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Abstract. This paper presents a Web graph representation based on
a compact tree structure that takes advantage of large empty areas of
the adjacency matrix of the graph. Our results show that our method is
competitive with the best alternatives in the literature, offering a very
good compression ratio (3.3–5.3 bits per link) while permitting fast nav-
igation on the graph to obtain direct as well as reverse neighbors (2–15
microseconds per neighbor delivered). Moreover, it allows for extended
functionality not usually considered in compressed graph representations.

1 Introduction

The World Wide Web structure can be regarded as a directed graph at several
levels, the finest grained one being pages that point to pages. Many algorithms
of interest to obtain information from the Web structure are essentially basic
algorithms applied over the Web graph [16, 11].

Running typical algorithms on those huge Web graphs is always a problem.
Even the simplest external memory graph algorithms, such as graph traversals,
are usually non disk-friendly [24]. This has pushed several authors to consider
compressed graph representations, which aim to offer memory-efficient graph
representations that still allow fast navigation without decompressing. The aim
of this research is to allow classical graph algorithms to be run in main memory
over much larger graphs than those affordable with a plain representation.

The most famous representative of this trend is surely Boldi and Vigna’s We-
bGraph Framework [6]. The WebGraph compression method is indeed the most
successful member of a family of approaches to compress Web graphs based
on their statistical properties [5, 7, 1, 23, 21, 20]. It allows fast extraction of the
neighbors of a page while spending just a few bits per link (about 2 to 6, de-
pending on the desired navigation performance). Their representation explicitly
exploits Web graph properties such as: (1) the power-law distribution of inde-
grees and outdegrees, (2) the locality of reference, (3) the “copy property” (the
set of neighbors of a page is usually very similar to that of some other page).

More recently, Claude and Navarro [10] showed that most of those properties
are elegantly captured by applying Re-Pair compression [17] on the adjacency
lists, and that reverse navigation (finding the pages that point to a given page)
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could be achieved by representing the output of Re-Pair using some more so-
phisticated data structures [9]. Reverse navigation is useful to compute several
relevance ranking on pages, such as HITS, PageRank, and others. Their tech-
nique offers better space/time tradeoffs than WebGraph, that is, they offer faster
navigation than WebGraph when both structures use the same space.

Asano et al. [2] achieve even less than 2 bits per link by explicitly exploiting
regularity properties of the adjacency matrix of the Web graphs, but their nav-
igation time is substantially higher, as they need to uncompress full domains in
order to find the neighbors of a single page.

In this paper we also aim at exploiting the properties of the adjacency ma-
trix, yet with a general technique to take advantage of clustering rather than a
technique tailored to particular Web graphs. We introduce a compact tree rep-
resentation of the matrix that not only is very efficient to represent large empty
areas of the matrix, but at the same time allows efficient forward and backward
navigation of the graph. An elegant feature of our solution is that it is symmet-
ric, both navigations are carried out by similar means and achieve similar times.
In addition, our proposal allows some interesting operations that are not usually
present in alternative structures.

2 Our proposal

The adjacency matrix of a Web graph of n pages is a square matrix {aij} of n×n,
where each row and each column represents a Web page. Cell aij is 1 if there
is a hyperlink in page i towards page j, and 0 otherwise. Page identifiers are
integers, which correspond to their position in an array of alphabetically sorted
URLs. This puts together the pages of the same domains, and thus locality of
reference translates into closeness of page identifiers. As on average there are
about 15 links per Web page, this matrix is extremely sparse. Due to locality
of reference, many 1s are placed around the main diagonal (that is, page i has
many pointers to pages nearby i). Due to the copy property, similar rows are
common in the matrix. Finally, due to skewness of distribution, some rows and
colums have many 1s, but most have very few.

We propose a compact representation of the adjacency matrix that exploits
its sparseness and clustering properties. The representation is designed to com-
press large matrix areas with all 0s into very few bits.

