GraCT: A Grammar based Compressed
representation of Trajectories *

Nieves R. Brisaboa!, Adridn Gémez-Brandén', Gonzalo Navarro?, and José R.
Parama!

! Depto. de Computacién, Universidade da Corufia, Spain
{brisaboa, adrian.gbrandon, jose.parama}@udc.es
2 Dept. of Computer Science, University of Chile, Chile. gnavarro@dcc.uchile.cl

Abstract. We present a compressed data structure to store free tra-
jectories of moving objects (ships over the sea, for example) allowing
spatio-temporal queries. Our method, GraCT, uses a k*-tree to store the
absolute positions of all objects at regular time intervals (snapshots),
whereas the positions between snapshots are represented as logs of rela-
tive movements compressed with Re-Pair. Our experimental evaluation
shows important savings in space and time with respect to a fair baseline.

1 Introduction

After more than two decades of research on moving objects, this field still
presents interesting problems that represent a topic of active research. The re-
newed interest to represent and exploit data about moving objects is mainly due
to the new context in which large amounts of data (from, for example, cellular
phones informing about the GPS coordinates of their position in real time) need
to be stored and analyzed. Therefore, new big data sets and new application
domains demand more efficient technology to manage moving objects.

Traditional spatio-temporal indexes can be classified into two families, space-
based indexes and trajectory-based indexes. Each type of index is adapted to
answer different types of queries. Indexes in the first family usually are mod-
ifications of the classical spatial R-tree, like for example the RT-tree [17], the
HR-tree [11], the 3DR-tree [14], the MV3R-Tree [13], or the SEST-Index [5].
Those indexes efficiently answer queries which return the ids or the number of
objects into a given spatial region at a specific time instant (time-slice queries)
or at a specific time interval (time-interval queries), but they cannot efficiently
return the position of an object at a time instant or which was its trajectory®
during a time interval.

The second family of indexes were designed to improve the management of
trajectories, like SETI [4], the CSE-tree [15], and trajectory splitting strategies

* This work was funded in part by European Unions Horizon 2020 Marie Sklodowska-Curie grant
agreement No 690941; Ministerio de Economia y Competitividad under grants [TIN2013-46238-
C4-3-R], [CDTI IDI-20141259], [CDTI ITC-20151247], and [CDTI ITC-20151305]; Xunta de Gali-
cia (co-founded with FEDER) under grant [GRC2013/053]; and Fondecyt Grant 1-140796, Chile.

3 We informally define trajectory as a list of positions in consecutive time instants.

[6,12]. Those indexes can describe trajectories of individual objects but cannot
answer efficiently time-slice or time-interval queries over objects in a specific
region of the space.

Those indexes maintain the bulk of the data on disk, while the index struc-
tures reside in main memory. They rarely use compression to reduce disk or
memory usage, or to reduce the disk transfer time.

In this paper we introduce an in-memory representation called Grammar
based Compressed representation of Trajectories (GraCT). GraCT is a trajectory-
oriented technique, that is, it belongs to the second family. However, it structures
the index into snapshots of the objects taken at regular time instants, and logs
of their movements between snapshots. This allows GraCT to efficiently answer
time-slice and time-interval queries as well, by processing the logs between two
snapshots. Besides, GraCT represents data and index together, and uses gram-
mar compression on the logs. This not only reduce the size of the representation,
but also the nonterminals are enriched to allow processing long parts of the log
files without decompressing them, and faster than with a plain representation.
Its space savings allow GraCT fitting much larger datasets in main memory,
where they can be queried much faster than on disk.

2 Background

2.1 KZ2-tree

The k2-tree is a compact data structure originally designed for representing Web
graphs in little space, allowing its manipulation directly in compressed form [3].
The k2-tree is used to represent the adjacency matrix of the graphs, and it can
also be used to represent any type of binary matrices.

The k2-tree is conceptually a non-balanced k2-ary tree built from a binary
matrix by recursively subdividing the matrix into k? submatrices of the same
size. It starts by subdividing the original matrix into k? submatrices of size
n?/k?, being n x n the size of the matrix. The submatrices are ordered from left
to right and from top to bottom. Each of those submatrices generates a child
of the root node whose value is 1 if there is at least one 1 in the cells of that
submatrix, and 0 otherwise. The subdivision proceeds recursively for each child
with value 1 until it reaches a submatrix full of Os, or it reaches the cells of the
original matrix (i.e., submatrices of size 1 x 1). Figure 1 shows an example of this
subdivision (left) and the resulting conceptual k2-ary tree (right up) for k = 2.

