
Evaluating Regular Path Queries
on Compressed Adjacency Matrices⋆

Diego Arroyuelo1,2[0000−0002−2509−8097],
Adrián Gómez-Brandón1,3[0000−0002−1216−2176], and

Gonzalo Navarro1,4[0000−0002−2286−741X]

1 Millennium Institute for Foundational Research on Data (IMFD)
2 Department of Computer Science, Pontificia Universidad Católica de Chile, Chile

3 CITIC Research Center, Universidade da Coruña, Spain
4 Department of Computer Science, University of Chile, Chile

Abstract. Regular Path Queries (RPQs), which are essentially regular
expressions to be matched against the labels of paths in labeled graphs,
are at the core of graph database query languages like SPARQL. A way
to solve RPQs is to translate them into a sequence of operations on the
adjacency matrices of each label. We design and implement a Boolean
algebra on sparse matrix representations and, as an application, use them
to handle RPQs. Our baseline representation uses the same space as the
previously most compact index for RPQs and excels in handling the
hardest types of queries. Our more succinct structure, based on k2-trees,
is 4 times smaller and still solves complex RPQs in reasonable time.

1 Introduction and Related Work

Graph databases have emerged as a crucial tool in several applications such
as web and social networks analysis, the semantic web, and modeling knowl-
edge, among others. We are interested in labeled graph databases, where the
graph edges have labels. An important kind of queries in such databases are
the regular path queries (RPQs, for short), which search for paths of arbitrary
length matching a regular expression on their edge labels [3]. For example, in
the simple RDF model [23], one can represent points of interest in New York

City as nodes in a graph, and have edges such as x
walk−−→ y indicating that x

is within a short walking distance of y, as well as edges of the form x
L−→ y if

subway stations x and y are connected directly by subway line L. Then the RPQ
‘Central Park walk/(N|Q|R)+/walk ?y’, asks for all sites ?y of interest that are
reachable from Central Park by using subway lines N, Q, or R, through one or
more stations and allowing a short walk before and after using the subway.

⋆ Supported by ANID – Millennium Science Initiative Program – Code ICN17 002,
and Fondecyt Grant 1-230755, Fondecyt Grant 1221926; CITIC is funded by Xunta
de Galicia and CIGUS; GAIN/Xunta de Galicia Grant ED431C 2021/53 (GRC);
Xunta de Galicia/FEDER-UE Grant IN852D 2021/3; MCIN/AEI and NextGener-
ationEU/PRTR Grants [PID2020-114635RB-I00, TED2021-129245B-C21]

2 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

RPQs are at the core of current graph database query languages, extend-
ing their expressiveness. In particular, the SPARQL 1.1 standard includes the
support for property paths, that is, RPQs extended with inverse paths (known
as two-way RPQs, or 2RPQs for short) and negated label sets. As SPARQL
has been adopted by several systems, RPQs have become a popular feature [3]:
out of 208 million SPARQL queries in the public logs from the Wikidata Query
Service [22], about 24% use at least one RPQ feature [9]. Further developments
like PGQL [28], Cypher [18], G-CORE [2], TigerGraph [15], and GQL [14], to
name some of the most popular ones, also support RPQ-like features.

Handling (2)RPQs can be computationally expensive to evaluate as they
usually involve a large number of paths [24], mostly for regular expressions us-
ing Kleene stars. There are two main algorithmic approaches to support them
[33]: (1) to represent the regular expression of the 2RPQ using a finite automa-
ton, which is then used to search over the so-called product graph [25]; and
(2) to extend the relational algebra to support computing the transitive clo-
sure of binary relations to evaluate regular expressions having Kleene stars [21].
Although most theoretical results on 2RPQs have followed the first approach,
property path evaluation in SPARQL has followed the second one [33].

Recent research introduced not only time- but also space-efficient solutions
for evaluating graph joins [5, 6, 10]. With the big graphs available today, this is
an important step towards in-memory processing of graph queries. In particular,
the Ring data structure [6] is able to represent a labeled graph in space close to
its plain representation, while supporting worst-case optimal joins (used, as we
said, for BGP queries). Moreover, by using little extra space the Ring can be
used to support 2RPQs efficiently [4], using the product-graph approach [25].

In this paper, we introduce a space-efficient approach for evaluating 2RPQs
that, essentially, represents the subgraph corresponding to each graph label p
using a sparse representation of its Boolean adjacency matrix Mp. We evaluate
2RPQs by translating them into classic operations on Boolean matrices [21].
This approach is typically disregarded because matrix sizes are quadratic on the
number of graph nodes, but we exploit the sparsity of those matrices to represent
them efficiently, using k2-trees [11]. The use of k2-trees to represent each RDF
predicate is not new, for example it has been used to handle triple matching and
binary joins [1] and full BGPs [5], but not 2RPQs. We show how to translate
2RPQs into matrix operations and how to handle the particularities of 2RPQs.

