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Abstract. We design a new compressed suffix tree specifically tailored
to highly repetitive text collections. This is particularly useful for se-
quence analysis on large collections of genomes of the close species. We
build on an existing compressed suffix tree that applies statistical com-
pression, and modify it so that it works on the grammar-compressed
version of the longest common prefix array, whose differential version
inherits much of the repetitiveness of the text.

1 Introduction

The suffix tree [27, 20] is arguably the most beautiful and relevant data structure
for string analysis. It has been said to have a myriad virtues [1], and it has a
myriad applications in many areas, particularly bioinformatics [11]. A suffix tree
built on a text T supports pattern matching in T in time proportional to the
length of the pattern. In addition, many complex sequence analysis problems are
solved through sophisticated traversals over the suffix tree. Thus, a suffix tree
implementation must support a variety of navigation operations. These involve
not only the classical tree navigation (parent, child) but also specific ones such
as suffix links and lowest common ancestors.

One of the main drawbacks of suffix trees is their considerable space require-
ment, which is usually close to 20n bytes for a text of n symbols, and at the very
least 10n bytes [14]. For example, the human genome, containing approximately
3 billion bases, could easily fit in the main memory of a desktop computer (as
each DNA symbol needs just 2 bits). However, its suffix tree would require 30
to 60 gigabytes, too large to fit in normal main memories. A way to reduce
this space to about 4 bytes per symbol is to use a simplified structure called a
suffix array [18], which still offers pattern matching but misses important suffix
tree operations such as suffix links and lowest common ancestor operations. This
reduces the relevance of suffix arrays in many biological problems, whereas in
many other areas suffix arrays are sufficient.

Much research on compressed representations of suffix trees and arrays, which
operate in compressed form, has been pursued. Progress has been made in terms
of the statistical compressibility of the text collection, that is, how biased are
the symbol frequencies given a short context of k symbols around them.
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A recent challenge raised by the sharply falling costs of sequencing1 is the
growth of large sequence databases formed by genomes of individuals of the same
or closely related species. In a few years, biologists will need to handle databases
of thousands to millions of genomes: sequencing machines are already producing
the equivalent of thousands of genomes per day2. These requirements dwarf the
current challenges of indexing one genome in main memory, and could never be
tackled with statistical compression based techniques.

Fortunately, these huge databases have a feature that renders them tractable:
they are highly repetitive. Two human genomes share 99.9% of their sequences,
for example. Such features are not captured by statistical compression methods
(i.e., the frequencies of symbols stay roughly the same in a database of many
near-copies of the same sequence). Rather, we need repetition aware compression
methods. Although this kind of compression is well-known (e.g., grammar-based
and Ziv-Lempel-based compression), only recently there have appeared com-
pressed suffix arrays and other indexes capable of pattern searching that take
advantage of repetitiveness [17, 5, 4, 13]. Yet, none of the existing compressed
suffix trees [26, 8, 7, 23, 25, 9], is tailored to repetitive text collections.

Our contribution is to present the first compressed suffix tree with full func-
tionality, whose compression effectiveness is related to the repetitiveness of the
text collection. While our operations are much slower than existing compressed
suffix trees, the space required is also much lower on repetitive collections.

2 Our Contribution in Context

Most of the research in this area is focused on compressed suffix arrays [22]
(CSAs, generically), whose functionality is not sufficient for many computational
biology problems. There are, however, various recent results showing how to
enhance a CSA in order to obtain a compressed suffix tree (CST, generically)
[26, 8, 7, 23, 25, 9]. Essentially, they show that if one adds longest common prefix
(LCP) information, one can obtain a CST from a CSA.

The first CST was Sadakane’s [26]. Apart from the CSA, it used 2n bits to
represent the LCP, plus other 4n bits to support navigation. Most operations
are supported in constant time. The best existing implementation [9] shows that
it uses about 13 bpc (bits per character) and very few microseconds per query.