Instead of using a pointer-based representation, the k2-tree is compactly
stored using two bitmaps T and L (see Figure 1). T stores all the bits of the
k2-tree except those in the last level. The bits are placed following a levelwise
traversal: first the k2 binary values of the root node, then the values of the sec-
ond level, and so on. L stores the last level of the tree. Thus, it represents the
value of original cells of the binary matrix.

It is possible to obtain any cell, row, column, or region of the matrix very
efficiently, by just running rank and select operations [7] over the bitmap T

>

A 0
1 o 0o o0
1 10 1

| AAAAA A A

411 111111111111 1111 1100 1011 1000
T : 1016 1010 1000 1111 1600 1101
L : 1111 1111 1111 1111 1111 1111 1160 1011 1000

Fig. 1. Example of binary matrix(left) and resulting k2-tree conceptual representation
(right up), and the compact representation (right down), with k = 2.

1[8]o]8]o]8]7]o[8]7]o]o]8]o]8]o]o]9]

[8]o]8]
[a[a]s]7]o]8]7]o]o]A][A[2]9] [A »89] R

[a[a]8]7]o]8]7]B]A[A]B] B-—»99
DOCAE0000 c o7
c [p[c]s[cle]o[e] D = AA

Fig. 2. An example of Re-pair compression.

ranky (T, p) is the number of occurrences of bit b € {0,1} in T up to position
p, and selecty (T, j) is the position in T of the jth occurrence of the bit b. For
example, given a value 1 at position p in T, its k2 children will start at position
Penitdren = rTanki(T,p) x k? of T, except when the position of the children
of a node returns a position pepirgren > |T|; in that case we access instead
Llpchitaren — |T|] to retrieve the actual value of the cells. Similarly, the parent
of a position p in T : L is ¢ — (¢ mod k?), where ¢ = select, (T, |p/k?]), and q
mod k? indicates which is the submatrix of p within its parent’s.

2.2 Re-Pair

Re-pair [9] is a grammar-based compression method. Given a sequence of integers
I (called terminals), it proceeds as follows: (1) it obtains the most frequent pair
of integers ab in I, (2) it adds the rule s — ab to a dictionary R, where s is a
new symbol not appearing in I (called a nonterminal), (3) every occurrence of
ab in I is replaced by s, and (4) it repeats steps 1-3 until every pair in I appears
only once (see Figure 2). The resulting sequence after compressing I is called C.
Every symbol in C represents a phrase (a sequence of 1 or more of the integers
in I). If the length of the represented phrase is 1, then the phrases consists of an
original (terminal) symbol, otherwise it is a new (nonterminal) symbol. Re-Pair
can be implemented in linear time, and a phrase can be recursively expanded in
optimal time (that is, proportional to its length).

3 Owur approach

GraCT represents moving objects that follow free trajectories on the space. We
consider the time as discrete, therefore each time instant actually corresponds to
a short period of time. We assume that in each time instant, each object informs
its position (e.g., international regulations require that ships inform their GPS
position at regular intervals). We use a raster model to represent the space,
therefore the space is divided into cells of a fixed size, and objects are assumed
to fit in one cell. The size of the cells and the period used to sample the time
are parameters that can be adapted to the specific domain.

Every s time instants, GraCT uses a data structure based on k2-trees to rep-
resent the absolute positions of all objects. We call those time instants snapshots.
The distance s between snapshots is another parameter of the system. Between
two consecutive snapshots the trajectory of each moving object is represented
as a log, which is an array of movements, that is, relative positions with respect
to the previous time instant.

Snapshots Each snapshot uses a k?-tree where a cell set to 1 indicates that
one or more objects are placed in that cell, whereas a 0 means that no object
is in that cell. However, we still need to know which objects are in a cell set to
1. Observe that each 1 in the binary matrix corresponds to a bit set to 1 in the
bitmap L of the k?-tree. We store the list of object identifiers corresponding to
each of those bits set to 1 in an array, where the objects identifiers are sorted
following the order of appearance in L. We call that array perm, since that array
is a permutation [8]. In addition, we need a bitmap, called @, aligned with perm,
that informs with a 0 that the object identifier aligned in perm is the last object
of a leaf, whereas a 1 signals that more objects exist. Observe in Figure 3, the
object identifiers corresponding to the first 1 in L (which is at position 3 of L)
are stored starting at position 1 of perm. In order to know how many objects
are in the corresponding cell, we access @ starting at position 1 searching for the
first 0, which is at position 2, therefore there are two objects in the inspected
cell. By accessing positions 1 and 2 of perm, we obtain the object identifiers 4
and 2. Now, in position 3 of perm starts the object identifiers corresponding to
the second 1 in L, and so on.

