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Given an array A[1, n] of elements with a total order, we consider the problem of building a data structure that solves two
queries: (a) selection queries receive a range [i, j] and an integer k and return the position of the kth largest element in A[i, j];
(b) top-k queries receive [i, j] and k and return the positions of the k largest elements in A[i, j]. These problems can be solved in
optimal time, O(1 + lg k/ lg lgn) and O(k), respectively, using linear-space data structures.

We provide the first study of the encoding data structures for the above problems, where A cannot be accessed at query time.
Several applications are interested in the relative order of the entries of A, and their positions, rather their actual values, and
thus we do not need to keep A at query time. In those cases, encodings save storage space: we first show that any encoding
answering such queries requires n lg k − O(n + k lg k) bits of space; then, we design encodings using O(n lg k) bits, that is,
asymptotically optimal up to constant factors, while preserving optimal query time.
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1. INTRODUCTION
A frequent problem in data and log mining applications is to find highest or lowest values in a range of
a stream: the coldest days in a time period, peaks in the stock market, most popular terms in Twitter,
most frequent queries in Google, and so on. As a less obvious scenario, consider autocompletion search
in databases [Li et al. 2009; Hsu and Ottaviano 2013]. As the user types in a query, the system presents
the k most highly scoring (i.e., the most popular) completions of the text entered so far, chosen from a
lexicon of phrases. Viewing the lexicon as a sorted sequence of strings with scores stored in an array
A, the system maintains the range [i, j] of the phrases prefixed by text typed in so far, and chooses
the strings with the k highest scores in A[i, j]. Similarly, in Web search engines, A could contain the
sequence of PageRank values of the pages in an inverted list sorted by URL. Then we could efficiently
retrieve the k most highly ranked pages that contain a query term, restricted to a range of page iden-
tifiers (which can model a domain of any granularity). The problem is, again, to find the k highest
values in a range A[i, j]. Directly finding the kth highest value may also be of interest. For example, in
interfaces that show the first k results and then, upon user request, the next k, it is useful to obtain
the (k + 1)th to 2kth results without having to obtain the first k results again.

The research work presented in this paper is motivated by the observation that, in these examples,
the actual contents of A are not interesting by themselves (e.g., the scores are not reported). All we
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need is to find the positions in A where the highest values occur in a range. Hence storage of the
contents of A could be avoided if we had a way to find those highest values without accessing A at
query time.

We now formalize the problem of interest. Consider an array A[1, n] of integers, reals, or in general
any totally sorted universe. We are interested in the following two queries on A:

(1) Selection queries: sel(i, j, k) returns the position of the kth largest value in range A[i, j], for any
given 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ j − i+ 1.

(2) Top-k queries: top(i, j, k) returns the positions of the k largest values in A[i, j], in sorted order of
value, for any given 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ j − i+ 1.

Since these queries are sensitive only to the relative order between elements of A, and not to the
actual values, we can replace the values in A by their rank (i.e., their position after sorting A in
increasing order, breaking ties arbitrarily), and all the sel(·) and top(·) queries will return correct
answers. Thus, in the sequel, we will consider that A is already a permutation of [n] without loss of
generality.

While optimal-time solutions exist for implementing those two queries, in this article we are in-
terested in a kind of data structures called an encoding. An encoding is a data structure that, after
preprocessing A, can answer queries on A without accessing A itself. Encodings are interesting when
they use less space than that necessary to represent A (let us call it |A|). Otherwise, any data structure
allowed to use O(|A|) space could be modified to contain a copy of A inside, and then trivially become
an encoding. Thus, interesting encodings cannot, by definition, recover all the values of A, but they can
still answer the predefined queries for which they have been designed.

In our case, since A stores a permutation of [n] and thus its storage requires |A| ≥ lg2 n! = Θ(n lg n)
bits, we will be interested in encodings that use o(n lg n) bits. Such encodings are useful when the
values in A are intrinsically uninteresting and only the indices where the sel(·) or top(·) values occur
are sufficient, which is the case for the applications mentioned before.

Contributions.. Since encodings do not access the data in A, a first question is what is the minimum
size an encoding must have in order to answer the desired queries, irrespectively of the query time.
In Section 3 we prove with a simple argument that any encoding solving either sel(·) or top(·) queries
requires n lg k −O(n+ k lg k) bits of space, even if we restrict the query ranges to one-sided queries, of
the form A[1, j].

This shows that there are inherent limitations in space saving: we cannot hope to have an interesting
encoding that works for any value of k, because values where lg k = Θ(lg n) would require encodings
of Θ(n lg n) bits, which are not interesting according to our definition. Still the challenge is to find
encodings for some given maximum k value, κ, which handle queries for any 1 ≤ k ≤ κ. Thus we can
aim at encodings of size O(n lg κ) = o(n lg n) when lg κ = o(lg n).

The core of our research work aims at an encoding that, in O(n lg κ) bits of space, solves queries
sel(i, j, k) in time O(1 + lg k/ lg lg n), for any 1 ≤ k ≤ κ. The space is optimal up to constant factors,
whereas the time is optimal for any structure using O(npolylog n) space [Jørgensen and Larsen 2011].
Then we show how the structure for sel(·) can also be used to solve top(i, j, k) queries in optimal time,
O(k). As a special case, we also show that sel(·) queries can break the time lower bound for sel(1, j, κ)
queries, that is, if they are one-sided and work only for k = κ fixed at construction time. All our time
results hold on a RAM machine with words of w = Θ(lg n) bits.

Related work.. The sel(·) and top(·) query problems are a natural extension of the well-known range
maximum query (RMQ) problem, which corresponds to both sel(·) and top(·) with k = 1: namely, query
rmq(i, j) looks for the position of the largest value in A[i, j]. The problem of encoding RMQs is well
studied [Sadakane 2002; Fischer 2010; Fischer and Heun 2011]. Fischer and Heun [2011] gave an
encoding of A that uses 2n+ o(n) bits and answers RMQs in O(1) time; their space bound is asymptot-
ically optimal to within lower-order terms. The case k = 2 was studied more recently by Davoodi et al.
[2014], obtaining 3.272n+ o(n) bits of space and O(1) time.

We are not aware of any previous work on sel(·) or top(·) encoding for general k. After the conference
versions of this article appeared [Grossi et al. 2013; Navarro et al. 2014], Gawrychowski and Nicholson
[2015b] found the exact main term in the lower bound for these encodings, n lg k + n(k + 1) lg(1 + 1/k),
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which is between n lg k+n/ ln 2 and n lg k+ k+1
k n/ ln 2. This bound refines ours in the lower-order term,

O(n). They also build an encoding using optimal space up to lower-order terms. This encoding supports
the queries, but not efficiently (i.e., it needs Ω(n) time), thus it is closer to a storage method than to
a data structure with optimal query time. Their most recent version [Gawrychowski and Nicholson
2015a] contains an encoding using 1.5n lg κ−Θ(n) bits, which solves queries top(i, j, κ) and sel(i, j, κ),
for κ fixed at construction, in timeO(κ6 lg2 nω(1)). This time is now sublinear, but still far from optimal.

The non-encoding version of the sel(·) query problem has recently been studied intensively [Gagie
et al. 2009; Gagie et al. 2012; Brodal et al. 2011; Jørgensen and Larsen 2011; Chan and Wilkin-
son 2013], always using linear space (i.e., O(n lg n) bits). Gagie et al. [2009] and Gagie et al. [2012]
solved the problem in O(lg n) time for any k, using a wavelet tree representation of A. Brodal and
Jørgensen [2009] reduced the time to O(lg n/ lg lg n), with a structure similar to a multi-ary wavelet
tree. Jørgensen and Larsen [2011] obtained a query time of O(lg k/ lg lg n + lg lg n), finally improved
to O(1 + lg k/ lg lg n) by Chan and Wilkinson [2013].1 These last two solutions build on an idea called
shallow cuttings [Matousek 1991], which allows one to decompose the general problem into O(n/k)
carefully chosen problems of size O(k), and then using the structure of Brodal and Jørgensen [2009]
on those subproblems. We will also use shallow cuttings in our solutions.

Jørgensen and Larsen [2011] introduced the κ-capped range selection problem, where a parameter
κ is provided at preprocessing time, and the data structure only supports selection for ranks 1 ≤
k ≤ κ (as explained, interesting encodings can only solve this κ-capped version of the problem). They
showed that even the one-sided κ-capped range selection problem requires query time Ω(lg k/ lg lg n) for
structures using O(n polylog n) words; therefore the result of Chan and Wilkinson is the best possible
for that space. This also shows that our faster results for one-sided queries are possible only because
the structures only solve queries with k = κ.

It is worth noting that the data structures presented in this article are not merely a succinct imple-
mentation of the shallow cutting idea employed by Chan and Wilkinson [2013] to obtain their optimal
time. As their solution requires access to the array A at query time, we must address the simultaneous
problems of reducing the space to asymptotically optimal, preserving optimal query time, and avoiding
to access A during a query.

In the non-encoding model, the top(·) query problem could be solved with our optimal-time sel(·)
solution at hand (see, e.g., Muthukrishnan [2002]). We first obtain the kth value, v, and then use an
RMQ data structure on A: We compute p = rmq(i, j), report it, and then continue recursively on the
intervals A[i, p− 1] and A[p+ 1, j], stopping as soon as we obtain values smaller than v. This takes the
optimal O(k) time. Note, however, that this idea cannot be directly used in the encoding model because
the value v is not available and thus cannot be exploited as mentioned above. It also does not deliver
the results in sorted order. Brodal et al. [2009] gave linear-space data structures to retrieve the top-k
results in order in time O(k), even in online form where each new result is delivered in O(1) time,
without knowing k in advance. However, these data structures are not encodings as they require the
explicit values of A.

Problem of independent interest.. We single out a problem that could have other applications, and
that arises as a subproblem in our encoding (see Section 5.1). Consider an array Y [1, t] of t elements
under a total order. Given a construction-time parameter `, the purpose is to design an encoding to
solve the following queries having any 1 ≤ j ≤ n and 1 ≤ d ≤ ` as input (recall that we cannot access Y
at query time).

(1) Next-larger queries: next-larger(j, d) returns the position of the dth left-to-right value in Y [j + 1, t]
that is strictly larger than Y [j].

(2) Previous-larger queries: prev-larger(j, d) returns the position of the dth right-to-left value in Y [1, j−
1] that is strictly larger than Y [j].

1Chan and Wilkinson claim a bound of O(1 + lgw k) for the “trans-dichotomous” model with word size w = Ω(lgn). This is,
however, based on an incorrect application of a result of Grossi et al. [2009]; the proof presented in their paper [Chan and
Wilkinson 2013] only yields a time bound of O(1 + lg k/ lg lgn) (B. T. Wilkinson, personal communication).
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The above queries return a special value 0 when the wanted position does not exist. In Section 5.1
we describe an encoding that answers queries in time O(d), using O(` t) bits of space.2 This is mostly
interesting for low values of `, generalizing the existing structures that solve the case ` = 1 [Fischer
2011]. Previous-smaller and next-smaller queries are obvious variants that can be solved similarly. In
a conference version [Grossi et al. 2013, Sec. 3.1] we showed how this encoding can be used to solve
top(i, j, k) queries for any 1 ≤ k ≤ κ, using O(κn) bits and O(k2) time, but this is subsumed in space
and time by our better top(·) solutions in this article.

Paper organization.. The paper is organized as follows. In Section 2 we give an overview of the known
succinct data strucures that we employ for our encodings. We present the lower bound on the space
required by any encondings for our problem in Section 3. After that, we describe our general approach
and relate it to the existing solutions based on shallow cuttings in Section 4, and give its succinct
implementation in Section 5: in these sections, we pose a number of algorithmic challenges that are
solved in Sections 6–8. Finally, we describe an encoding for the special case of one-sided queries in
Section 9 and draw our conclusions in Section 10.

2. PRELIMINARIES
Our results make use of a number of popular succinct data structures, which we list below for the sake
of completeness.

2.1. Bit-vectors
A bit-vector B[1, n] is an array of n bits. We will be interested in solving two queries on it: rankb(B, i)
tells the number of occurrences of bit b inB[1, i], and selectb(B, j) gives the position of the jth occurrence
of bit b in B. We will use the following result:

LEMMA 2.1 ([CLARK 1996]). A bit-vector B[1, n] can be stored in n + o(n) bits (that is, o(n) bits on
top of B itself) so that queries rank and select are answered in O(1) time.

When the number m of 1s in B[1, n] is small, the following result will be of interest as well:

LEMMA 2.2 ([RAMAN ET AL. 2007]). A bit-vector B[1, n] with m 1s can be stored in m lg(n/m) +
O(m) + o(n) bits, so that queries rank and select are answered in O(1) time.