The result is the most space-efficient graph database representation (nearly 4
bytes per graph edge on a Wikidata graph, 4 times less than the previously most
compact representation—the Ring [4]—and 14–21 times smaller than classical
systems). In exchange, our structure is on average 5 times slower than the Ring,
though it still solves most complex 2RPQs in a few seconds. We also implement
an uncompressed baseline for sparse matrices based on the CSR and CSC formats
[29, Sec. 3.4]. Its space matches that of the Ring and it excels on the most
expensive 2RPQs, namely those where no graph node is specified. It is only
outperformed by Blazegraph, which uses 5.5 times more space. Our new matrix-
algebra-based approach stands out in the space-time tradeoff map.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 3

2 Basic Concepts

2.1 Labeled Graphs and Regular Path Queries (RPQs)

Let U be a totally ordered, countably infinite set of symbols or constants, which
we call the universe. A directed edge-labeled graph G ⊆ U3 is a finite set of triples

(s, p, o) ∈ U3 encoding the graph edges s
p−→ o from vertex s to vertex o with

edge label p. In the RDF model [23] (which has gained popularity in representing
directed edge-labeled graphs), s is called a subject, p a predicate, and o an object.

For a graph G, we define its set of edge labels as P = {p | ∃ s, o, (s, p, o) ∈ G}.
Similarly, let V = {x | ∃ y, z, (x, y, z) ∈ G ∨ (z, y, x) ∈ G} be the set of graph
nodes. We assume that the graph nodes have been mapped to integers in the
range [1 . . |V |]. A path ρ from a node x0 to node xn in a graph G is a string
x0p1x1 · · ·xn−1pnxn such that (xi−1, pi, xi) ∈ G for 1 ≤ i ≤ n. Given a path
ρ, we denote word(ρ) = p1 · · · pn the string labeling path ρ. Two-way RPQs
(2RPQs) also allow traversing reversed edges. Hence, we define the set of inverse
labels as ˆP = {̂ p | p ∈ P}, and P↔ = P ∪ ˆP the set of predicates and their
inverses. We define the inverse graph as ˆG = {(y, p̂, x) | (x, p, y) ∈ G}, and its
completion as G↔ = G∪ˆG. A two-way regular expression (2RE) is then formed
from the following rules: ε is a 2RE; if c ∈ P↔, then c is a 2RE; if E, E1 and
E2 are 2REs, then so are E∗ (Kleene star), E1/E2 (concatenation), and E1 | E2

(disjunction). If E is a 2RE, we also abbreviate E∗/E as E+ and ε|E as E?.
The language L(E) of E is defined exactly as that of the regular expressions

over the alphabet P↔ of terminals, and we say that a path ρ matches a 2RE E
iff word(ρ) ∈ L(E). A two-way regular path query, or 2RPQ for short, is a query
of the form (x,E, y), which looks for all the pairs of nodes (s, o) such that there
exists a path ρ = sp1 · · · pno in G↔ where word(ρ) ∈ L(E); x and/or y can be
constants (thus fixing the value of s and/or o, respectively), or variables.

2.2 An Algebra on Boolean Matrices

Let A = (ai,j)1≤i,j≤n and B = (bi,j)1≤i,j≤n be square n × n Boolean matrices.
We define the following operations of interest for our work:

– Transpose: AT , where aTi,j = aj,i, for 1 ≤ i, j ≤ n.
– Sum: A+B = C = (ci,j), where ci,j = ai,j ∨ bi,j , for 1 ≤ i, j ≤ n.
– Product:A×B = C, where for 1 ≤ i, j ≤ n we have ci,j =

∨
1≤k≤n ai,k ∧ bk,j .

– Exponentiation: Ak =
∏k

i=1 A, that is, A× · · · ×A, writing A k times.
– Transitive closure: A+ = A+A2 + · · ·+An.
– Reflexive-transitive closure: A∗ = I+A+, where I is the identity matrix.
– Row/column restrictions: ⟨r⟩A, a matrix whose row r equals row r of A;

A⟨c⟩, a matrix whose column c equals column c of A; and ⟨r⟩A⟨c⟩, a matrix
whose cell (r, c) equals entry A[r][c]. The remaining cells are 0.

The implementation of these operations on sparse matrix representations is
relatively straightforward, except for the multiplication and transitive closures.

4 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

2.3 K2-trees

A k2-tree [11] is a data structure able to space-efficiently represent binary rela-
tions, point grids, and graphs. We will use it in this paper to represent Boolean
matrices, as follows. Let A be a v × v Boolean matrix, assuming v is a power
of 2.5 The root node of the k2-tree represents the whole matrix A. Then, A is
divided into 4 equally-sized quadrants, A =

(
A0 A1

A2 A3

)
, such that submatrix A0 is

represented recursively by the first child of the root, A1 by the second child, and
so on. The process stops as soon as one gets into an empty submatrix, which
is represented by a leaf node. Each node in this tree has 4 children (in general,
k2 children, yet we use k = 2). This order in which quadrants are represented
(i.e., top-left, top-right, bottom-left, and bottom-right) is known as z-order. The
resulting tree height is log4 v

2 = log2 v.
To represent this tree space-efficiently, we traverse the tree in level order. At

each node, we write its 4-bit signature (which represents the node) indicating
whether each of the 4 children represents an empty submatrix or not. For in-
stance, the signature 0110 indicates that quadrants 0 and 3 of the submatrix
represented by the current node are empty, whereas A1 and A2 (second and
third children) are non-empty. The result is a bit vector L[1 . . 4n], where n is
the number of internal nodes in the tree. Each tree node is represented by the
first bit of its signature. Given a node i, its j-th child (0 ≤ j ≤ 3) is represented
at position 4 · rank1(L, i)+1, where rank(L, i) counts the number of 1s in L[1 . . i]
in O(1) time using o(n) additional bits of space [12, 26].

