
Speeding Up Pattern Mathing by Text SamplingFraniso Claude1,⋆, Gonzalo Navarro1,∗, Hannu Peltola2,Leena Salmela2, and Jorma Tarhio2

1 Department of Computer Siene, University of Chile{flaude, gnavarro}�d.uhile.l
2 Department of Computer Siene and EngineeringHelsinki University of Tehnology{hpeltola, lsalmela, tarhio}�s.hut.fiAbstrat. We introdue a novel alphabet sampling tehnique for speed-ing up both online and indexed string mathing. We hoose a subset ofthe alphabet and selet the orresponding subsequene of the text. On-line or indexed searhing is then arried out on that subsequene, andandidate mathes are veri�ed in the full text. We show that this speedsup online searhing, espeially for moderate to long patterns, by a fatorof up to 5. For indexed searhing we ahieve indexes that are as fastas the lassial su�x array, yet oupy spae less than 0.5 times thetext size (instead of 4) plus text. Our experiments show no ompetitivealternatives in a wide spae/time range.1 IntrodutionThe string mathing problem is to �nd all the ourrenes of a given pattern

P = p0p1 . . . pm−1 in a large text T = t0t1 . . . tn−1, both being sequenes ofharaters drawn from an alphabet Σ of size σ.One approah to string mathing is online searhing, whih means the textis not preproessed. Thus these algorithms need to san the text when searhingand their time ost is of the form O(n · f(m)). The worst-ase omplexity of theproblem is Θ(n), �rst ahieved by the Knuth-Morris-Pratt algorithm [9℄. Theaverage omplexity of the problem is Θ(n logσ m/m), ahieved for example bythe BDM algorithm [3℄. Other non-optimal algorithms suh as the Boyer-Moore-Horspool (BMH) algorithm [7℄ are very ompetitive in pratie.The seond approah, indexed searhing, tries to speed up searhing bypreproessing the text and building a data struture that allows searhing in
O(m · g(n) + occ · h(n)) time, where occ is the number of ourrenes of thepattern in the text. Popular solutions to this approah are su�x trees and su�xarrays [10℄. The �rst gives an O(m + occ) time solution, while the su�x arraygives an O(m log n+occ) time omplexity whih an be improved to O(m+occ)using extra spae [1℄. The problem of these approahes is that the spae neededis too large for many pratial situations (4�20 times the text size). Reently, a
⋆ Partially funded by Millennium Nuleus Center for Web Researh, Grant P04-067-F,Mideplan, Chile

lot of e�ort has been spent to ompress these indexes [13℄ obtaining a signi�antredution in spae, but requiring onsiderable implementation e�ort [5℄.In this work we explore sampling the text by removing a set of haraters fromthe alphabet. We �rst apply an online algorithm to this sampled text, obtainingan approah in between online searhing and indexed searhing. We all this kindof struture a semi-index. This is a data struture built on top of a text, whihpermits searhing faster than any online algorithm, yet its searh omplexityis still of the form O(n · f(m)). To be interesting, a semi-index should be easyto implement and require little extra spae. Several other semi-indexes exist inthe literature, even without using that name. For example, q-gram indexes [12℄,diretly searhable ompression formats [11℄, and other sampling approahes.We also onsider indexing the sampled text. We build a su�x array indexingthe sampled positions of the text, and get a sampled su�x array. This approahis similar to the sparse su�x array [8℄ as both index a subset of the su�xes, butthe di�erent sampling properties indue rather di�erent searh algorithms.A hallenge in our method is how to hoose the best alphabet subset tosample. We present analytial results, supported by experiments, that simplifythis proess by drastially reduing the number of ombinations to try. We showthat it is su�ient in pratie to sample the least frequent haraters up to somelimit. In both ases, online and indexed, our sampling tehnique signi�antlyimproves upon the state of the art, espeially for relatively long searh patterns.For example, online searhing is speeded up by a fator of up to 5 on Englishtext. For indexed searhing we ahieve indexes that are as fast as the lassialsu�x array, yet oupy less than 0.5 times the text size (instead of 4) plus text.2 Text SamplingThe main idea of our online approah is to hoose a subset of the alphabetto be the sampled alphabet and then to build a subsequene of the text byomitting all haraters not in the sampled alphabet. At regular intervals wemap the positions of the sampled text to their orresponding positions in theoriginal text. When searhing, we build the sampled pattern from the patternby omitting all haraters not in the sampled alphabet and then searh for thissampled pattern in the sampled text. For eah andidate returned by this searhwe verify a short range of the original text with the help of the position mapping.Let T = t0t1 . . . tn−1 be the text over the alphabet Σ and Σ̃ ⊂ Σ the sampledalphabet. The proposed semi-index is omposed of the following items:� Sampled text T̃ : Let T̃ = ti0ti1 . . . tiñ−1
be the sequene of the ti's thatbelong to the sampled alphabet Σ̃. The length of the sampled text is ñ.� The position mapping M : A table of size ⌊ñ/q⌋ where M [i] maps the q · i'thharater of T̃ to its orresponding position in T so T̃ [q · i] = T [M [i]].Given a pattern P = p0p1 . . . pm−1, searh on this semi-index is arried out asfollows. Let P̃ = pj0pj1 . . . pjm̃−1