Note that from this compressed representation we can still retrieve any B[i] = rank1(B, i) −
rank1(B, i − 1) in constant time. If we aim at answering rank1(B, i) only when B[i] = 1, we can use
less space, but now this is insufficient to recover the contents of B. The structure is called a monotone
minimum perfect hash function (mmphf), as the rank values can be regarded as mapping elements in
a universe [1, n] to the domain [1,m] while respecting the order:

LEMMA 2.3 ([BELAZZOUGUI ET AL. 2009]). Given a bit-vector B[1, n] with m 1s we can answer
queries rank1(B, i), whenever B[i] = 1, in O(1) time, using O(m lg lg(n/m)) bits, and without accessing
B.

2.2. Sequences
A sequence S[1, n] over alphabet [1, σ] requires n lg σ bits if represented in plain form. Within almost the
same space, we can answer not only the basic query access(S, i) = S[i], but also the queries rankc(S, i)
and selectc(S, j) for any c ∈ [1, σ], which are the natural extensions of the operations on bit-vectors:

LEMMA 2.4 ([BELAZZOUGUI AND NAVARRO 2015, THM. 6]). A sequence S[1, n] over alphabet [1, σ]
can be stored in n lg σ+o(n lg σ) bits, so that rankc queries are solved in time O(1+lg lgw σ), selectc queries
are solved in time O(1), and access queries are answered in any time complexity of the form ω(1).

2Each query to our encoding can actually report all the d (left-to-right or right-to-left, respectively) values in time O(d). The
reason is that to answer, say, next-larger(j, d), we need to also answer incrementally next-larger(j, 1), . . . , next-larger(j, d − 1),
taking overall O(d) time.
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When the frequencies nc of the symbols c ∈ [1, σ] are skewed, it is possible to use space close to the
zeroth-order entropy of S, nH0(S) =

∑
1≤c≤σ nc lg(n/nc) ≤ n lg σ bits, and still answer the queries. For

this article, the most useful result of this kind is the following:

LEMMA 2.5 ([BELAZZOUGUI AND NAVARRO 2015, THM. 7]). A sequence S[1, n] over alphabet [1, σ]
can be stored in nH0(S) + o(n) bits, so that rankc, selectc, and access queries are all solved in time
O(1 + lgw σ).

To obtain constant-time access and select simultaneously when lg σ = ω(w), we can resort to an earlier
version of Lemma 2.4, which uses slightly more space:

LEMMA 2.6 ([GOLYNSKI ET AL. 2006]). A sequence S[1, n] over alphabet [1, σ] can be stored in (1 +
ε)n lg σ + o(n lg σ) bits, for any constant ε > 0, so that rankc queries are solved in time O(lg lg σ), selectc
queries are solved in time O(1), and access queries are answered in constant time O(1/ε).

Finally, the following result gives a structure to support a restricted form of rankc queries in constant
time, by resorting to mmphfs.

LEMMA 2.7 ([BELAZZOUGUI AND NAVARRO 2014, SEC. 3]). Given a sequence S[1, n] over alphabet
[1, σ] we can answer queries rankc(S, i), where S[i] = c, in O(1) time, using O(n lgH0(S)) = O(n lg lg σ)
bits, and without accessing S.

2.3. Parentheses and trees
A sequence P [1, 2n] of parentheses ’(’ (opening) and ’)’ (closing) is balanced if, read left to right, there
are never more closing than opening parentheses, and in total there is the same number of both. There
is an opening parenthesis P [j] matching each closing parenthesis P [i] (this is the maximum j < i such
that P [j, i] is also balanced). Such j is found with operation findopen(P, i), which will be used in this
article. Concretely, we use the following result:

LEMMA 2.8 ([MUNRO AND RAMAN 2001]). A balanced sequence of parentheses P [1, 2n] can be
stored in 2n + o(n) bits (that is, o(n) bits on top of P itself) so that queries findopen(·) are answered
in O(1) time.

It is also useful to interpret P as a bit-vector and add constant-time rank and select support, using
o(n) further bits (Lemma 2.1). The operations will be called rank), rank(, select), and select(.

A parenthesis sequence P [1, 2n] can be used to represent a general ordinal tree of n nodes, so that a
large number of tree operations are supported in constant time. The next lemma lists those that will
be used in this article:

LEMMA 2.9 ([NAVARRO AND SADAKANE 2014]). An ordinal tree of n nodes can be represented in
2n + o(n) bits, so that the following operations are supported in constant time, among others: compute
the parent of a node v, compute the ith child of a node v, find the mth left-to-right leaf, compute the
preorder of a node v and the node with preorder r, compute the depth of a node v, determine if a node v
is an ancestor of another node u, compute the ancestor at any distance d of a node v, compute the subtree
size of a node v, and find the internal node with inorder s (leaves not counted).

We will use this lemma to represent binary trees where internal nodes always have two children.
Then the left child of a node is the first and the right child is the second. Moreover, the inorder of an
internal node is uniquely defined.

2.4. Predecessor queries
Given an increasing array P [1, κ] of values in [1,m], a predecessor query finds, given x, the maximum
i with P [i] ≤ x. One can represent P as κ 1s on a bitvector B[1,m], so that the predecessor of x is
select1(rank1(B, x)). Using Lemma 2.2 to represent B, the space is O(κ lg(m/κ))+o(m) bits and the time
is constant. It is not possible, however, to have constant time without the o(m)-bits term [Pătraşcu and
Thorup 2006]. In our article we will make heavy use of a structure called the succinct SB-tree:
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Fig. 1. Illustration of our example of how the successive queries sel(1, j, 3) (in bold rectangles) spot the successive values of the
permutations πi (grayed cells). The six snapshots of the queries are shown in columwinse order.

LEMMA 2.10 ([GROSSI ET AL. 2009, LEM. 3.3]). If we have independent constant-time access to
P [1, κ], we can solve predecessor queries on P in time O(1 + lg κ/ lg lgm) using O(κ lg lgm) bits, plus
a precomputed table of size o(m) that depends only on m.

Note that the o(m) bits are still present, but they do not depend on P , thus we will have many suc-
cinct SB-trees and a single o(m)-bits table for all. Though better times, like O(lg lg κ), can be obtained
with structures that use O(κ lgm) bits [Pătraşcu and Thorup 2006], our results are not affected by the
slower time of succinct SB-trees, whereas their lower space usage turns out to be fundamental.

3. LOWER BOUNDS
In this section we show that, given A[1, n] and k, any encoding answering queries sel(1, j, k) or
top(1, j, k) needs at least (essentially) n lg k bits. Note that these queries are weaker as they consider
the first j positions of A rather than a range of its positions. The technique is to encode about n/k ar-
bitrary permutations of [k] in A, in a way that they can be retrieved with either of those queries. Thus
the encodings cannot use less space that what is necessary to encode those arbitrary permutations,
that is, rougly n/k × lg2 k! = Ω(n lg k) bits.

Assume for simplicity that n = `k, for some integer `. Consider an array A of length n, initialized to
A[j] = j, for 1 ≤ j ≤ n, and then re-order its elements as follows: take ` − 1 permutations πi on [k],
0 ≤ i < `− 1, and permute the elements in the subarray A[ik+ 1, (i+ 1)k] according to permutation πi,
where A[ik + j] = ik + πi(j) for 0 ≤ i < ` − 1 and 1 ≤ j ≤ k. Note that the last k elements of A are not
reordered, as they do not encode any πi. Also, for 0 ≤ i1 < i2 < ` − 1, the elements in the subarray for
i = i1 are all smaller than the elements in the subarray for i = i2.

We now show how to reconstruct the `−1 permutations by performing sel(1, j, k) queries on the array
A. The main idea is easy to grasp with an example.

Example.. Assume we have permutations π0 = (3 1 2) and π1 = (1 3 2) where k = 3. Figure 1
illustrates the process. Our array is A[1, 9] = 〈3, 1, 2, 4, 6, 5, 7, 8, 9〉, where π0 is encoded in A[1, 3] and π1
in A[4, 6] (with values shifted by ik = 3). Then, sel(1, 3, 3) = 2 tells us that the minimum among the first
3 elements in π0 (i.e. the 3rd largest element) is at π0(2), so π0(2) = 1. Next, sel(1, 4, 3) = 3 tells us that
the second minimum (2nd largest element) in π0 is at π0(3), so π0(3) = 2, and thus π0(1) = 3. This is
because A[1, 4] contains A[4], which must be larger than all A[1, 3], and thus the 3rd largest element in
A[1, 4] must be the 2nd largest element in A[1, 3]. With sel(1, 6, 3) = 4 we discover that the 3rd element
in π1 is at π1(1), so π1(1) = 1, and so on. 2

Now we formalize the process described in the example.

LEMMA 3.1. The position of the kth largest value in the prefix A[1, ik + j − 1] is the position of value
(i− 1)k + j, for any 1 ≤ i < ` and 1 ≤ j ≤ k.

PROOF. Since the values of A were initially increasing and then we locally permuted the blocks of
length k, it holds that, for each 1 ≤ i < `, A[x] < A[y] for any x ≤ ik and y > ik. Then the values in
A[ik + 1, ik + j − 1] are the largest of A[1, ik + j − 1], and the values in A[(i− 1)k + 1, ik] are the largest
of A[1, ik]. Thus, the kth largest value in A[1, ik+ j− 1] is the (k− j+ 1)th largest value in A[1, ik]. This
value is also the (k − j + 1)th largest value in A[(i− 1)k + 1, ik], or which is the same, the jth smallest
value in A[(i− 1)k + 1, ik]. Thus, by the definition of A[(i− 1)k + 1, ik], it is the value (i− 1)k + j.

Therefore, sel(1, ik + j − 1, k), the position of the kth value in the prefix A[1, ik + j − 1], is equal to
(i−1)k+π−1i−1(j), which is the position of value (i−1)k+ j. Then, any πi−1 can be easily computed with
the k − 1 queries sel(1, ik + j − 1, k) for 1 ≤ j ≤ k − 1.
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Since representing ` − 1 arbitrary permutations on [k] requires lg((k!)`−1) = (` − 1) lg k! = (n/k −
1)(k lg k − O(k)) = (n − k) lg k − O(n − k) = n lg k − O(n + k lg k) bits, any encoding able to answer all
queries sel(1, j, k) on A needs also this number of bits.

The proof applies to top(1, j, k) as well, since we can reconstruct the value sel(1, ik + j − 1, k) from
top(·) queries: sel(1, ik+j−1, k) is the only element that disappears from the answer set when we move
from top(1, ik + j − 1, k) to top(1, ik + j, k). As we move, the element A[ik + j] enters in the answer and
the element that was the smallest (i.e., the kth), which belongs to A[(i− 1)k + 1, ik], leaves the answer
set.

THEOREM 3.2. Any encoding of an array A[1, n] answering sel(·) or top(·) queries, even if restricted
to ranges A[1, j] and for a fixed k value, requires at least n lg k −O(n+ k lg k) bits of space.

4. GENERAL APPROACH
We describe “shallow cuttings” idea of Jørgensen and Larsen [2011], and the way Chan and Wilkinson
[2013] take advantage of it. In general terms, our encoding for sel(·) queries will implement their
solution in an encoding scenario. This poses, however, a number of challenges that will be dealt with
in the subsequent sections; the plan is described at the end of this section. Table I gives the notation
used throughout the article.

4.1. Shallow cuttings
Let A[1, n] be a permutation on [n]. Consider each entry A[i] as a point (x, y) = (i, A[i]), and set a
parameter κ. A horizontal line sweeps the grid space [1, n] × [1, n] from y = n (top) to y = 1 (bottom).
The points hit are included in a single root cell, which spans a three-sided area called a slab, of the
form [1, n] × [y, n], which includes all the points of the cell. Once we reach a point (x∗, y∗) that makes
the root cell contain 2κ points, we close the cell and leave its slab with its definitive area [1, n]× [y∗, n].

Let xsplit be the κth smallest x-coordinate in the above root cell. This is called the split point. The
sweeping process is repeated recursively on each of the two grid spaces [1, xsplit] × [1, n] and [xsplit +
1, n]× [1, n]. This will create two children cells as follows. They will contain the topmost points whose x-
coordinates are ≤ xsplit and > xsplit, respectively. Their slabs will grow downwards as we continue with
the sweeping process, independently for each cell. When those cells, in turn, reach size 2κ, we close
them, find their split points, and continue the recursion on the resulting grid spaces. The recursive
process terminates on a final cell when less than 2κ points are left in the current grid space.

A binary tree TC is created to reflect the cell refinement process (see Figure 2). The root cell is
associated with the root node of TC , the first two children cells to the left ([1, xsplit]) and right ([xsplit +
1, n]) children of the root, and so on. The leaves of TC are associated with the final cells, which have not
been split and contain κ to 2κ− 1 points (unless n < κ, in which case only a root cell exists).