The second proposal was by Russo et al. [25]. It requires only o(n) bits on
top of a CSA, and the operations are supported in polylogarithmic time. The
implementation achieved very little space, around 4.5 bpc. However, operations
take order of milliseconds.

A third proposal by Fischer et al. [8], later improved by Fischer [7], achieves
(1/ε)nHk extra bits, where Hk is the k-th order empirical entropy of T (a mea-
sure of statistical compressibility [19]), for any constant ε > 0. Operation times

1 See http://www.guardian.co.uk/world/feedarticle/10038353
2 See http://www.nytimes.com/2011/12/01/business/dna-sequencing-caught-in-
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are of the form O(logε n). Different practical variants of this structure were de-
signed and implemented by Cánovas and Navarro [3] and by Ohlebusch, Gog
and Fischer [23, 9]. The best implementations use as little as 10 bpc and execute
operations in a few microseconds (but usually slower than Sadakane’s CST).

We introduce a new CST that, for current repetitive biological collections,
reaches 1.3–1.5 bpc, in exchange for operation times in the order of milliseconds.
This large space difference with previous CSTs should widen on larger repetitive
collections (i.e., thousands or more similar sequences, as opposed to tens in our
test collections), whereas current CSTs would simply grow linearly in size.

Our result is built on three blocks, which will be detailed in the next sections:

1. We build on the only existing CSA that is tailored to repetitive collections,
the Run-Length CSA (RLCSA) [17]. The size of the RLCSA is a function of
the number of runs in Ψ , a concept that will be explained in Section 4 and
that is related to the repetitiveness of the text collection. The RLCSA will
be responsible for most of the final space, 0.85–0.95 bpc.

2. We use a base 2n-bit LCP representation that was initially proposed by
Sadakane [26]. Fischer et al. [8] showed that this sequence could be repre-
sented using a number of bits that is, again, related to the runs in Ψ (see
Section 3. Cánovas and Navarro [3] showed empirically that the compres-
sion achieved was insignificant on non-repetitive collections. In this paper
we show that, on repetitive collections, this idea does pay off, adding just
0.2–0.25 bpc to the space.

3. Fischer et al. [8] show how to map all the CST operations into three queries
over the LCP array: range minimum queries (RMQ) and a new primitive
called next/previous smaller value (NSV/PSV), see Section 3. We design a
novel index on the LCP to answer those queries, inspired on that of Cánovas
and Navarro [3], but whose size depends on the number of runs in Ψ . Inspired
in a local suffix array compression method [10], we grammar-compress the
differential LCP array and replace the regular tree structure used by Cánovas
and Navarro by a (pruned) grammar tree resulting from the LCP compres-
sion. This index adds about 0.2–0.3 further bpc to the space.

3 Our Base Compressed Suffix Tree

A suffix array [18] over a text T [1, n] is an array A[1, n] of the positions in T ,
lexicographically sorted by the suffix starting at the corresponding position of T .
That is, T [A[i], n] < T [A[i+ 1], n] for all 1 ≤ i < n. Note that every substring
of T is the prefix of a suffix, and that all suffixes starting with a given pattern
P appear consecutively in A, hence a couple of binary searches find the area
A[sp, ep] containing all the positions where P occurs in T .

There are several compressed suffix arrays (CSAs) [22, 6], which offer es-
sentially the following functionality: (1) Given a pattern P [1,m], find the in-
terval A[sp, ep] of the suffixes starting with P ; (2) obtain A[i] given i; (3)
obtain A−1[j] given j. An important function the CSAs implement is Ψ(i) =



A−1[(A[i] mod n) + 1] and its inverse, usually much faster than computing A
and A−1 . This function lets us move virtually in the text, from the suffix i that
points to text position j = A[i], to the one pointing to j + 1 = A[Ψ(i)].