We represent the adjacency matrix by a k2-ary tree, which we call k2-tree, of
height h = dlogk ne. Each node contains a single bit of data: 1 for the internal
nodes and 0 for the leaves, except for the last level, where all are leaves and
represent bit values of the matrix. The first level (numbered 0) corresponds to
the root; its k2 children are represented at level 1. Each child is a node and
therefore it has a value 0 or 1. All internal nodes (i.e., with value 1) have exactly
k2 children, whereas leaves (with value 0 or at the last tree level) have no children.

Assume for simplicity that n is a power of k; we will soon remove this as-
sumption. Conceptually, we start dividing the adjacency matrix following a MX-
Quadtree strategy [22, Section 1.4.2.1] into k2 submatrices of the same size, that
is, k rows and k columns of submatrices of size n2/k2. Each of the resulting k2
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Fig. 1. k2-tree examples.

submatrices will be a child of the root node and its value will be 1 iff in the cells
of the submatrix there is at least one 1. A 0 child means that the submatrix has
all 0s and hence the tree decomposition ends there.

The children of a node are ordered in the tree starting with the submatrices
in the first (top) row, from left to right, then the submatrices in the second row
from left to right, and so on. Once the level 1, with the children of the root, has
been built, the method proceeds recursively for each child with value 1, until
we reach submatrices full of 0s, or we reach the cells of the original adjacency
matrix. In the last level of the tree, the bits of the nodes correspond to the
matrix cell values. Figure 1(a) illustrates a 22-tree for a 4× 4 matrix.

A larger k induces a shorter tree, with fewer levels, but more children per
internal node. If n is not a power of k, we conceptually extend our matrix to the
right and bottom with 0s, making it of width n′ = kdlogk ne. This does not cause
a significant overhead as our technique is efficient to handle large areas of 0s.

Figure 1(b) shows an example of the adjacency matrix of a Web graph (we
use the first 11 × 11 submatrix of graph CNR [6]), how it is expanded to an
n′ × n′ matrix (n′ power of k = 2) and its corresponding tree. Notice that its
last level represents cells in the original adjacency matrix, but most cells in the
original adjacency matrix are not represented in this level because, where a large
area with 0s is found, it is represented by a single 0 in a smaller level of the tree.

2.1 Navigating with a k2-tree

To obtain the pages pointed by a specific page p, that is, to find direct neighbors
of page p, we need to find the 1s in row p of the matrix. We start at the root
and travel down the tree, choosing exactly k children of each node.

Example. We find the pages pointed by the first page in the example of Fig-
ure 1(a), that is, find the 1s of the first matrix row. We start at the root of
the 22-tree and compute which children of the root overlap the first row of the
matrix. These are the first two children, to which we move:

– The first child is a 1, thus it has children. To figure out which of its children
are useful we repeat the same procedure. We compute in the corresponding
submatrix (the one at the top left corner) which of its children represent
cells overlapping the first row of the original matrix. These are the first and
the second children. They are leaf nodes and their values are 1 and 1.
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– The second child of the root represents the second submatrix, but its value
is 0. This means that all the cells in the adjacency matrix in this area are 0.

Thus, the Web page represented by the first row has links to itself and page 2.
Figure 1(b) shows this navigation for a larger example.

Reverse neighbors. An analogous procedure retrieves the list of reverse neigh-
bors. To obtain which pages point to page q, we need to locate which cells have
a 1 in column q of the matrix. Thus, we carry out a symmetric algorithm, using
columns instead of rows.

Summarizing, searching for direct or for reverse neighbors in the k2-tree is
completely symmetric. The only difference is the formula to compute the children
of each node used in the next step. In either case we perform a top-down traversal
of the tree. If we want to search for direct(reverse) neighbors in a k2-tree, we go
down through k children forming a row(column) inside the matrix.

3 Data structure and algorithms

Our data structure is essentially a compact tree of N nodes. There exist sev-
eral such representations for general trees [14, 19, 4, 12], which asymptotically
approach the information-theoretic minimum of 2N + o(N) bits. In our case,
where there are only arities k2 and 0, the information-theoretic minimum of
N + o(N) bits is achieved by a so-called “ultra-succinct” representation [15]
for general trees. Our representation is much simpler, and close to the so-called
LOUDS (level-ordered unary degree sequence) tree representation [14] (which
would not achieve N + o(N) bits if directly applied to our trees).