At any moment of the sweeping process, we have a sequence of points x1 < x2 < . . . that have
been chosen as split points; new points are inserted anywhere in the sequence as further cells are
split. These points delimit the x-coordinate slab ranges of which are the leaves of TC at the current
moment of the sweep. When the next split occurs, say within the slab covering interval [xi + 1, xi+1],
we obtain two new cells, whose slabs cover the x-coordinate intervals [xi + 1, xsplit] and [xsplit + 1, xi+1].
We associate the keys [xi + 1, xsplit] and [xsplit + 1, xi+1] and the extents [xi−1 + 1, xi+1] and [xi + 1, xi+2],
respectively, with the two new cells (assume further split points 0 and n in the extremes).

When the sweep finishes, TC has t internal nodes and t + 1 leaves, and there are t + 2 split points
0 = x0 < x1 < x2 < . . . < xt < xt+1 = n (writing 0 and n explicitly), which delimit the slabs of the
final leaves of TC . In the following, we will use xi to refer to these final split points. In addition to the
extents associated with cells, we associate the special extents [xi−1+1, xi+1] with the split points xi, for
1 ≤ i ≤ t. The root of TC has key and extent [1, n]. Note that, since leaves contain successive positions
of A, it holds κ ≤ xi+1 − xi < 2κ for all i (if n ≥ κ).

Example.. Figure 2 gives an example (values yi will be defined soon). Note that the child slabs inherit
half of the points of their parent slab. 2

This construction has a number of key properties [Jørgensen and Larsen 2011]:

(1) It creates O(t) = O(n/κ) cells, each containing κ to 2κ points (if n ≥ κ).
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Fig. 2. An example of the shallow cutting process with κ = 3. On the left, the points are swept top to bottom. First, the root cell
is closed when x0 is found (the root slab is shown with a black solid line). The splitting point is x2. Then its two children (slabs
in black dashed lines) are formed. A third slab in black dotted lines is the right child of the right child of the root. The grayed
lines show the slabs of the child cells. We show the split points xi and their associated y∗ values, yi. On the right, the induced
binary tree TC is shown, with leaves in gray. The keys of the internal nodes are the horzontal intervals shown in bold lines, and
their identifiers are vi, where i is their inorder number.

(2) If c is the cell of the highest (closest to the root) node v ∈ TC whose key is contained in a query
range A[i, j], then [i, j] is contained in the extent of c.

(3) The top-κ values in A[i, j] belong to the union of the 3 cells comprising the extent of c (these contain
at most 6κ points).

4.2. Optimal-time select queries
Using the properties of shallow cuttings, Chan and Wilkinson [2013] reduce the O(lg n/ lg lg n) time
of Brodal and Jørgensen [2009] as follows. At each node v ∈ TC , they store the structure of Brodal
and Jørgensen for the array Av[1, O(κ)] of the y-coordinates of the points in the extent of v. Actually,
they store in Av the local permutation in [O(κ)] induced by the relative ordering in A, thus Av requires
O(κ lg κ) bits in each v and O(n lg κ) bits in total. The structure for range selection also uses O(κ lg κ)
bits and answers queries in time O(1 + lg κ/ lg lg n).3 They also store an array Ev[1, O(κ)], so that Ev[i]
is the position in A[1, n] of the value stored in Av[i]. For the special extents associated with split points
xi, they also store structures Ai analogous to the structures Av.4 The structures Ai add up to O(n lg κ)
bits, since they are built on sub-arrays of length up to 4κ whose contents are mapped to the range
[1, O(κ)].

Property 3 of shallow cuttings implies that the kth largest element of A[i, j], for any k ≤ κ, is also
the kth largest value in Av[l, r], where v is the node that corresponds to interval A[i, j] by property 2
and Ev[l − 1] < i ≤ j < Ev[r + 1] are the elements in the extent of node v enclosing [i, j] most tightly.
Thus query sel(i, j, k) on A is mapped to query p = sel(l, r, k) on Av. Once the local answer is found in
Av[o], the global answer is Ev[o].

Summing up, the main ingredients are based on the funtionalities of tree TC , and arrays Ev, Av and
Ai. Chan and Wilkinson [2013] manage to store them in O(n(lg κ+ lg lg n+ (lg n)/κ)) bits, which gives
O(n lg n) bits when added over a set of suitable κ values (their structure works for every 1 ≤ k ≤ n,

3One could expect time O(1 + lg κ/ lg lg κ), but the denominator may stay at lg lgn by the use of global precomputed tables of
total size o(n).
4Arrays Ei are not necessary because the special extents refer to contiguous ranges in A.
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so several κ-capped structures are built). Also, their solution requires to access A and thus does not
immediately translate into our setting.

4.3. Encodings for optimal-time select queries
Our general plan is to derive an encoding from the strategy of Chan and Wilkinson, which retains the
optimal time for sel(·) but reduces the space toO(n lg κ) and does not accessA. This requires addressing
several challenges.

(1) In Section 5 we design a succinct representation of TC that is able to find the node v given the in-
terval A[i, j], so that from v we gain access to the data associated with node v in constant time. This
structure uses O((n/κ) lg κ)+o(n) bits. Associated with each node v we will store Chan and Wilkin-
son’s structures Av for range selection (whose space is O(κ lg κ) bits and thus can be afforded), and
a data structure that simulates array Ev (as its direct representation cannot be afforded). We will
also store the structures Ai associated with the split points xi.

(2) In Section 6 we provide constant-time access to any Ev using O(n lg κ) bits. Together with the
previous result, this already yields an O(lg κ) time algorithm for sel(·) queries, as we can first find
the node v in constant time, then do a binary search for l and r in Ev, then run the range selection
query on Av[l, r] in time O(1+lg κ/ lg lg n), and finally return Ev[o] in O(1) time. Our representation
of Ev uses a hierarchical marking of nodes plus a color-based encoding of the inheritance of points
along cells in paths of unmarked nodes in TC .

(3) In Section 7 we address the bottleneck of the previous solution: we replace the binary search by
fast predecessor queries on Ev, so as to obtain O(1 + lg κ/ lg lg n) time. This is obtained by storing
succinct SB-trees [Grossi et al. 2009] on some sampled nodes (which include at least all the marked
nodes), and searches on the inheritance information along paths of unsampled nodes, using global
precomputed tables.

(4) In Section 8 we wrap up the results in order to prove Theorem 4.1. Then we show how to answer
top-k queries by using an existing linear-space technique [Brodal et al. 2009] on a reduced universe.
This proves Theorem 4.2.

THEOREM 4.1. Given an array A[1, n] and a value κ, there is an encoding of A that uses O(n lg κ)
bits and supports the query sel(i, j, k) in time O(1 + lg k/ lg lg n) for any k ≤ κ.

THEOREM 4.2. Given an array A[1, n] and a value κ, there is an encoding of A that uses O(n lg κ)
bits and supports the query top(i, j, k) in time O(k), for any k ≤ κ.

5. SHALLOW CUTTINGS IN SUCCINCT SPACE
In this section we show how to represent the shallow cutting structure using O((n/κ) lg κ) + o(n) bits
so that, given the query interval [i, j], we obtain the corresponding node v ∈ TC according to property 2
of shallow cuttings, and then give access to the structures associated with node v. We will also need to
find, given v, the two “neighbor” nodes v− and v+ that define the extent of v, and map between nodes
and their keys in both directions.

Finding the maximal range of split points.. Our first structure is a bit-vector S[0, n] that marks the
split points xi, that is, S[xi] = 1 for all 0 ≤ i ≤ t+1 and S[j] = 0 elsewhere. Since S has only t+2 bits set
out of n, we can represent it in compressed form (Lemma 2.2) so that it requires t lg(n/t)+O(t)+o(n) =
O((n/κ) lg κ) + o(n) bits of space and supports operations rankb(S, i) and selectb(S, j) in constant time.

With this representation of S we find in constant time the range [m,M ] of split points contained in
A[i, j]. More precisely, we find the largest range [m,M ] such that i ≤ xm < . . . < xM ≤ j, in constant
time with m = rank1(S, i− 1) + 1 and M = rank1(S, j). Note that the range [m,M ] can contain zero split
points in some cases. We have the following result:

LEMMA 5.1. Given the range [i, j], we can find in O(1) time the maximal range [m,M ] of split points
(if any) contained in [i, j] with a structure that uses O((n/κ) lg κ) + o(n) bits of space.
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If the range [m,M ] contains zero or one split points (i.e., m ≥ M ), then [i, j] does not contain a
complete cell:5 either [i, j] is fully contained in the range of the mth left-to-right leaf of TC (and contains
no split points) or [i, j] starts in the range of the mth leaf and ends in that of the (m + 1)th leaf of TC
(and contains one split point). In both situations, the range [i, j] is contained in the special extent of the
mth split point of TC , [xm−1 + 1, xm+1], recalling that xm is found using the bit-vector S. In this simple
case, we compute the offset o = select1(S,m − 1), perform the query sel(i − o, j − o, k) on the structure
Am associated with split point xm, and remap the answer to the global position by just adding o.

In the sequel we consider the more complex case of two or more split points, that is, m < M .

Finding the key of the node v for a range A[i, j].. If m < M , the following procedure finds the desired
key [Jørgensen and Larsen 2011]. Find, within xm, . . . , xM , the split point xr with maximum associated
yr-coordinate (this is the y∗ coordinate given to the slab of the cell that was closed when xr was chosen
as a split point). Find the split point xs with the second maximum. If s < r (i.e., xs is to the left of xr),
then the key of the desired node v is [xs + 1, xr], otherwise it is [xr + 1, xs].

To find the first and second maxima, let the array Y [1, t] = y1, . . . , yt contain the y∗ values associated
with the split points x1, . . . , xt. We do not represent Y itself, but rather store a range top-2 encoding
of it [Davoodi et al. 2014]. This structure requires O(t) = O(n/κ) bits and returns the positions of the
first and second maxima in Y [m,M ], xr and xs, in O(1) time.6 We have the following result:

LEMMA 5.2. Given split points xm < xM , we can find in O(1) time the maximal key of a node v ∈ TC
that is contained in [xm + 1, xM ], with a structure that uses O(n/κ) bits of space.

Example.. See Figure 2 again, and consider a range A[i, j] that contains x1 to x4. Then r = 2 and
s = 3, and the key is [x2 + 1, x3], because y2 = max{y1, y2, y3, y4} and y3 is the second maximum.
Instead, if A[i, j] contains x3 to x4, then r = 3 and s = 4 because y3 > y4. 2

Finding the extent of v.. Assume w.l.o.g. that r < s and thus the desired key is [xr + 1, xs]; the case
[xs + 1, xr] is symmetric. To compute the extent of this key we need to find the split points that, at the
moment when the key [xr + 1, xs] was created during the sweep, preceded xr and followed xs. Let us
call these split points xr′ and xs′ , respectively. Here we use the encoding for prev-larger and next-larger
queries described at the end of Section 1.

At the time we created the split point xs, the split points that existed were precisely those with y∗

value larger than that associated with xs. Thus, since xr < xs, the split point that followed xs is xs′ ,
with s′ = next-larger(s, 1), the leftmost value in Y [s+ 1, t+ 1] that is larger than Y [s] (assume Y [t+ 1] =
n+1 so this is always defined). Similarly, since all the values in Y [r+1, s−1] are smaller than Y [s], and
Y [r] > Y [s], the split point that preceded xr when xs was created was xr′ , with r′ = prev-larger(s, 2),
the second rightmost value in Y [0, s− 1] that is larger than Y [s] (assume Y [0] = n+ 1 so this is always
defined).7 In Section 5.1 we show how to support prev-larger and next-larger queries in constant time
using O(t) = O(n/κ) bits of space. Then the extent is [xr′ + 1, xs′ ].

LEMMA 5.3. Given the key of a node v ∈ TC , and knowing which of its extremes has a lower y value,
we can obtain the extent of v in O(1) time with a structure that uses O(n/κ) bits of space.

Example.. In Figure 2, for the key [x2 + 1, x3], we find the extent [x0 + 1, x5], whereas for the key
[x3 + 1, x4], the extent is [x2 + 1, x5]. In both cases, the extent contains the range A[i, j]. 2

Finding the node with a given key.. We have obtained the key of v, but not yet v. Similarly, we have
obtained its extent, but not its corresponding neighboring nodes v− and v+. The structure Av contains
the data corresponding to the extent of v, but we will also need to refer to its neighboring nodes in
order to decode the results obtained in Av.

