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Abstract. Ranked document retrieval is a fundamental task in search
engines. Such queries are solved with inverted indexes that require addi-
tional 45%-80% of the compressed text space, and take tens to hundreds
of microseconds per query. In this paper we show how ranked document
retrieval queries can be solved within tens of milliseconds using essen-
tially no extra space over an in-memory compressed representation of
the document collection. More precisely, we enhance wavelet trees on
bytecodes (WTBCs), a data structure that rearranges the bytes of the
compressed collection, so that they support ranked conjunctive and dis-
junctive queries, using just 6%—18% of the compressed text space.

1 Introduction

Ranked document retrieval on a large collection of natural-language text doc-
uments is the key task of a search engine. Given a query composed of a set of
terms, the engine returns a list of the documents most relevant to the query.
Efficient ranked document retrieval relies on the use of inverted indexes [1-
3]. Given a query, the system computes the union (bag-of-words) or intersection
(weighted conjunctive) of the posting lists of the terms composing the query,
keeping only the documents with highest relevance with respect to the query.
The inverted index does not support by itself all the operations needed in
a search engine. For example, showing snippets or cached versions of results.
This requires storing the text of the documents. Compressing the text and the
inverted index is useful not only to save space, but it also reduces the amount of
I/O needed to answer queries on disk-based systems. A recent trend (e.g., [3-6])
is to maintain all the data in main memory, of a single machine or a cluster.
The texts of the documents are usually stored in a compressed form that
allows fast decompression of random portions of the text. Such compressors
achieve 25%-30% of the size of the original text. Inverted indexes are also com-
pressed, and amount to an additional 15%—-20% of the size of the original text,
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or 45%-80% of the size of the compressed text [1,2,7,8]. Typical query times of
in-memory systems are in the orders of tens to hundreds of microseconds.

A recent alternative to storing the text plus the inverted index is the Wavelet
Tree on Bytecodes (WTBC) [9]. Within the space of the compressed text (i.e.,
around 30%-34% of the text size) the WTBC not only can extract arbitrary
snippets or documents, but it also solves full-text queries. Full-text queries are
usually solved with a positional inverted index, which stores exact word positions,
yet this is outperformed by the WTBC when little space over the compressed text
is available. The representation was later extended to document retrieval queries,
that is, listing all the distinct documents where a query appears [10]. However,
ranked document retrieval queries, which are arguably the most important ones
for the end-user, have not been addressed under this scheme.

In this paper we close this gap. We show how WTBCs can be extended to
efficiently support ranked document retrieval queries as well. As a result, all
the main IR queries can be carried out on top of a data structure that requires
just 6%-18% on top of the compressed text space (2.0%5.5% of the original text
space). The times of the WTBC to solve ranked document retrieval queries are in
the order of milliseconds, which is significantly higher than inverted index times.
However, those times are still reasonable in many scenarios and the solution
offers important space advantages compared to the 45%-80% of extra space
posed by inverted indexes, which may be key to avoid using secondary storage,
to use fewer machines, or even to achieve a feasible solution when the memory
is limited (as in mobile devices).

2 WTBC: Wavelet Trees on Bytecodes

The Wavelet Tree on Bytecodes (WTBC) [9] is a method for representing natural
language texts in a compressed form, so that random access to any portion of
the text, and search for the occurrences of any term, are efficiently supported.
The WTBC is built on a text compressed using any word-based byte-oriented
semistatic statistical compressor, by rearranging the codewords into a wavelet-
tree-like structure.

The basic idea in the WTBC is to rearrange the text by placing the different
bytes of each codeword in different nodes of a tree. The root of the tree is an
array containing the first byte of the codeword of each word in the text, in the
same order they appear in the original text. The second byte of each codeword
(having more than one byte) is placed on the second level of the tree, and so on.

The main operations in a WTBC are decoding the word at a given posi-
tion, locating the occurrences, and counting the number of occurrences of a
word. These algorithms are based on the use of rank and select operations over
the bytemap of each node of the tree. Partial counters are maintained for each
bytemap in order to efficiently compute rank and select while posing just a 3%
space overhead over the original text size [9].



3 Efficient Ranked Document Retrieval

In this section we present our proposal for solving ranked document retrieval
queries using the WTBC over (s, ¢)-DC [11]. We concatenate all documents of
the corpus in a single text string. We assume that each document ends with a
special symbol ’$’, which then becomes a document separator (just as in [10]).
Then, the string is compressed with (s, ¢)-DC and a WTBC is built on the result
of the compression. For efficiency reasons, we reserve the first codeword of the
(s,¢)-DC encoding scheme for the >$’ symbol, so the document separator can
be easily found in the root of the tree, since its codeword has only one byte.

