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Abstract. Let D be a collection of string documents of n characters in
total. The top-k document retrieval problem is to preprocess D into a
data structure that, given a query (P, k), can return the k documents
of D most relevant to pattern P . The relevance of a document d for a
pattern P is given by a predefined ranking function w(P, d). Linear space
and optimal query time solutions already exist for this problem.

In this paper we consider a novel problem, document selection queries,
which aim to report the kth document most relevant to P (instead
of reporting all top-k documents). We present a data structure using
O(n logε n) space, for any constant ε > 0, answering selection queries
in time O(log k/ log logn), and a linear-space data structure answering
queries in time O(log k), given the locus node of P in a (generalized)
suffix tree of D. We also prove that it is unlikely that a succinct-space
solution for this problem exists with poly-logarithmic query time.

1 Introduction and Related Work

Document retrieval is a special branch of pattern matching related to information
retrieval and web searching. In this problem, the data consists of a collection of
text documents, and the queries refer to documents rather than text positions
[12]. In this paper we focus on arguably the most important of those problems,
called top-k document retrieval : Given D = {d1, d2, d3, ..., dD}, of total length

n =
∑D
i=1 |di|, preprocess it into a data structure that, given a pattern P and a

threshold k, retrieves the k documents from D that are more most relevant to P ,
in decreasing order of relevance. The relevance of a document d with respect to P
is captured using any function w(P, d) of the starting positions of the occurrences
of P in d. A popular example of relevance is the term frequency metric, that is,
the number of occurrences of P in d. This a well studied problem, and the best
known linear space data structure can answer queries in optimal time O(k) [17],
once the locus node of P in a generalized suffix tree of D is found.

In this paper we study a new related problem called document selection,
where we must return the kth document of D most relevant to P , that is, the
kth element returned by a top-k query (breaking ties arbitrarily).

? Funded in part by NSERC of Canada and the Canada Research Chairs program,
Fondecyt Grant 1-140796, Chile, and NSF Grants CCF–1017623, CCF–1218904



We present three results, depending on the amount of space used: (1) We give
a data structure that uses O(n logε n) space, for any constant ε > 0, and answers
queries in time O(log k/ log logn). (2) We give a linear-space data structure that
answers queries in O(log k) time. (3) We prove that it is highly unlikely that the
problem can be solved in less than linear space within poly-logarithmic time, via
a reduction from the position restricted substring searching problem [9, 5].

Document selection is useful for various advanced queries. When a user
browses ranked results of a query and asks for the next set of results, we need to
report the top-k2 documents that are not top-k1. Instead of computing a top-k2
query in time O(k2), which is nonoptimal if k2 − k1 = o(k2), our results allow
solving this query in O((k2− k1) log k2) time and linear space. Another possible
query is to count the number K of documents d with w(P, d) ≥ τ , given P and
τ . This can be answered via doubling search using document selection queries, in
time O(log2K), assuming w(P, d) can be computed in constant time given the
locus of P . Similarly, we can count or list the documents d with w(P, d) ∈ [τ1, τ2].
Such queries are important in bioinformatics, for example for motif mining or for
avoiding sequences where P is “over-expressed”, and for data mining in general,
for example to estimate the distribution of relevance scores of certain patterns.

Related Work. The notion of relevance-based string retrieval was introduced by
Muthukrishnan [11], who proposed and solved various problem but not top-k
document retrieval. The first data structure for this problem, under the term
frequency measure and using O(n log n) words of space, was given by Hon et
al. [4]. Later, Hon et al. [6] introduced a linear space structure (O(n) words),
that works for general weight functions as described earlier, with query time
O(p + k log k). This was improved to O(p + k) [13], and finally to the optimal
O(k) [17], all using linear space. Those times are in addition to the time for
finding the locus node of P , locus(P ), in the generalized suffix tree of D, GST.