5In some border cases it can, but these are still correctly handled as indicated here.
6Note that it is not a matter of obtaining r = rmq(m,M) and then choosing s from s1 = rmq(m, r − 1) and s2 = rmq(r + 1,M),
since we have no way to compare Y [s1] with Y [s2] if we do not store Y .
7Note that prev-larger(s, 2) is not necessarily prev-larger(prev-larger(s, 1), 1) = prev-larger(r, 1) as there might be an element x to
the left of Y [r] such that Y [r] > x > Y [s].
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To reference the nodes, we will represent the topology of TC , which has 2t+1 nodes, with the succinct
tree representation of Lemma 2.9. It uses 4t+ 2 = O(n/κ) bits of space and supports all the operations
we need, in constant time.

If the key of node v is [xr + 1, xs] and its extent is [xr′ + 1, xs′ ], then the neighbor nodes of v will be
those with keys [xr′ + 1, xr] and [xs + 1, xs′ ]. In general, we will need to find the nodes corresponding to
arbitrary keys.

Given a key [xr + 1, xs], where Y [r] > Y [s], we can compute the corresponding node v ∈ TC as follows.
Since this key was created with the split point xs, the corresponding node of TC is the left child of
the s-th node of TC in inorder [Jørgensen and Larsen 2011]. This node with inorder s is computed
in constant time in our representation (Lemma 2.9), and then we can also compute its left child in
constant time. If, instead, the key is [xs + 1, xr] (still with Y [r] > Y [s]), then v is the right child of the
sth node in inorder.

Example.. Again in Figure 2, the key [x2 + 1, x3] holds y2 > y3, thus we take the internal node of TC
with inorder 3 (that is, v3), and the desired node is its left child (that is, the third left-to-right leaf).
Consider instead the key [x3, x5]. Since y3 < y5 = n + 1, we take the internal node with inorder 3 (v3
again) and the answer is its right child, that is, v4. 2

If the key is given but we do not know which is smaller between Y [r] and Y [s], we find the rth inorder
node ur, the sth inorder node us, and compare their depths in TC ; the deeper one corresponds to the
smallest value.8 This is also useful to compute the extent of the resulting node, since the procedure we
have given needs to know which of the two endpoints has a lower y∗ value.

LEMMA 5.4. Given the key of a node v ∈ TC , we can find the node v itself, its extent, and its neighbor
nodes v− and v+, in O(1) time with a structure that uses O(n/κ) bits of space.

Finding the key of a given node.. Conversely, let v be a node and assume we want to find its key
[xr + 1, xs]. If v is the root, its key is [x0 + 1, xn]. Otherwise, we compute the parent node u of v in TC ,
the inorder rank i(u) of u, and the subtree size of v, |v| (which is always odd since TC is binary). Then,
if v is the left child of u, we have r = i(u)− (|v|+ 1)/2 and s = i(u). If v is a right child, then r = i(u) and
s = i(u) + (|v|+ 1)/2. Recall that we can obtain the value xi = select1(S, i) of the ith split point, for any
i. The following lemma considers the space of the succinct representation of TC and the bitvector S.

LEMMA 5.5. Given a node v ∈ TC , we can find its corresponding key in O(1) time with a structure
that uses O((n/κ) lg κ) + o(n) bits of space.

Example.. Consider the node v3 in Figure 2. Its parent is v2. Since v3 is a right child, the inorder of
v2 is 2, and |v3| = 5, we have r = 2 and s = 2 + (5 + 1)/2 = 5. That is, the key of v3 is [x2 + 1, x5].
Now consider the third left-to-right leaf. Its parent is v3 (with inorder 3), the leaf is a left child and its
subtree size is 1. So we compute r = 3− (1 + 1)/2 = 2 and s = 3, thus the key is [x2 + 1, x3]. 2

Associating structures with nodes.. Once we have identified a node v, the succinct representation of
TC yields its preorder rank p(v) in constant time (Lemma 2.9). This is used to associate any desired
data structure (such as Av, for example) with the p(v)th entry of an array.

5.1. Computing next-larger and prev-larger queries
We now show how to compute values next-larger(j, d) and prev-larger(j, d) for any 1 ≤ j ≤ t and 1 ≤ d ≤
`, for some parameter ` given at construction time (see Section 1 for the definition of these queries).
Our data structure will answer those queries in O(d) time, using O(`t) bits of space. For our needs,
constant ` = 2 is sufficient, so the time is O(1) and the space is O(n/κ) bits.

We will describe the structure to support prev-larger queries for an array Y [1, t]; the one for next-larger
is analogous. We define, for each element Y [j], ` pointers, D1[j] . . . D`[j], to the ` rightmost elements
larger than Y [j] that are in Y [1, j − 1].

8This only works if [xr + 1, xs] is a key; it cannot be used for the top-2 problem we had mentioned.
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Fig. 3. Illustration of Lemma 5.7, where r1 = Dd[j1] and r2 = Dd[j2]. The heights of the elements represent their y value
(higher is larger). The dashed arrows represent Dd−1 and the solid arrows the step between Dd−1 and Dd.

Definition 5.6. Given an array Y [1, t], we define arrays of pointers D0[1, t] to D`[1, t] as follows:
D0[j] = j, and Dd[j] = max ({i < Dd−1[j] : Y [i] > Y [j]} ∪ {0}), for d > 0.

We now prove a result that is essential for the space-efficient representation of all Dd arrays, so that
we can compute any prev-larger(j, d) = Dd[j] in time O(d). The following lemma shows that if we draw,
for a given d, all the arcs starting at Dd−1[j] and ending at Dd[j] for all j, then no arcs “cross”.

LEMMA 5.7. Let j1, j2 ∈ [1, n] and 0 < d ≤ `, and let us call i1 = Dd−1[j1] and i2 = Dd−1[j2]. Then, if
i1 < i2 and Dd[j2] < i1, it holds Dd[j1] ≥ Dd[j2].

PROOF. It must hold Y [i1] < Y [i2], since otherwise Dd[j2] ≥ i1 by Definition 5.6 (as it would hold
Y [j2] < Y [i2] ≤ Y [i1] and 0 < i1 < i2), contradicting the hypothesis.

Now let us call r1 = Dd[j1] and r2 = Dd[j2] < i1. Then we have (1) Y [r2] > Y [j2], because r2 = Dd[j2];
(2) Y [j2] ≥ Y [i1], because otherwise it would be r2 = Dd[j2] ≥ i1, as implied by Definition 5.6 (since
i1 < i2 = Dd−1[j2] and Y [i1] > Y [j2], and r2 ≥ i1 contradicts the hypothesis); and (3) Y [i1] > Y [j1],
because i1 = Dd−1[j1]. Therefore, Y [j1] < Y [r2], and then r1 = Dd[j1] ≥ r2, as implied by Definition 5.6
since r2 = Dd[j2] < i1 = Dd−1[j1].

Example.. Figure 3 illustrates the lemma. The solid arcs cannot cross in the x coordinate. 2

This property enables a space-efficient implementation of the pointers. We set bit-vector T0 = 1(10)t

to represent D0[j] = j. We represent each “level” d > 0 of pointers separately, as a set of arcs leading
from Dd−1[j] to Dd[j]. For a level d > 0 and for any 0 ≤ i ≤ t, let pd[i] = |{j, Dd[j] = i}| be the number
of pointers of level d that point to position i. We then store a bit-vector

Td[1, 2t+ 1] = 10pd[0] 10pd[1] 10pd[2] . . . 10pd[t],

where we mark the number of times each position is the target of pointers from level d. Each 1 cor-
responds to a new position and each 0 to the target of an arc. Note that the sources of those arcs
correspond to the 0s in bit-vector Td−1, that is, to arcs that go from Dd−2[j] to Dd−1[j]. Arcs that enter
the same position i are sorted according to their source position, so that we associate the leftmost 0s
of 0pd[i] with the arcs with the rightmost sources. Conversely, we associate the rightmost 0s of 0pd−1[i]

with the arcs with the leftmost targets. This rule ensures that those arcs entering, or leaving from, the
same position do not cross in Td (as implied by Lemma 5.7). The matching between sources and targets
is represented with a balanced sequence of parentheses (Lemma 2.8)

Bd[1, 2t] = (
pd−1[0])

pd−1[0](
pd[0]−pd−1[0])

pd−1[1](
pd[1])

pd−1[2](
pd[2] . . . )

pd−1[t].

This sequence matches arc targets (opening parentheses) and sources (their corresponding closing
parentheses). For example, take T1 = 101001001011011001011, T2 = 100010010010110110111, and
B2 = ()(())(())(()()())() in Figure 4 (right column, on the center). Each 0 in T2 represents a target
corresponding to a parenthesis ‘(’ in B2, and it matches the 0 in T1 that is the corresponding source
represented by the companion ‘)’ in B2: reading B2 from left to right, the first 0 in T2 is matched with
the first 0 in T1; the next two 0s in T2 are matched with the next two 0s in T1 by their nested pairs of
parentheses, and so on. Here the enclosing pair of parentheses in (()()()) from B2 matches the sixth 0
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Y : 10 8 3 1 6 2 9 5 4 7
D0 : 1 2 3 4 5 6 7 8 9 10
D1 : 0 1 2 3 2 5 1 7 8 7
D2 : 0 0 1 2 1 3 0 5 7 2
D3 : 0 0 0 1 0 2 0 2 5 1

T0 : 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 : 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 : 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

T3 : 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1

B1 : ( ) ( ( ) ( ( ) ( ) ) ( ) ) ( ( ) ( ) )

B2 : ( ) ( ( ) ) ( ( ) ) ( ( ) ( ) ( ) ) ( )

B3 : ( ( ( ) ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( )

T0 = 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

arcs 1. = 0 1 2 3 4 5 6 7 8 9 10

B1 = ( ) ( ( ) ( ( ) ( ) ) ( ) ) ( ( ) ( ) )

T1 = 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

arcs 2. = 0 1 2 3 4 5 6 7 8 9 10

B2 = ( ) ( ( ) ) ( ( ) ) ( ( ) ( ) ( ) ) ( )

T2 = 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1

T3 = 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1

arcs 3. = 0 1 2 3 4 5 6 7 8 9 10

B3 = ( ( ( ) ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( )

Fig. 4. On the left, an example array Y , the data Dd we store on it, and our representation, Td and Bd, of Dd. On the right, a
graphical scheme of how the representation works.

in T2 with the ninth 0 in T1 (see the corresponding arc (7, 2) in Figure 4 and observe that there are 7+1
preceding 1s in T1 and 2 + 1 preceding 1s in T2).

In general we write pd[i] parentheses ‘(’ before the pd−1[i+1] parentheses ‘)’, so the targets in position
i of Td can match all the corresponding sources that are to the right of position i in Td−1. Since the first
pd−1[0] sources in Td−1 are special as they have targets at position 0 in Td (i.e. they induce the only
self-loops), we start preceding these sources with pd−1[0] targets from the pd[0] ones in Td, and the
remaining pd[0]− pd−1[0] targets are written after these sources in Bd.

The tracking from d = 0 to d = ` will proceed by computing values zd, so that the value of interest
corresponds to the zdth 0 in Td. The following formula computes zd from zd−1:

zd = findopen(Bd, select)(Bd, zd−1)).

We use the formula as follows. Starting with z0 = j, we use the formula up to ` times in order
to find, consecutively, z1, z2, . . . , z`. At any point we have that Dd[j] = rank1(Td, select0(Td, zd)) − 1 =
select0(Td, zd) − zd − 1. This gives the desired answer prev-larger(j, d) = Dd[j]. Note that we only store
T` if we need to compute just D`[j].

Example.. Figure 4 exemplifies the data structures on an array of t = 10 elements and for ` = 3.
On the left we show Y , the arrays D0 to D3, and their representation as the bit-vector Td and the
parenthesis sequences Bd. On the right we show how the data structures work. For each d, we first
draw the arcs that go from Dd−1[j] to Dd[j] (note that, for d > 1, their sources may be far away from
position j). If we want to compute Dd[j], we start with the arc that leaves from j at “arcs 1”, and this
gives us D1[j]. Then we go to “arcs 2” and find the arc that leaves from D1[j], which gives us D2[j].
This way we compute any Dd[j] in time O(d). Note that, when several arcs lead to the same position,
we are careful to pick the correct one in the next level. If the arrow arrives at position i left to right,
it corresponds in the next level to the ith arrow that leaves, right to left. This is taken care of by the
parentheses. 2

By adding select support to Td, and select and findopen support to Bd (Lemmas 2.1 and 2.8), we have
that the overall space is 4`t+ o(`t) bits.
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THEOREM 5.8. Given an array Y [1, t] and a parameter `, we can build a structure that uses 4`t+o(`t)
bits and answers any query prev-larger(j, d) on Y in time O(d), for any 1 ≤ i ≤ t and 1 ≤ d ≤ `, without
accessing Y . If we only want to compute prev-larger(j, `), the structure uses 2(`+ 1)t+ o(`t) bits of space.
An analogous structure solves queries next-larger(j, d).