Our data structure can be regarded as a simplified variant of LOUDS for the
case where arities are just k2 and 0, which achieves the information-theoretic
minimum of N+o(N) bits, provides the traversal operations we require (basically
move to the i-th child, although also parent is easily supported) in constant time,
and is simple and practical.

3.1 Data structure

We represent the whole adjacency matrix via the k2-tree using two bit arrays:

T (tree): stores all the bits of the k2-tree except those in the last level. The bits
are placed following a levelwise traversal: first the k2 binary values of the
children of the root node, then the values of the second level, and so on.

L (leaves): stores the last level of the tree. Thus it represents the value of (some)
original cells of the adjacency matrix.

We create over T an auxiliary structure that enables us to compute rank
queries efficiently. Given an offset i inside a sequence T of bits, rank(T, i) counts
the number of times the bit 1 appears in T [1, i]. This can be supported in con-
stant time and fast in practice using sublinear space on top of the bit sequence
[14, 18]. In practice we use an implementation that uses 5% of extra space on
top of the bit sequence and provides fast queries, as well as another that uses
37.5% extra space and is much faster [13].
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We do not need to perform rank over the bits in the last level of the tree;
that is the practical reason to store them in a different bitmap (L). Thus the
space overhead for rank is paid only over T .

Analysis. Assume the graph has n pages and m links. Each link is a 1 in the
matrix, and in the worst case it induces the storage of one distinct node per
level, for a total of dlogk2(n2)e nodes. Each such (internal) node costs k2 bits,
for a total of k2mdlogk ne bits. However, especially in the upper levels, not all
the nodes in the path to each leaf can be different. In the worst case, all the
nodes exist up to level blogk2 mc (only since that level there can be m different
internal nodes at the same level). From that level, the worst case is that each of
the m paths to the leaves is unique. Thus, in the worst case, the total space is∑blogk2 mc

`=1 k2` + k2m(dlogk2 n2e − blogk2 mc) = k2m(logk2
n2

m + O(1)) bits.
This shows that, at least in a worst-case analysis, a smaller k yields less space

occupancy. For k = 2 the space is 4m(log4
n2

m +O(1)) = 2m log2
n2

m +O(m) bits,
which is asymptotically twice the information-theoretic minimum necessary to
represent all the matrices of n × n with m 1s. In the experimental section we
see that, on Web graphs, the space is much better than the worst case, as Web
graphs are far from uniformly distributed.

Finally, the expansion of n to the next power of k can, in the horizontal
direction, force the creation of at most k` new children of internal nodes at level
` ≥ 1 (level ` = 1 is always fully expanded unless the matrix is all zeros). Each
such child will cost k2 extra bits. The total excess is O(k2 ·kdlogk ne−1) = O(k2n)
bits, which is usually negligible. The vertical expansion is similar.

3.2 Finding a child of a node
Our levelwise traversal satisfies the following property, which permits fast navi-
gation to the i-th child of node x, childi(x) (for 0 ≤ i < k2):

Lemma 1. Let x be a position in T (the first position being 0) such that T [x] =
1. Then childi(x) is at position rank(T, x) · k2 + i of T : L

Proof. T : L is formed by traversing the tree levelwise and appending the bits
of the tree. We can likewise regard this as traversing the tree levelwise and
appending the k2 bits of the childred of the 1s found at internal tree nodes. By
the time node x is found in this traversal, we have already appended k2 bits per
1 in T [1, x − 1], plus the k2 children of the root. As T [x] = 1, the children of x
are appended at positions rank(T, x) · k2 to rank(T, x) · k2 + (k2 − 1).