With these structures used to represent the absolute positions of all the
moving objects at snapshots we can answer two types of queries:

— Find the objects in a given cell: First, using the procedure shown in Section
2.1 to navigate downwards the k2-tree, we traverse the tree from the root
until reaching the position n in L corresponding to that cell. Next, we count
the number of 1s in the array of leaves L until the position n; this gives us
the number of leaves with objects up to the n'* leaf, x = rank;(L,n). Then
we calculate the position of the (z — 1)th 0 in @), which indicates the last bit
of the previous leaf (with objects), and we add 1 to get the first position of
our leaf, p = selecto(Q,z — 1)+ 1. Then p is the position in perm of the first
object identifier corresponding to the searched position. From p, we read all

v [l o[l [sl o[o[e[o] o] i o[1[0 o]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
“a v Lol ol o sl a[o] o[sl o[] o] o] o] i] 1] 4]
_7) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
e ®
o [1[o[1] o] o[o[o[o[o] 1] o] o]
1 2 3 4 5 6 7 8 9 10 11 12
permv‘ 4‘ 2‘ 7‘ 3‘ 5| 9‘ 8‘ 1‘ 6‘10‘12‘ 11‘
1 2 3 4 5 6 7 8 9 10 11 12
®
® e ®
®

Fig. 3. The position of objects in the space (left), and the representing snapshot (right).

the object identifiers aligned with 1s in @, until we reach a 0, which signals
the last object identifier of that leaf.

— Find the position in the space of a given object. First, we need to obtain
the position k in perm of the searched object. In order to avoid a sequential
search over perm to obtain that position, we add additional structures to
compute cells of the inverse permutation of perm [10]. Then, we have to
find the leaf in L corresponding to the k** position of perm. For this sake,
we calculate the number of leaves before the object in position k of perm,
that is, we need to count the number of Os until the position before k,
y = ranky(Q, k — 1). Then we find in L the position of the (y + 1)*" 1, that
is, select;(L,y + 1). With that position of L, we can traverse the k2-tree
upwards in order to obtain the position in the space of that cell, and thus
the position of the object.

Log of relative movements The changes that occur between snapshots are
tracked using a log file per object. The use of snapshots and logs is not new [16],
but in previous works log values are stored according the appearance of “events”
(such as objects that appear in or disappear from an area).

The log stores relative movements with respect to the last known position
of an object, that is, to its position in the preceding time instant. Objects can
change their positions along the two Cartesian axes, so every movement in the
log can be described with two integers. Instead, in order to save space, we encode
the two values with a unique positive integer. For this sake, we enumerate the
cells around the actual position of an object, following a spiral where the origin
is the initial object position, as it is shown in Figure 4 (left). Let us suppose that
an object moves with respect to the previous known position one cell to the East
in the x-axis, and one cell to the North in the y-axis. Instead of encoding the
movement as the pair (1,1), we encode it as an 8. In Figure 4 (right) we show the
trajectory of an object starting at cell (0,2). Each number indicates a movement
between two consecutive time instants. Since most relative movements involve
short distances, this technique produces a sequence of usually small numbers.

Sometimes real objects stop emitting signals during periods of time. This
forces us to add two new possible movements inside a log: relative reappearance

42| 43| 44| 45| 46| 47 | 48

N,

41| 20| 21| 22| 23| 24| 25

40| 19|6 |7 |8 |9 | 26

39| 18| 5 0 1 10 | 27

38174 |3 |2 |11 28

37| 16| 15| 14| 13| 12| 29

36| 35| 34| 33| 32| 31| 30

0 1 2 3 4 5 6 7 8 9 10 1 12 13

Fig. 4. Encoding object’s movements.

and absolute reappearance. We reserve two codewords to signal these events. We
use a relative reappearance when an object disappears and reappears between
the same snapshots, and an absolute reappearance otherwise. Relative reappear-
ances are followed by the time elapsed from the disappearance and a relative
movement from that time instant, whereas absolute reappearances are followed
by the number of time instants that elapsed since the disappearance and the
absolute values of the (z,y) coordinates of the new position of the object.