6. CONSTANT-TIME ACCESS TO EV

In this section we describe a data structure that gives constant-time access to the values Ev[1, O(κ)] in
any node v. We recall the general picture for the sake of presentation. We begin with the input array
A[1, n], and create the tree TC of 2t + 1 nodes for the shallow cuttings on the set of points {(i, A[i])|1 ≤
i ≤ n}: note that each point is a pair given by a position i (the x-coordinate) and its value A[i] (the
y-coordinate), and there is a one-to-one mapping between points and positions. Without introducing
ambiguity, we thus refer to the points represented in TC for the properties but we actually store just
their positions (not their values).

Specifically, consider a node v ∈ TC : Ev is the set of positions such that Ev[i] is the position in A of the
value stored in Av[i], where array Av stores the values belonging to the extent of v (essentially, letting
j = Ev[i], it is A[j] = Av[i], however the values in Av are mapped to the interval [1,O(κ)] respecting the
order between values.) For any node v ∈ TC , we want to encode Ev so that each Ev[i] can be retrieved in
constant time. To this end, recall that v− and v+ are the nodes that precede and follow v in its extent:
they can be accessed as shown in Lemma 5.4. Introducing the notation Px to indicate the subset of
O(κ) positions from Ev whose corresponding points occur in the slab of node x ∈ {v−, v, v+}, we have
that Ev = Pv− : Pv : Pv+ . Hence, we will focus only on Pv without loss of generality, as we can easily
simulate the concatenation Ev = Pv− : Pv : Pv+ . Concretely, in this section we prove the following
result.

THEOREM 6.1. Given the structures for constant-time navigation in TC (Lemma 2.9) and for han-
dling shallow cuttings in TC (Lemmas 5.2 to 5.5), for any node v ∈ TC , any position Pv[i] can be retrieved
in O(1) time, with structures that use O(n lg κ) bits of space.

The main idea is that most nodes in TC cover a small span in A, and thus the x-coordinates of their
points can be specified with a small offset. Nodes will be classified by subtree size, so that fewer bits
are used for the Pv arrays of lower nodes. Some nodes of each class of subtree sizes will be marked
and all their points will be stored explicitly using this technique. For the unmarked nodes, we observe
that the points in their cells are inherited by their descendants, so we will find a way to describe the
(marked) descendant where each point is to be retrieved.

6.1. Marking nodes
We define an exponentially decreasing sequence of sizes as follows: t0 = t and t`+1 = dlg t`e, until
reaching a step z such that tz = 1. Node v will be of level ` if t2` ≤ |v| < t2`−1 (recall that |v| is the number
of nodes in the subtree of v). For any ` ≥ 1, we mark a node v ∈ TC if it is of level ` and:

C1.. it is a leaf or both its children are of level > `; or
C2.. both its children are of level `; or
C3.. it is the root or its parent is of level < `.

Note that in fact there are no nodes of level ` = 0. More generally, we have the following limit.

LEMMA 6.2. The number of marked nodes of level ` is O(t/t2`).

PROOF. The key property is that the descendants of v are of the same level of v or more. So nodes
marked by C1 above cannot descend from each other, thus each such marked node has at least t2`
descendants not shared with another. As TC has 2t + 1 nodes, there cannot be more than (2t + 1)/t2`
nodes marked by this condition. By the same key property, nodes marked by C2 form a binary tree
whose leaves are those marked by C1, thus there are at most other (2t + 1)/t2` nodes marked by C2.
For C3, note that all unmarked nodes of level ` are in disjoint paths (otherwise the parent of two nodes
of level ` would be marked by C2), and the path terminates in a node already marked by C1 or C2
(contrarily, a node of level ` marked by C3 must be a child of a node of level < `, and thus cannot
descend from nodes of level `, by the key property). Therefore, C3 marks the highest node of each such
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isolated path leading to a node marked by C1 or C2, and thus the number of nodes marked this way is
limited by those marked by C1 or C2.

6.2. Handling marked nodes
Marked nodes, across all the levels, are few enough to admit an essentially naive storage of their array
Pv. If a marked node v represents a slab with left boundary xl + 1, we store all its Pv[o] values as the
integers Pv[o]− xl. As shown in Lemmas 5.2 and 5.4, we know both v and xl, and thus we obtain Pv[o]
in constant time. Since a node of level ` contains less than t2`−1 descendants (about half of which are
leaves), its slab spans less than (t2`−1 + 1)/2 consecutive split points xi, and thus less than κ(t2`−1 + 1)

positions in A. Thus, each such integer Pv[o]− xl can be represented using lg(κ(t2`−1 + 1)) = O(t` + lg κ)
bits.

We need a few further structures to give constant-time access to structures Pv, since their size de-
pend on the level of the node. Our succinct representation of TC gives the preorder rank p(v) of node
v in constant time (Lemma 2.9). We store a bit-vector M [1, 2t + 1] where M [p(v)] = 1 iff node v is
marked. Further, we store a string L[1, O(t)] where we write down the level of each marked node, that
is, L[rank1(M,p(v))] = ` iff v is marked and of level `. Since every ` ≤ lg∗ t, the alphabet of L is [0, lg∗ t].
Then we can represent L using |L|H0(L) + o(t) bits so that operations access, rank, and select on L take
O(1 + lgw lg∗ t) = O(1) time (Lemma 2.5).

With M and L we can create separate storage areas per level for the explicit arrays Pv of marked
nodes, each of which uses the same space, κ lg(κ(t2`−1 + 1)) bits, for nodes of the same level `. If a node
v is marked (i.e., M [p(v)] = 1) and is of level ` = L[rank1(M,p(v))], then we store its array Pv as the rth
one in a separate sequence for level `, where r = rank`(L, rank1(M,p(v))).

LEMMA 6.3. Constant-time access to any entry in Pv for any marked node v can be provided within
O(n lg κ) total bits of space.

PROOF. We have explained how to store the arrays classified by level so as to provide constant-time
access to any Pv. Let us now consider the space.

The arrays Pv themselves use O(κ(t` + lg κ)) bits each. The second term, O(κ lg κ) bits per marked
node, adds up to O(n lg κ) bits overall. Since, by Lemma 6.2, there are O(t/t2`) marked nodes of level `,
the first term, O(κ t`), adds up to O((t/t2`) · (κ t`)) = O(n/t`) bits over all the marked nodes of level `.
Adding over all the levels ` we have O(n)

∑z
`=0 1/t`. Since tz = 1 and t`−1 > 2t`−1, it holds that tz−s > 2s

for s ≥ 4, and thus
∑z
`=0 1/t` ≤ O(1) +

∑
s≥4 1/2s = O(1), therefore the terms O(κ t`) add up to O(n)

bits.
Bit-vectorM uses 2t+1 = O(n/κ) bits, whereas the storage of L uses |L|H0(L)+o(t) bits. Letting n` be

the number of occurrences of ` in L, we have |L|H0(L) =
∑
` n` lg(|L|/n`). Since n` lg(|L|/n`) is increas-

ing9 with n` and n` = O(t/t2`) by Lemma 6.2, we have |L|H0(L) ≤ O(t)
∑
` lg(t2`)/t

2
` = O(t)

∑
` lg(t`)/t

2
` ≤

O(t)
∑
` 1/t` = O(t) (we showed in the previous paragraph that the sum is O(1)).

6.3. Handling unmarked nodes
The problem of supporting constant-time access to Pv is solved for marked nodes, but TC may have Θ(t)
unmarked nodes. To deal with unmarked nodes, we first observe that an unmarked node v at level `
has exactly one level ` child and one child x at level > ` (otherwise v would be marked by C1 or C2).
Furthermore, x is marked by C3. Finally, the marked parent of an unmarked level ` node must be the
root or at level ` itself. Thus, as already observed in the proof of Lemma 6.2, level-` unmarked nodes
form disjoint paths in TC , and all the nodes adjacent to such paths are marked.

Now consider the points in slabs corresponding to unmarked nodes. When a cell is closed and split
into two, the leftmost (rightmost) κ points in its slab become part of its left (right) child cell. Thus, each
child cell starts out with κ inherited points, which are in common with its parent slab, and (at most) κ
further original points will be added to it before it is itself closed (becoming a child slab) and split.

9At least for n` ≤ |L|/e. When n` is larger we can simply bound n` lg(|L|/n`) = O(n`), thus we can remove all those large n`

terms from the sum and add an extra term O(t) to absorb them all.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 R. Grossi et al.

For each point of node v, in x-coordinate order, we use a bit to specify if the point is inherited (0) or
original (1). Let ov[1, 2κ] be this bit-vector, which will be stored for all the unmarked nodes v ∈ TC , at a
total cost of O(n) bits. We now describe how to recover the position (contained in Pv) of an original and
an inherited point, with different mechanisms.

6.3.1. Retrieving the positions of original points. Let π be a path of unmarked nodes of level `, and let v be
an unmarked node in π. Each original point p of v must become an inherited point of some marked de-
scendant v′ that is adjacent to π (recall that v′ represents all the positions of its points explicitly). Thus
the coordinate of each such original point p can be specified by recording which marked descendant v′
contains it, and the rank of p among the points of v′.

The ranks are stored in an array rv[1, κ], with one entry per original point in v. The distances require
a more sophisticated mechanism. Suppose that the jth original point in v is in v’s marked descendant
v′ at distance dj along π. Note that the point is inherited by the dj intermediate descendants of v as
well. Then we write the bit-vector bv = 1d1−101d2−10 . . . 1dκ−10.

The vectors ov, rv and bv are concatenated in the same preorder as the nodes. While vectors ov and rv
are of fixed size, vectors bv are not. So we can concatenate all the bit-vectors ov[1, 2κ] and vectors rv[1, κ]
in preorder into a global bit-vector o[1, O(κt)] = o[1, O(n)] and a global array r[1, O(κt)] = r[1, O(n)].
Then, if v is unmarked (i.e., M [p(v)] = 0), ov[i] is at o[2κ(m − 1) + i], where m = rank0(M,p(v)), and
moreover rank1(ov, i) = rank1(o, 2κ(m− 1) + i)− rank1(o, 2κ(m− 1)). Given any original point ov[i] = 1, it
is the jth original point for j = rank1(ov, i), and thus its corresponding entry is rv[j], which is found at
r[rank1(o, i)]. Finally, we concatenate all the bit-vectors bv for the unmarked nodes v in preorder creating
a bit-vector b. If ov[i] = 1 and j = rank1(ov, i), then we recover dj = select0(bv, j) − select0(bv, j − 1).
On the concatenated bit-vectors, for the original point o[i] we compute j = rank1(o, i) and then dj =
select0(b, j)− select0(b, j − 1).

Thus, to obtain the position Pv[i] of an original point (i.e., with ov[i] = 1) in an unmarked node v, we
obtain the distance dj to the marked descendant v′ where Pv[i] is stored. Since v′ is marked, the answer
obtained in constant time (Lemma 6.3) from Pv′ [r[rank1(o, i)]] (to which we add the starting position of
the slab of v′).

The remaining problem is then to find the marked node v′ leaving π at distance dj from v. The
strategy is to find the node u′ that is “at the end” of π. More precisely, u′ is a child of the lowest node of
π and is the only node leaving π that is of the same level ` of v (thus u′ is marked). Since we can compute
node depths and ancestors at any distance in constant time on TC (Lemma 2.9), we can compute the
ancestor a of u′ that is at depth depth(v) + dj − 1, and find v′ as the child of a that is not in π, that is, is
not an ancestor of u′.

There is a slight ambiguity to describe v′ using dj : both u′ and its sibling leave π, and they are at the
same distance to their ancestors. To distinguish them, we encode dj + 1 instead of dj in bv to denote
the node u′, whereas its sibling is denoted with dj as usual. Therefore, when we compute a and it holds
a = u′, we know that v′ = u′.

We still need to find u′. The key property is that u′ is the highest marked node of level ` in the subtree
of v. We calculate the subtree size of v in constant time (Lemma 2.9) and hence its level `.10 If the
nodes are arranged in preorder, u′ is the first node appearing after p(v), p(u′) > p(v), which is marked
(M [p(u′)] = 1) and whose level is L[rank1(M,p(u′))] = `. This corresponds to the first occurrence of ` in L
after position rank1(M,p(v)), and is found in constant time with p = select`(L, rank`(L, rank1(M,p(v))) +
1). Then p(u′) is select1(M,p). Finally, the tree representation gives us u′ from its preorder rank p(u′)
in constant time as well (Lemma 2.9).

LEMMA 6.4. Constant-time access to the position Pv[i] of any original point in the unmarked nodes
v can be provided within O(n lg κ) bits of space.