The k2-tree representation is especially useful for representing sparse matri-
ces. Let matrix A have a 1s. Then, in the worst case every 1 induces a 4-bit
signature in every level of the k2-tree, for a total of 4a log2 v bits. The actual
upper bound is lower because not all those signatures can be different: in the
worst case all the k2-tree nodes up to level ⌊log4 a⌋ exist, and from there on each
1 of A has its own path; this adds up to 4a log4(v

2/a) + 4a/3 + O(1) bits. The
figures further improve when the 1s are clustered in A [7].

3 Evaluating RPQs through the Boolean Matrix Algebra

For a given directed edge-labeled graph G of n edges, let P be the corresponding
set of graph labels as defined in Section 2.1. In our approach, for every p ∈ P we
define a |V |×|V | Boolean matrix Mp, such that Mp[x][y] = 1 iff (x, p, y) ∈ G. We
translate an RPQ into operations on those matrices, so that the resulting Boolean
matrix contains all pairs (x, y) that match the regular expression. We define next
the recursive formulasM to translate 2RPQs into matrix operations, following
Losemann and Martens’ work [21]. We start with the base cases:M(ε) = I, the
identity matrix;M(p) = Mp, for p ∈ P ;M(̂ p) = MT

p , for p ∈ P .
Next, let E1 and E2 be 2RPQs. We define the following recursive rules:

M(E1 | E2) = M(E1) +M(E2); M(E1/E2) = M(E1) ×M(E2); M(E+
1) =

M(E1)
+;M(E∗

1) = I +M(E1)
+, where I is the corresponding identity matrix.

5 If v is not a power of 2 we round it up to the next power, leaving the extended cells
empty. This imposes almost no extra overhead on the k2-tree representation.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 5

Then, given a 2RPQ R = (x,E, y), we evaluate it as follows: (1) if x and y
are both variables, R(R) = M(E); (2) If x is a variable and y is a constant,
R(R) =M(E)⟨y⟩; (3) If x is a constant and y is a variable, R(R) = ⟨x⟩M(E);
(4) If x and y are both constant, R(R) = ⟨x⟩M(E)⟨y⟩.

4 Implementation of the Boolean Matrix Algebra

We now describe how the Boolean-matrix operations are carried out. To analyze
the corresponding algorithms, we use |Mp| as the number of 1s in the matrix,
which is the number of edges with label p in graph G. We represent each matrix
Mp using a k2-tree of O(log |V |) levels, and each 1 in Mp induces O(log |V |) 1s
in its k2-tree representation. We will use v = |V |, as well as a = |A| and b = |B|
for the number of 1s in matrices A and B. We assume |V | = 2i, for i ≥ 0.

We implement k2-trees, and thus bitvectors with rank support, from scratch.
We store the bitvector as consecutive bits packed in a 64-bit-words array. To
support rank we store the cumulative sum of 1s up to every sth cell of the array.
To save space, full 64-bit integers store the full sum only every 216 bits, and the
others are stored in relative form using 16-bit integers. To compute rank we start
from the last recorded sum and use popcount on the full words until reaching the
desired one, and a partial popcount on the desired word. Here s is a space-time
tradeoff parameter: we use n/1024 + n/(4s) additional bits of space for storing
a bitvector B[1 . . n], and compute rank in time O(s). We use s = 4.

4.1 Transposition

Transposition is used to implement reversed edges, as seen in Section 3. Instead

of materializing the transposed matrix as a k2-tree, we note that AT =
(AT

0 AT
2

AT
1 AT

3

)
.

So, the k2-tree for AT can be obtained by interchanging the roles of the second
and third children of every node. We do not materialize this interchange, but
associate a transposed flag to every matrix, so we simply have to toggle it in
order to transpose the matrix in O(1) time.

4.2 Boolean Sum

The easier case to implement A + B arises when no matrix is transposed. In
this case we can perform a sequential pass over both k2-tree bitvectors, so as to
merge their corresponding nodes levelwise, without need of any rank operation.

We implement this traversal with a queue of tasks, which are of two types.
(1) A copy task indicates just to copy the next node from A or B; and (2) a
merge task indicates merging the next nodes of A and B. The queue is initialized
with a merge task, the read-pointers (which indicate the next k2-tree node to
be read) at the beginning of the bitvectors of A and B, and the write-pointer at
the beginning of the output k2-tree bitvector.

To process a copy task, we append the next signature (of A or B) to the
output, and enqueue its (up to) 4 children, as copy tasks for A or B, respectively.

