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Abstract. Sawada and Williams in [SODA 2018] and [ACM Trans. Alg.
2020] gave algorithms for constructing Hamiltonian paths and cycles in
the Sigma-Tau graph, thereby solving a problem of Nijenhuis and Wilf
that had been open for over 40 years. The Sigma-Tau graph is the di-
rected graph whose vertex set consists of all permutations of n, and there
is a directed edge from π to π′ if π′ can be obtained from π either by a
cyclic left-shift (sigma) or by exchanging the first two entries (tau). We
improve the existing algorithms from O(n) time per permutation to O(1)
time per permutation. Moreover, our algorithms require only O(1) extra
space. The result is the first combinatorial generation algorithm for n-
permutations that is optimal in both time and space, and lists the objects
in a Gray code order using only two types of changes. The simple C code
(∼50 lines) can be found at https://github.com/fmasillo/sigma-tau.

Keywords: permutations · sigma-tau problem · dynamic data struc-
tures · combinatorial generation · combinatorial Gray codes

1 Introduction

The problem of efficiently generating all permutations of [n] = {1, 2, . . . , n} (in
one-line notation) is one of the oldest in combinatorial generation. When sur-
veying permutation generation algorithms in 1977, Sedgewick [37] remarked that
“It was actually one of the first nontrivial nonnumeric problems to be attacked
by computer.” Updated surveys on generating combinatorial objects, including
permutations, have been written by Savage [33], and more recently by Mütze [27].

Permutations are of fundamental importance in all areas of computer science.
In string algorithms, they form the basis of compressed data structures such
as compressed suffix arrays [19], compressed suffix trees [15,26,16], and BWT-
based data structures, such as the FM-index [13], the RLFM-index [25], the r-
index [17], or the extended r-index [5]. Permutations are also of central interest in
⋆ Funded in part by Basal Funds FB0001, ANID, Chile.
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computational biology, where they have been used extensively to model genome
rearrangements [2,20,3,1,21,12,14,7].

In this paper, we provide iterative permutation generation algorithms that
update the current permutation in worst-case O(1) time (i.e., loopless) using
O(1) (additional) space. (We use the transdichotomous RAM model, where a
word has Θ(log n) bits. So O(1) space is O(log n) total bits; the current per-
mutation’s memory is not counted [39].) They create combinatorial Gray codes,
where consecutive permutations differ by one of two operations (one type of swap
or rotation). To the best of our knowledge, no existing permutation generation
algorithm has this set of features, see [37,33,27].

Loopless algorithms for permutations rarely use O(1) space as it cannot sup-
port n! different internal states: log(n!) = Θ(n log n). Thus, an O(1) space al-
gorithm cannot count to n! or compute natural sequences of length n! like the
factorial ruler sequence Ln (Oeis A055881 [28]). This discounts frameworks by
Ganapathi and Chowdhurysee [18], which generalize 19 previous algorithms us-
ing Ln or a similar sequence Rn; also see Knuth’s framework [24]. (As a specific
example, Zaks4 uses two additional arrays.) Thus, an O(1) space algorithm must
at times read from the current permutation. This is true of cool-lex order’s simple
successor rule [30], which can be generated by a loopless O(1) space algorithm
for multiset permutations [39], but it uses n − 1 different changes. Shorthand
universal cycles [31,23,36] give simple Gray codes with two change types, but no
existing loopless implementation uses O(1) space.

Our algorithms generate (σ, τ)-Gray codes by Sawada and Williams [34,35].
Here τ swaps the first two values, and σ rotates the full permutation one position
to the left. Hamilton paths are given for all n [34,35] and Hamilton cycles for
odd n [35] in the underlying directed Cayley graph Gn. Figure 1 shows G4 and a
Hamilton path; Hamilton cycles do not exist for even n [29,38]. Both papers give
successor rules and worst-case O(n) time array-based C programs. Egan created
length n!+(n−1)!+(n−2)!+(n−3)!+n−3 superpermutations [9,11] using (σ, τ)-
Gray codes from an earlier manuscript [41]. Prior work had found Hamilton
cycles in the undirected shuffle exchange network (i.e., Gn plus σ−1 edges) [8,4].