PROOF. We have already explained how constant-time access is provided. Let us analyze the space.
The arrays o and r require O(n) and O(n lg κ) bits, respectively. To bound the space of array b we claim
that, summed across all the nodes v in the path π, the arrays bv add up to 2|π|κ bits: each bv has κ

10To find the level in constant time from the subtree size, we can check directly for the case ` = 0, and store the other answers
in a small table of lg2 t cells.
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0-bits, and each 1-bit in bv represents the same point when it is inherited in a descendant of v along π.
Since π contains in total |π|κ inherited points, the 1s in all the bit-vectors bv of π also add up to |π|κ.
Thus, |b| =

∑
v∈TC |bv| = O(tκ) = O(n) bits. Arrays M and L were already considered in Lemma 6.3.

6.3.2. Retrieving the positions of inherited points. We cannot use bit-vectors analogous to bv for the inher-
ited points in v, as we cannot bound their size (because the same points are inherited over and over
along π). For each inherited point p in v, we instead specify which ancestor of v on π has p as an origi-
nal point, and then retrieve the position of the point as that of an original point in the ancestor using
Lemma 6.4. If the ancestor is outside π, we specify the marked parent u of the topmost unmarked node
in π, and retrieve the position from Pu using Lemma 6.3 (as u is marked). In the rest of this subsection,
we assume that the ancestor is inside π.

To specify the ancestors, we code the points using 4κ colors. Of these colors, 2κ are said to be original
colors and 2κ are said to be inherited colors. For each original color g there is a corresponding inherited
color g′. All the points in u are given arbitrary distinct original colors. Then we traverse the nodes v
in π top to bottom. If point p in v is inherited (from its parent v′), we look at the color of p in v′. If p
has an original color g in v′, we give p color g′ in v. Otherwise, if p is also inherited in v′, having color
g′, it will also have color g′ in v. On the other hand, if point p is original in v, we give it one of the
currently unused original colors: any color g such that g is not already an original color in v and g′ is
not among the κ inherited colors of v can be used as the original color for p. Note that no colors g and g′
can be present simultaneously in any v′, thus writing g′ in v unambiguously determines which color is
inherited from v′. The colors of node v are represented in a string cv[1, 2κ], adding up to O(n lg κ) bits.

This scheme gives sufficient information to track the inheritance of points across π: conceptually
when a new, original, point p appears in v, it is given an original color g. Then the point is inherited
along the descendants of v as long as color g′ exists below v. Thus, to find the appropriate ancestor of
v that contains, as an original point, a given inherited point p of color g′, we concatenate all the color
strings cv on π into a string cπ, top to bottom, and ask for the nearest preceding occurrence of color
g. Inside cπ, the subarray cv starts at position 2κ(depth(v) − depth(u)) + 1. Thus, we seek to find the
rightmost cπ[j] = g preceding some cπ[i] = g′. With j, we have that v′ is the ancestor of v at depth
depth(u) + dj/(2κ)e − 1, and the position of the desired (original) point is Pv′ [j mod 2κ].

The sequence of colors cπ will be associated with the last node u′ of π, and all of them will be con-
catenated in preorder of those nodes u′. A bit-vector B[1, O(t)] will mark the starting position of each
sequence cπ in the concatenation (by chunks of 2κ entries), and another bit-vector R[1, 2t+ 1] contains
all 0s except R[p(u′)] = 1 for all the nodes u′ of all the paths π. Thus we have access to any individual
sequence cπ: for any v ∈ π terminated in u′ (Section 6.3.1 explains how to compute u′), cπ starts at
position 1 + 2κ(select1(B, rank1(R, p(u

′)))− 1) of the concatenated sequence.
To find j, we will not represent cπ directly, but rather c′π, where both the original colors g and

the inherited colors g′ are written as g. To distinguish them, we store 2κ bit-vectors cgπ, so that
cgπ[rankg(c

′
π, i)] = 1 iff cπ[i] = g (and 0 iff cπ[i] = g′). We use a representation for c′π that requires

O(|π|κ lg κ) bits and gives constant select time (Lemma 2.4). We also add the structure of Lemma 2.7 to
c′π. This adds O(|π|κ lg lg κ) bits and allows us to compute r = rankg(c

′
π, i) in constant time, given that

c′π[i] = g. Then we find the latest 1 in cgπ[1, r], o = select1(c
g
π, rank1(c

g
π, r)). This corresponds to the last

occurrence of g preceding cπ[i] = g′. The position is mapped back from cgπ[o] to cπ with j = selectg(c
′
π, o).

LEMMA 6.5. Constant-time access to the position Pv[i] of any inherited point in the unmarked nodes
v can be provided within O(n lg κ) bits of space.

PROOF. We have already explained how to obtain the position in constant time. The space is domi-
nated by the sequences cv, represented as cπ and these in turn as c′π and cgπ, which add up to O(n lg κ)
bits. Bit-vectors B and R use just O(n/κ) further bits.

Lemmas 6.3, 6.4, and 6.5 prove Theorem 6.1.

Example.. In the tree TC in Figure 2, nodes v2 and v3 are of level 1 and the rest are of level 2, and
all turn out to be marked. To show a more interesting example, Figure 5 assumes that the grid has
more points towards the bottom, so that the leaves that descended from v3 and v4 are now internal
nodes (and have new labels u1, u′, and w1, whose reason will be clear later), so that nodes v3, v4, and
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v3

v4

T
C

v1

u1

u’ w 1

c = colors

original points appear explicitly

point appear explicitly in its v’

positions where each originalr =

b =

o = which points are original (1s)

distances to nodes v’ where

1,2,3,4,5,6c =

110001o = b = 0010
1,2,4’,5’,6’,3c =2,3,5r =

o = 110100
1,2,2r =

b = 10100
c = 1,2,5’,4,6’,3’

u

o = 10010

Fig. 5. Illustration of the structures for constant-time access to Pv on TC , assuming that nodes v3, v4, and u′ are all of the same
level. Marked nodes are filled with gray.

u′ are all of the same level `, whereas u1 and w1 are of level ` + 1. Then the path is π = 〈v3, v4〉, node
u (which was v2 in Figure 2) is the upper limit of π, and node u′ acts as its lower limit. For example,
ov3 = 110001 because the first, second, and sixth points in the slab of v3, read left to right, are original,
whereas the others are inherited from u. Also, bv3 = 0010, indicating d1 = 1, d2 = 1, and d3 = 2, because
the first and second original points are inherited by u1, which is the node at distance 1 that leaves
π. Instead, the third original point of v3 is inherited by w1, which is the node at distance 2 from v3
that leaves π (u′ is also at distance 2; to avoid ambiguities we assume it is at distance 3, as explained
soon). The positions where those original points are represented in the marked nodes that leave the
path are rv3 = 2, 3, 5, since the first and second are the second and third points in u1, and the third
original point of v3 is the fifth point in w1. Finally, cv3 = 1, 2, 4′, 5′, 6′, 3 because (as shown in ov3 ), the
third, fourth, and fifth points in v3 are inherited, and they correspond to the original points marked 4,
5, and 6, in the parent u. The three new original colors of v3 receive arbitrary free colors 1, 2, and 3.
In v4, three points (with colors 5′, 6′, and 3′) are inherited, corresponding to those with colors 5′ and
6′ in v3 (which are in turn inherited from 5 and 6 in u), and to the one with color 3 in v3, which is
original in that node. The other three colors in v4 are original and receive free original colors 1, 2, and
4. We also show the array ow1

, since later in the article marked nodes will also store these bit-vectors. 2

7. PREDECESSOR QUERIES ON EV

Having constant-time access to Ev enables searching for the desired limits where the queries are to be
run. Recall that our queries involve a range A[i, j] and, for a suitable node v ∈ TC , this translates into
finding the largest l and the smallest r such that Ev[l− 1] < i ≤ j < Ev[r+ 1] (see Section 4.2). This is a
form of predecessor query on Ev that we can perform by a binary search. However the resulting O(lg κ)
search time is larger than the promised time complexity. In this section we obtain faster predecessor
searches that replace the binary search. Once again, we will focus on providing predecessor searches
on Pv, the positions of the points in the slab of v. Predecessors on Ev = Pv− : Pv : Pv+ are then
obtained by finding the neighbor nodes v− and v+, as shown in Lemma 5.4, and then determining with
a couple of comparisons whether to run the query on Pv−, Pv, or Pv+. Concretely, in this section we
prove the following theorem:

THEOREM 7.1. Given the structures for constant-time navigation in TC (Lemma 2.9), for han-
dling shallow cuttings in TC (Lemmas 5.2 to 5.5), and for constant-time access to all arrays Pv in
TC (Theorem 6.1), predecessor queries on the array Pv of any node v ∈ TC can be carried out in time
O(1 + lg κ/ lg lg n) using O(n lg κ) bits of space.

A classical predecessor structure [Pătraşcu and Thorup 2006] on Pv[1, 2κ] uses O(κ lg n) bits, as the
universe is [1, n], the set of positions in A. These spaces would add up to O(n lg n) bits (note that this
structure is needed in all the O(t) nodes of TC , not only the marked ones). Instead, since we have
independent constant-time access to Pv, we use succinct SB-trees (Lemma 2.10).

On a node v of level `, the universe of positions is of size O(κ |v|) = O(κ t2`−1), thus the succinct SB-
tree would use O(κ lg lg(κ t2`−1)) = O(κ lg t`+κ lg lg κ) bits. While the second term adds up to O(n lg lg κ),
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the first term is still too large: just considering the nodes with ` = 1, it adds up to O(n lg lg n) bits if we
store this structure on every node of TC .

To reduce space, we will store this structure only on sampled nodes, and will handle the unsampled
ones with other techniques. We will sample all the nodes marked in Section 6, and in addition we will
will further sample every (t`/ lg2 t`)th node in the paths π of unmarked nodes of level `. To associate
information with sampled nodes of each level, we use the analogous of bitvector M and sequence L of
Section 6.2.

LEMMA 7.2. Predecessor queries on the array Pv of any sampled node v can be carried out in time
O(1 + lg κ/ lg lg n) using O(n lg lg κ) bits of space.

PROOF. According to Lemma 2.10, the predecessor time with the succinct SB-tree stored at the node
is O(1 + lg κ/ lg lg(κ t2`−1)). This can be improved to O(1 + lg κ/ lg lg n) by using the same precomputed
table over a universe of size n for all the nodes; this table requires o(n) further bits.

Let us consider space. The number of sampled nodes of level ` is O(t lg2 t`/t`), which added over all
the levels is

∑
` t lg2 t`/t` ≤ t (O(1) +

∑
s≥4 s

2/2s) = O(t) (as in the proof of Lemma 6.3). Therefore, the
term O(κ lg lg κ) in the bit space of succinct SB-trees adds up to O(n lg lg κ). The other component of the
space, O(κ lg t`) bits, adds up to O(n lg3 t`/t`) bits for level `. Adding up over all the levels ` we have
O(n)

∑
` lg3 t`/t` ≤ O(n)(O(1) +

∑
s≥4 s

3/2s) = O(n) bits. Finally, the analogous of bit-vector M uses
O(t) bits and the analogous of L uses O(n` lg(|L|/n`)) bits (recall the proof of Lemma 6.3). Since now
n` = O(t lg2 t`/t`), this space is O(t)

∑
` lg3 t`/t` = O(t).

The paths of unsampled nodes of level ` have length O(t`/ lg2 t`). To provide predecessor searches on
unsampled nodes, let us consider one such path π and let v be a node in π. The nodes leaving the path
are of level > `, except the node u′ leaving π at the bottom, which is of level `. Therefore, we can divide
the range of split points covered by π into three areas:

(1) The area covered by the subtrees that leave π to the left.
(2) The area covered by the subtrees that leave π to the right.
(3) The area covered by u′.

Each of those areas is contiguous, (1) preceding (3) preceding (2). Since there are O(t`) subtrees
of type (1) and each has nodes of level at least ` + 1, the total area covered by those subtrees is of
size O(t` · κ t2`) = O(κ t3`). The case of (2) is analogous. Area (3), instead, can be significantly larger
since u′ can be of level `. Our solutions will use these areas in different ways depending on whether
κ = Ω(lg lg n) or κ = O(lg lg n). We describe each case separately.

7.1. Handling large κ values
When κ = Ω(lg lg n), we can afford to store, for each (unsampled) node v ∈ π, a succinct SB-
tree for the values of Pv falling in area (1) and another for the values in area (2), both using
O(κ lg lg(κ t3`)) = O(κ lg lg(κ t`)) bits. Given a predecessor request on v, we first find the node u′ be-
low π as in Section 6.3.1, and determine in constant time whether the query falls in the area (1), (2),
or (3) (by obtaining the limits [xl + 1, xr] of u′, Lemma 5.5). If the query falls in areas (1) or (2) we use
the corresponding succinct SB-tree of v, otherwise we use the succinct SB-tree of u′ (which is sampled
and hence stores a regular succinct SB-tree).