6 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

To process a merge task, we append to the output the bitwise-or of the next 4-bit
signatures of A and B, and enqueue up to 4 new elements, as follows. For i from
1 to 4, if the ith bit of the signatures of both A and B are 1, we append a merge
task. If only one of them is 1, we append a copy task for the corresponding
matrix. If none is 1, we do not append a task. We do not append new tasks
when the corresponding nodes are k2-tree leaves. The process finishes when the
queue becomes empty. The total time is proportional to the sum of the bitvector
length of both matrices, O(a log(v2/a) + b log(v2/b)) ⊆ O((a+ b) log v).

Handling transpositions. If both A and B are transposed, we just merge them
as described and mark the result as transposed. When one is transposed and the
other is not, we cannot anymore resort to a sequential traversal of both bitvec-
tors. The transposed one must already have rank support built to enable k2-tree
traversals. We traverse sequentially the non-transposed k2-tree, and include in
the queue the corresponding node of the transposed one (as those nodes are not
read in left-to-right order). To generate the new tasks, we must use the k2-tree
traversal operations to locate the corresponding nodes in the transposed k2-tree.

While the time complexity is the same, summing a transposed with a non-
transposed matrix is slower in practice. We always choose that the transposed
matrix is the one with a shorter bitvector (we can because AT +B = (A+BT)T),
in order to minimize the non-local traversals.

4.3 Boolean Multiplication

For the multiplication A × B we use the following classic divide-and-conquer
recursive procedure. Let A =

(
A0 A1

A2 A3

)
and B =

(
B0 B1

B2 B3

)
be the four submatri-

ces into which the k2-tree representation splits A and B. Then, we recursively
compute 8 products of those submatrices in order to produce

A×B =

(
A0 ×B0 +A1 ×B2 A0 ×B1 +A1 ×B3

A2 ×B0 +A3 ×B2 A2 ×B1 +A3 ×B3

)
. (1)

A fortunate consequence of the k2-tree representation is that, if any of those
submatrices is empty (i.e., there is a 0 in the signature of the root of A or B),
then we know that its product with any other submatrix is also zero. Further,
summing a product Ai ×Bj with a zero matrix does not even need to copy the
product; we just reference it as the final result.

Once the k2-tree bitvectors of the four submatrices are recursively obtained,
we concatenate them levelwise. There is no need to build the rank data structures
until we obtain the final matrix because the concatenation proceeds left-to-right
in each level. We only take care of maintaining, for each bitvector, O(log v)
pointers to the positions where the levels start.

Transpositions are handled easily, by exchanging the meaning of M1 and M2

in every node of the k2-tree bitvector if M =
(
M0 M1

M2 M3

)
is transposed.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 7

A rough analysis. One term of the multiplication cost is given by the number
of recursive calls, which follows the recurrence T (v2) = 8 · T (v2/4). Since our
matrices are sparse, the worst case arises when every submatrix has points up to
the level ℓ where we have 4ℓ ≥ min(a, b) submatrices, that is, ℓ = log4 min(a, b).
From this level, the worst case is that the max(a, b)/min(a, b) points in the sub-

matrices of the fuller matrix distribute uniformly for ℓ′ = log4
max(a,b)
min(a,b) further

levels. Between those levels, the recurrence becomes T ′(v2) = 2 · T ′(v2/4) be-
cause the single point in the emptier submatrix can make us enter into at most
two submatrices of the other. This continues until, in level ℓ + ℓ′, both subma-
trices contain one point each, and from there on the cost is just log2 v − ℓ − ℓ′

to track a single point along both submatrices. The cost up to level ℓ is then
8ℓ = min(a, b)3/2. From each of those 8ℓ submatrices we have a cost of 2ℓ

′
=

(max(a, b)/min(a, b))1/2, and from each of those 8ℓ2ℓ
′
= min(a, b)

√
max(a, b)

submatrices we have O(log(v2/max(a, b))) additional time. The total cost of
recursive calls is then O(min(a, b)

√
max(a, b) log(v2/max(a, b))).

The second part of the cost is that of summing pairs of partial submatrices.
In the worst case, those matrices may add up to a · b points at across every level
ℓ of the recursion. Since summing submatrices in level ℓ costs O(ℓ) per element,
the total cost of summing partial results is in O(ab log2 v). Since this is an utterly
pessimistic upper bound, we offer an average-case time analysis for matrices with
uniformly distributed 1s. We multiply 8ℓ pairs of v/2ℓ×v/2ℓ submatrices in level
ℓ. On average, each has a/4ℓ 1s in A and b/4ℓ cells in B. Every such aik will
pair with every such bk′j iff k = k′, which occurs with probability 1/(v/2ℓ),
so on average there will be 8ℓ(a/4ℓ)(b/4ℓ)(2ℓ/v) = ab/v 1s to sum per level ℓ,
with a maximum of v2. This leads to a total average cost upper bounded by
O(min(a, b)

√
max(a, b) log v +min(v2, (ab/v)) log2 v).

4.4 Closure

We opted for a simple transitive closure algorithm for now. The closure A+ is
obtained by iteratively computing A← A+ A× A until no change occurs in A
[19]. This occurs at most after log2 v iterations, so the time complexity is O(log v)
times that of multiplying A by itself (note that a grows in every iteration, so the
time complexity becomes bounded by O(|A+|3/2 log3 v)). The transitive closure
is computed as A∗ = I +A+, where I is the identity matrix.