4 Compressing the log

The log not only saves much space compared to using k2-trees for every instant,
but it also offers important opportunities for further compression. A first choice
is statistical compression, since as said, most movements are short-distanced and
thus our spiral encoding uses mostly small numbers. We exploit this fact using
(s,c)-Dense Codes (SCDC) [2], a very fast-to-decode statistical compressor that
has a low redundancy over the zero-order empirical entropy of the sequence. We
will use this approach as fair baseline.

The second approach, which gives the title to this paper, uses grammar com-
pression on the set of all the log files. Our aim is to exploit the fact that there are
typical trajectories followed by many objects, which translate into long sequences
of identical movements that grammar compression can convert into single non-
terminals. This includes, in particular, long straight trajectories in any direction.

ScdcCT: Using SCDC for compressing the logs The size of the cells and
the time elapsed between consecutive time instants must be carefully chosen to
represent properly the typical speed of moving objects, so that short movements
to contiguous cells are more frequent than movements to distant cells. Instead
of sorting the spiral codes by frequency, we will simply assume that smaller
numbers are more frequent than larger ones. Since the (s, ¢)-codes depend only
on the relative frequency of the symbols, we do not need to store any statistical
model. Still, we will use the frequencies to optimize s and ¢ in order to minimize
the space usage.

GraCT: Using Re-Pair for compressing the logs Moving objects spend
most of the time either stopped or moving following a specific course and speed.
In both cases, the logs will present longs sections with numbers representing the
same or contiguous values of the spiral. For example, the moving object in Figure
4 follows a NE trajectory moving one or two cells per time instant. Therefore its
log represents the series of relative movements 8,9,8,9,8.7,9.8,7,9; see the array
I of Figure 2. Those series of similar movements are very efficiently compressed
using a grammar compressor such as Re-Pair. To avoid having to decompress
the log before processing it, we enrich the rules of the grammar R with further
data apart from the two symbols to be replaced. Specifically, each rule in R will
have the following information: s — a, b, #t,x,y, M BR, where s, a and b are the
components of a normal rule of Re-Pair, #t is the number of instants covered
by the rule, (z,y) are the relative coordinates of the final position of the object
after the application of the rule, and M BR is the minimum bounding rectangle
enclosing the movements of the rule.

For example, the rules of Figure 2 are enriched as follows. The first rule of R
isA—8,9, 2, (3,2), (0,0,3,2): 8 and 9 are the substituted symbols, 2 indicates
that the rule represents a sequence of 2 movements, (3,2) indicates the position
of the object after the application of the rule if we start at (0,0), and the last
four values are two points defining a rectangle that encloses all the movements
encoded by the rule. The other rules are B — 9, 9, 2, (4,2), (0,0,4,2), C —
8, 7, 2, (1,2), (0,0,1,2), and D — A, A, 4, (6,4), (0,0,6,4).

Thanks to this additional information, to obtain the position of an object
at any time instant between two snapshots, the nonterminal symbols of array
C do not need to be decompressed in most cases. Assume we want to know the
position of the object at the 5t time instant, which is when the object in Figure
4 (right) is at position (7,7). The preceding snapshot informs that the absolute
position of the object at the beginning of the log is (0,2). Next, we inspect the
log (the C array of Figure 2) from the beginning. The first value is a D. The
enriched rule indicates that such symbol represents 4 time instants, and after it,
the object is displaced 6 columns to the East and 4 rows to the North, that is,
starting at (0,2), after the application of this rule, the object will be at (6,6).
Since our target time instant is later than the final time instant of this rule,
we do not have to decompress it, and this is the usual case. The next symbol
is C, which lasts 2 time instants. This would take us to time instant 6, but
this surpasses our target time instant(5). Therefore, in this case, that is, only
in the last step of the search, we have to decompress the rule, and process its
components: C' — 8 7. The 8 is a terminal symbol that lasts 1 time instant, and
thus it is enough to reach our target time instant. An 8 moves 1 column to the
East and 1 to the North, which applied to the previous position (6,6) takes us
to the position (7,7).

The M BR component aids during the computation of time-slice and time-
interval queries, as we will see soon.

The additional elements enriching the rules are compressed with an encoder
designed for small integers (Directly Addressable Codes, DAC) that support

efficient access to any individual value in the sequence [1]. To obtain better com-
pression, the times of all the rules are compressed with one DAC, separately from
the 3 pairs of coordinates of all the rules, which are compressed with another.