The problem has also been studied in scenarios where less than linear space
(i.e., o(n log n) bits) can be used. For example, it is possible to solve the problem
efficiently using n log σ + o(n log σ) bits [14, 18], where σ is the alphabet size of
the text (thus n log σ bits are used to represent the text itself). The results are
mostly tailored to the term frequency measure of relevance, and achieve times
of the form O(k polylog n). See [12, 3, 7] for more details.

2 The top-k Framework

This section briefly describes the linear-space framework of Hon et al. [6] for
top-k queries. The generalized suffix tree (GST) of a document collection D =
{d1, d2, d3, . . . , dD} is the combined compact trie of all the non-empty suffixes of
all the documents [19]. The total number of leaves in GST is same as the total
length n of all the documents. For each node j in GST, prefix(j) is the string
obtained by concatenating the edge labels on the path from the root to node j.
The highest node v satisfying that P is a prefix of prefix(v) is called the locus
of P and denoted locus(P ) = v.



Let `i represent the ith leftmost leaf node in GST. We say that a node is
marked with a document d if it is either a leaf node whose corresponding suffix
belongs to d, or it is the lowest common ancestor (LCA) of two such leaves. This
implies that the number of nodes marked with document d is exactly equal to the
number of nodes in the suffix tree of d (at most 2|d|). A node can be marked with
multiple documents. For each node j and each of its marking documents d, define
a link to be a quadruple (origin = j, target, doc = d,weight = w(prefix(j), d)),
where target is the lowest proper ancestor of node j marked with d (a dummy
parent of the root node is added, marked with all the documents). Since the
number of links with document doc = d is at most 2|d|, the total number of links

is ≤
∑D
i=1 2|di| ≤ 2n. The following is a crucial observation by Hon et al. [6].

Lemma 1 For each document d that contains a pattern P , there is a unique
link with origin in the subtree of locus(P ), a proper ancestor of locus(P ) as its
target, and weight w(P, d).

We say that a link is stabbed by a node j if its origin is in the subtree of j (j
itself included) and its target is a proper ancestor of j. Therefore, the problem
of finding the kth most relevant document for P can be reduced to finding the
kth highest weighted link stabbed by locus(P ).

3 Super-Linear Space Structure

In this section we start by introducing a basic data structure that uses O(n log n)
words and answers queries in O(log n) time. Then we enhance it to a structure
that uses O(n log1+ε n) words, for any constant ε > 0, and O(log n/ log log n)
time. The basic structure will be used in Section 4 to achieve linear space within
the same time, whereas the enhanced one will be reduced to O(n logε n) words. In
Section 5 we show how how the linear-space structure can be improved to answer
queries in time O(log k) and the enhanced structure in time O(log k/ log log n),
thus reaching our final results.

3.1 The Basic Structure

We prove the following result.

Lemma 2 Given the GST of a text collection of total length n, we can build
an O(n log n)-word structure that, given locus(P ) and k, answers the document
selection query in time O(log n).

Let N represent the set of nodes in GST and S represent the set of links
(origin, target, doc, weight) in GST, as described in Section 2. Next we construct
a balanced binary tree T of |S| leaves, so that the ith highest weighted link (ties
broken arbitrarily) is associated with the ith leftmost leaf of T . Notice that
n ≤ |S| ≤ 2n. We use S(x) to denote the set of links associated with the leaves
in the subtree of node x ∈ T . Further, let N(x) denote the set of nodes in GST



that are (i) either the origin or the target of a link in S(x), or (ii) the LCA of
two such nodes. Clearly |N(x)| = Θ(|S(x)|) = Θ(n/2depth(x)), where depth(x) is
the number of ancestors of x (depth of root is 0).

With every node x ∈ T , we associate a tree structure GST(x). GST(x) is the
subtree of GST obtained by retaining only the nodes in N(x), so that node v
is the parent of node w in GST(x) iff v is the lowest proper ancestor of w in
GST that also belongs to N(x). The number of nodes and edges in GST(x) is
Θ(n/2depth(x)).