We consider top-k conjunctive and bag-of-words queries. We have developed
two different alternatives, namely WTBC-DR and WTBC-DRB, depending on
whether or not we use additional space over the WTBC. Due to space con-
straints, this paper focuses on WTBC-DR, but a complete study presenting
both approaches can be accessed through http://arxiv.org/abs/1207.5425.

We use the tf-idf relevance measure. The document frequency values are
stored, one per word, in our index within insignificant extra space, as the vocab-
ulary size becomes irrelevant as the collection grows [12].

3.1 Solution with No Extra Space (WTBC-DR)

The procedure uses a priority queue storing segments, that is, concatenations
of consecutive documents. The priority will be given by the ¢f-idf value of the
concatenations (seen as a single document). We start by inserting in the queue
the segment that corresponds to the concatenation of all the documents, with
its associated priority obtained by computing its tf-idf value. A segment is rep-
resented by the corresponding endpoints in the root bytemap, T'[1,n], of the
WTBC. Since the idf of each word is precomputed, to compute tf-idf relevance
value we only need to calculate the tf of each word in the segment, that is, we
count its number of occurrences in the segment.

The procedure repeatedly extracts the head of the queue (the first time,
we extract the segment T'[1,n]). If the extracted segment has more than one
document, the procedure splits it into two subsegments, by using the >$’ symbol
closest to the middle of the segment, as the point to divide it. This *$’ is easily
found using rank and select on T (i.e., for a segment T[a,b], we use, roughly,
selectg(T, rankg(T, (a + b)/2))), which also tell us the number of documents in
each subsegment. After the division, the relevance of each of the two subsegments
is computed, and they are inserted in the queue using their relevance as priority.

If, instead, the extracted segment contains only one document, it is directly
output (with its tf-idf relevance value), as the next most relevant document.
This is correct because tf-idf is monotonic over the concatenation: the tf-idf of
the concatenation of two documents is not smaller than the tf-idf of any of them.
Thus the relevance of the individual document extracted is not lower than that
of any other remaining in the priority queue.

The iterative process continues until we have output k£ documents. In this
way, it is not necessary to process all the documents in the collection, but rather



Algorithm 1: ranked bag-of-words retrieval with WTBC-DR
Input: wt (WIBC), ¢ (query), k (top-k limit)
Output: list of top-k£ ranked documents
s.start_pos < 1; s.end_pos < n; s.score < tfidf (s, q); s.ndocs < N;
pq <+ (); insert(pq, s) // s.score is the priority for queue pq ;
while less than k documents output and —empty(pq) do

s < pull(pq);

if s.ndocs = 1 then
| output s

else
(s1, s2) < split(s) // computes s;.start_pos, s;.end_pos and s;.ndocs;
s1.score < tfidf (s1,q); s2.score < s.score — s1.score;
insert(pq, s1); insert(pq, s2);

end
end

the search is guided towards the areas that contain the most promising docu-
ments for the query until it finds the top-k answers. Note that the procedure does
not need to know k beforehand; it can be stopped at any time. The pseudocode
for bag-of-words queries is given in Algorithm 1. For weighted conjunctive queries
we add an additional check during the procedure: if a segment does not contain
some of the words in the query (i.e., some tf is zero), the segment is discarded
without further processing.

4 Experimental Evaluation

We evaluated the performance of the proposed WTBC-DR algorithms over a
data set created by aggregating text collections from TREC-2: AP Newswire
1988, and Ziff Data 1989-1990, and TREC-4, namely Congressional Record 1993,
and Financial Times 1991 to 1994. All of them form a document corpus of
approximately 1GB (ALL).

Table 1 (left) gives the main statistics of the collection used, as well as the re-
sults obtained when it is represented with WTBC over (s, ¢)-DC, for the WTBC-
DR variant (right). We show the compression ratio (CR) (in % of the size of the
original text collection), together with the time to create the structures (CT) and
to recover the whole text back from them (DT), in seconds. The raw compressed
data uses around 32.5% of the space used by the plain text, and the WTBC just
requires an additional waste of 2.5% of extra space for the bytemap rank and
select operations, for a total of 35%. Within that amount of space WIBC-DR
is able to perform ranked document retrievall.

