
Efficient Compressed Indexing for
Approximate Top-k String Retrieval ?
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Abstract. Given a collection of strings (called documents), the top-k
document retrieval problem is that of, given a string pattern p, finding
the k documents where p appears most often. This is a basic task in
most information retrieval scenarios. The best current implementations
require 20–30 bits per character (bpc) and k to 4k microseconds per
query, or 12–24 bpc and 1–10 milliseconds per query. We introduce a
Lempel-Ziv compressed data structure that occupies 5–10 bpc to answer
queries in around k microseconds. The drawback is that the answer is
approximate, but we show that its quality improves asymptotically with
the size of the collection, being over 85% already for patterns of length
4–6 on rather small collections, and improving for larger ones.

1 Introduction

Finding the k documents most relevant to a search query is the most basic
information retrieval problem. Originally defined on natural language text col-
lections, its generalization to collections of arbitrary strings turns out to be a
problem arising naturally in areas like bioinformatics, multimedia databases,
software repositories, and so on [11]. For example, one might want to find the
genes where a certain motif appears most often (as they may deserve further
biological analysis), modules where a function is called most often (to spot co-
hesion issues in software design), songs containing most occurrences of a certain
sequence (to hint plagiarism), and so on. On East Asian languages like Chinese
and Korean, classical solutions for Western natural languages are not applicable,
and they are usually handled as generic string collections as well.

Our collection will contain D documents, which are strings d1, . . . , dD, over
an alphabet [1, σ], of total length n =

∑
|di|. We preprocess them to build

an index. Later, given a pattern string p[1,m] and a threshold k, we must list
the k documents where p appears most often. In natural language searching
the measure of relevance can be more sophisticated than just the number of
occurrences of p, but frequency is still a key component. Usually even more
complex measures are used in a second step, where the top-k documents are
further filtered to obtain the final result [14].
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Hon et al. [4] proposed a first index for this problem, but its space usage is
superlinear, O(n log n) words; their implementation also uses too much space.
Later, Hon et al. [6] presented a structure using linear space, that is, O(n) words
or O(n log n) bits. They solved queries in O(m + k log k) time. Navarro and
Nekrich [12] reduced the time to the optimal O(m+ k). Konow and Navarro [7]
implemented this index, obtaining an index that uses 20–30 bits per character
(bpc)1 and answers top-k queries in k to 4k microseconds (µsec). Their time
complexity is O(m + (k + log log n) log log n) with high probability, on statisti-
cally typical texts [15]. Shah et al. [5] proposed another index that is not yet
implemented, but it is likely to perform similarly, and has a time complexity
of O(m + (log log n)6 + k(log σ log log n)1+ε) for any constant ε > 0. Navarro
and Valenzuela [13] aimed at using less space, reaching 12–24 bpc depending
on the compressibility of the collections, but retrieval times are an order of
magnitude higher, 1 to 10 milliseconds (the time complexity is upper-bounded
by O(m + k log4+ε n)). There are several other theoretical proposals [11] that
promise to use much less space than current implementations, but that are most
likely to be even slower in practice (as already hinted in current studies [13]).

In this paper we introduce an index that uses much less space and time
than current alternatives. It is based on Lempel-Ziv compression, precisely LZ78
[16], which compresses texts by building a dictionary of frequent strings (called
phrases) and then parsing the text as a sequence of n′ phrases. It holds n′ ≤
n/ lgσ n for any text, and moreover n′ lg n = nHk+O(n(k log σ+log logn)/ logσ n)
for any k, where Hk is the k-th order empirical entropy of the text [8]. This is
n′ lg n = nHk + o(n log σ) for any k = o(logσ n). Our structure builds on pre-
vious LZ78-compressed indexes called LZ-indexes, developed for finding all the
occurrences of p [10, 2] and for listing all the documents where p occurs [3].
Like these indexes, our structure uses, in practice, (2 + ε)n′ lg n+O(n′ log σ) =
(2 + ε)nHk + o(n log σ) bits, and it solves top-k queries in time O(m+ k logD).
In practice, the space is around 5–10 bpc to achieve a query time around k µsec.
This time/space tradeoff is well below that of previous implementations.