Example. To represent the 22-tree of Figure 1(b), arrays T and L are:
T = 1011 1101 0100 1000 1100 1000 0001 0101 1110,

L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

In T each bit represents a node. First four bits represent nodes 0, 1, 2 and 3,
which are the children of the root. The following four bits represent the children
of node 0. There are no children for node 1 because it is a 0, then the children
of node 2 start at position 8 and those of node 3 start at position 12. The bit in
position 4, the fifth bit of T , represents the first child of node 0, and so on.
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Direct(n, p, q, x)
1. If x ≥ |T | Then // leaf
2. If L[x− |T |] = 1 Then output q
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + k · bp/(n/k)c
6. For j = 0 . . . k − 1 Do
7. Direct(n/k, p mod (n/k),

q + (n/k) · j, y + j)

Reverse(n, q, p, x)
1. If x ≥ |T | Then // leaf
2. If L[x− |T |] = 1 Then output p
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + bq/(n/k)c
6. For j = 0 . . . k − 1 Do
7. Reverse(n/k, q mod (n/k),

p +(n/k)·j, y + j ·k)

Fig. 2. Returning direct(reverse) neighbors

3.3 Navigation

To find the direct(reverse) neighbors of a page p(q) we need to locate which
cells in row ap∗ (column a∗q) of the adjacency matrix have a 1. We have already
explained that these are obtained by a top-down tree traversal that chooses k
out of the k2 children of a node, and also gave the way to obtain the i-th child
of a node in our representation. The only missing piece is the formula that maps
global row numbers to the children number at each level.

Recall h = dlogk ne is the height of the tree. Then the nodes at level ` repre-
sent square submatrices of width kh−`, and these are divided into k2 submatrices
of width kh−`−1. Cell (p`, q`) at a matrix of level ` belongs to the submatrix at
row bp`/kh−`−1c and column bq`/kh−`−1c.

Let us call p` the relative row position of interest at level `. Clearly p0 =
p, and row p` of the submatrix of level ` corresponds to children number k ·
bp`/kh−`−1c+ j, for 0 ≤ j < k. The relative position in those children is p`+1 =
p` mod kh−`−1. Similarly, column q corresponds q0 = q and, in level `, to children
j · k + bq`/kh−`−1c, for 0 ≤ j < k, with relative position q`+1 = q` mod kh−`−1.

The algorithms for extracting direct and reverse neighbors are described in
Figure 2. For direct neighbors it is called Direct(kh, p, 0,−1), where the param-
eters are: current submatrix size, row of interest in current submatrix, column
offset of the current submatrix in the global matrix, and the position in T : L
of the node to process (the initial −1 is an artifact because our trees do not
represent the root node). Values T , L, and k are global. It is assumed that
n is a power of k and that rank(T,−1) = 0. For reverse neighbors it is called
Reverse(kh, q, 0,−1), where the parameters are the same except that the second
is the column of interest and the third is the row offset of the current submatrix.

Analysis. Our navigation time has no worst-case guarantees better than O(n),
as a row p− 1 full of 1s followed by p full of 0s could force a Direct query on p
to go until the leaves across all the row, to return nothing.

However, this is unlikely. Assume the m 1s are uniformly distributed in the
matrix. Then the probability that a given 1 is inside a submatrix of size (n/k`)×
(n/k`) is 1/k2`. Thus, the probability of entering the children of such submatrix
is (brutally) upper bounded by m/k2`. We are interested in k` submatrices at
each level of the tree, and therefore the total work is on average upper bounded
by m·∑h−1

`=0 k`/k2` = O(m). This can be refined because there are not m different
submatrices in the first levels of the tree. Assume we enter all the O(kt) matrices
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of interest up to level t = blogk2 mc, and from then on the sum above applies.
This is O(kt + m ·∑h−1

`=t+1 k`/k2`) = O(kt + m/kt) = O(
√

m) time. This is not
the ideal O(m/n) (average output size), but much better than O(n) or O(m).

Again, if the matrix is clustered, the average performance is indeed better
than under uniform distribution: whenever a cell close to row p forces us to
traverse the tree down to it, it is likely that there is a useful cell at row p as well.