5 Querying

Obtain the position of an object in a given time instant This query is
solved by accessing the snapshot preceding the queried time instant ¢,, where
we retrieve the position of the object at the snapshot time instant. We then
apply the movements of the log over this position until we reach ¢,. In the case
of SCDC compression, we follow the log decoding each codeword and applying
the relative movement to the previous position. In the case of Re-Pair, we follow
the process described in the previous section.

Obtain the trajectory of an object between two time instants First,
we obtain the position of the object in the start time instant ¢4, using the same
algorithm of the previous query; then we apply the movements of the log until
reaching the end time instant ¢.. In this case, when using GraCT, we have to
decompress C' to recover I, since only with I we are capable of describing the
trajectory in detail, and thus we cannot take advantage of the enriched nonter-
minal data. Therefore this query is more time-consuming than the previous one
for GraCT, and scdcCT takes over.

Time slice query Given a time instant ¢, and a window rectangle r of the
space, this query returns the objects that lie within r at time ¢4, and their
positions. We can distinguish two cases. First, if ¢, corresponds to a snapshot,
we only need to traverse the k?-tree until the leaves, inspecting those nodes that
intersect r. When we reach the leaves, we know their position and can retrieve
from the permutation the objects that are in this area.

The second case occurs when ¢, is between two snapshots s; and s;41. In
this case, we inspect in s; a region 7/, which is an enlargement of the query
region r. Region 7’ is defined using using the fastest object of the dataset as an
upper bound. Thus, 7’ is the rectangle containing all the points from where we
can reach the region r at ¢, if moving at maximum speed along some direction.
Then, from s;, we only track the objects that are within 7’ in the snapshot,
therefore limiting the objects to follow and not wasting time with objects that
do not have chances to be in the answer. We follow the movements of those
objects from s; using the log, until reaching t,. We further prune the tracking as
we process the log: a candidate object may follow a direction that takes it away
from region r, so we recheck the condition after every movement and discard an
object as soon as it loses the chance of reaching r at time ¢,.

The tracking of objects is performed with the same algorithm explained for
obtaining the position of an object in a given time instant, but in the case of
GraCT, when a non terminal in the log corresponds to a rule that brings the
object we are following from an instant before to an instant after ¢, instead of
decompressing the nonterminal, we intersect the MBR, of the rule with », and

®
O @
© @
@
©)
r @
Q ©) " ©) @] @
(©) ©) (©)
© ® ® ®
© ©) ® ©)
©
S
i t t

o1 q

Fig. 5. Example of enlarged region r’ and query region r in a time-slice query.

disregard the object if the intersection is empty. Otherwise we decompress the
nonterminal into two and try again until reaching ¢, or discarding the object.

Figure 5 shows an example where we want to find the objects that are located
in r at t;. Assume that the fastest object can move only to an adjacent cell in
the period between two consecutive time instants. Let s; be the last snapshot
preceding t, and let there be 2 time instants between s; and t,. The left part
of the figure shows the state of the objects at the time instant corresponding to
54, in the middle to s; +1 = ¢, — 1, and in the right to ¢4, where we show the
region r. In 7’ (shown on the left grid) we have four elements (1,4,5,8), which are
candidates to be in r at ¢;, thus we follow their log movements. In the middle
grid, we show the region r”/ where the objects still have chances to be within r
at t4. Observe that, from the candidate objects in s;, object 4 has no further
chances to reach r, and thus it is not followed anymore. However, object 1 still
have chances, and therefore we keep tracking it.

This query is affected by the time elapsed between s; and t,. The farther
away s; and t, are, the larger v’ will be, and thus, we will have more candidate
objects that have to be followed through the log movements. In addition, with
a large period between s; and t,, we have to traverse a longer portion of the
log. To alleviate this problem, if ¢, is closer to s;41 than to s;, we can start the
search at s;11 and follow backwards the movements of the log. For this backward
traversal, we need to add before each snapshot the last known position and its
corresponding time instant of the objects that are disappeared at the time instant
of the snapshot. This applies to both approaches scdcCT and GraCT. Therefore,
the maximum distance will be half of the distance between two snapshots.