In his pioneering work on loopless algorithms, Ehrlich [10] differentiates be-
tween (a) changing the current object into its successor, and (b) deciding which
change to apply in (a). Note that both types of computation must be completed
in worst-case O(1) time to obtain a loopless algorithm. Our loopless σ-τ algo-
rithms use circular data structures to address (a) since the σ operation requires
Θ(n) time in a conventional array. To address (b), we must carefully introduce
additional variables that can be updated in worst-case O(1) time. The output
of one of our algorithms for n = 4 (see Section 4) is visualized in Figure 2.

Our contribution is summarized in Theorem 1 (subsuming Lemmas 3, 6,
and 7). Full C code can be found at https://github.com/fmasillo/sigma-tau.

Theorem 1. There is a data structure implementing the Hamilton path succes-
sor rule of [34], as well as the Hamilton path and Hamilton cycle successor rules
of [35], in worst-case O(1) time per permutation, using O(1) additional space.
4 His pancake flip order dates to the 1700s [22] (see [6]) and is loopless in a BLL [40].
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(a) The Sigma-Tau graph G4 [34].
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(b) Hamilton path HP from 3421 to 2314.

Fig. 1: Our loopless algorithms traverse Hamilton paths and cycles in the Sigma-
Tau graph Gn in worst-case O(1) time per vertex. The path in (b) follows [35].

σ τ σ τ σ σ σ τ σ σ σ τ σ σ σ τ σ τ σ τ σ σ σ

3 4 2 4 1 4 3 2 1 2 4 3 1 3 2 3 4 1 2 1 3 1 4 2
4 2 4 1 4 3 2 1 2 4 3 1 3 2 3 4 1 2 1 3 1 4 2 3
2 1 1 3 3 2 1 4 4 3 1 2 2 4 4 1 2 3 3 4 4 2 3 1
1 3 3 2 2 1 4 3 3 1 2 4 4 1 1 2 3 4 4 2 2 3 1 4

Fig. 2: An alternate order of permutations HP ′ from [34]. Each τ transition swaps
the first (i.e., topmost) pair of elements. Each σ left-rotates all elements one
position, with the leftmost visualized as wrapping around from top to bottom.

2 Constant time successor rule for Hamilton paths

Sawada and Williams in [34] provided a successor rule for Hamilton paths, which
they later modified slightly in [35] to harmonize with the Hamilton cycle succes-
sor rule in the same paper. We first look at the latter rule, and will discuss the
original rule [34] in Section 4.

In the new version [35], the following successor rule was given for constructing
a Hamilton path in Gn, for any n > 1:

Hamilton path successor rule for Gn ([35]) Let π = π(1)π(2) · · ·π(n)
be a permutation and let r be the symbol to the right of n when π is
considered cyclically and skipping over π(2). Define the successor rule
HP on Gn as follows:

HP(π) =


τ(π) if (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n− 2, n− 1), (n− 1, 2)}

and π ̸= n(n− 1)(n− 2) · · · 1;
σ(π) otherwise.

Let p = π−1(n), then the definition of r in the successor rule above is: r = π(3)
if p = 1, r = π(1) if p = n, and r = π(p+ 1) otherwise.
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The authors of [35] gave a simple array-based implementation (see their Ap-
pendix), which, as they state, results in O(n) worst-case time per permutation.
The code runs in Ω(n) time for three reasons: (1) the sigma-operation, (2) iden-
tifying the position of n in π, and (3) deciding if π is the special (decreasing)
permutation πsp = n(n−1)(n−2) · · · 321. The programs in [34,35] also count
to n!, thus requiring Ω(n log n) bits of memory, which is not O(1) space.

