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Another alternative to reduce the sorting times isto change the model used to determine the key order.Most of the classic sorting algorithms work under the\comparison based" model, i.e., they sort the list ex-clusively through pairwise comparison. However, thereare also alternative sorting methods where the contentof the keys are used to obtain their position withoutneed to compare them to each other. We will call themmethods \content based" in this work. They can ob-tain better results because real machines allow manyother operations besides comparison [AHNR98]. Ex-amples of content based methods are radixsort [Knu73]and groupsort [BSA97].In this work, we are interested in developing sortingalgorithms for special cases of lists of integers that fol-low skewed distributions (we will call these lists skewedlists of integers). In this case, previous knowledgeabout the lists to be sorted can be used to reducethe sorting times by using special purpose algorithms(note that the lists is not partially sorted, and thereforethe main core of adaptive sorting algorithms [ECW92]does not apply). We present here a new special pur-pose content based sorting algorithm which deals e�-ciently with these lists, taking linear average time tosort them. We also show an example application ofour algorithm in text compression, using it to sort thelist of frequencies of words in natural language texts.These lists follow the Zipf's distribution [Zip49], a wellknown skewed distribution.2 Groupsort algorithmThe groupsort algorithm [BSA97] partitions therange of numbers to be sorted in K groups, called buck-ets. It makes a �rst pass over the list to compute the1



number of elements in each group. After this pass, theelements are distributed on their buckets according tothese values. Figure 1 shows an example of groupsortworking on a list of 16 elements and using 3 buckets(K = 3) with ranges 1{30, 31{60 and 61{90. A �rstpass over the list indicates that the buckets 1, 2 and 3have 7, 5 and 4 elements respectively. The algorithmdistributes the elements on the buckets as shown in thelower part of Figure 1. After this stage, each partitionis sorted again individually as a new list. The authorshave suggested that this new sorting can be done withthe groupsort itself or another sorting algorithm ac-cording to an e�ciency criterion de�ned by them.
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205 20 1Figure 1. Example showing the partition of a list ingroupsort using 3 buckets (K = 3)The performance of groupsort depends on how uni-form is the distribution of the elements on the buckets.The authors have suggested that the subrange valueof each bucket should be chosen so that the elementsare evenly distributed across the buckets. In practice,this restriction decreases the performance due to theadditional cost to calculate the subranges.3 Remainingsort strategyWe are interested in designing a sorting algorithmfor skewed lists of integers. A common feature in theselists is that most elements have small values, and thenumber of elements with a given value x quickly de-creases as x increases. >From these observations, wederive a sorting strategy based on groupsort. The mainmodi�cation we have proposed is to divide the list inK + 1 buckets, where the �rst K buckets have range1 (i.e. they accept only one value) and the last bucketgets the remaining numbers of the list. Therefore, the�rst K buckets are sorted on the partition step andthere is only one remaining bucket to sort after that |we will call this bucket \remaining bucket". This is an

important improvement when our strategy is comparedagainst groupsort, where all the K buckets should besorted after the partition step. We will call this newsorting strategy remainingsort.Figure 2 shows an example where we divide the listusing four buckets. The �rst three buckets have range1, getting the values 1,2 and 3 respectively. The re-maining elements are placed on the fourth bucket (the\remaining bucket"), which is the only one we need tosort.
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BucketFigure 2. Example showing the partition of a list us-ing 3 buckets of range 1 (K = 3) plus the remainingbucketIfK is su�ciently large the remaining bucket can besorted with any conventional algorithm without chang-ing the overall complexity of the sorting process. Onthe other hand, the value of K should be small in orderto reduce the extra space used by the algorithm (whichis K counters). Therefore, a good choice is to establisha K that gives an O(n= logn) remaining bucket size,where n is the number of elements in the list. Thischoice allows an O(n) time sorting of the remainingbucket. Given a list L with n elements to be sorted,and a function G such that the sequence G(1); :::; G(n)corresponds the list L sorted, then a good value for Kwould be G(bn= lognc). This value can be obtainedthrough a linear time algorithm to obtain the k-th el-ement from the unordered array (for k = n= logn) orit can be estimated directly if the G distribution isknown.Our sorting algorithm uses therefore K =dG(bn= log nc)e extra space to sort the list. The to-tal time is that of initializing the K counters, perform-ing a linear pass over the list to increment the coun-ters, making another pass over the counters to gener-ate the elements in order, and sorting the remainingbucket. Since we have selected K as the minimumvalue that makes the �nal pass linear, the total cost2