3.4 Construction

Assume our input is the n×n matrix. Construction of our tree is easily carried o
ut bottom-up in linear time and using the same space as the final tree. If, instead,
we have an adjacency list representation of the matrix, we can still achieve the
same time by setting up n cursors, one per row, so that each time we have to
access apq we compare the current cursor of row p with value q.

In this case we could try to achieve time proportional to m, the number of
1s in the matrix. For this sake we could insert the 1s one by one into an initially
empty tree, building the necessary part of the path from the root to the cor-
responding leaf. After the tree is built we can traverse it levelwise to build the
final representation, or recursively to output the bits to different sequences, one
per level, as before. The space could still be O(k2m(1 + logk2

n2

m )), that is, pro-
portional to the final tree size, if we used some dynamic compressed parentheses
representation of trees [8]. The total time would be O(log m) per bit of the tree.

As we produce each tree level and traverse each matrix row (or adjacency
list) sequentially, we can construct the tree on disk in optimal I/O time provided
we have main memory to maintain logk n disk blocks to output the tree, plus B
disk blocks (B being the disk page size in bits) for reading the matrix.

4 A hybrid approach

As we can notice, the greater k is, the more space L needs, because even though
there are fewer submatrices in the last level, they are larger. Hence we may spend
k2 bits to represent very few 1s. Notice for example that if k = 4 in Figure 1(b),
we will store some last-level submatrices containing a unique 1, spending 15 more
bits that are 0. On the contrary, when k = 2 we use fewer bits for that leaf level.

We can improve our structure if we use a larger k for the first levels of the
tree and a small k for the last levels. This strategy takes advantage of the strong
points of both approaches. Using large values of k for the first levels, the tree is
shorter, so we will be able to obtain the list of neighbors faster, as we have fewer
levels to traverse. Using small values of k for the last levels we do not store too
many bits for each 1 of the adjacency matrix, as the submatrices are smaller.

5 Experimental evaluation

We ran several experiments over some Web crawls from the WebGraph project.
Table 3(a) gives the main characteristics of the graphs used: name (and version)
of the graph, number of pages and links and the size of a plain adjacency list rep-
resentation of the graphs (using 4-byte integers). The machine used in our tests
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is a 2GHz Intel R©Xeon R© (8 cores) with 16 GB RAM. It ran Ubuntu GNU/Linux
with kernel version 2.4.22-15-generic SMP (64 bits). The compiler was gcc ver-
sion 4.1.3 and -O9 compiler optimizations were set. Space is measured in bits
per edge (bpe), by dividing the total space of the structure by the number of
edges (i.e., links) in the graph. Time results measure average cpu user time per
neighbor retrieved: We compute the time to search for the neighbors of all the
pages (in random order) and divide by the total number of edges in the graph.

5.1 Comparison between different alternatives

We first study our approach with different values of k. Table 3(b) shows 8 dif-
ferent alternatives of our method over the EU graph using different values of
k. All build on the rank structure that uses 5% of extra space [13]. The first
column names the approaches as follows: ′2 × 2′, ′3 × 3′ and ′4 × 4′ stand for
the alternatives where we subdivide the matrix into 2× 2, 3× 3 and 4× 4 sub-
matrices, respectively, in every level of the tree. On the other hand, we denote
′H − i′ the hybrid approach where we use k = 4 up to level i of the tree, and
then we use k = 2 for the rest of the levels. The second and third columns in-
dicate the size, in bytes, used to store the tree T and the leaves L, respectively.
The fourth column shows the space needed in main memory by the structures
(e.g., including the extra space for rank), in bits per edge. Finally, the last two
columns show the times to retrieve the direct (fifth column) and reverse (sixth)
neighbors, measured in microseconds per link retrieved (µs/e). Note that, when
we use a fixed k, we obtain better times when k is greater, because we are short-
ening the height of the tree, but the compression ratio worsens, as the space for
L becomes dominant and many 0s are stored in there.