Notice that the same node w ∈ GST may appear in several GST(·)’s. With
each node w ∈ GST(x) we associate the following information:

– stab.countx(w): The number of links in S(x) that are stabbed by w.
– left.ptrx(w): Let xL be the left child of x (in T ). Let wL be the highest node

in the subtree of w (in GST(x)) that appears also in GST(xL) (wL can be w
itself). Then left.ptrx(w) is a pointer from w ∈ GST(x) to wL ∈ GST(xL). If
there exists no such node wL, then left.ptrx(w) is null.

– right.ptrx(w): Analogous to left.ptrx(w), now considering xR, the right child
of x ∈ T , and wR being the highest node in the subtree of w ∈ GST(x) that
appears also in GST(xR).

Note that the space needed for maintaining GST(x) and the associated in-
formation is O(n/2depth(x)) words. Added over all the nodes x ∈ T , the total
space occupancy of all GST(·)’s is O(n log n) words. Finally, the following result
is crucial for our data structure (the case of wR and xR is analogous).

Lemma 3 Both w and wL stab the same subset of links of S(xL).

Proof. Otherwise, the target of a link in S(xL) stabbing wL but not w would be
higher than wL, below w, and belong to GST(xL), contradicting the definition
of wL. The same happens with the source of a link stabbing w but not wL. ut

3.2 Query Algorithm for Document Selection

Assume locus(P ) is given. Notice that the tree GST(root) associated with the
root of T is the same GST of the collection. Therefore, stab.countroot(locus(P ))
gives the number of documents containing P . If the count is less than k, there
is no kth document to select. Otherwise, let L∗ be the kth highest weighted link
stabbed by locus(P ). Our query algorithm traverses T top-down, starting from
root and ending at the leaf node associated with link L∗. Then it reports the
document d∗ corresponding to L∗.

In our query algorithm, we use x to denote a node in T , w to denote a node
in GST(x) and K to denote an integer ≤ k. First we initialize x to the root
of T , w to locus(P ) and K to k. This establishes the invariant that we have
to return the Kth highest weighted link in S(x) stabbed by w. Let xL and xR
be the left and right children of x. Then we obtain the nodes wL ∈ GST(xL)
and wR ∈ GST(xR) pointed by left.ptrx(w) and right.ptrx(w), respectively. The
following values are then computed in constant time.



– c = stab.countx(w), the number of links in S(x) stabbed by w.
– cL = stab.countxL

(wL), the number of links in S(xL) stabbed by w (or wL).
– cR = stab.countxR

(wR), the number of links in S(xR) stabbed by w (or wR).

Notice that c = cL + cR. If cL ≥ K then, by Lemma 3, the Kth link below
S(x) (or S(xL)) stabbed by w ∈ GST(x) is the same as the Kth link below S(xL)
stabbed by wL ∈ GST(xL). Therefore, we maintain the invariant if we continue
the traversal in the subtree of x ← xL with GST(xL) node w ← wL. On the
other hand, if cL < K, then by Lemma 3 the Kth link stabbed by w below S(x)
is same as the (K − cL)th link below S(xR) stabbed by wR ∈ GST(xR). In this
case, we maintain the invariant if we continue the traversal in the subtree of
x← xR with GST(xR) node w ← wR and with K ← K − cL. We terminate the
algorithm when x is a leaf, thus K = 1 and x represents L∗. As the height of T
is O(log n) and the time spent at each node is constant, the total query time is
O(log n) and Lemma 2 is proved.

3.3 An Enhanced Structure

We now prove the following result, which will hold in the RAM model of com-
putation, with a computer word of w = Ω(log n) bits.

Lemma 4 Given the GST of a text collection of total length n and any constant
0 < ε ≤ 1, we can build an O(n log1+ε n)-word structure that, given locus(P )
and k, answers the document selection query in time O(log n/ log log n).

In order to speed up the structure of Lemma 2, we will choose a step s =
ε log log n and build the GST(x) structures only for nodes x ∈ T whose depth is a
multiple of s. Each node w ∈ GST(x) for the selected nodes x will store sufficient
information for the query algorithm to jump directly to the corresponding node
x′ at depth depth(x′) = depth(x) + s, instead of just to xL or xR.