Needless to say, unrestricted closure operations are the most expensive, both
in time complexity and in practice, so we aim to avoid them as much as possible.

4.5 Restrictions

Restrictions indicate that we only want to retrieve a column or a row of the
matrix after the operations, or even just a cell. A naive way to implement them is
to first obtain the full matrixM and then traverse the desired row or column. Yet,
restrictions give an important opportunity of optimizing all the other operations.

8 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

Sums. For ⟨r⟩(A + B)⟨c⟩ (where only ⟨r⟩ or only ⟨c⟩ could be present as well),
we restrict the traversal of both matrices, acting as if the submatrices not inter-
secting the desired row and/or columm were empty. That is, we implement the
restricted sum as ⟨r⟩A⟨c⟩ + ⟨r⟩B⟨c⟩. We cannot, however, simply traverse both
k2-tree bitvectors and write the output left-to-right, as in Section 4.2, because
now we do not know beforehand whether a submatrix (or the merge of two
submatrices) will be nonempty after restricting it to some row/column, even
if it intersects the row/column. Our solution is then recursive, similar to the
multiplication algorithm (yet still considerably simpler).

Products. A restricted product ⟨r⟩(A × B)⟨c⟩ is handled as (⟨r⟩A) × (B⟨c⟩),
where again only one of the restrictions may be present. We consider the column
or row restrictions along the whole recursion, pretending that the submatrices
that do not intersect the desired row or column are empty.

Closures. Operation A+⟨c⟩ is implemented as S ← (E + A)⟨c⟩, where E is the
empty matrix, and then repeatedly doing P ← A×S and S ← S+P until S does
not change. Note that the only nonzero column of P and S is c. To implement
A∗⟨c⟩ we start with S = (I +A)⟨c⟩ instead. A row restriction ⟨r⟩A+ is handled
analogously, starting with S = ⟨r⟩(A + E) and then iterating over P ← S × A
and S ← S + P , or using the initial step S ← ⟨r⟩(I +A) for ⟨r⟩A∗.

Note that this iteration does not make the path lengths grow exponentially
for the transitive closure, but linearly. Therefore, we could need up to v iterations
to compute the closure. In practice, the closure is reached much sooner and the
operations are significantly faster, leading to a much better solution.

When both row and column are restricted, we only want a cell of the transitive
closure. We then choose the row/column with fewer elements in A and run a row-
restricted or column-restricted closure, whichever is emptier. At each step, we
check if the desired cell is full, stopping immediately if so.

4.6 Query Plan

We first build the syntax tree of the 2RE E of the 2RPQ (x,E, y). In principle,
we can simply traverse the syntax tree and solve it in postorder in the standard
way, interpreting the leaves p as the matrix Mp, p̂ as MT

p , and ε as I, and
interpreting the internal nodes as the corresponding operations on the matrices
resulting from their children, according to the translations of Section 3. Our
particular application, however, enables some relevant optimizations.

Let us first assume that both x and y are variables. A first simple optimization
is that the closures are idempotent, so a sequence of closures is reduced to one.
More precisely, (A∗)∗ = (A∗)+ = (A+)∗ = A∗ and (A+)+ = A+. Sums and
products yield more important optimizations, though.

Sums. We exploit the fact that the Boolean sum is commutative and associative
to carry out a sequence of consecutive sums, E1 | . . . | Em, in the best possible
order. Since the cost of computing A+B is proportional to |A|+|B|, if it were the

Evaluating Regular Path Queries on Compressed Adjacency Matrices 9

case that |A+B| = |A|+ |B|, the best possible order would be given by building
the Huffman tree [20] of the matrices Ai = M(Ei) using |Ai| as their weight.
Since, instead, it holds that max(|A|, |B|) ≤ |A + B| ≤ |A| + |B|, we opt for a
heuristic that simulates Huffman’s algorithm on the actual size of the matrices
as they are produced. Concretely, we start with {A1, . . . , Am} and iteratively
remove from the set the two matrices Ai and Aj with the smallest sizes, sum
them, and return Ai +Aj to the set, until it has a single matrix.

Products. Matrix multiplication is not commutative but still associative, so
we can decide the order in which the sequence of multiplications to compute
E1 / · · · / Em is carried out. We cannot apply the well-known optimal algorithm
to choose the order for dense matrices [13, Sec. 15.2] because the time complexity
of our sparse matrix multiplications depends on the number of 1s in the matri-
ces. Further, this number of 1s can increase or decrease after a multiplication.
We then opt for a heuristic analogous to the one we use for sums: we start from
the sequence A1, . . . , Am =M(E1), . . . ,M(Em) and iteratively choose the con-
secutive pair Ai, Ai+1 that minimizes |Ai|+ |Ai+1|, multiply them, and replace
the pair by Ai ×Ai+1, until the sequence has a single element.