A suffix tree [27, 20, 1] is a compact trie (or digital tree) storing all the suffixes
of T . This is a labeled tree where each text suffix is read in a root-to-leaf path,
and the children of a node are labeled by different characters. Leaves are formed
when the prefix of the corresponding suffix is already unique. Here “compact”
means that unary paths are converted into a single edge, labeled by the string
formed by concatenating the involved character labels. If the children of each
node are ordered lexicographically by their string label, then the leaves of the
suffix tree form the suffix array of T .

In order to get a suffix tree from a suffix array, one needs the longest common
prefix (LCP) information, that is, LCP [i] is the length of the longest common
prefix between suffixes T [A[i− 1], n] and T [A[i], n], for i > 1, and LCP [1] = 0
(or, seen another way, the length of the string labeling the path from the root
to the lowest common ancestor node of suffix tree leaves i and i− 1). The suffix
tree topology is implicit if we identify each suffix tree node with the suffix array
interval containing the leaves that descend from it. This range uniquely identifies
the node because there are no unary nodes in a suffix tree. A compressed suffix
tree (CST) is obtained by enriching a CSA with some representation of the LCP
data, plus some extra space to support fast queries.

Sadakane [26] showed how to compress the LCP array to just 2n bits by
noticing that, if sorted by text order rather than suffix array order, the LCP
numbers decrease by at most 1. Let PLCP be the permuted LCP array, then
PLCP [j + 1] ≥ PLCP [j]− 1. Thus the numbers can be differentially encoded,
h[j + 1] = PLCP [j + 1] − PLCP [j] + 1 ≥ 0, and then represented in unary
over a bitmap H[1, 2n] = 0h[1]10h[2] . . . 10h[n]1. Then, to obtain LCP [i], we look
for PLCP [A[i]], and this is extracted from H via rank/select operations. Here
rankb(H, i) counts the number of bits b in H[1, i] and selectb(H, i) is the position
of the i-th b in H. Both can be answered in constant time using o(n) extra bits
of space [21]. Then PLCP [j] = select1(H, j)− 2j, assuming PLCP [0] = 0.

Fischer et al. [8] prove that array H is compressible, as it has at most 2r
runs of 0s or 1s. Here, r is the number of runs in Ψ , which is related to the
repetitiveness of T and will be discussed in Section 4 (the more repetitive T ,
the lower is r). Let z1, z2 . . . zr the lengths of the runs of 0s and o1, o2 . . . or
those of the runs of 1s. They create arrays Z = 10z1−110z2−1 . . . and O =
10o1−110o2−1 . . ., which have overall 2r 1s out of 2n, and hence can be compressed
to 2r log n

r +O(r) + o(n) bits with constant-time rank and select [24].

While Sadakane [26] represented explicitly the suffix tree topology using 4n
bits, Fischer et al. showed that all the operations can be simulated with suffix
array ranges, by means of three operations on LCP : (1) RMQ(i, j) gives the
position of the minimum in LCP [i, j]; (2) PSV (i) finds the last value smaller
than LCP [i] in LCP [1, i− 1]; and (3) NSV (i) finds the first value smaller than
LCP [i] in LCP [i+ 1, n]. All these could easily be solved in constant time using



O(n) extra bits of space on top of the LCP representation, but Fischer et al.
give sublogarithmic-time algorithms to solve them with only o(n) extra bits.

Cánovas and Navarro [3] implemented a practical solution to solve the op-
erations NSV/PSV/RMQ. They divided the LCP array into blocks of length L
and formed a hierarchy of blocks, where they store the minimum LCP value of
each block i in an array m[i]. The array uses n

L log n bits. On top of array m,
they construct a perfect L-ary tree Tm where the leaves are the elements of m
and each internal node stores the minimum of the values stored in its children.
The total space needed for Tm is n

L log n(1 + O(1/L)) bits, so if L = ω(log n),
the space used is o(n) bits. To answer the queries with this structure one com-
putes a minimal cover in Tm of the range of interest of LCP and finds the node
of the cover containing the answer. Then one moves down from the node until
finding the right leaf of Tm. Finally, the corresponding LCP block is sequentially
scanned to find the exact position, which is the heaviest part in practice. To
answer RMQ queries faster they store for every node of Tm the local position in
the children where the minimum occurs, so there in no need to scan the child
blocks when going down the tree. The extra space incurred is still o(n) bits. If
the access to LCP cells is done via PLCP , then the overall cost of the operations
is dominated by O(L) times the cost of accessing a suffix array cell A[i].