Given x, x′ ∈ T as above (x′ in the subtree of x) and w ∈ GST(x), we define
wx′ as the highest node in the subtree of w that appears also in GST(x′). Let us
call x1, x2, . . . , x2s the nodes at depth depth(x) + s that descend from x (or the
leaves below x, if they have depth less than depth(x) + s), ordered left to right
in T (i.e., from highest to lowest weights in S(xi)).

Associated to each node w ∈ GST(x), we store 2s pointers ptrx(w)[i] = wxi
.

We also store the 2s cumulative values accx(w)[i] =
∑i
j=1 stab.countxj (wxj );

note that accx(w)[2s] = stab.countx(w). We will store those accx(w) values
in a fusion tree [1], which takes O(2s) = O(logε n) words of space and solves
predecessor queries in accx(w) in constant time. The space is the same used by
array ptrx(w), which added over all the GST(·)’s is O(n log1+ε n) words (even if
only one level out of s in T stores GST(·) structures).

Queries now proceed as in Section 3.2, but now we use the fusion tree to
determine, given w ∈ GST(x), which is the node xi ∈ T that contains the Kth
link below S(x) stabbed by w. Therefore we can move directly from x to xi
and from w ∈ GST(x) to wi ∈ GST(xi), where wi = ptrx(w)[i]. We also update
K ← K−accx(w)[i−1] (assume accx(w)[0] = 0). Thus we complete the query in
O((log n)/s) = O(log n/(ε log log n)) constant-time steps and Lemma 4 is proved.



4 Linear Space Structure

In this section we build on the basic structure of Lemma 2 in order to achieve
linear space and logarithmic query time. At the end, we reduce the space of the
enhanced structure to O(n logε n). The results hold under the RAM model.

Lemma 5 Given the GST of a text collection of total length n, we can build an
O(n)-word structure that, given locus(P ) and k, answers the document selection
query in time O(log n).

To achieve linear space, we replace some of our data structures by succinct
ones. We will measure the space in bits, aiming at using O(n log n) bits overall.
The binary tree T can be maintained in O(n log n) bits, where each internal node
x stores an O(log n)-bit pointer to the corresponding tree GST(x) and each leaf
stores the document identifier corresponding to the associated link. The global
GST can also be maintained in O(n log n) bits. Therefore, the space-consuming
component are the GST(·)’s and their associated information.

Using well-known succinct data structures [16], the GST(x) tree topologies
can be represented in O(1) bits per node (i.e., O(n log n) bits overall) with
constant-time support of all the basic navigational operations required in our
algorithm. We refer to any node w ∈ GST(x) by its pre-order rank, that is, node
j means the node with pre-order rank j. The pre-order rank of the root node
of any GST(x) is 1. Next we show how to encode the remaining information
associated with each node in GST(x) using O(1) bits per node.

4.1 Encoding stab.countx(j)

We note that stab.countx(j) is exactly equal to the number of links of S(x) as-
sociated with GST(x) that originate in the subtree of j minus the number of
links in S(x) that target any node in the subtree of j (j belongs to its sub-
tree). We encode this information in two bit vectors: Bx = 10α110α210α3 . . .
and B′x = 10β110β210β3 . . ., where αj (resp., βj) is the number of links of S(x)
originating from (resp., targeting at) node j in GST(x). We augment Bx and B′x
with structures supporting constant-time rank/select queries [10]. Notice that∑
αj =

∑
βj = O(|S(x)|) = O(|GST(x)|). Therefore, both Bx and B′x can be

represented in O(1) bits per node.

Now we can compute stab.countx(j) for any j in O(1) time as follows: find
the rightmost leaf node j′ in the subtree of j in O(1) time using the succinct tree
representation of GST(x) [16]. Then the number no of links originating from the
subtree of j is equal to the number of 0-bits between the jth and (j′+ 1)th 1-bit
in Bx (because j and j′ are preorder numbers). Similarly, the number nt of links
targeted at any node in the subtree of j is equal to the number of 0-bits between
the jth and (j′+ 1)th 1-bits in B′x. Using rank/select operations on Bx and B′x,
no and nt are computed in O(1) time and stab.countx(j) is given by no − nt.