While the succinct SB-trees for areas (1) and (2) are built for v and store the positions of the points
of Pv, this is not the case of the regular succinct SB-tree of u′, since not all the points in u′ are points in
v. In this case, given the predecessor Pu′ [q] of a position p, we must still find the predecessor of Pu′ [q] in
Pv. The points inherited in Pu′ form a central band in Pv, starting at position pv. Thus we store, for each
node v, a bit-vector hv[1, 2κ] indicating which of the points in its corresponding node u′ are inherited
from v, as well as pv. Then the final answer is pv + select1(hv, rank1(hv, q)) − 1, which is computed in
constant time. These arrays add O(n) bits of space.

Example.. Figure 6 (left) shows a schematic example of this arrangement. A path π = 〈v1, v2, v3, v4〉
of level ` is limited by u and u′. Nodes u1 and u2, of level > `, leave π from the left and w1 and w2, also of
level > `, leave from the right. Node u′ is of level ` and is sampled, so it has its own SB-tree. The other
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Fig. 6. Illustration of the scheme to compute predecessors on paths of unsampled nodes. On the left, the structure for v2 when
κ = Ω(lg lgn). The black dots indicate the points inherited from v2. On the right, the structure for the whole path when
κ = O(lg lgn). The black dots indicate the first/last points of the subtree areas.

nodes leaving π cover a smaller area, so we can afford two SB-trees for each v, storing the positions of
the split points of Pv inside the ui nodes and inside the wj nodes. For example, if we build the SB-trees
for v2, we include in the left succinct SB-tree the positions Pv2 of the points that are inherited in 〈u2〉,
and in the the right succinct SB-tree the positions Pv2 of the points that are inherited in 〈w1, w2〉 (u1
cannot have points of Pv2 because it does not descend from v2). 2

LEMMA 7.3. If κ = Ω(lg lg n), then predecessor queries in the array Pv of any unsampled node v can
be carried out in time O(1 + lg κ/ lg lg n) using O(n lg κ) bits of space.

PROOF. The time is dominated by the succinct SB-trees, which was explained in Lemma 7.2. The
space of the two additional succinct SB-trees for a node of level ` is O(κ lg lg(κ t`)) bits. This adds up to
O(n(lg lg κ + lg lg lg n)) bits, the second term being dominated by the (unsampled) nodes of level ` = 1.
Since lg κ = Ω(lg lg lg n), the space is bounded by O(n lg κ) bits.

7.2. Handling small κ values
When κ = O(lg lgn) we will not store succinct SB-trees for areas (1) and (2) for each unsampled node as
before, but will use a different mechanism. Let π be a path of unsampled nodes of level `. Let u1, u2, . . .
be the nodes that leave π from the left, reading their areas in left-to-right order (i.e., top-down in π)
until reaching u′, and w1, w2, . . . be the nodes that leave π from the right, also reading them in left-to-
right order (i.e., bottom-up in π) from u′. Then the area of A covered by π can be partitioned into the
|π|+1 consecutive areas covered by u1, u2, . . . , u′, w1, w2, . . .. All those nodes are sampled and thus store
their own succinct SB-trees.

We will use a single predecessor structure, associated with π (not with any particular node v ∈ π),
to determine in which of those |π| + 1 areas the query p belongs (if the query is done for a node v ∈ π,
then the node containing that area will descend from v).

Let `i be the level of node ui. Then the area covered by ui is of length O(κ t2`i−1). Thus we can encode
those lengths with, say, γ-codes [Bell et al. 1990], within 2

∑
i lg(κ t2`i−1) = O(|π| lg κ +

∑
i t`i) bits. To

facilitate decoding this description, we will insert areas of length zero every time π goes left (when
encoding the areas ui) or every time π goes right (when encoding the areas wj). This does not change
the asymptotic length of the description.

From a space accounting point of view, this space can be afforded because we can charge O(lg κ+ t`i)
bits to the storage of ui. As ui’s level is larger than `, it is a marked node (see Section 6). Thus there
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are O(t/t2`i) such nodes overall, each of which will be charged O(t`i) bits only once, from the path π it
leaves, for a total of O(t/t`i) bits, and this adds up to O(t) bits overall (see the proof of Lemma 6.3). As
for the term O(lg κ), it adds up to O(t lg κ) bits overall.

On the other hand, note that, since `i > `, it holds that O(|π| lg κ+
∑
i t`i) = O(|π| lg κ+ |π| lg t`). Since

|π| = O(t`/ lg2 t`), t` = O(lg n) even for ` = 1, and κ = O(lg lg n), the length is O(lg n/ lg lg n) = o(lg n)
bits, and thus the whole description of the ui area lengths fits in O(1) computer words.11 Moreover,
there are 2O(lgn/ lg lgn) possible descriptions of area lengths for u1, u2, . . ., and O(|π|κ t2`i−1) = o(lg3 n)

possible queries. Thus we can build a global table of 2O(lgn/ lg lgn) × o(lg3 n) × lg n = o(n) bits storing
the answer to every possible query on every possible path. Thus the queries take constant time. We
proceed analogously with the areas of w1, w2, . . ..

Now, a predecessor query for the areas u1, u2, . . . , u′, w1, w2, . . . can be answered as follows: As in
Section 7.1, we first determine whether the answer is in u′ with a constant number of comparisons,
and if so, we obtain the answer with the succinct SB-tree of u′. Otherwise, the answer is in the areas to
the left (called ui) or to the right (called wj) nodes of u′. In either case, we use the precomputed tables
to determine in constant time the index i (left) or j (right) of the area where the predecessor lies. If the
answer is on the left area, we compute v′ = ui from the index i as in Section 6.3.1: we find the ancestor
a of u′ at depth depth(u) + i, and then v′ is the child of a that is not in π (i.e., is not an ancestor of
u′). If the answer is on the right area, we compute v′ = wj similarly, but now a is the ancestor of u′ at
depth depth(u′) − j. Note that this works because we have inserted the empty areas in the γ-encoded
descriptions.

Example.. Figure 6 (right) illustrates the structure for small κ values. Now the predecessor struc-
tures associated with π (i.e., the γ-encoded descriptions) store only one extreme split point from each
node leaving π. We must insert two empty areas between u1 and u2, so the index of u2 in the γ-encoded
description is actually 4, and it is indeed the child not in π of the ancestor of u′ at depth depth(u) + 4.
Similarly, we insert an empty area before w1 and one after w2. Then the index of w1, for example, is 2,
and it is the child not in π of the ancestor of u′ at depth depth(u′)− 2. 2

Now we use the succinct SB-tree of v′ (which is sampled) to find the position of the predecessor of p in
its Pv′ array, Pv′ [q]. The final challenge is to map that position in v′ to the corresponding position in
v. Note that Pv contains only some of the positions of Pv′ in the area covered by v′ (where p lies), so
we seek the predecessor of Pv′ [q] in Pv. To compute this efficiently, we will reuse the point inheritance
information encoded in the bit-arrays ov of Section 6. With the sequence of |π| consecutive arrays ov,
and knowing whether each node in π is a left or a right child, we have sufficient information to track
any position Pv′ [q] upwards and determine its predecessor in Pv.

Let q′ = rank0(ov′ , q) be the number of inherited points having positions in Pv′ [1, q], and v′′ be the
parent of v′. If v′ is the left child of v′′, then the first half of the points of v′′ are inherited by v′, and
therefore the position Pv′ [q], or its predecessor, in v′′ is Pv′′ [q′] (note that q′ can be zero). If, instead, v′ is
the right child of v′′, then the position is Pv′′ [κ+ q′] since v′ inherits the second half of the points. Now
we repeat the process from v′′ until reaching v, where we obtain the final predecessor position in Pv.

Example.. Consider Figure 5 and let v3 have no SB-tree of its own. Assume that a predecessor search
in v3 is found to fall inside the node w1. Since w1 is marked (and thus sampled), it has its own SB-tree,
which is searched to find the predecessor, Pw1

[2] (this is the 17th left-to-right point in Figure 2). Since
ow1

[2] = 0, the point is inherited. It is the first inherited point because rank0(ow1
, 2) = 1. Since w1 is a

right child and κ = 3, the point is the fourth (3 + 1) in v4. The point is original in v4, since ov4 [4] = 1.
The number of inherited points in v4 preceding this original point is rank0(ov4 , 4) = 1, so the first
inherited point is the predecessor in v3, the parent of v4. Since v4 is a right child, the predecessor is
the fourth left-to-right point (3 + 1) in the slab of v3. 2

To use the bit-vectors ov in this way, we cannot use the same array o[1, O(n)] where they were stored
in preorder in Section 6.3.1. Rather, we must store another copy of bit-vectors ov in the path-wise form

11This is why we need the lg2 t` term dividing t` in the definition of our sampling.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 R. Grossi et al.

used to store the sequences cv in Section 6.3.2, so that all the bit-vectors ov for unsampled nodes v ∈ π
are stored contiguously in a sequence oπ. In addition, we need the bit-vectors ov′ for sampled nodes v′.
Sampled nodes can be handled as belonging to an empty path where the sampled node acts as u′, and
we also store ou′ in oπ. The space for this new copy of the ov bit-vectors is O(n) bits. We similarly store
the information on left/right directions along each path π, contiguously and adding up to O(t) bits.

Now the bit-vectors ov and the path directions along π are stored contiguously and add up to length
2|π|κ and |π|, respectively. Thus, once again, we can prepare a global table that takes every possible
concatenation of bit-vectors oπ, a bit-vector ov′ , the |π| left/right directions along the path π, the depths
of v and v′ in π, and the value q, and it returns the corresponding predecessor in Pv in constant time.
The table uses 2(|π|+1)(2κ+1)|π|2κ · lg n bits. Since κ = O(lg lg n), this is 2O(lgn/ lg lgn)o(lg3 n) = o(n) bits.

LEMMA 7.4. If κ = O(lg lgn), then predecessor queries in the Pv array of any unsampled node v can
be carried out in time O(1 + lg κ/ lg lg n) using O((n/κ) lg κ) + o(n) bits of space.

PROOF. The time is again dominated by the succinct SB-tree of u′, which was explained in
Lemma 7.2. The space is that of the γ-encoded descriptions and global tables.

Lemmas 7.2, 7.4, and 7.3 complete the proof of Theorem 7.1.

8. WRAPPING UP
From the previous elements, we can now assemble a structure that, given a value κ, uses O(n lg κ) bits
and answers a query sel(i, j, k) for any 1 ≤ k ≤ κ in time O(1 + lg κ/ lg lg n):

(1) As described in Section 5 (Lemma 5.1), we find the maximal interval [m,M ] such that i ≤ xm ≤
xM ≤ j.

(2) If the interval contains zero or one split point, then A[i, j] can be directly solved with the range
selection structure [Brodal and Jørgensen 2009] associated with the special extent [xm−1 +1, xm+1]
of the split point xm, which covers at most 4κ consecutive entries of A.

(3) Otherwise, we find the highest node v ∈ TC containing [xm + 1, xM ], as well as the other two
neighbor nodes that span the extent of v, namely, v− to the left and v+ to the right, all in constant
time, as described in Section 5 (Lemmas 5.2, 5.3, and 5.4).

(4) Using the structures of Section 7 (Theorem 7.1), we find the predecessor l − 1 of i − 1, and the
predecessor r of j, within the positions of Ev = Pv− : Pv : Pv+ , in time O(1 + lg κ/ lg lg n). These
structures need access to entries in Pv− , Pv, and Pv+ , which is provided in constant time in Section 6
(Theorem 6.1).

(5) We use the range selection structure [Brodal and Jørgensen 2009; Chan and Wilkinson 2013] asso-
ciated with the extent of node v (which has at most 6κ entries) to run the query o = sel(l, r, k). The
time is O(1 + lg κ/ lg lg n).

(6) We use the structures of Section 6 (Theorem 6.1) to compute the final answer Ev[o] in constant
time, which is again provided via direct access to arrays Pv− , Pv, or Pv+ .

In order to reduce the time from O(1 + lg κ/ lg lg n) to O(1 + lg k/ lg lg n), we build our data structures
for values κs = 22

s

, for s = 0, 1, . . . , τ , where τ is such that 22
τ−1

< κ ≤ 22
τ

. The space for those
structures is O(n)

∑τ
s=0 lg κs = O(n)

∑τ
s=0 2s < O(n) 2τ+1 < O(n) 4 lg κ = O(n lg κ). A query sel(i, j, k) is

run on the structure for κs such that κs−1 < k ≤ κs, that is, 2s−1 < lg k ≤ 2s,12 and thus its query time
is O(1 + lg κs/ lg lg n) = O(1 + 2s/ lg lg n) = O(1 + lg k/ lg lg n). This proves Theorem 4.1.