Handling restrictions. When x (resp., y) is a constant we are restricting a row
(resp., column) of the matrix after the operations. For efficiency, then, we apply
the restricted operations of Section 4.5. Regarding the sums, because ⟨r⟩(A +
B)⟨c⟩ = ⟨r⟩A⟨c⟩ + ⟨r⟩B⟨c⟩, we can restrict all the involved matrices at the
same time. Consequently, the sum can be computed in any order, and the plan
still focuses on looking for the best order based on Huffman’s algorithm. In the
restriction on products, we obtain a sequence ⟨r⟩A1×· · ·×Am⟨c⟩ (where only ⟨r⟩
or only ⟨c⟩ could be present). Consider the case ⟨r⟩A1×· · ·×Am. The number of
1s reduces faster when multiplying the pair that contains the restricted matrix,
so we compute A′ = ⟨r⟩A1 × A2. The matrix A′ already has all zeros except
in row r, so we can continue left-to-right in the sequence with normal matrix
multiplications, A′ × A3, and so on. The case A1 × · · · × Am⟨c⟩ is analogous,
starting with A′ = Am−1×Am⟨c⟩ and then completing the multiplications right
to left. When both restrictions are present, we choose an end and proceed as
explained until the final multiplication, ⟨r⟩A′×A′′⟨c⟩, which is carried out with
the restricted multiplication algorithm to enforce the other restriction.

Some restrictions can be inherited by the operands of a node, which speeds
up processing. Since ⟨r⟩(A+B)⟨c⟩ = ⟨r⟩A⟨c⟩+ ⟨r⟩B⟨c⟩, both children of a sum
inherit the same restrictions. Instead, the product ⟨r⟩(A × B)⟨c⟩ = (⟨r⟩A) ×
(B⟨c⟩), thus only the left child inherits a row restriction and only the right child
inherits a column restriction. Closures do not inherit their restrictions to their
operand, because ⟨r⟩A∗⟨c⟩ ≠ (⟨r⟩A⟨c⟩)∗ and ⟨r⟩A+⟨c⟩ ≠ (⟨r⟩A⟨c⟩)+. Restrictions
are not inherited to leaves of the syntax tree, however, because internal operands
handle them more efficiently than leaves. On the other hand, they are removed
from parents when inherited to children because the nonrestricted operands run
faster than those of Section 4.5 when their operands have already been restricted.

10 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

Finally, we create a special implementation for the case A+×B⟨c⟩ that avoids
computing the full closure A+, as a kind of restricted positive closure that starts
instead with S ← A×B⟨c⟩. To handle A∗×B⟨c⟩ we start with S ← (E+B)⟨c⟩.
The cases ⟨r⟩A× B∗/+ are handled analogously, as well as the cases with both
restrictions. The parser is enhanced to detect those cases.

5 Experimental Results

We implemented our scheme in C++11 and ran our experiments on an Intel(R)
Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores, 15 MB of cache, and 384 GB
of RAM. We compiled using g++ with flags -std=c++11, -O3, and -msse4.2.

5.1 A Baseline

We implemented a baseline representation of sparse matrices, which combines
(and adapts to the Boolean case) the well-known CSR and CSC formats [29,
Sec. 3.4] in order to speed up multiplications. It stores a vector of nonempty
row numbers and a similar vector of their starting positions in a third, larger,
vector. This third vector stores, for each nonempty row, the increasing sequence
of the columns of its nonempty cells. Similar (redundant) vectors are stored for
the column-wise view of the matrix.

Transpositions are carried out in O(1) time by just exchanging the row-view
and the column-view vectors. The Boolean sum A + B merges the nonempty
rows, and when the same row appears in both matrices it merges their nonempty
columns. The column-view is computed analogously, thus the sum takes time
O(a + b). For the Boolean multiplication A × B, we use Schoor’s algorithm
[30], whose average time is O(ab/v) if the 1s are uniformly distributed. Our
implementation, which is more space-efficient, takes O(ab log(v)/v) time.

Row and/or column restrictions are handled by restricting the above algo-
rithms to the given row/column; note that finding the desired rows/columns
takes just O(log v) time with the baseline format. Closure operations and their
restrictions are performed as for the k2-tree based representation. The parser
and its optimizations are also exactly the same.

5.2 Benchmark

We used a Wikidata graph [32] of n = 958,844,164 edges, v = 348,945,080 nodes,
and 5,419 predicates. Separating the edges by predicate and representing the two
nodes of each edge as two 32-bit integers, the data set requires 8.5 GB.

We compared our implementations with the following systems:

– Ring : A compact data structure that supports RPQs in labeled graphs [4].
– Jena: A reference implementation of the SPARQL standard.
– Virtuoso: A popular graph database that hosts the public DBpedia endpoint,

among others [17].