If we use a hybrid approach, we can maintain a compression ratio close to
that obtained by the ′2 × 2′ alternative while improving the time, until we get
close to the ′4 × 4′ alternative. The best compression is obtained for ′H − 3′,
even better than ′2 × 2′. Figure 3(c) shows similar results graphically, for the
three larger graphs, space on the left and time to retrieve direct neighbors on the
right. The space does not worsen much if we keep k = 4 up to a moderate level,
whereas times improve consistently. A medium value, say switching to k = 2 at
level 7, looks as a good compromise.

5.2 Comparison with other methods

We first compare graph representations that allow retrieving both direct and
reverse neighbors. Figure 3(d) shows the space/time tradeoff for retrieving direct
and reverse neighbors, over the larger graph (UK), as it is representative of
the common behaviour of the other smaller graphs. We measure the average
time efficiency in µs/e as before. Representations providing space/time tuning
parameters appear as a line, whereas the others appear as a point.

We compare our compact representations with the proposal in [9, Chapter
7] that computes both direct and reverse neighbors (RePair both), as well as
the simpler representation in [10] (as improved in [9, Chapter 6], RePair) that
retrieves just direct neigbors. In this case we represent both the graph and its
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(a) Description of the graphs used.

File Pages Links Size
(millions) (millions) (MB)

CNR (2000) 0.325 3.216 14
EU (2005) 0.862 19.235 77
Indochina (2004) 7.414 194.109 769
UK (2002) 18.520 298.113 1,208

(b) Different approaches over graph EU.

Variant Tree Leaves Space Direct Reverse
(bytes) (bytes) (bpe) (µs/e) (µs/e)

2× 2 6,860,436 5,583,076 5.21076 2.56 2.47
3× 3 5,368,744 9,032,928 6.02309 1.78 1.71
4× 4 4,813,692 12,546,092 7.22260 1.47 1.42
H − 1 6,860,432 5,583,100 5.21077 2.78 2.62
H − 3 6,860,412 5,583,100 5.21076 2.67 2.49
H − 5 6,864,404 5,583,100 5.21242 2.39 2.25
H − 7 6,927,924 5,583,100 5.23884 2.10 1.96
H − 9 8,107,036 5,583,100 5.72924 1.79 1.67
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(f) Comparison with approach Smaller.

Space (bpe) Smaller Smaller × 2 Hybrid5
CNR 1.99 3.98 4.46
EU 2.78 5.56 5.21
Time (ms/p)
CNR 2.34 0.048
EU 28.72 0.099

Fig. 3. Experimental evaluation
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transpose, in order to achieve reverse navigation as well (RePair × 2). We do the
same with Boldi and Vigna’s technique [6] (WebGraph), as it also allows for direct
neighbors retrieval only (we call it WebGraph × 2 when we add both graphs).
As this technique uses less space on disk than what the process needs to run, we
show in WebGraph (RAM) the minimum space needed to run (yet we keep the
best time it achieves with sufficient RAM space). All the implementations were
provided by their authors.

We include our alternatives 2× 2, 3× 3, 4× 4, and Hybrid5, all of which use
the slower solution for rank that uses just 5% of extra space [13], and Hybrid37,
which uses the faster rank method that uses 37.5% extra space on top of T .

As we can see, our representations (particularly Hybrid5 and 2 × 2) achieve
the best compression (3.3 to 5.3 bpe, depending on the graph, 4.22 for graph UK)
among all the techniques that provide direct and reverse neighbor queries. The
only alternative that gets somewhat close is RePair both, but it is much slower
to retrieve direct neighbors. For reverse neighbors, instead, it is an interesting
alternative. Hybrid37 offers relevant tradeoffs in some cases. Finally, WebGraph
× 2 and RePair × 2 offer very attractive time performance, but they need
significantly more space. As explained, using less space may make the difference
between being able of fitting a large Web graph in main memory or not.

If, instead, we wished only to carry out forward navigation, alternatives Re-
Pair and WebGraph become preferable in most cases. Figure 3(e), however, shows
graph EU, where we still achieve significantly less space than WebGraph.