In exchange, our top-k answer is approximate, as we consider only the oc-
currences of p within phrases. If the text is generated by a stationary source,
the occurrences of any pattern p appear regularly, every d positions on average
(e.g., d = σm if the symbols are generated uniformly and independently). On
the other hand, since n′ ≤ n/ lgσ n, only (n/d)m(n′/n) ≤ (n/d)m/ lgσ n of those
occurrences hit a phrase boundary on average. This means that that a fraction
of 1 −m/ lgσ n of the occurrences are within phrases (the fraction improves to
1 −mHk/ lg n on compressible texts). Thus, we are considering asymptotically
all of the occurrences of p when building the approximate top-k answers for short
enough patterns, m = o(logσ n). Note that, if m ≥ lgσ n, then it occurs O(1)
times on average in the collection, and then a plain listing of all the documents
where it appears [3] is an appropriate tool to find its top-k documents.

We show that, already on moderate collections of n = 25–130 MB, the quality
of the answer (measured as the number of occurrences of p on the k retrieved

1 The space results they report [7] are somewhat underestimated, as we show here.



documents as a percentage of the number of occurrences on the actual top-k
documents) is always over 85% for short patterns (m = 4–6), improving as the
collection size grows and as the collection becomes more compressible with LZ78.

2 The LZ-Index

Assume we concatenate the documents d1 · · · dD (each terminated with a special
symbol $) into a text T [1, n] over alphabet [1, σ]. The LZ78 compression algo-
rithm cuts the text into n′ distinct phrases, each of which is equal to the longest
possible previous phrase plus the following new symbol. Each phrase is then
replaced by the id of the previous corresponding phrase and the extra symbol.
The number of bits output by the compressor is |LZ78| = n′(lg n′ + lg σ), which
converges to the statistical entropy of T [8], and it always holds n′ ≤ n/ lgσ n.
The LZ-index [10] is a text index built on the LZ78 parsing of the text, and it
supports locating the occurrences of a pattern p[1,m] in T . The index is formed
by the following components (among others not relevant for this paper).

1. LZTrie : a trie composed of all the phrases produced by the LZ78 parsing.
Note that the set of phrases is prefix-closed (the prefix of a phrase is also a
phrase), so LZTrie has n′ nodes. It stores the phrase identifier of each node.

2. RevTrie : a trie storing the reversed phrases. It is not prefix-closed, so there
are empty nodes not associated to phrases. It contains originally trev nodes.
We contract unary paths of empty nodes to a single edge, after which the
trie has nrev = n′ + ne ≤ 2n′ nodes, where ne empty nodes remain after
contracting. The phrase numbers of the n′ nonempty nodes are stored.

3. Node : an array mapping from phrase numbers to their preorder in LZTrie.

The modern version [2] of the LZ-index uses (2+ε)|LZ78|(1+o(1)) bits, for any
ε>0. The occurrences of pattern p are divided into type 1 (those completely inside
a phrase), and types 2 and 3 (those spanning two or more phrases, respectively).
Those are found separately at search time. In this paper we are only interested in
finding occurrences of type 1. For those, we search for pr (the reversed pattern)
in RevTrie, arriving at node vr. Each node ur descending from vr (including vr)
corresponds to an occurrence of type 1 where p appears at the end of the phrase.
The other occurrences of type 1 are the nodes u′ that descend from u in LZTrie,
where u corresponds to ur. Thus, for each node ur that is nonempty, we read
the phrase id fu of ur, compute u = Node(fu), and report all the phrase ids in
the subtree of u. It takes O(m+ occ) time to report the occ type-1 occurrences.

3 An LZ-Index for Approximate Top-k Retrieval

Our top-k retrieval LZ-Index is a modification of the original LZ-Index. This
tree will be stored as in previous work [3]:

LZTrie: We store only the topology and the documents where the phrases lie,
using in total n′ lgD +O(n′) bits.



Plz: The LZTrie topology represented with parentheses in a preorder traver-
sal, and made navigable in O(1) time using 2n′ + o(n′) bits (FF [1]).