4.2 Encoding left.ptrx(j) and right.ptrx(j)

We show how to encode left.ptrx(·) for all nodes in GST(x); right.ptrx(j) is sym-
metric. The idea is to maintain a bit vector LP such that LP [j] = 1 iff there
exists a node jL ∈ GST(xL) such that both j ∈ GST(x) and jL ∈ GST(xL)
represent the same node in GST. We add constant-time rank/select data struc-
tures [10] on LP . Since the length of LP is equal to the number of nodes in
GST(x), its space occupancy is O(1) bits per node.

Now, for any given node j ∈ GST(x), the node jL ∈ GST(xL) to which
left.ptrx(j) points is the (unique) highest descendant of j that is marked in LP ,
thus it can be identified by (1) finding the position j∗ of the leftmost 1-bit in
LP [j . . .]; (2) checking if node j∗ is in the subtree of node j in GST(x); (3) if
so, then jL ∈ GST(xL) is equal to the number of 1’s in LP [1...j∗], otherwise, jL
is null. All these operations require constant time, either using the succinct tree
operations or the rank/select data structures. This works because all the nodes
in GST(xL) appear in GST(x), in the same order (pre-order).

In summary, the space requirement of our encoding scheme is O(1) bits per
node in any GST(x), thus adding to O(n log n) bits. The query algorithm, as well
as its time complexity, remain the same. This completes the proof of Lemma 5.

4.3 Reducing Space of the Enhanced Structure

The space of the enhanced structure of Section 3.3 can be similarly reduced to
O(n logε n) words, obtaining the following result.

Lemma 6 Given the GST of a text collection of total length n and a constant
ε > 0, we can build an O(n logε n)-word structure that, given locus(P ) and k,
answers the document selection query in time O(log n/ log log n).

For this sake, recalling the definition of x1, . . . , x2s of Section 3.3, we will
maintain bit vectors LPi for i = 1 to 2s, so that LPi[j] = 1 iff there exists a
node ji ∈ GST(xi) such that both j ∈ GST(x) and ji ∈ GST(xi) represent the
same node in GST. Then each array entry ptrx(j)[i] is computed using LPi as in
Section 4.2. The total space used by all the LPi bit vectors is O(2s) = O(logε n)
bits per node, adding up to O(n log1+ε n) bits in total.

To compute accx(j)[i], we store bitmaps Bx,1, . . . , Bx,2s and B′x,1, . . . , B
′
x,2s ,

analogous to B and B′ of Section 4.1. In this case, Bx,i = 10α
i
110α

i
210α

i
3 . . ., so

that αij =
∑i
r=1 s(r), where s(r) is the number of links of S(xr) originating from

node ptrx(j)[i] ∈ GST(xr), and B′x,i = 10β
i
110β

i
210β

i
3 . . ., so that βij =

∑i
r=1 t(r),

where t(r) is the number of links of S(xr) targeting at node ptrx(j)[i] ∈ GST(xr).
Then, it holds accx(j)[i] = αij − βij , which is computed in constant time using

rank/select operations. Since it holds αij ≤ αj and βij ≤ βj for all i values, the

total space of these 2s = logε n bitmaps adds up to O(n log1+ε n) bits.
To carry out predecessor searches on the virtual vector accx(j), we use suc-

cinct SB-trees [2, Lemma 3.3]. Given constant-time access to any accx(j)[i], this
structure provides predecessor searches in O(1 + log(2s)/ log log n) = O(1) time



and use O(2s log log n) = O(logε n) bits per node (by adjusting ε). Thus the total
space is O(n log1+ε n) bits as well. This concludes the proof of Lemma 6.

5 Achieving O(log k) Query Time and Better

In this section we first build on the linear-space data structure of Lemma 5 in
order to improve its query time to O(log k). At the end, we show that the result
extends to our superlinear-space data structure of Lemma 6, improving its query
time to O(log k/ log log n). Thus we start by proving the following theorem.