is O(K + n) = O(G(n= logn) + n).If K is too large, the extra space required by thealgorithm will not be practical, and another sortingstrategy should be used. In particular, the algorithmhas overall linear time if G(n= logn) = O(n). Forskewed distributions, G(i) tends to decrease quickly asi increases, and therefore it is more probable that thiscondition holds.The complete remainingsort algorithm follows.1. Compute K = dG(bn= log nc)e either by estima-tion of G or by a linear time algorithm for thek-th element.2. Create K + 1 counters for the number of elementson each bucket, where the (K + 1)-th is the \re-maining bucket".3. Count the number of elements on each bucket bya linear pass over the list. Each element x �K increments counter x, otherwise it incrementscounter K + 1.4. Put the elements in their corresponding buckets.5. Sort the remaining bucket using a conventionalsorting procedure4 Sorting Zip�an Sequences with Re-mainingsortThe general idea described in the last section canbe applied with good results to a wide variety of listof integers that follows skewed distributions. An im-portant example is given when G follows the Zipf'sdistribution [Zip49]. The Zipf's law states that, if weorder the n elements of the list in decreasing order(obtaining x1; :::; xn), then the value of the �rst ele-ment is i� times that of the i-th element, for every i,for a constant �. This means that the value of thei-th element is xi = N=(i�H), where N = Pni=1 xi,H = H(�)n = Pnj=1 1=j�, and � is a small constantvalue greater than 1.We show now that if K = O(xn(log n)�) and thelist to be sorted follows the Zipf's law, then the num-ber of elements in the remaining bucket is O(n= log n).From the Zip's law, the value of the element at positionn= logn of the list in decreasing order is:K = x( nlogn ) = N( nlogn)�H (logn)�N=n�H (1)We show now that N=(xnn�) = H. Since the small-est element in the list is xn, we can use Zipf's law to

write its value as N=(n�H). Equating both expressionswe have xn = Nn�H ) H = Nxnn� (2)and therefore, from Eq. (1) and Eq. (2) we haveK = O(xn(log n)�):We can sort the remaining bucket in O(n) time us-ing a conventional comparison based sorting algorithm.This is because its size is n0 = O(n= logn), and a clas-sical sort on it costs O(n0 log n0) = O(n). Therefore,the overall time complexity of the remainingsort algo-rithm is O(n) as well. The extra space used to performthe sorting is only the necessary to compute the size ofeach bucket, which is O(xn(log n)�). It is important toobserve that xn tends to be a small number due to thecharacteristics of the Zip�an distributions. If it is notpossible to estimate a reasonable value of xn before thesorting, it can be obtained also in linear time withoutchange the average time complexity. However, we areinterested in the more general K = c(ln n)�.5 An Example of ApplicationWe present now an application of the remainingsortto reduce the time to construct Hu�man codes [Huf52]when the alphabet symbols are words and the source tobe compressed is a natural language text. This codingscheme, known as word-based Hu�man [BSTW86], hasimportant applications on information retrieval sys-tems, were it is used to reduce the storage costs and toimprove the search performance [ZM95, MNZBY98b,MNZBY98a]. In fact, the Hu�man code constructionrepresents only a small portion of the overall compres-sion times. However, we are investigating alternativeschemes to allow editing in compressed text where theHu�man code is rebuilt periodically. Contributions toreduce the Hu�man coding construction times can bedecisive to the success these new ideas.More formally, a word-based Hu�man code canbe de�ned as a minimum-redundancy code. Givena source alphabet S = [s1; :::; sn], where each sym-bol si has an associated weight (or probability) pi,a minimum-redundancy code C of base b is a list[c1; :::; cn], where ci 2 f0; :::; b� 1g� and such that Cis pre�x free (which means ci is not a pre�x of cj 8i 6= j) and Pni=1 pijcij is minimized. It is usual todenote minimum-redundancy codes as Hu�man codesdue to a famous algorithm proposed by David Hu�-man [Huf52] to solve this problem.Some recent works have presented fast algorithmsto construct Hu�man codes [MK95, MT98, MPL98].3