! An additional 3% of space would be needed in case of WTBC-DRB alternative. See
http://arxiv.org/abs/1207.5425 for more details.



Table 1. Description of the corpus used and compression properties

Corpus| size (MB)| #docs #words | voc. size| | Index CR | CT | DT
ALL 987.43 | 345,778 | 219,255,137 | 718,691 | | WTBC-DR | 35.0 | 40.1 | 8.6

4.1 Ranked Document Retrieval

Table 2 shows the average times? (in milliseconds) to find the top-k (using k¥ = 10
and k = 20) ranked documents for a set of queries, using WTBC-DR?. We
considered different sets of queries. First, we generated synthetic sets of queries,
depending on the document frequency of the words ( fioe): 7) 10 < faoe < 100, i)
101 < faoe < 1,000, dii) 1,001 < faoe < 10,000 , and 4v) 10,001 < fg0. < 100,000,
and also on the number of words that compose a query, namely, 1, 2, 3, 4
and 6. Each set is composed of 200 queries of words randomly chosen from the
vocabulary of the corpus, among those belonging to a specific range of document
frequency. Second, we also used queries from a real query log* (real), and created
5 sets of 200 queries randomly chosen composed of 1, 2, 3, 4, and 6 words,
respectively. The same sets of queries were used for dealing with both conjunctive
and bag-of-words scenarios.

In general, we can observe that, with essentially no extra space, all queries are
solved by WTBC-DR within tens of milliseconds. More in detail, in conjunctive
queries, the processing times decrease as the number of words in the query
increases, within a given fy,. band. This is expected when the words are chosen
independently at random, since more words give more pruning opportunities.
However, in the scenario iv), where words appear in too many documents, and
in real, where the query words are not independent, the WTBC-DR pruning
is not efficient enough and its times grow with the number of words. On the
other hand, if we consider the bag-of-words scenario, the more query words, the
higher is the average processing time, since each word increases the number of
valid documents. The same behavior applies for real queries, independently of
the document frequency of the words composing the query.

5 Conclusions

We have shown how the WTBC, a compressed data structure that supports
full-text searching and document retrieval within essentially the space of the
compressed text, can be enhanced to support also ranked document retrieval,
which is by far the most important operation in IR systems, requiring just tens
of milliseconds. The enhanced WTBC becomes a very appealing solution in
scenarios where minimizing the use of main memory is of interest, as it supports
all the typical repertoire of IR operations at basically no storage cost.

2 We used an AMD Phenom IT X4 955 Processor (3.2 GHz) and 8GB RAM.

3 We refer the reader to http://arxiv.org/abs/1207.5425 for a complete analysis
comparing both WTBC-DR and WTBC-DRB performance.

4 Obtained from TREC (http://trec.nist.gov/data/million.query.html)



Table 2. Results for top-10 and top-20 1-word queries, conjunctive queries (AND) and

bag-of-words queries (OR)

Query #words per query
faoc 1 2 3 4 6
type [top-10 top-20||top-10 top-20|top-10 top-20|top-10 top-20|top-10 top-20
0 AND 2.27 3.45|| 0.86 0.87| 0.55 0.55| 0.43 0.42| 0.28 0.28
OR 3.86 491 4.28 591 5.17 7.35| 6.86 9.53
i) AND 6.18 7.80|| 9.57 9.61] 6.54 6.55| 4.70 4.71] 3.44 3.44
OR 10.12 13.74| 14.22 19.74| 18.56 24.53| 27.78 35.91
) AND | 15.06 18.62|| 63.05 72.37| 64.06 66.67| 53.51 53.63| 44.19 46.31
OR 29.63 38.54| 43.20 57.81| 61.65 78.06] 94.96 118.71
) AND | 53.40 66.15({151.16 185.76(284.92 341.42|382.92 415.76|404.26 410.35
OR 98.84 125.52|156.79 202.71|223.31 281.07|359.84 462.16
real AND 6.68 9.08|| 34.92 41.55| 67.36 77.52| 78.34 87.11/101.22 108.95
OR 27.96 36.17| 58.91 75.74| 82.80 106.42|150.94 192.02

This paper presents one of the two proposals we have developed. In particular,

the one that does not use any extra space on top of the WTBC. This proposal,
called WTBC-DR, applies a prioritized traversal by relevance, and solves bag-of-
words (disjunctive) queries and weighted conjunctive queries within milliseconds.
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