We also compare our proposal with the method in [2] (Smaller). As we do
not have their code, we ran new experiments on a Pentium IV of 3.0 GHz with 4
GB of RAM, which resembles better the machine used in their experiments. We
used the smaller graphs, on which they have reported experiments. Table 3(f)
shows the space and average time needed to retrieve the whole adjacency list of
a page, in milliseconds per page. As, again, their representation cannot retrieve
reverse neighbors, Smaller × 2 is an estimation of the space they would need to
represent both the normal and transposed graphs.

Our method is orders of magnitude faster to retrieve an adjacency list, while
the space is similar to Smaller × 2. The difference is so large that it could be
possible to be competitive even if part of our structure (e.g. L) was in secondary
memory (in which case our main memory space would be similar to just Smaller).

6 Extended functionality

While alternative compressed graph representations [6, 10, 2] are limited to re-
trieving the direct, and sometimes the reverse, neighbors of a given page, and we
have compared our technique with those in these terms, we show now that our
representation allows for more sophisticated forms of retrieval than extracting
direct and reverse neighbors.

First, in order to determine whether a given page p points to a given page q,
most compressed (and even some classical) graph representations have no choice
but to extract all the neighbors of p (or a significant part of them) and see if
q is in the set. We can answer such query in O(logk n) time, by descending to
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exactly one child at each level of the tree. More precisely, at level ` we descend
to child k · bp/kh−`−1c+ bq/kh−`−1c, if it is not a zero, and compute the relative
position of cell (p, q) in the submatrix just as in Section 3.3. If we arrive at the
last level and find a 1 at cell (p, q), then there is a link, otherwise there is not.

A second interesting operation is to find the direct neighbors of page p that
are within a range of pages [q1, q2] (similarly, the reverse neighbors of q that are
within a range [p1, p2]). This is interesting, for example, to find out whether p
points to a domain, or is pointed from a domain, in case we sort URLs in lexico-
graphical order. The algorithm is similar to Direct and Reverse in Section 3.3,
except that we do not enter all the children 0 ≤ j < k of a row (or column), but
only from bq1/kh−`−1c ≤ j ≤ bq2/kh−`−1c (similarly for p1 to p2).

Yet a third operation of interest is to find all the links from a range of
pages [p1, p2] to another [q1, q2]. This is useful, for example, to extract all the
links between two domains. The algorithm to solve this query indeed generalizes
all of the others we have seen. This gives times of O(n) for retrieving direct
and reverse neighbors (we made a finer average-case analysis in Section 3.3),
O(p2−p1+logk n) or O(q2−q1+logk n) for ranges of direct or reverse neighbors,
and O(logk n) for queries on single links.

7 Conclusions

We have introduced a compact representation for Web graphs that takes ad-
vantage of the sparseness and clustering of their adjacency matrix. Our rep-
resentation enables efficient forward and backward navigation in the graph (a
few microseconds per neighbor found) within compact space (about 3 to 5 bits
per link). Our experimental results show that our technique offers an attrac-
tive space/time tradeoff compared to the state of the art. Moreover, we support
queries on the graph that extend the basic forward and reverse navigation.

More exhaustive experimentation and tuning is needed to exploit the full
potential of our data structure, in particular regarding the space/time tradeoffs
of the hybrid approach. We also plan to research and experiment more in depth
on the extended functionality supported by our representation.

The structure we have introduced can be of more general interest. It could be
fruitful, for example, to generalize it to binary relations, such as the one relating
keywords with the Web pages, or more generally documents, where they appear.
Then one could retrieve not only the Web pages that contain a keyword, but also
the set of keywords present in a Web page, and thus have access to important
summarization data without accessing the page itself. Our range search could
permit searching within subcollections or subdirectories. Our structure could
become a relevant alternative to the current state of the art in this direction,
e.g. [3, 9]. Another example is the representation of discrete grids of points, for
computational geometry applications or geographic information systems.
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