4 Re-Pair and Repetition-Aware CSAs

Re-Pair [15] is a grammar-based compression method that factors out repetitions
in a sequence. This method is based on the following heuristic: (1) Find the most
repeated pair ab in the sequence; (2) Replace all its occurrences by a new symbol
s; (3) Add a rule s→ ab to a dictionary R; (4) Iterate until every pair is unique.

The result of the compression of a text T over a alphabet Σ of size σ, is
the dictionary R and the remaining sequence C, containing new symbols (s)
and symbols in Σ. Every sub-sequence of C can be decompressed locally by the
following procedure: Check if C[i] < σ; if so the symbol is original, else look in
R for rule C[i]→ ab, and recursively continue expanding with the same steps.

The dictionary R corresponds to a context free grammar, and the sequence C
to the initial symbols of the derivation tree that represents T . The final structure
can be regarded as a sequence of binary trees with roots C[i], see Figure 1 (left).

González and Navarro [10] used Re-Pair to compress the differentially en-
coded suffix array, A′[i] = A[i] − A[i − 1]. They showed that Re-Pair achieves
|R| + |C| = O(r log n

r ) on A′, r being the number of runs in Ψ . A run in Ψ is
a maximal contiguous area where Ψ [i + 1] = Ψ [i] + 1. It was shown that the
number of runs in Ψ is r ≤ nHk + σk for any k [16]. More importantly, repeti-
tions in T induce long runs in Ψ , and hence a smaller r [17]. An exact bound
has been elusive, but Mäkinen et al. [17] gave an average-case upper bound for
r: if T is formed by a random base sequence of length n′ � n and then other
sequences that have m random mutations (which include indels, replacements,
block moves, etc.) with respect to the base sequence, then r is at most n′ +
O(m logσ n) on average.
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Fig. 1. On the left, example of the Re-Pair compression of a sequence T . We show
R in array form and also in tree form. On the right, our NPR-RP construction over
LCP ′ = T , pruning with t = 4. We show how deep can the symbols of C be expanded
after the pruning.

The RLCSA [17] is a CSA where those runs in Ψ are factored out, to achieve
O(r) cells of space. More precisely, the size of the RLCSA is r(2 log(n/r) +
log σ)(1+o(1)) bits, where r is the number of runs in Ψ [17]. It supports accesses
to A in time O(s log n), with O((n/s) log n) extra bits for a sampling of A.

5 Our Repetition-Aware CST

As explained in the Introduction, we use the RLCSA [17] as the base CSA of our
repetition-aware CST. We also use the compressed representation of PLCP [8].
Since in our case r � n, we use a compressed bitmap representation that is useful
for very sparse bitmaps [13]: We δ-encode the runs of 0s between consecutive
1s, and store absolute pointers to the representation of every sth 1. This is very
efficient in space and solves select1 queries in time O(s), which is the operation
needed to compute a PLCP value.

The main issue is how to support fast operations using the RLCSA and
our LCP representation. As already explained, we choose to support all the
operations using RMQ/PSV/NSV [8], and in turn follow the scheme of Cánovas
and Navarro [3] to support these using the tree Tm. A problem is that this tree
is of size O((n/L) log n) bits, insensitive to the repetitiveness of the text.

Our main idea is to replace the regular structure of tree Tm by the parsing
tree obtained by a grammar compressor of the sequence LCP . We will now
explain this idea in detail.