Theorem 1 A collection D of documents can be preprocessed into a linear-
space data structure that can answer any document selection query (P, k) in
time O(log k), given the locus of pattern P in the generalized suffix tree of D.

Notice that the query time O(log n) in Lemma 5 can be written as O(log k)
for k >

√
n. Therefore, we turn our attention to the case where k ≤

√
n. First, we

derive a space-efficient structure DS(δ), which can answer document selection
queries faster, but only for values of k below a predefined parameter δ ≤

√
n.

More precisely, structure DS(δ) will satisfy the following properties:

Lemma 7 The structure DS(δ) uses O(n(log δ+log log n)) bits of space and can
answer document selection queries in time O(log δ + log log n), for k ≤ δ ≤

√
n.

To obtain the result in Theorem 1, we maintain structures DS(δi) with δi =

dn1/2ie for i = 1, 2, 3, . . . , r, where δr+1 ≤
√

log n < δr (therefore r < log log n).
The total space needed is O(n

∑r
i=1(log δi + log log n)) = O(n log n) bits (O(n)

words). When k comes as a query, if k > δr+1, we first find h, where δh+1 <
k ≤ δh and obtain the answer using DS(δh). The resulting time is O(log δh +
log log n) = O(log k). The case where k < δr+1 is handled separately using other
structures in O(1) time (Section 5.2). We now describe the details of DS(δ).

5.1 Structure DS(δ)

The first step is to identify certain nodes in GST as marked nodes and prime
nodes, based on a parameter g = dδ log ne called the grouping factor. Every gth
leftmost leaf is marked, and the LCA of every two consecutive marked leaves
is also marked. Therefore, the number of marked nodes is Θ(n/g). Nodes with
their parent marked are prime. A prime node with at least one marked node in
its subtree is a type-1 prime node, otherwise it is a type-2 prime node. Notice
that the highest marked node in the subtree of any node is unique, if it exists.
Therefore, except the root node, every marked node j∗ can be associated with
a unique type-1 prime node j′, which is the first prime node on the path from
j∗ to the root. Notice that a node can be both prime and marked.

Let j′ be a prime node and j∗ be the highest marked node in its subtree (j∗

exists only if j′ is of type-1, and it can be that j′ = j∗). We use G(j′\j∗) to
represent the subtree of GST rooted at j′ after removing the subtree of j∗ (j∗ is



not removed). With a slight abuse of notation, we use G(j′\j∗) to represent the
set of nodes within G(j′\j∗) as well. A crucial result [17] is that, for any prime
node j′, the number of nodes in G(j′\j∗) is O(g).

We define prime.parent(j) of any node j in GST as the first prime node j′

on the path from j to the root. Note that j ∈ G(j′\j∗), otherwise j would be a
(strict) descendant of j∗ and its corresponding j′ would be below j∗.

It is not hard to determine j′ = prime.parent(j) in constant time and O(n)
bits, by sampling the prime nodes in a succinct tree representation and looking
for the lowest sampled ancestor of j [15, Lemma 4.4].

The structure DS(δ) is a collection of substructures STR(j′) associated with
every prime node j′ in GST. If the input node locus(P ) ∈ G(j′\j∗) and k ≤ δ,
we obtain the answer using STR(j′) in O(log g) = O(log δ + log log n) time.
Based on the type of j′, we have two cases; we describe the simpler one first.

STR(j′) associated with a type-2 prime node j′: The structure can be
constructed as follows: take G(j′), the subtree rooted at node j′, and replace the
pre-order rank of each node j by (j−j′+1). Also associate a dummy parent node
to the root. Then, among the links defined over GST (Section 2), choose those
that originate from the subtree of j′ and: (1) Assign a new value to its origin and
target, which is its original value minus j′ plus 1. The target of some links can
be negative; replace those by 0. (2) Replace the weight by a rank-space reduced
value in [1, O|G(j′)|]. Notice that the number of links chosen is O(|G(j′)|). (3)
Let d be its document identifier. Instead of writing d explicitly in dlogDe bits,
use a pointer to one leaf node in G(j′), using dlog |G(j′)|e bits, where the suffix
corresponding to that leaf belongs to document d.