Dlz: An array storing, for each node v of LZTrie in preorder, the document
identifier (using dlgDe bits) where its corresponding phrase lies.

Revtrie: We store the structures needed to carry out searches directly on it,
without the help of the LZTrie, using in total trev lg σ+O(trev) bits. In theory
trev can be as large as n but in practice it is much closer to nrev ≤ 2n′.
Prev: The tree topology using parentheses and made constant-time naviga-

ble, using 2trev + o(trev) bits (FF [1]).
Erev: A bitmap marking empty nodes, in preorder, using trev bits.
Urev: A bitmap marking empty unary nodes (i.e., contracted), from those

that are marked empty in Erev, using trev − n′ bits.
Lrev: A sequence of the nrev letters that label the non-contracted edges lead-

ing to the nodes, in preorder. Used to find the child nodes at searching.
Mrev: A sequence of the trev − nrev letters that label the contracted edges

leading to the nodes, in preorder. Used to check that the characters in
the contracted edge match the search pattern.

All the bitmaps are stored with sublinear extra data structures that solve
rank/select operations in constant time [9]. This allows, for example, finding
the jth 0 or 1 in the bitmap in constant time, or count the number of 0s or
1s in any bitmap interval.

Node: This is recast as a mapping from nonempty RevTrie nodes to their
LZTrie preorder numbers, using n′ lg n′ +O(n′) bits.

Top: To solve top-k document retrieval for any k ≤ k∗, where k∗ is a parameter
defined at construction time, we will store the top-k∗ answers, in decreasing
frequency order, for some RevTrie nodes. We use a parameter g to define the
RevTrie nodes that will store their top-k∗ answer: These will be the (empty
or nonempty) nodes representing a string with at least gk∗ occurrences of
type 1 in T . Empty unary nodes will not store their answer set, as this is the
same of its child. The marking will be node for all the k∗ values in [1..D] that
are a power of 2. Nodes v will store their top-k∗ answers for the maximum
k∗ value for which they are marked. This is implemented with the following
additional structures:

Btop: A bitmap of size nrev marking which RevTrie nodes have top-k∗ an-
swers precomputed, in preorder.

Ktop: The sequences of k∗ most frequent documents where each node marked
in Btop appears, concatenated in the same order of Btop. The identifiers
are stored using dlgDe bits, in decreasing frequency order.

LKtop: A bitmap marking the starting positions of the sequences in Ktop.
Atop: Since there may be less than k∗ distinct documents where the marked

node appears, this bitmap indicates whether a node marked in Btop
already lists all of the possible documents.

The larger g, the fewer RevTrie nodes store their top-k∗ documents: While in
theory we might store up to nrev k

∗ lgD bits, in practice this is much closer
to (nrev/(gk

∗)) k∗ lgD = (nrev lgD)/g, which added over the lgD values for
k∗ gives (nrev lg2D)/g bits. The other bitmaps use O(nrev) bits.



The overall space is, in practice, upper bounded by n′(lg n′ + lgD + 2 lg σ +
2(lg2D)/g + O(1)) bits. Thus a value like g = Θ(lgD) obtains space similar to
the original pattern-matching LZ-index, (2 + ε)n′ lg n+O(n′ log σ) bits [2].

Querying. At query time, we find the RevTrie node corresponding to pr, move
to its highest descendant not marked in Urev, v

r, and check if it is marked in
Btop. If marked and either (1) Atop indicates it stores all the possible documents,
or (2) LKtop indicates that it stores k′ ≥ k top documents, then we return the
first k documents stored for vr in Ktop and finish. Otherwise, we need to solve the
answer by brute force, by traversing all its type-1 occurrences. By construction,
this takes place only if vr has k′ < k answers stored (including the case k′ = 0).
If k∗ is the power of 2 next to k, then vr does not store its top-k∗ answers,
thus by construction it has less than gk∗ occurrences of type 1. Therefore the
brute-force process must traverse O(gk) occurrences.