5.1 Grammar-Compressing the LCP Array

The following fact motivates grammar-compressing the LCP array.

Fact 1 If i − 1 and i are within a run of Ψ and T [A[i − 1]] = T [A[i]], then
LCP [i] = LCP [Ψ(i)] + 1.

Proof. Let j = Ψ(i) and j′ = Ψ(i−1), and call ` = LCP [j]. Then, if x = T [A[i−
1]] = T [A[i]], it holds T [A[i−1], n] = x ·T [A[j′], n] and T [A[i], n] = x ·T [A[j], n],
thus LCP [i] = `+ 1.

This means that, except for the σ places of A[1, n] where the first characters
of suffixes change, runs in Ψ correspond to areas of LCP that are off by 1 with
respect to other areas of LCP . This is the same situation detected by González
and Navarro [10] onA[1, n]. Following their idea, we can grammar-compress array
LCP ′, defined as LCP ′[i] = LCP [i]−LCP [i−1] if i > 1, and LCP ′[1] = LCP [1].
This differential LCP array contains now O(r) areas that are exact repetitions of
others, and a RePair-based compression of it yields |R|+ |C| = O(r log n

r ) words
[10]. We note, however, that the compression achieved in this way [10] is modest:
we guarantee O(r log n

r ) words, whereas the RLCSA and PLCP representations
require basically O(r log n

r ) bits. Thus we do not apply this idea directly, but
rather truncate the parsing tree of the grammar, and use it as a device to speed
up computations that would otherwise require expensive accesses to PLCP .

Let R and C be the results of compressing LCP ′ with RePair. Every nonter-
minal i of R expands to a substring S[1, t] of LCP ′. No matter where S appears
in LCP ′ (indeed, it must appear more than once), we can store some values that
are intrinsic to S. Let us define a relative sequence of values associated to S,
as follows: S′[0] = 0 and S′[j] = S[j] + S′[j − 1]. Then, we define the following
variables associated to the nonterminal:

– mini = min1≤j≤t S
′[j] is the minimum value in S′.

– lmini and rmini are the leftmost and rightmost positions j where S′[j] =
mini, respectively.

– sumi = S′[t] =
∑

1≤j≤t S[j] is the sum of the values S[j].
– coveri = t is the number of values in S′.

As most of these values are small, we encode them with Directly Addressable
Codes [2], which use less space for short numbers while providing fast access
(rmin stored as the difference with lmin).

To reduce space, we prune the grammar by deleting the nonterminals i such
that coveri < t, where t will be a space/time tradeoff parameter (recall that the
grammar is superfluous, as we have access to LCP via PLCP , so we use it only
to speed up computations). However, “short” nonterminals that are mentioned
in sequence C are not deleted.

This ensures that we can skip Ω(t) symbols of LCP with a single access
to the corresponding nonterminal in C, except for the short nonterminals (and
terminals) that are retained in C. To speed up traversals on C, we join together
maximal consecutive subsequences of nonterminals and terminals in C that sum



up a total cover < t: we create a new nonterminal rule in R (for which we pre-
compute the variables above) and replace it in C, deleting those nonterminals
that formed the new rule and do not appear anymore in C. This will also guar-
antee that no more than O(t) accesses to LCP are needed to solve queries. Note
that we could have built a hierarchy of new nonterminals by recursively grouping
t consecutive symbols of C, achieving logarithmic operation times just as with
tree Tm [3], but this turned out to be counterproductive in practice. Figure 1
(right) gives an example.

Finally, sampled pointers are stored to every c-th cell of C. Each sample for
position C[c · j], stores:

– Pos[j] = 1 +
∑

1≤k≤cj−1 coverC[k], that is, the first position LCP [i] corre-
sponding to C[c · j].

– V al[j] =
∑

1≤k≤cj−1 sumC[k], that is, the value LCP [i].