In summary, we have a tree of (|G(j′)| + 1) nodes and O(|G(j′)|) links as-
sociated with it. The information (origin, target, document, weight) associated
with each link is encoded in O(log |G(j′)|) bits. Then STR(j′) is the struc-
ture described in Lemma 5 over these nodes and links. The space required is
O(|G(j′)| log |G(j′)|) = O(|G(j′)| log g) bits. We maintain structures STR(j′)
for all type-2 prime nodes j′ in total O(n log g) bits, since a node can be in the
subtree of at most one type-2 prime node.

STR(j′) associated with a type-1 prime node j′: We first identify the
candidate set C(j′) of O(g) links, such that for any k ≤ δ, the kth link stabbed
by any node j ∈ G(j′\j∗) belongs to C(j′). Clearly we can ignore the links that
do not originate from the subtree of j′. The links that do can be categorized into
the following types [17]: near-links are stabbed by j∗, but not by j′; far-links
are stabbed by both j∗ and j′; small-links are targeted at a node in the subtree
of j∗; and fringe-links are the others.

We include all near-links and fringe-links into C(j′), which are O(g) in num-
ber [17, Lemma 8]. All small-links can be ignored as none of them is stabbed
by any node in G(j′\j∗). Notice that if any node in G(j′\j∗) stabs a far-link, it
indeed stabs all far-links. Therefore, it is sufficient to insert the top-δ far-links
into C(j′). Thus, we have O(g) links in C(j′) overall.



Now we perform a rank-space reduction of pre-order rank of nodes inG(j′\j∗)
as well as of the information associated with the links in C(j′), as follows:

– The target of those links targeting at any proper ancestor of j′ is changed to
a dummy parent node of j′. Similarly, the origin of all those links originating
in the subtree of j∗ is changed to node j∗.

– The pre-order rank of all those nodes in G(j′\j∗), and the corresponding
origin and target values of links in C(j′), are changed to a rank-space reduced
value in [0, |G(j′\j∗)|]. Notice that the new pre-order rank of j′ is 1 and
that of its dummy parent node is 0. We remark that this mapping (and
remapping) can be stored separately in O(|G(j′\j∗)| log |G(j′\j∗)|) bits.

– The weights of the links are also replaced by rank-space reduced values.

– Let L be a near- or fringe-link in C(j′) with d its corresponding document.
Then there must be at least one leaf ` in G(j′\j∗) where the suffix corre-
sponding to ` belongs to d. Therefore, instead of representing d, we maintain
a pointer to `, which takes only O(log g) bits. This trick will not work for
far-links, as the existence of such a leaf node is not guaranteed. Therefore,
we spend logD bits for each far-link, which is still affordable because there
are only O(δ) = O(g/ log n) far-links.

In summary, we have a tree of (|G(j′\j∗)|+ 1) = O(g) nodes with O(g) links
associated with it. Then STR(j′) is the structure described in Lemma 5 over
these nodes and links. The space required is O(g log g) bits. As the number of
type-1 prime nodes is O(n/g), the total space to maintain STR(j′) for all type-2
primes nodes j′ is O(n log g) bits.

Query Answering: Given node j = locus(P ), we find j′ = prime.parent(j).
Then we map node j to the corresponding node in STR(j′) and obtain the
answer by querying STR(j′), in O(log g) = O(log δ+log log n) time. The answer
may come in the form of a node in STR(j′), which is mapped back to GST in
order to obtain the associated document. This completes the proof of Lemma 7.