In order to solve vr by brute force, we use Prev to compute its preorder
iv and its subtree size sv. Thus all the subtree of vr has the preorder interval
[iv, iv + sv − 1]. Then we use rank on Erev to map it to the interval [i1, i2] of
nonempty preorder values. For each i in this interval, we compute iu = Node(i),
which is the preorder of the corresponding node in LZTrie, and then use Plz to
obtain the corresponding node u in LZTrie. Then we compute the size su of u
and obtain the interval [iu, iu + su− 1] of all the descendants of u in LZTrie. We
process all the document identifiers in Dlz[iu, iu + su − 1], for all the nodes u in
LZTrie that correspond to all the RevTrie descendants ur of vr, accumulating
their frequencies and then choosing the k highest ones. The whole process takes
O(m+ gk + k log k) = O(m+ k logD) time.

4 Experimental Results

We use various document collections, following previous work [13, 7] and explor-
ing different aspects of statistical compressibility, size, number of documents, and
repetitiveness: ClueWiki (English, few large documents), DNA (synthetic, mildly
repetitive with 5% mutations among documents), KGS (Go game records), Wiki
(more and shorter documents), Proteins (many more documents, almost incom-
pressible), and TodoCL (a snapshot of the Chilean Web, with real queries, used to
measure quality). Table 1 shows their main characteristics (column “compress”
shows how the LZ78-based Unix Compress program compresses them).

Our machine is an Intel Xeon with 8 processors of 2.4GHz and 12MB cache,
with 96GB RAM. It runs Linux 2.6.32-46-server, and we use gcc with full opti-
mization and no multithreading. We chose 40,000 patterns of lengths m = 3 and
m = 8 extracted randomly from the collection.

4.1 Time and Space

Table 1 shows the size of our structure with g = 512, where it uses almost its
minimum possible space, and with g = 128, where it achieves around k µsec to



Collection n D n/n′ compress g = 512 g = 128
(MB) (bpc) (bpc) (bpc)

ClueWiki 131 3,334 17.24 3.63 4.50 6.31
DNA 95 10,000 11.50 2.68 4.86 5.30
KGS 25 18,838 14.97 1.85 5.13 6.23
Wiki 80 40,000 9.58 3.34 6.73 7.43
Proteins 56 143,244 6.43 4.61 9.58 10.10
TodoCL.200 200 48,186 9.86 3.91 7.32 6.65

Table 1. Main measures related to the space usage of our index. We refer here to the
first 200MB of TodoCL.

solve queries, as we will see. The minimum space ranges from 1.2 to 2.8 times
the space of Unix Compress. For this value of g our analysis predicts a factor
around 2. On the other hand, our index uses around 5–10 bpc with g = 128.

Fig. 1 gives the breakdown of the space obtained by our index on those collec-
tions, for increasing values of g. The components are LZTrie (the tree topology
and the document identifiers, which dominate), RevTrie (the tree topology and
the letters), array Node, and Top (the storage of the best documents for some
precomputed nodes). We show the breakdown as cumulative space curves. As g
increases, the Top component is reduced and the structure becomes slower.

Now we compare our structure with previous work. We consider search pat-
terns of lengths m = 3 in Fig. 2 and m = 8 in Fig. 3, and measure the cost to
compute the top-10 and top-100 documents, for g = 512, 256, 128, . . .. We denote
DCC’13 the existing fast and large structure [7] and denote SEA’12 a choice of
relevant space/time tradeoffs of the existing small and slow structure [13]. In
most texts, our structure uses 5–7 bpc to solve top-k queries in around k µsec.
The exception is Proteins, where it uses around 10 bpc due to its incompress-
ibility. Except on Proteins, where it uses over 20 bpc, structure SEA’12 can use
similar or less space than ours, but at the cost of being 4–5 orders of magnitude
slower. Even if using much more space, SEA’12 is at least 10 times slower than
ours. Structure DCC’13, on the other hand, is 4–50 times slower than ours, and
uses 2.5–7 times our space.