However, these works make the assumption that thealphabet list is given in increasing order of symbol fre-quencies (or weights). Therefore, it is necessary to sortthe alphabet list before applying these algorithms. Fur-thermore, the Hu�man code construction phase is lin-ear, while sorting the alphabet list can be O(n logn)using general comparison based algorithms. Hence,sorting the frequencies is the heaviest part of the al-gorithm.The alphabet used when constructing word-basedHu�man codes is composed of words extracted from anatural language text. It is widely accepted in the in-formation retrieval community that the frequency dis-tribution of these words follows the Zipf's law [Zip49],where N is the total number of words in the text andn is the size of the vocabulary. Therefore, the remain-ingsort algorithm for Zip�an distributions can be ap-plied in the sorting phase of the word-based Hu�mancode construction. The combination of the algorithmpresented in [MK95] with our new sorting algorithmresults in a fast linear time method to construct word-based Hu�man codes.Experiments with natural language texts show thatthe value of the constant � for natural language textsis between 1:5 and 2:0 [ANZ97]. Further, the leastfrequent word of a text (xn) has a small number ofoccurrences that is close to 1 (in almost all naturallanguage the texts there are many words with fre-quency 1 [BYN97]). Therefore, the extra space usedby the remainingsort algorithm in this application isK = O((log n)2), which is a small extra space require-ment.To show the usefulness of the idea we made ex-periments using literary texts from the trec collec-tion [Har95]. We have chosen the following texts: apNewswire (1989), doe - Short abstracts from doe publi-cations, fr - Federal Register (1989), wsj - Wall StreetJournal (1987, 1988, 1989) and zi� - articles fromComputer Selected disks (Zi�-Davis Publishing). Weput all these �les together to obtain a text vocabu-lary composed of 681 thousand words. We have alsoproduced fragments of this vocabulary by parsing thetrec �les and storing partial vocabularies from size1; 000 to 681; 000. All the experiments were run on aSUN SparcStation 4 with 96 megabytes of RAM run-ning Solaris 2.5.1.The �rst objective of the experiments was to deter-mine a good practical value for the constant c. c shouldbe large enough to reduce the time necessary to sortthe remaining bucket, and should be as small as pos-sible in order to reduce the extra space and counterprocessing time used by the algorithm. Figure 3 showsexperiments with a large range of values for the con-

stant c when the remainingsort algorithm is applied tothe trec vocabulary. The �gure shows that the bestresult is obtained with the value c = 6. After thispoint, the time to sort the remaining bucket is not sig-ni�cant anymore and the running time is determinedby the time to divide the elements in their buckets, soincreasing c will increase the running time.
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value of the constant cFigure 3. Sorting times for the remainingsort algo-rithm when varying the constant c from 1 to 30,running over the whole trec vocabularyAfter determining a good value for the constantc, we made experiments comparing the performanceof the remainingsort algorithm against an adaptivequicksort specially designed to deal with lists with alarge amount of equal keys [Weg85, ECW92], whichwe will reference as quicksort-equal. The idea usedin this quicksort is to not process sublists where allthe elements have the same value. We have consideredother alternatives to compare with, such as all the gen-eral sorting algorithms described in [Knu73] and alsothe adaptive algorithms described in [ECW92, PM95].However, the faster algorithm we found to comparewith remainingsort when sorting text vocabularies byfrequency is the quicksort variation presented in theexperiments.Figure 4 shows the performance of these algorithmswhen running over the trec vocabulary. Our algo-rithm in these experiments was more then twice fasterthan quicksort-equal.Table 1 shows the best �t curves obtained when ap-plying the least squares method to the data presentedin Figure 4. We have matched the time results with thebest curves C1n(ln(n))�1 and C2n�2 , where C1, �1, C2and �2 are constants. This table indicates that therunning times of remainingsort increase at the sameratio of the input, which matches our analytical re-sults about the linearity of the algorithm when sort-ing vocabulary frequencies. In this experiments, the4



quicksort-equal algorithm has resulted in a sublinearcurve, but the best practical time results where ob-tained by the remainingsort and the curves are so closethat this di�erence tends to be almost constant.
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Figure 4. Sorting times for the remainingsort andquicksort-equal when constructing the Hu�mancode for the trec vocabularyMethod n(log(n))�1 n�2�1 error �2 errorremainingsort 0.000 2.10% 1.000 2.10%quicksort-equal -0.012 3.25% 0.990 3.22%Table 1. Best values for � and errors when �tting thecurves n(log(n))� and n� with the remainingsort,and quicksort-equal6 ConclusionsWe have presented a special purpose technique tosort lists that follow skewed distributions. This is asimple idea which can be applied to a wide variety ofsituations, but its usefulness depends on the contentsof the lists to be sorted. We have also used this moregeneral idea to derive an algorithm to sort lists thatfollows the Zipf's distribution. We have shown ana-lytically that this algorithm has linear average timeand needs O(xn(logn)�) extra space, where xn is thesmallest element in the list and n is the number of el-ements in the list. We also have shown an applicationwhere this algorithm is used to fast sorting alphabetswhen building word-based Hu�man codes on naturallanguage texts in linear average time.
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