Time interval query In the time-slice query we have to know which objects
are in r at the query time instant and their positions, but in the time-interval
query, the target is to know which objects were within » at any time instant of
the time interval [t, t.], specified in the query. In this case, we use the expanded
region r’ again, which is built as in the time-slice query, but using the time ..

[“ GraCT “ scdcCT]
[Period I 120] 240] 360] 720][120] 240] 360] 720]
[Size (MB) [196.79] 193.31] 192.24] 179.60]] 312.27] 263.46] 273.20] 282.95]
[Ratio [[39.27%| 38.58%| 38.36%| 35.84%| 62.32%| 56.47%| 54.52%| 52.58%|
Snapshot (MB) 7.55 3.77 2.51 1.25 7.55 3.77 2.51 1.25

(3.83%)| (1.95%)| (1.31%)| (0.70%)|| (2.42%)| (1.33%)| (0.92%)| (0.48%)
Log (MB) 189.25| 189.54| 189.73| 178.34 304.73| 279.18| 270.69| 262.20

(96.17%)((98.05%) | (98.69%)((99.30%) || (97.58%) | (98.67%) | (99.08%){(99.52%)

Table 1. Compression ratio.

Using SCDC, the objects within r at t, are reported as part of the solution,
the other objects with chances at ¢ are followed until they reach the region r,
in which case they are added to the answer; or when they move such that they
lose the chance to reach r at t., in which case they are not followed anymore.

In GraCT, we process the log without decompressing nonterminal symbols
until the final time of a symbol in the log is equal or larger than ¢s. After this
moment, for each symbol we read in the log, until the object is selected or the
next symbol in the log to read starts after t., we follow the next procedure:
For each log symbol we check if the final point is inside r. If it is, the object
is selected. If not, and the MBR does not intersect r, we go on to the next
log symbol. If the final point is not in r but the MBR intersects r, we must
apply the same procedure recursively to the pair of symbols represented by the
nonterminal, until the object is selected or we process the whole nonterminal.

6 Experimental Evaluation

GraCT and scdcCT were coded in C++ and the experiments were run on a
1.70GHzx4 Intel Core i5 computer with 8 GBytes of RAM and an operating
system Linux of 64bits.

Datasets description and compression data We use a real dataset obtained
from the site http://marinecadastre.gov/ais/. The dataset provides the lo-
cation signals of 3,654 ships during a month. Every position emitted by a ship
is discretized into a matrix where the cell size is 50 x 50 meters. With this data
normalization, we obtain a matrix with 100,138,325 cells, 36,775 in the z-axis
and 2,723 in the y-axis. Observe that our structure deals with object positions
at regular intervals, but in the dataset ship signals are emitted with distinct
frequencies, or they can send erroneous information. Therefore, we preprocessed
the signals to obtain regular time instants every minute, thus discretizing the
time into 44,642 minutes in one month. With these settings, the original dataset
occupies 501 MBs.

We built GraCT and scdcCT data structures over that dataset using different
snapshot distances, namely every 120, 240, 360, and 720 time instants. The
construction time of the complete structure takes around 1 minute. Table 1
shows the results of compression ratio?, where we can see that GraCT obtains

4 The size of the compressed data structure as a percentage of the original dataset.

[[GraCT [scdcCT
[Period [120] 240] 360] 720] 120] 240] 360] 720]
Object ¢4 [0.0157]/0.0169]0.0210| 0.0229|0.0125| 0.0169] 0.0220| 0.0246
Trajectory|0.1582| 0.1210] 0.1130| 0.1153]/0.0881[0.0904|0.0900|0.0960
Slice S 1.5386(2.4241[2.9580| 5.8788|1.3080| 2.6712| 4.0430| 7.6636
Slice L 1.7835[2.8074[3.6000| 6.6430|1.5883| 3.8615] 5.1130| 9.1384
Interval S [2.4435|3.6005(5.0090| 9.5635|1.4882| 3.8612| 5,8610(11.1765
Interval L [2.7505(4.0847(6.1330(12.1832|1.7161| 4.9578| 9.8680(16.4471

Table 2. Time of different queries (ms).

much better compression ratios than scdcCT. The rows snapshot and log show
the size of the snapshot and the log as a percentage of the compressed data
structure. We can see that the log is the most space demanding structure. As
reference we compress the plain data with p7zip and we obtain a compression
ratio of 10,97%, which is better than GraCT, however with this compressed data
is impossible to answer any type of query.