Evaluating Regular Path Queries on Compressed Adjacency Matrices 11

k2-tree Baseline Ring Jena Virtuoso Blazegraph

Index space 4.33 16.45 16.41 95.83 60.07 90.79
Index time 0.3 5.5 7.5 37.4 3.0 39.4

Average 8.40 5.67 1.68 5.26 3.87 3.58
Median 1.38 2.46 0.08 0.20 0.14 0.13
Timeout 83 48 22 105 55 46

Average c 7.47 5.37 0.65 3.83 2.98 3.30
Median c 1.32 2.48 0.08 0.17 0.11 0.13
Timeout c 57 37 2 63 37 39

Average ¬c 24.19 10.75 19.22 29.59 18.95 8.35
Median ¬c 13.52 0.63 5.53 4.50 7.98 0.19
Timeout ¬c 26 11 20 42 18 7

Table 1. Index space (in bytes per triple), indexing time (in hours), and some statistics
on the query times (in seconds). Row “Timeouts” counts queries that take over 60
seconds or are rejected by the planner as too costly. 2RPQs with some constant node
are indicated by c, and without by ¬c.

– Blazegraph: The graph database system [31] hosting the official Wikidata
Query Service [22].

To evaluate complex real-world 2RPQs, we extracted all 2RPQs that were
not simple labels, from the code-500 (timeout) sections of the seven intervals
of the Wikidata Query Logs [22]. We then normalized variable names and re-
moved disrupting queries: duplicated queries and queries producing more than
106 results for compatibility with Virtuoso. The result was 1,589 unique queries.

We ran the queries in each system with a timeout limit of 60 seconds. Table 1
summarizes the space usage and time performance of all the systems. Notably,
our approach, using k2-trees, yields the most compact structure, requiring only
4.33 bytes per triple (bpt). This is less than half the space of the described plain
representation of the raw data, and nearly a fourth of the space used by the next
smallest representations that support 2RPQs (Ring and our baseline). Classical
systems use 14–21 times more space than our k2-trees. Note also that the k2-tree
representation is orders of magnitude faster to build than the others.

Our reduced space is paid in terms of time performance. Our structure is
around 5 times slower than the Ring, on average, and 1.5–2.5 times slower than
the classical systems. Still, we solve these complex 2RPQs in less than 10 seconds
on average. Among our matrix-based methods, our structure is 50% slower than
the baseline, which uses 4 times more space.

On 2RPQs with some constant, our structure is 11.5 times slower than the
Ring and 2.0–2.5 times slower than the classical systems. The gap is considerably
narrowed, however, on 2RPQs with both variables, where our structure is just
25% slower than the Ring. Blazegraph is the fastest system in this case, being
around 3 times faster than our structure, yet this comes at the expense of using

12 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

0 10 20 30 40 50 60 70 80 90
Space (bpt)

0

5

10

15

20

Ti
m

e
(s

ec
s)

0 10 20 30 40 50 60 70 80 90
Space (bpt)

0

10

20

30

40

50

60

k2-tree Baseline Ring Jena Virtuoso Blazegraph

Fig. 1. Space and query time distribution of the systems in general (left) and for the
2RPQs with no constants (right). The baseline and the Ring use almost the same space.

using 21 times more space. Our baseline yields the best tradeoff for these queries,
as it uses 5.5 times less space than Blazegraph and is only 30% slower.

Figure 1 displays the space and query time distribution of all the systems.
It can be seen that the k2-trees and the Ring are the dominant representations
in general. When it comes to handling the hardest types of 2RPQs (i.e., with-
out constants), the dominant representations are the two matrix-algebra-based
solutions we have introduced and Blazegraph.

6 Conclusions

We have explored the use of a matrix algebra to implement Regular Path Queries
(RPQs) on graph databases. This path is usually disregarded because the matrix
sizes are quadratic on the number of graph nodes, but we exploit their sparsity
to sidestep this issue. Our experiments show that even our baseline (i.e., uncom-
pressed) sparse matrix representation uses the same space of the most compact
among previous representations, and outperforms them on the most difficult
RPQs (i.e., those with no constant ends). We also develop a more compressed
sparse matrix representation based on k2-trees, which is four times smaller than
the baseline and, although slower, it still handles the RPQs within a few seconds.

Immediate extensions to our work are the implementation of negated labels,
which require a nonexpensive way to represent and handle submatrices full of
1s. Such extensions of k2-trees have been proposed [8], but they have not been
adapted to handle Boolean matrix operations. We also plan to implement more
efficient transitive closure algorithms [27]. Finally, we plan to strenghten our
query optimizer in order to detect common subexpressions and exploit a number
of identities of the Boolean algebra we have disregarded for now.

This work can be combined with Qdags [6] to support multijoins as well. We
also plan to extend it to a complete algebra for sparse matrices, Boolean and
possibly numeric [29]. Such matrices arise, for example, in ML applications [16].

An extended version can be found in https://arxiv.org/abs/2307.14930.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 13

References

1. Álvarez-Garćıa, S., Brisaboa, N.R., Fernández, J., Mart́ınez-Prieto, M., Navarro,
G.: Compressed vertical partitioning for efficient RDF management. Knowledge
and Information Systems 44(2), 439–474 (2015)

2. Angles, R., Arenas, M., Barceló, P., Boncz, P.A., Fletcher, G.H.L., Gutiérrez,
C., Lindaaker, T., Paradies, M., Plantikow, S., Sequeda, J.F., van Rest, O.,
Voigt, H.: G-CORE: A core for future graph query languages. In: SIGMOD In-
ternational Conference on Management of Data. pp. 1421–1432. ACM (2018).
https://doi.org/10.1145/3183713.3190654