5.2 Computing NSV, PSV, and RMQ

To answer NSV (i), we first look for the rule C[j] that contains LCP [i+ 1]: we
binary search Pos for the largest j′ such that Pos[j′] ≤ i+ 1 and then sequen-
tially advance on C[cj′..j] until finding the largest j such that pos = Pos[j] +∑
cj′≤k<j coverC[k] ≤ i + 1. At the same time, we compute ` = V alue[j′] +∑
cj′≤k<j sumC[k].
Now, if ` + minC[j] < LCP [i], it is possible that NSV (i) is within the

same C[j]. In this case, we search recursively the tree expansion with root C[j]
for the leftmost value to the right of i and smaller than LCP [i]: Let C[j] →
ab in the grammar. We recursively visit child a if ` + mina < LCP [i] and
pos+ covera > i+ 1. If we find no answer there, or we had decided not to visit
a, then we set ` = ` + suma and pos = pos + covera and recursively visit child
b if ` + minb < LCP [i] and pos + coverb > i + 1. If we also find no answer
inside b, or we had decided not to visit b, we return with no value. On the other
hand, if we reach a leaf l during the recursion, we sequentially scan the array
LCP [pos, pos + coverl − 1], updating ` = ` + LCP [k] and increasing pos. If at
some position we find a value smaller than LCP [i], we report the position pos.

If we return with no value from the first recursive call at C[j], it was because
the only values smaller than LCP [i] were to the left of i. In this case, or if we
had decided not to enter into C[j] because `+minC[j] ≥ LCP [i], we sequentially
scan C[j, n], while updating ` = ` + sumC[k] and pos = pos + coverC[k], until
finding the first k such that `+minC[k] < LCP [i]. Once we find such k, we are
sure that the answer is inside C[k]. Thus we enter into C[k] with a procedure
very similar to the one for C[j] (albeit slightly simpler as we know that all the
positions are larger than i). In this case, as the LCP values are discrete, we know
that if `+minC[k] = LCP [i]− 1, there is no smaller value to the left of the min
value, so in this case we directly answer the corresponding lmin value, without
accessing the LCP array. The solution to PSV (i) is symmetric.

To answer RMQ(x, y), we find the rules C[i] and C[j] containing x and y,
respectively. We sequentially scan C[i+1, j−1] and store the smallest `+minC[k]



value found (in case of ties, the leftmost). If the minimum is smaller than the
corresponding values ` + minC[i] and ` + minC[j], we directly return the value
pos+lminC[k] corresponding to position C[k]. Else, if the global minimum in C[i]
is equal to or less than the minimum for i < k < j, we must examine C[i] to find
the smallest value to the right of x− 1. Assume C[i]→ ab. We recursively enter
into a if pos+ covera > x, otherwise we skip it. Then, we update ` = `+ suma

and pos = pos + covera, and enter into b if pos < x, otherwise we directly
consider ` + minb as a candidate for the minimum sought. Finally, if we arrive
at a leaf we scan it, updating ` and pos, and consider all the values ` where
pos ≥ x as candidates to the minimum. The minimum for C[i] is the smallest
among all candidates to minimum considered, and with pos+ lminb or the leaf
scanning process we know its global position. This new minimum is compared
with the minimum of C[k] for i < k < j. Symmetrically, in case k = j contains
a value smaller than the minimum for i ≤ j < j, we have to examine C[j] for
the smallest value to the left of y + 1.

6 Experimental Evaluation

We used various DNA collections from the Repetitive Corpus at PizzaChili
(http://pizzachili.dcc.uchile.cl/repcorpus, created and thoroughly studied
by Kreft [12]). We took DNA collections Para and Influenza, which are the
most repetitive ones, and Escherichia, a less repetitive one. These are collec-
tions of genomes of various bacteria of those species. We also use DNA, which
is plain DNA from PizzaChili, as a non-repetitive baseline. On the other hand,
in order to show how results scale with repetitiveness, and although it is not a
biological collection, we also included Einstein, corresponding to the Wikipedia
versions of the article about Einstein in German.