Our implementation uses an array and three integer variables. Given a per-
mutation π, an up-step5 is a position where π, taken circularly, increases, that
is, a position i such that π(i) < π(1+ (i mod n)). Our data structure consists of
the following components:

1. an array C[1, n] containing a rotation of π,
2. a pointer b to the position of π(1), C[b] = π(1),
3. a pointer p to the position of n, C[p] = n, and
4. a counter u, giving the number of up-steps of π.

Example 1. Let n = 7 and π = 5624137. Then the following are two possi-
ble implementations: C1 = [4, 1, 3, 7, 5, 6, 2], b1 = 5, p1 = 4, u1 = 4, or C2 =
[5, 6, 2, 4, 1, 3, 7], b2 = 1, p2 = 7, u2 = 4. Note that u remains invariant.

Note that any value π(i) can be accessed in constant time, since π(i) =
C[1+(b+ i−2 mod n)]. In particular, permutation π can be listed as C[b], C[b+
1], . . . , C[n], C[1], . . . , C[b−1], and can thus be returned in O(n) time, if required.

We can check the conditions whether to apply τ or σ in constant time:

Lemma 1. Let π be a permutation and C, b, p, u as defined. We can test in O(1)
time if (1) (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)}, and (2) π = πsp.

Proof. 1. Recall that π(i) = C[1 + (b + i − 2 mod n)] is computed in constant
time. In particular π(2) = C[1 + (b mod n)]. On the other hand, we compute r
in constant time as C[1+(p mod n)] if p ̸= b and C[1+(b+1 mod n)] otherwise.
So we test whether r < n− 1 and π(2) = r + 1, or r = n− 1 and π(2) = 2.

2. It is easy to see that π = πsp if and only if u = 1 and p = b. ⊓⊔

We next show how to implement σ and τ using our data structure:

Lemma 2. Both operations σ and τ can be executed in constant time using the
data structure C, b, p, u.

Proof. A σ-operation is implemented in constant time by simply incrementing b
circularly, b = 1+ (b mod n). A τ -operation, which exchanges π(1) with π(2), is
implemented, again in constant time, as follows:

1. decrement u once if π(n) < π(1), once if π(1) < π(2), and once if π(2) < π(3);
2. increment u once if π(n) < π(2), once if π(2) < π(1), and once if π(1) < π(3);
3. set p = 1 + (b mod n) if p = b, or set p = b if p = 1 + (b mod n); and
4. exchange C[b] with C[1 + (b mod n)]. ⊓⊔
5 Note that this definition differs from ascent, which is not taken circularly.
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The total space occupied by our data structure is the permutation itself
(array C), and in addition the three integer variables, each taking Θ(log n) bits.
Our algorithm needs O(n) time to write the initial permutation πsp · τ to C and
O(1) time to initialize the variables b, p, u. (Alternatively, we can view the initial
permutation as the input, in which case we refer to the input array as C.) Thus:

Lemma 3. Using the data structure consisting of array C[1, n] and the variables
b, p, u, which are initialized in O(n) time, we can construct a Hamilton path in
Gn, starting from the permutation πsp · τ = (n − 1)n(n − 2) · · · 321 and imple-
menting the HP successor rule of [35], in O(1) worst-case time per permutation,
using O(1) extra words.

3 Constant time successor rule for Hamilton cycles

In [35], a successor rule for Hamiltonian cycles for odd n is provided. The authors
define the special set Rn, included in the conditions for applying τ rather than
σ. For a permutation π, we define π\2 the (n− 1)-length string obtained from π
by removing the element in position 2 (which is also an (n − 1)-permutation
in case π(2) = n). Then the special set is defined as Rn = {π | π(2) =
n and π\2 is a rotation of idn−1}. E.g., R5 = {15234, 25341, 35412, 45123}.

Hamilton cycle successor rule for Gn, where n is odd ([35]) Let
π = π(1)π(2) · · ·π(n) be a permutation and let r be the symbol to the
right of n when π is considered cyclically and skipping over π(2). Define:

HC (π) =


τ(π) if (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n− 2, n− 1), (n− 1, 2)}

or π ∈ Rn

σ(π) otherwise.