5.2 Structure for k ≤ δr+1

First, identify the marked and prime nodes in GST with g = δr+1 log n. At ev-
ery prime node j′, we explicitly maintain the candidate set C(j′). This takes
O(n)-word space. Then for any k ≤ δr+1, the kth link stabbed by node j can
be encoded as a pointer to the corresponding entry in C(prime.parent(j′)) us-
ing dlog |C(prime.parent(j′))|e = O(log g) = O(log log n) bits. Therefore, the
answers for all k ∈ [1, δr+1] for all nodes in GST can be maintained in addi-
tional O(n · δr+1 log log n) = o(n log n) bits of space. Now the kth link (and
its document) stabbed by any query node locus(P ) can be obtained from
C(prime.parent(locus(P ))) in O(1) time.



5.3 Speeding Up the Enhanced Structure

The same construction used above can be used to speed up our superlinear-
space structure of Lemma 6, simply by using it instead of the linear-space one of
Lemma 5 to implement the structures STR(j′). The space of the formO(n logε n)
words, or O(n log1+ε n) bits, will become O(g log g logε n) inside the structures
STR(j′), because we will maintain the sampling step s = ε log log n depend-
ing on n, not on g, and use the succinct SB-trees with parameter n, not g.
As a result, the total space per value of δ will be O(n log g logε n) bits, and
added over all the values of δ we will have O(n logε n

∑r
i=1(log δi + log log n)) =

O(n log1+ε n) bits, or O(n logε n) words. The time, on the other hand, will be
O(1 + log δ/(ε log log n)) on DS(δ), which becomes O(1 + log k/(ε log log n)) in
terms of k. We have proved our final result for the superlinear structure.

Theorem 2 A collection D of documents of total length n can be preprocessed
into a data structure using O(n logε n) words of space, for any constant ε > 0,
which can answer document selection queries (P, k) in time O(1+log k/ log log n),
given the locus of pattern P in the generalized suffix tree of D.

6 Hardness of an Efficient Succinct Solution

One could expect to obtain an index using O(n log σ) bits of space, proportional
to the n log σ bits needed to store D, as achieved for the top-k document retrieval
problem. We show, however, that this is very unlikely unless a significant break-
through in the current state of the art of computational geometry is obtained.

Theorem 3 If there exists a data structure using O(n log σ +D polylog n) bits
with query time O(|P |polylog n) for document selection (σ being the alpha-
bet size), then there exists a linear-space data structure that can answer three-
dimensional range reporting queries in poly-logarithmic time per reported point.

Proof. We reduce from the position restricted substring searching (PRSS) prob-
lem, which is defined as follows: Index a given a text T [1, n] over an alphabet set
[1, σ], such that whenever a pattern P (of length p) and a range [x, y] comes as
a query, all those occx,y occurrences of P in T [x . . . y] can be reported efficiently.
Many indexes offering different space and query time trade-offs exist [9, 8].

Hon et al. [5] proved that answering PRSS queries in polylog time and suc-
cinct space is at least as hard as performing 3-dimensional orthogonal range
reporting in polylog time and linear space. They also showed that if the query
pattern is longer than α = dlog2+ε ne for some predefined constant ε > 0, an
efficient succinct space index can be designed. Therefore, the harder case arises
when p < α. We now show how to answer PRSS queries with p < α via doc-
ument selection queries on the following set: D = {d1, d2, d3, ..., ddn/αe}, where
di = T [1 + (i − 1)α...(i + 1)α] and |di| = 2α, except possibly for ddn/αe−1 and
ddn/αe. The score function w(P, di) is i if P appears at least once in di and 0 oth-
erwise. Notice that an occurrence of any pattern of length at most α overlaps with



at least one and at most two documents in D. Therefore, the previously defined
PRSS query on T can be answered via multiple document selection queries on D
as follows: first report all those documents di with w(P, di) ∈ [dx/αe, by/α+ 2c].
Then, within all those reported documents, look for other occurrences of P via
an exhaustive scanning. If the time for document selection queries is polylog in
the total length of all documents in D (which is at most 2n), then the time for
PRSS query is also bounded by O((p + occx,y)polylog n). Therefore, answering
document selection queries in polylog time and succinct space is at least as hard
as answering PRSS queries in polylog time and succinct space. ut
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