is not the rightmost child of
vt. Similarly, l(vj) = h(vt) for the smallest j < t ≤ k for which h(vt) > 1. At query time,
we apply the procedures to retrieve T [p] and T [q] simultaneously until they split at a node
v∗, where T [p] descends from the child v∗i and T [q] from the child v∗j . Then the symbols
T [p . . q] are obtained by traversing, in left-to-right order, (1) the children vi+1, . . . of every
light edge leading to vi in the way to T [p]; (2) every sibling to the right of r(v) for the
nodes v ∈ {v1, r(v1), r(r(v1)), . . .} for every v1 rooting a heavy path in the way to T [p]; (3)
the children {v∗i+1, . . . , v

∗
j−1} of v∗; (4) the children v1, . . . , vi−1 of every light edge vi in the

way to T [q]; (5) every sibling to the left of l(v) for the nodes v ∈ {v1, l(v1), l(l(v1)), . . .}
for every v1 rooting a heavy path in the way to T [q]. For all those nodes, we traverse their
subtrees completely to obtain chunks of T [p . . q] in optimal time (unless there are unary
paths in the grammar, which can be removed or skipped with the information on r(·) or
l(·)). The left-to-right order between nodes in (1) and (2), and in (3) and (4), is obtained
as we descend to T [p] or T [q]. Finally, v∗ is easily determined if it is the target of a light
edge. Otherwise, if we exit a heavy path by distinct nodes vp and vq, then v∗ is the highest
of the two.

A.1.3. Extending to RLCFGs. The idea to include rules A→ As1 is to handle them exactly
as if they were A → A1 · · ·A1, but using O(1) space instead of O(s). When v is labeled A
and this is defined as A → As1, we would have a tie in determining the heavy child h(v).
We then act as if we chose the first copy of A1, h(v) = v1; in particular v(A1) is the parent
of v(A) in F . If we have to descend by another child of v to reach position p inside v, we
choose vi with i = dp/|v1|e and set p← p− (i− 1) · |v1|, so we do not need to store the set
C(A) (which would exceed our space budget).

No pointer l(vj) will point to h(v), but pointers r(vj) will. The pointers r(vj) = h(vt)
are actually stored as a pair (vt, i) where vsi = h(vt); this allows accessing preceding and
following siblings easily. With this format, we can also refer to the ith child of a run-length
node and handle it appropriately.

A.2. Extracting prefixes and suffixes

The following result also exists on CFGs [Gasieniec et al. 2005], who use leftmost or right-
most paths instead of heavy paths. In our Lemma 6.6 we have extended it to arbitrary
RLCFGs as well, without setting any restriction on the grammar.

Theorem A.2. Let a RLCFG of size grl generate (only) T [1 . . n]. Then there exists a
data structure of size O(grl) that extracts any prefix or suffix of the expansion exp(A) of
any nonterminal A in real time.

A.3. Computing fingerprints

The following result, already existing on CFGs [Bille et al. 2017], can also be extended to
arbitrary RLCFGs. Note that it improves our Lemma 6.7 to O(log `) time, though we opted
for a simpler variant in the body of the article.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 M. B. Ettienne et al.

Theorem A.3. Let a RLCFG of size grl generate (only) T [1 . . n]. Then there exists a
data structure of size O(grl) that computes the Karp-Rabin signature of any substring
T [p . . q] in time O(log n).

Recall that, given the signatures κ(S1) and κ(S2), one can compute the signature of the
concatenation, κ(S1 ·S2) = (κ(S1)+c|S1| ·κ(S2)) mod µ. One can also compute the signature
of S2 given those of S1 and S1 · S2, κ(S2) = ((κ(S1 · S2) − κ(S1)) · c−|S1|) mod µ, and the
signature of S1 given those of S2 and S1 ·S2, κ(S1) = (κ(S1 ·S2)−κ(S2)·c|S1|) mod µ. To have
the terms c±|S1| handy, we redefine signatures κ(S) as triples (κ(S), c|S| mod µ, c−|S| mod
µ), which are easily maintained across the described operations.

We now show how to compute a fingerprint κ(T [p . . q]) in O(log n) time on an arbitrary
RLCFG. We present the current result [Bille et al. 2017], extended to general CFGs, and
then include run-length rules.

We follow the idea of our Lemma 6.7, but combine it with heavy paths. Since we can obtain
κ(T [p . . q]) from κ(T [1 . . q]) and κ(T [1 . . p− 1]), we only consider computing fingerprints of
text prefixes. We associate with each nonterminal A→ A1 · · ·As the s signatures Ki(A) =
κ(exp(A1) · · · exp(Ai−1)), for 1 ≤ i ≤ s. We also associate signatures to nodes v(A) in F ,
K(v(A)) = κ(exp(A)[1 . . p(A)− 1]. Those values fit in O(g) space.