All experimental results were performed on a 8 GB RAM computer with Intel
Core2 Duo, each processor of 3 GHz, 6 MB cache. Our implementation will be
publicly available at the ICDB Web page (http://www.icdb.cl/software.html).

For the RLCSA we used a fixed sampling that gave reasonable performance:
one absolute value out of 32 is stored to access Ψ(i), and one text position every
128 is sampled to compute A[i]. Similarly, we used sampling step 32 for the
δ-encoding of the bitmaps Z and O that encode PLCP .

Table 1 shows the resulting sizes. The bpc of the CST is partitioned into
those for the RLCSA, for the PLCP, and for NPR, which stands for the data
structure that solves NSV/PSV/RMQ queries. For the latter we used the small-
est setting that offered answers within 2 milliseconds (msec). It can be seen that
we obtain, overall, 1.3–1.5 bpc for the most repetitive DNA collections. This
value deteriorates until approaching, for non-repetitive DNA, the same 10 bpc
that are reported in the literature for existing CSTs. Thus our data structure
adapts smoothly to the repetitiveness (or lack of it) of the collection. On the
other hand, on Einstein, which is much more repetitive, the space gets as low as
0.28 bpc. This is a good indication of what we can expect on future databases



Name Text MB CST MB RLCSA (P)LCP NPR Total

Para 410 67 0.84 0.26 0.20 1.30

Influenza 148 27 0.96 0.21 0.30 1.47

Escherichia 108 48 2.46 0.92 0.20 3.58

DNA 50 61 5.91 3.62 0.30 9.83

Einstein 89 3 0.17 0.01 0.10 0.28

Table 1. Text sizes, size of our CST (which replaces the text), bpc for the different
components, and total bpc of the different collections considered. The NPR structure
is the smallest setting between NPR-RP and NPR-RPBal for that particular text.

with thousands of individuals of the same species, as opposed to these testbeds
with a few tens of individuals, or with more genetic variation.

Let us discuss the NPR operations now. We used a public Re-Pair compressor
by ourselves (http://www.dcc.uchile.cl/gnavarro/software), which offers two
alternatives when dealing with symbols of the same frequencies. The basic one,
that we will call NPR-RP, stacks the symbols, whereas the second one, NPR-
RPBal, enqueues them and obtains much more balanced grammars in practice.
For our structure we tested values t = c = 64, 128, 256, 512. We also include the
basic regular structure of Cánovas and Navarro [3] (running over our RLCSA and
PLCP representations), to show that our grammar-based version offers better
space/time tradeoffs than their regular tree Tm. For this version, RP-CN, we
used values L = 36, 64, 128, 256, 512.

We measure the times of operations NSV (as PSV is symmetric) and RMQ
following the methodology of Cánovas and Navarro [3]. We choose 10,000 ran-
dom suffix tree leaves (corresponding to uniformly random suffix array inter-
vals [vl, vr] = [v, v], v ∈ [1, n]) and navigate towards the root using operation
parent(vl, vr) = [PSV (vl), NSV (vr)]. At each such node, we also measure the
string depth, which corresponds to query strdep(vl, vr) = LCP [RMQ(vl+1, vr)].
We average the times of all the NSV and RMQ queries performed.

Figure 2 shows the space/time performance of NPR-CN, NPR-RP, and NPR-
RPBal. In addition, Figure 2 shows the number of explicit accesses to LCP made
per NPR operation, showing that in practice the main cost of the NPR operations
lies in retrieving the LCP values. Clearly, NPR-RP and NPR-RPBal dominate
the space/time map for all queries. They always make better use of the space
than the regular tree of NPR-CN. NPR-RPBal is usually better than NPR-RP,
especially in RMQ queries, where NPR-RP suffers from extremely unbalanced
trees that force the algorithm to examine many nodes, one by one. There are
some particular cases, like NSV on Escherichia, where NPR-RP is the fastest.
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