8.1. Answering the query top(i, j, k)
To answer a query top(i, j, k) we can proceed as for query sel(i, j, k), until the point where we find the
kth largest element in Av[l, r], let it be Av[o]. Now we find all the elements Av[m] in Av[l, r] where
Av[m] ≥ Av[o]. With an rmq structure over Av we can do this using the algorithm of Muthukrishnan
[2002]: find the maximum in Av[l, r], let it be Av[m1], then continue recursively with Av[l,m1 − 1]
and Av[m1 + 1, r] stopping the recursion when the maximum, found at Av[m], satisfies Av[m] < Av[o].

12The search for the right s can be done in constant time by checking the cases s = τ and s = τ − 1, and then consulting a small
precomputed table of 22

τ−2
= O(

√
κ) entries.
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X   1    2    3    1    -     3    2     -    3    1    1    -     2     -     -     2    2    3

P   1    1    1    1    0    1    1     0   1    1    1    0     1    0     0    1    1    1

A 12 18 17 20 14 19 22 11 25 21 28 16 23 13 15 24 29 27

Fig. 7. Encoding of an array A as P and X, to support sel(·) and top(·) queries, for κ = 3.

Recall that Av is a permutation on O(κ) symbols and thus we can afford storing it directly (actually,
it is generally part of the selection structures we use [Brodal and Jørgensen 2009]). Finally, when we
have the positions m1, . . . ,mk of the top-k elements, we return Ev[m1], . . . , Ev[mk]. The overall time is
O(lg k/ lg lg n+ k) = O(k).

Note that this process delivers the top-k elements in arbitrary order. On the other hand, the set is
obtained in online form: after O(1 + lg k/ lg lg n) time, each new result is delivered in O(1) time. To
obtain the result in sorted order and in online form, we build the structure of Brodal et al. [2009] on
the sets Av, which amounts to O(n lg κ) further bits. With this structure, we retrieve the k highest
values of Av[l, r] in time O(k) and in online form, analogously as what is done with the structure of
Brodal and Jørgensen [2009] for the query sel(·). This proves Theorem 4.2.

9. ONE-SIDED QUERIES
We finish by showing that, at least in some restricted cases that might be of interest, the time lower
bound for sel(·) queries can be circumvented. We will design an encoding that is built for a fixed κ value
and answers queries sel(1, j, κ) and top(1, j, κ). We start with the following result for sel(·) queries, and
then use the same encoding to solve top(·) queries.

THEOREM 9.1. Given an array A[1, n] and a value κ, there are encodings of A and κ that (1) use
n lg κ+ o(n lg κ) + n bits and support sel(1, j, κ) queries in any ω(1) time, or (2) use (1 + ε)n lg κ bits and
support sel(1, j, κ) queries in O(1/ε) time, for any constant 0 < ε < 1.

To build this encoding, we scan the array from left to right, and keep track of the top-κ values in the
prefix seen so far. At any position j > κ, if A[j] is inserted into the top-κ list, then we have to remove
the κth largest value in the prefix A[1, j − 1]. The idea to solve these queries is to record the position
of that leaving κth largest value, so that to solve sel(1, j, κ) we find the next j′ > j where the top-κ
list changes, and then find the value leaving the list when A[j′] enters it. This one was the κth largest
value in A[1, j].

We wish, however, to store this information using only O(n lg κ) bits. The key idea is to store colors
in [1, κ] associated with the positions A[j′] where the top-κ list changes. Each element that enters the
list takes the color of the element leaving it. Then, for every prefix A[1, j], the rightmost positions
of the κ different colors in [1, j] form the top-κ list for A[1, j]. In particular, if A[j′] is of color c, then
the rightmost occurrence of c in A[1, j′ − 1] is the position of the κth element in A[1, j′ − 1], that is,
sel(1, j′ − 1, κ) (and also sel(1, j, κ), since no changes occur in A[j + 1, j′ − 1]).

We store a bit-vector P [1, n], where P [j] = 1 iff a new element is inserted into the top-κ list at position
j (or equivalently, the κth largest value of A[1, j − 1] is deleted at position j). The first κ bits of P are 1.
We encode P in n+ o(n) bits supporting constant-time rank and select (Lemma 2.1).

Let n′ be the number of 1s in P . Our string of colors, X[1, n′], holds X[j] = j for 1 ≤ j ≤ κ, and
X[j] = X[rank1(P, sel(1, select1(P, j) − 1), κ)] for κ < j ≤ n′. Basically, if A[j] becomes part of the top-κ
list in A[1, j], and this displaces the previous top-κ element A[i] of A[1, j−1], then we assign X[j] = X[i].
The rest of the formula accounts for the fact that X is defined only on the cells of A where the top-κ
list changes, that is, where P [j] = 1.

Example.. Figure 7 shows an example for an array A[1, 18] and κ = 3. The top-κ list changes n′ = 13
times, so we store X[1, 13]. The dashes in X are for illustration purposes and are not actually stored;
its actual values are associated with the 1s in P . 2
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We encode X in (1 + o(1))n′ lg κ bits, so that select on X is supported in O(1) time and access to any
X[j] takes any ω(1) time (Lemma 2.4). On top of this we add the structure of Lemma 2.7, which uses
O(n′ lg lg κ) = o(n′ lg κ) bits13 and supports in constant time the restricted queries rankX[j](X, j).

Therefore, we compute i = rank1(P, j) + 1, and c = X[i] is the color associated with A[j′]. Then it
holds that sel(1, j, κ) = select1(P, selectc(X, rankc(X, i) − 1)). Thus, this operation can be supported in
any ω(1) time, dominated by the time to access X[i]. By using a slightly larger representation for X
(Lemma 2.6), (1 + ε)n′ lg κ bits, we obtain time O(1/ε) for any constant ε > 0. Theorem 9.1 follows.

9.1. Solving top-κ queries
We now use the same encoding to support top(1, j, κ) queries.

THEOREM 9.2. Given an array A[1, n] and a value κ, there is an encoding of A and κ that uses
n lg κ + o(n lg κ) + n bits and supports top(1, j, κ) queries in O(κ) time, giving the results in unsorted
order. The result can be sorted by value in O(κ lg lg κ) time. The encoding is the same as in Theorem 9.1.

For supporting top(·) queries we need to find, given a position X[i], the rightmost occurrence preced-
ing i of every color in [1, κ]. This can be done in O(κ) time using the representation of Lemma 2.4 for X:
The string is cut into chunks of size κ. Each chunk stores an inverted list of its contents, that is, for each
color it stores an increasing list of the positions where it appears in the chunk. Constant-time access is
given to any position of any list. Further, one bit-vector Bc per color c is stored, Bc = 01n

c
101n

c
2 . . . 01n

c
κ ,

where c appears ncj times in the jth chunk. Bit-vectors Bc are provided with constant-time rank and
select (Lemma 2.1) and add up to O(n′) bits.

In the chunk l = di/κe where position i belongs, we traverse all the lists of all the colors, so as to
record the last occurrence of each color preceding position i. This takes time O(κ) because there are
κ positions in the chunk, thus the total length of the lists is also κ. Some colors may not occur in the
chunk before position i, however. For each such color c, we find its last position in the last chunk before
the current one: the starting point of the chunk l in Bc is s = select0(Bc, l), the number of 1s up to s is
o = s − l, and the chunk where the oth 1 appears is select1(Bc, o) − o. Once we find the chunk for c in
constant time, we return the last position of the list of c in the chunk, which as said can be accessed in
constant time as well.

By the definition of X, it is clear that the rightmost occurrences, up to position i = rank1(P, j), of the
distinct colors, form precisely the answer to top(1, j, κ). Thus we find all those positions p in time O(κ)
and remap them to the original array with select1(P, p).

Note that the top-κ positions do not come sorted by value. By the same properties of X, if the first
occurrence of c after X[i] precedes the first occurrence of c′ after X[i], then the value associated with
c in our answer is smaller than that associated with c′, as it is replaced earlier. Thus we find the
first occurrence, after i, of each color c in [1, κ]. The number rc of times c appears up to position i
is select0(Bc, l) − l plus the number of its occurrences up to i inside chunk l, which we have already
counted. Then the position of its next occurrence in X is pc = selectc(X, rc + 1), which is computed
in constant time in our representation of X (Lemma 2.4). Once we have the positions pc, which are
integers in [1, n′], we can sort them in time O(κ lg lg κ) [Andersson et al. 1998].

Actually, the space (1 + o(1))n′ lg κ given in Lemma 2.4 is obtained using the chunks structure only
when κ = ω(1). When κ = O(1) ones uses instead Lemma 2.5, where operations access, rankc, and
selectc on X take constant time. In this case we simply obtain the last position of c before X[i] with
selectc(X, rankc(X, i− 1)), and the position following X[i] with selectc(X, rankc(X, i) + 1), all in constant
time per color. Theorem 9.2 follows.

10. CONCLUSIONS
We have studied for the first time the problem of encoding data structures for array range queries
sel(·) and top(·), which return the kth largest element or all the top-k elements, respectively, of any
interval A[i, j]. An encoding data structure cannot access the array A. We have shown that at least
n lg k − O(n + k lg k) bits are necessary for any such encoding. Further, we have given O(n lg κ)-bit

13This is o(n′ lg κ) only if κ is not constant, but if κ = O(1) we can directly use the general rank operation of Lemma 2.4, which
in this case takes constant time.
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encodings that answer both queries, for any 1 ≤ k ≤ κ, in optimal times O(1 + lg k/ lg lg n) and O(k),
respectively.

A recent followup work [Gawrychowski and Nicholson 2015b] refines our lower bound to (n lg k+(k+
1)n lg(1 + 1/k))(1 − o(1)) bits for k = o(n), and proves it is tight up to lower-order terms by building
an encoding of n lg κ+O(n) bits for queries with a fixed κ value. The encoding does not, however, sup-
port efficient queries; it requires Ω(n) time. In the most recent version [Gawrychowski and Nicholson
2015a], they give a slightly larger encoding using 1.5n lg κ−Θ(n) bits, which solves queries top(i, j, κ)
and sel(i, j, κ) in time O(κ6 lg2 nω(1)). While still far from optimal, the time is polynomial in κ lg n and
raises the question of what the space/time tradeoffs are when we consider the constant accompanying
the O(n lg κ) space complexity of the encodings. Our encoding obtains optimal times, but the constant
is large: 44n lg κ+O(n lg lg κ) bits plus 32 times the space constant of the extra structures [Brodal and
Jørgensen 2009; Brodal et al. 2009].

Acknowledgements.. We thank Yakov Nekrich, who pointed us the results of Brodal et al. [Brodal
et al. 2009], and the anonymous referees for their suggestions.
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Variable Meaning
A Array where we perform sel(·) or top(·) queries.
n Number of elements in A.
k Argument of a particular sel(·) or top(·) query.
κ Maximum k value allowed from construction.
TC The binary tree of cells induced by shallow cutting.
t Number of internal nodes in TC , it has t+ 1 leaves, and 2t+ 1 nodes in total.
xi The t final split points induced by shallow cutting.
yi The value of A associated with split point xi by shallow cutting.
Av Array of the O(κ) y-coordinates of the points (i.e., values of A) in the extent of

node v, mapped to [1, O(κ)] respecting relative order.
Ai Array similar to Av associated with the special extent of split point xi.
Ev Array of the O(κ) positions where the elements of Av appear in A.
Pv Central range of Ev that refers only to the points in the slab of v.

v−, v+ Nodes preceding and following v when its extent is defined.
z Number of levels of marked nodes in the solution to access Pv.
t` Used to define the level ` of a marked node, t2` ≤ |v| < t2`−1.
M Bit-vector that indicates which nodes of TC are marked, in preorder.
L Sequence giving the levels of the marked nodes (1s in M ).
ov Bit-vector of 2κ bits storing which points of v are original.
rv Array of κ entries storing the ranks of each original point of v at the node v′ that

leaves the path of unmarked nodes where v belongs and inherits the point.
bv Bit-vector that concatenates the distances, in unary, from each original point of v

to the node v′ described in the previous line.
o, r, b Arrays created by concatenating ov, rv, and bv in preorder for the unmarked nodes.
π The path of unmarked/unsampled nodes where v belongs. All nodes have the same level `.
u Parent of the topmost node in the path π.
u′ The only node of level ` leaving π (at the bottom; the others have level > `).
cv Sequence of colors assigned to unmarked node v to represent inherited points.
cπ Concatenation of sequences cv along the path π of unmarked nodes.

c′π, c
g
π Actual representation of sequence cπ, as a string and a bitvector per color.

B, R Bit-vectors used to find cπ for any node v ∈ π.
pv Position in Pv of the first point inherited in Pu′ .
hv Bit-vector that indicates which of the points in Pu′ are inherited from Pv.
oπ The ov values, now stored contiguously along path π.

Table I.
No-
ta-
tion.
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