To compute κ(T [1 . . p]) we start with κ = 0 and follow the same process as for accessing
T [p] in Section A.1. In our way, every time we descend by a light edge from v to vi, where
v is labeled A, we update κ← (κ+Ki(A) · c|A1|+···+|Ai−1|) mod µ. Note that the power of
c is implicitly stored together with the signature Ki(A) itself.

Instead, when we descend from v(A) to v(B) because s(v(B)) ≥ p(A) − p > s(v(Bi))
or e(v(B)) ≥ p − p(A) > e(v(Bi)), we first compute the signature κ′ of the prefix of
exp(A) that precedes exp(B), which is of length ` = s(v(A)) − s(v(B)), and then update
κ← κ · c`+κ′ so as to concatenate that prefix (again, c` is computed together with κ′). We
compute κ′ from K(v(B)) = κ(exp(B)[1 . . p(B)− 1]) and K(v(A)) = κ(exp(A)[1 . . p(A)−
1]). Because exp(A)[p(A)] is the same symbol of exp(B)[p(B)], exp(B)[1 . . p(B) − 1] is a
suffix of exp(A)[1 . . p(A)− 1]. We then use the method to extract κ(S1) from κ(S1 ·S2) and
κ(S2).

When we arrive at T [p], we include that symbol and have computed κ = κ(T [1 . . p]). The
time is the same O(log n) required to access T [p].

A.3.1. Handling run-length rules. The proof of Lemma 6.7 already shows how to handle
run-length rules A → As1: we again treat them as A → A1 · · ·A1. The only complication
is that now we cannot afford to store the values Ki(A) used to descend by light edges,

but we can compute them as Ki(A) = κ(exp(A1)i−1) =
(
κ(exp(A1)) · c

|A1|·(i−1)−1
c|A1|−1

)
mod µ:

c|A1| mod µ and (c|A1|− 1)−1 mod µ can be stored with A1, and the exponentiation can be
computed in time O(log i) ⊆ O(log s). Note that this is precisely the O(log(|v|/|vi|)) time
we are allowed to spend when moving from node v to its child vi by a light edge.

A.4. Locating pattern occurrences

Claude and Navarro [2012, Cor. 1] obtain a version of the following result that holds only
for CFGs and offers search time O(m2 +(m+occ) logε n). We improve their complexity and
generalize it to RLCFGs.

Theorem A.4. Let a RLCFG of size grl generate (only) T [1 . . n]. Then there exists a
data structure of size O(grl) that finds the occ occurrences in T of any pattern P [1 . .m] in
time O(m log n+ occ logε n) for any constant ε > 0.

This result is essentially obtained in our Section 6. In that section we use a specific
RLCFG that allows us obtain a better complexity. However, in a general RLCFG, where

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Optimal-Time Dictionary-Compressed Indexes A:39

we must search for all the τ = m − 1 possible splits of P , the application of Lemma 6.5
with complexities fe(`) = O(`) (Theorem A.2) and fh(`) = O(log n) (Theorem A.3) yields
O(m log n) time to find all the m− 1 ranges [x1 . . x2]× [y1 . . y2] to search for in the grid.

Combining that result with the linear-space grid representation and the mechanism to
track the secondary occurrences on the grammar tree of a RLCFG described in Section 6,
the result follows immediately.

A.5. Counting pattern occurrences

While we cannot generalize our result of Section 7 to arbitrary RLCFGs, our developments
let us improve the best current result on arbitrary CFGs [Navarro 2019].

Theorem A.5. Let a CFG of size g generate (only) T [1 . . n]. Then there exists a data
structure of size O(g) that computes the number of occurrences in T of any pattern P [1 . .m]
in time O(m log2+ε n) for any constant ε > 0.

Navarro [2019, Thm. 4] showed that the number of times P [1 . .m] occurs in T [1 . . n]
can be computed in time O(m2 +m log2+ε n) within O(g) space for any CFG of size g. As
explained in Section 7, he uses the same grid of our Section 6 for the primary occurrences,
but associates with each point the number of occurrences triggered by it (which depend
only on the point). Then, a linear-space geometric structure [Chazelle 1988] sums all the
numbers in a range in time O(log2+ε g). Adding over all the m − 1 partitions of P , and
considering the O(m2) previous time to find all the ranges [Claude and Navarro 2012], the
final complexity is obtained.

With Lemma 6.5, and given our new results in Theorems A.2 and A.3, we can now improve
Navarro’s result to O(m log2+ε n) because the O(m2) term becomes O(m log n). However,
this holds only for CFGs. Run-length rules introduce significant challenges, in particular the
number of secondary occurrences do not depend only on the points. We only could handle
this issue for the specific RLCFG we use in Section 7. An interesting open problem is to
generalize this solution to arbitrary RLCFGs.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.