Again, the array based implementation given in [35] results in O(n) time per
permutation in the worst case. In order to achieve constant time, we slightly
modify our data structure, replacing counter u by counter u′, the number of
up-steps of π\2, that is, we count up-steps skipping over position 2.

Lemma 4. It can be checked in constant time whether π ∈ Rn.

Proof. It is clear that an (n − 1)-permutation is a rotation of the identity
123 · · · (n−2)(n−1) if and only if the number of its up-steps is n−2. The fact that
n is inserted in position 2 is equivalent to p = 1+(b mod n). If π(2) = n then π\2
is an (n−1)-permutation, and therefore, π\2 is a rotation of 123 · · · (n−2)(n−1)
if and only if u′ = n− 2. Both checks can be done in constant time. ⊓⊔

Lemma 5. Both operations σ and τ can be executed in constant time, using the
modified data structure C, b, p, u′.

Proof. For the σ-operation, before setting b = 1+ (b mod n) we need to update
u′ in constant time as follows:
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1. decrement u′ once if π(1) < π(3), and once if π(3) < π(4);
2. increment u′ once if π(1) < π(2), and once if π(2) < π(4).

For the τ -operation we do as follows, also in constant time:
1. decrement u′ once if π(n) < π(1), and once if π(1) < π(3);
2. increment u′ once if π(n) < π(2), and once if π(2) < π(3);
3. set p = 1 + (b mod n) if p = b, or set p = b if p = 1 + (b mod n);
4. exchange C[b] with C[1 + (b mod n)]. ⊓⊔

Similarly to the Hamilton path data structure, we use additional O(1) words.
Note that the Hamilton cycle can be started at any permutation. From this
discussion and Lemmas 1, 4, and 5, we have:

Lemma 6. Using the data structure consisting of array C[1, n] and the variables
b, p, u′, which are initialized in O(n) time, we can construct a Hamilton cycle in
Gn, starting from the identity permutation and implementing the HC successor
rule of [35], in O(1) worst-case time per permutation, using O(1) extra words.

4 Simpler rule for Hamilton paths and termination

The original Hamilton path successor rule HP ′ given in [34] differs in only one
detail from the one in [35], namely that in the condition for τ , (n−1, 2) is replaced
by (n− 1, 1). The resulting Hamilton paths in G4 is visualized in Figure 2.

This change can be easily accommodated using our data structure, by a
simple change in the condition for applying τ . Alternatively, insights from [32]
on this Hamilton path can be used for a further simplification: The syntactic
sequence of a Hamilton path in Gn is a string over the alphabet {τ, σ} which
specifies the sequence of operations applied. Rytter and Zuba [32] showed that
for the Hamilton path resulting from successor rule HP ′, this sequence is highly
compressible.

Lemma 7. Using the data structure consisting of array C[1, n] and variables
b, p, u, which are initialized in O(n) time, we can construct a Hamilton path in
Gn, starting from the permutation πsp · τ = (n − 1)n(n − 2) · · · 321 and imple-
menting the HP ′ successor rule of [34], in O(1) worst-case time per permutation,
using O(1) extra words.

Termination. To terminate our algorithms, we cannot resort to a counter
maintaining the number of permutations, as is done in [34,35], since this would
exceed the O(1) space restriction. Instead, we apply termination conditions iden-
tifying the final permutation. For example, as we start the HC algorithm at the
identity id = 123 · · ·n, the final permutation is n123 · · · (n − 1). This is the
unique permutation with π(1) = n, π(2) = 1, and u′ = n − 2 up-steps (skip-
ping over π(2)). Similar tests terminate HP and HP ′: starting from πsp · τ , we
have to detect when the last permutation (n − 2)(n − 1)(n − 3)(n − 4) · · · 21n
occurs. This can be done again in constant time and space by checking whether
u = 2, π(1) = n− 2, π(2) = n− 1, π(n− 1) = 1, and π(n) = n: the only permu-
tation with those extreme values fixed and with no further up-steps is the one
containing the descending sequence (n− 3) · · · 2 in between.
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