4.2 Quality

The drawback is that our structure delivers approximate top-k answers. We
present in Fig. 4 two measures of the quality of the answer. On the left we show
traditional recall, measured in the following way: for each value k′ ∈ [1, k], we
measure how many of the (correct) top-k′ documents are reported within the
(approximate) top-k results. For example, the point at k′ = 1 indicates how
many times the most relevant document is contained in our top-k answer. The
point at k′ = k indicates how many of the correct top-k documents are actually
returned. This measure is interesting in applications where the top-k answer is
postprocessed with a more sophisticated relevance function in order to deliver
a final answer of k′ � k results. The figure shows that, in this scenario, the k′
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Fig. 1. Space breakdown of our structures for different k and g values (g is the x-axis).

most relevant candidates are frequently in the approximate top-k answer set, for
small k′. However, when k′ becomes closer to k, the recall degrades, more or less
depending on the collection, and faster for m = 8 than for m = 3. On the other
hand, there are no significant differences between the results for k = 10 and for
k = 100. Results are particularly bad for DNA, KGS, and Proteins.

If our index fails to return a top-k document but returns another one with
the same frequency, we take it as a hit, as both are equally good. In this sense,
recall is a too strict measure of relevance: if the system returns a document with
only slightly fewer occurrences than the correct one, it counts as zero. As the
frequency is only a rough measure of relevance, a much more precise measure of
quality is the sum of the frequencies of the documents in the approximate top-k
answer as a fraction of the sum in the correct top-k answer.

Fig. 4 (right) shows the results under this measure of quality. All collections
perform very well for k = 3, reaching 90%–100% of quality even for k′ = k.
For k = 8, collections ClueWiki and KGS still achieve a reasonable quality over
80%, DNA over 60%, Wiki over 50%, and Proteins only 10%. These differences
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Fig. 2. Space/time comparison for pattern length m = 3. Space (bpc) is the x-axis.
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Fig. 3. Space/time comparison for pattern length m = 8. Space (bpc) is the x-axis.



in quality can be predicted with Table 1: the less compressible the collection,
the smaller n/n′, and the worse quality obtained for a given pattern length m.

On the other hand, the fact that better quality is obtained for shorter patterns
coincides with our probabilistic analysis. Fig. 5 illustrates this effect more closely,
for increasing pattern lengths. It can be seen that, for the moderate collection
sizes of 25–130 MB we considered, we obtain quality well above 85% for m =
4–6, depending on the text type and its n/n′ value. Fig. 6 shows the case of real
query words (of length > 3 to exclude most stopwords, average length 7.2) and 2-
word phrases (average length 8.0), on increasing prefixes of TodoCL converted to
lowercase (as case is generally ignored in natural language queries). As predicted,
the quality improves with n, from 33%–46% on 200 MB (n/n′ = 10.1) up to
59%–72% on 1.6 GB (n/n′ = 12.5).

5 Conclusions

We have introduced a top-k retrieval index for general string collections, based
on Lempel-Ziv compression. The index is orders of magnitude faster, and uses
much less space, than previous work. In exchange, it delivers approximate top-k
answers, which is acceptable in most applications. We analytically show that the
answers tend to exactness asymptotically, when the collection is large enough
compared to the pattern length. Our experiments also show that the quality
of the answer is good enough for short patterns already on our moderate-size
text collections. The larger the text collection, or the more compressible it is
with LZ78, the longer the patterns that can be searched with high quality. In
this sense, the index is a very promising alternative to handle the large text
collections one aims at in real life.

We obtain good-quality results for real word queries on a moderately large
text collection. Our next step is to use our index to find top-k candidate doc-
uments for the individual words of multiword queries and then postprocessing
the result into weighted conjunctive or disjunctive queries [14].

In natural language, retrieving approximate top-k answers to improve effi-
ciency is a common practice. This avenue has not been explored much for general
string collections. Our work shows that this idea is promising, as large space and
time reductions are possible while still returning answers of good quality.
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Fig. 4. Recall (left) and quality (right) of our approximate top-k solution, as a function
of the fraction of the answer (x-axis).
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Fig. 5. Quality of our approximate top-k solution, as a function of the pattern length,
for top-10 (left) and top-100 (right).
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