3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of Modern Query Languages for Graph Databases. ACM Computing Surveys
50(5), 68:1–68:40 (2017). https://doi.org/10.1145/3104031

4. Arroyuelo, D., Hogan, A., Navarro, G., Rojas-Ledesma, J.: Time- and space-
efficient regular path queries. In: Proc. 38th IEEE International Conference on
Data Engineering (ICDE). pp. 3091–3105 (2022)

5. Arroyuelo, D., Navarro, G., Reutter, J.L., Rojas-Ledesma, J.: Optimal joins using
compressed quadtrees. ACM Transactions on Database Systems 47(2), article 8
(2022)

6. Arroyuelo, D., Hogan, A., Navarro, G., Reutter, J., Rojas-Ledesma, J., Soto, A.:
Worst-case optimal graph joins in almost no space. In: ACM International Confer-
ence on Management of Data (SIGMOD). pp. 102–114 (2021)

7. de Bernardo, G., Gagie, T., Ladra, S., Navarro, G., Seco, D.: Faster compressed
quadtrees. Journal of Computer and System Sciences 131, 86–104 (2023)

8. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Proc. 20th International
Symposium on String Processing and Information Retrieval (SPIRE). pp. 96–108
(2013)

9. Bonifati, A., Martens, W., Timm, T.: Navigating the Maze of Wikidata Query
Logs. In: The World Wide Web Conference (WWW). pp. 127–138. ACM (2019)

10. Brisaboa, N., Cerdeira-Pena, A., de Bernardo, G., Fariña, A., Navarro, G.:
Space/time-efficient rdf stores based on circular suffix sorting. The Journal of Su-
percomputing 79, 5643–5683 (2023)

11. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of Web graphs
with extended functionality. Information Systems 39(1), 152–174 (2014)

12. Clark, D.R.: Compact PAT Trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 3rd edn. (2009)

14. Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L., Lindaaker, T.,
Marsault, V., Martens, W., Michels, J., Murlak, F., Plantikow, S., Selmer, P., van
Rest, O., Voigt, H., Vrgoč, D., Wu, M., Zemke, F.: Graph pattern matching in
GQL and SQL/PGQ. In: Proc. International Conference on Management of Data
(SIGMOD). pp. 2246—-2258 (2022)

15. Deutsch, A., Xu, Y., Wu, M., Lee, V.E.: Aggregation Support for Modern Graph
Analytics in TigerGraph. In: SIGMOD International Conference on Management
of Data. pp. 377–392. ACM (2020). https://doi.org/10.1145/3318464.3386144

16. Elgohary, A., Boehm, M., Haas, P.J., Reiss, F.R., Reinwald, B.: Compressed linear
algebra for declarative large-scale machine learning. Communications of the ACM
62(524), 83–91 (2019)

14 D. Arroyuelo, A. Gómez-Brandón, and G. Navarro

17. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Networked
Knowledge – Networked Media, pp. 7–24. Springer (2009)

18. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.: Cypher: An Evolving Query
Language for Property Graphs. In: SIGMOD International Conference on Man-
agement of Data. pp. 1433–1445. ACM (2018)

19. Furman, M.E.: Application of a method of fast multiplication of matrices in the
problem of Finding the transitive closure of a graph. Soviet Mathematical Doklady
11(5), 1252 (1970)

20. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Electrical and Radio Engineers 40(9), 1098–1101
(1952)

21. Losemann, K., Martens, W.: The Complexity of Evaluating Path Expressions in
SPARQL. In: Proc. 31st Symposium on Principles of Database Systems (PODS).
pp. 101–112. ACM (2012)

22. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge
Graph. In: International Semantic Web Conference (ISWC). pp. 376–394 (2018)

23. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (2004),
http://www.w3.org/TR/rdf-primer/

24. Martens, W., Niewerth, M., Popp, T., Rojas, C., Vansummeren, S., Vrgoc, D.: Rep-
resenting paths in graph database pattern matching. Proc. VLDB Endow. 16(7),
1790–1803 (2023), https://www.vldb.org/pvldb/vol16/p1790-martens.pdf

25. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM Journal on Computing 24(6), 1235–1258 (1995)

26. Munro, J.I.: Tables. In: Proc. 16th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). pp. 37–42. LNCS 1180 (1996)

27. Penn, G.: Efficient transitive closure of sparse matrices over closed semirings. The-
oretical Computer Science 354(1), 72–81 (2006)

28. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph query
language. In: International Workshop on Graph Data Management: Experiences
and Systems (GRADES). p. 7. ACM (2016)

29. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
30. Schoor, A.: Fast algorithm for sparse matrix multiplication. Information Processing

Letters 15(2), 87–89 (1982)
31. Thompson, B.B., Personick, M., Cutcher, M.: The Bigdata®RDF Graph

Database. In: Linked Data Management, pp. 193–237. Chapman and Hall/CRC
(2014)

32. Vrandecic, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

33. Yakovets, N., Godfrey, P., Gryz, J.: Query Planning for Evaluating SPARQL Prop-
erty Paths. In: SIGMOD International Conference on Management of Data. pp.
1875–1889. ACM (2016)