Query types and answer times Table 2 shows the average answer times of
50 random queries of different types: object ¢, shows searches for the position of
an object in a given time instant, trajectory searches for the trajectory followed
by an object between two time instants, slice S are time-slice queries that check
for small regions (367 x 272 cells) and slice L for large regions (3677 x 2723 cells),
interval S are time-interval queries with a small region and a small time interval
(%0 of the snapshot period) and interval L with large regions and a large time
interval (3 of the snapshot period).

GraCT is the overall winner in all queries, except in the trajectory query.
This is expected, since to recover the trajectory, GraCT has to decode all the
symbols in C, given that the enriched information in rules does not have the
details of the movements inside each rule. In the rest of the queries the enriched
information avoids in many cases to decode the rules in C', and thus, since the
logs in GraCT have far fewer values than in scdcCT, the searches are faster.
The exception is when the size of the log between two snapshots is small, as the
effect is not noticeable. Notice that in this case the nonterminal symbols in the

grammar cannot represent arrays of more than 120 terminals.

7 Conclusions

We have presented a grammar based data structure for representing moving
objects. It uses snapshots where the objects are represented in the space using
a k2-tree and movement logs that are grammar-compressed. The results of this
first experimental evaluation are very promising, as compression yields significant
reductions in both space and time performance with respect to the baseline.
One reason why our space results are not even better is that the enriched
data pose a significant space overhead per nonterminal. We plan to improve our

representation by encoding these data in smarter ways. We also plan to compare
GraCT with state of the art indexes aimed at both time-slice and time-interval
queries, and trajectories.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-
length codes. Information Processing and Management 49(1), 392-404 (2013)
Brisaboa, N.R., Farina, A., Navarro, G., Param, J.R.: Lightweight natural language
text compression. Information Retrieval 10(1), 1-33 (2007)

Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Information Systems 39(1), 152-174 (2014)

Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets
with SETI. In: Proceedings of the conference on innovative data systems research,
CIDR 03 (2003), http://www-db.cs.wisc.edu/cidr/cidr2003/program/p15.pdf
Gutiérrez, G.A., Navarro, G., Rodriguez, M.A., Gonzéilez, A.F., Orellana, J.: A
spatio-temporal access method based on snapshots and events. In: GIS. pp. 115—
124. ACM (2005)

Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing
of spatiotemporal objects. In: Proceedings of Advances in Database Technology
EDBT 2002. pp. 251-268 (2002)

Jacobson, G.: Space-efficient static trees and graphs. In: IEEE Symposium on
Foundations of Computer Science (FOCS). pp. 549-554 (1989)

Knuth: Efficient representation of perm groups. Combinatorica 11, 33-43 (1991)
Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proceedings of
the IEEE 88(11), 1722-1732 (2000)

Munro, J.I., Raman, R., Raman, V., Rao, S.: Succinct representations of permu-
tations and functions. Theoretical Computer Science 438, 74-88 (2012)
Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: George, K.M.,
Lamont, G.B. (eds.) Proceedings of the 1998 ACM symposium on Applied Com-
puting, SAC’98. pp. 235-240. ACM (1998), http://doi.acm.org/10.1145/330560
Rasetic, S., Sander, J., Elding, J., Nascimento, M.A.: A trajectory splitting model
for efficient spatio-temporal indexing. In: Proceedings of the 31st international
conference on Very large data bases. pp. 934-945. VLDB Endowment (2005)

Tao, Y., Papadias, D.: MV3R-tree: A spatio-temporal access method for times-
tamp and interval queries. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi,
S., Ramamohanarao, K., Snodgrass, R.T. (eds.) Proceedings of 27th International
Conference on Very Large Data Bases, VLDB 2001,. pp. 431-440. Morgan Kauf-
mann (2001)

Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and
indexing for large multimedia applications. ACM Multimedia Systems Journal 6(4),
284-298 (1998)

Wang, L., Zheng, Y., Xie, X., Ma, W.Y.: A flexible spatio-temporal indexing
scheme for large-scale GPS track retrieval. In: Mobile Data Management. pp. 1-8.
IEEE (2008)

Worboys, M.F.: Event-oriented approaches to geographic phenomena. Interna-
tional Journal of Geographical Information Science 19(1), 1-28 (2005)

Xu, X., Han, J., Lu, W.: RT-tree: An improved R-tree index structure for spa-
tiotemporal databases. In: Proceedings of the 4th International Symposium on
Spatial Data Handling. vol. 2, pp. 1040-1049 (1990)