be the subsequene of pi's that belong to thesampled alphabet Σ̃. The length of the sampled pattern is thus m̃. The sampled

a a a ab a c a b d

b c b d

a ac b

c b

Text

Sampled Text

Pattern

Sampled Pattern

1 6 Mapping

Omitting a’s Omitting a’s

Fig. 1. Example of preproessingsearh (T̃ = t̃0t̃1 . . . t̃ñ−1, P̃ = p̃0p̃1 . . . p̃m̃−1, T = t0t1 . . . tn−1,
P = p0p1 . . . pm−1, j0, q, M [0 . . . ñ/q])1. for (i← 0 to σ − 1) d[i]← m̃2. for (i← 0 to m̃− 2) d[p̃i]← m̃− 1− i3. pos← 04. while (pos < ñ− m̃)5. j ← m̃− 16. while (j ≥ 0 and t̃pos+j = p̃j) j ← j − 17. if (j = −1)8. Chek for ourrene from M [pos/q] + (pos mod q)− j09. to M [pos/q + 1]− (q − pos mod q)− j010. pos← pos + d[t̃pos+m̃−1]Fig. 2. Searhing the sampled text for a sampled pattern with the BMH algorithmtext T̃ is then searhed for P̃ , and for every ourrene, the positions to hek inthe original text are delimited by the position mapping M . If the sampled patternis found in position ir in T̃ , the area T [M [ir/q] + (ir mod q) − j0 . . .M [ir/q +

1] − (q − ir mod q) − j0] is heked for possible startings of real ourrenes.For example, if the text is T = abaacabdaa, the sampled text built omittingthe a's (Σ̃ = {b, c, d}) is T̃ = t1t4t6t7 = bcbd. If we map every other position inthe sampled text, the position mapping M is {1, 6}. For searhing the pattern
acab we omit the a's and get P̃ = p1p3 = cb. We searh for P̃ = cb in T̃ = bcbd,�nding an ourrene at position 1. The previous mapped position is M [0] = 1, so
t̃0 orresponds to t1, and the next mapped position is M [1] = 6, so t̃2 orrespondsto t6. Beause the �rst sampled harater in P is in position 1, we verify thearea 1 . . . 4 in the original text �nding the math at position 3. Preproessing forthe text and pattern of the previous example is shown in Fig. 1.Beause the sampled patterns tend to be quite short, we implemented thesearh phase with the BMH algorithm [7℄, whih has been found to be fast insuh settings [14℄. Figure 2 shows the algorithm for this basi method.Although the above sheme works well for most of the patterns, it is obviousthat there are some bad patterns whih would be searhed faster in the origi-nal text. The average omplexity of the BMH algorithm is O(n(1/m + 1/σ)) =
O(n/ min(m, σ)) assuming a uniform and independent distribution of the hara-

ters of the alphabet [2℄. If the distribution is not uniform, a better approximationis to replae σ by the the e�etive alphabet size σ̄, whih is de�ned as the in-verse of the probability of two random haraters mathing, i.e. 1/σ̄ =
∑

c∈Σ p2

c ,where pc is the empirial probability of ourrene of the harater c.To determine if it would be faster to just searh the pattern in the originaltext we tried alulating the ratios n/ min(m, σ̄) and n · (1/m + 1/σ̄) both forthe sampled text and pattern and for the original text and pattern. If the ratiois lower for the original text and pattern, we searh only in the original text.The results were better using the ratio n/ min(m, σ̄).3 Optimal Sampling for Online SearhA question arises from the previous desription of our sampling method: Howto form the sampled alphabet Σ̃? We will �rst analyze how the average runningtime of the BMH algorithm hanges when we sample the text and then, based onthis, we will develop a method to �nd the optimal sampled alphabet. Throughoutthis setion we assume that the haraters are independent and we analyze theapproah for a general pattern not known when preproessing the text.Let us de�ne bA =
∑

c∈A pc and aA =
∑

c∈A p2

c where A ⊂ Σ. Now the lengthof the sampled text will be bΣ̃n, the average length of the sampled pattern bΣ̃m(assuming it distributes similarly to the text) and the probability of two randomharaters mathing in the sampled text aΣ̃/b2

Σ̃
. Given the average omplexityof the BMH algorithm, O(n(1/m+1/σ̄)), the average searh ost in the sampledtext is

O

(

bΣ̃n

(

1

bΣ̃m
+

aΣ̃

b2

Σ̃

))

= O

(

n

(

1

m
+

aΣ̃

bΣ̃

))

.When onsidering the veri�ation ost we assume for simpliity that themapping M ontains the position of eah sampled harater in the original text,i.e. q = 1. The probability that a position has to be veri�ed is then
pver =

m
∑

i=0

(

m

i

)

bi

Σ̃
(1 − bΣ̃)m−i

(

aΣ̃

b2

Σ̃

)i

=

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

.If we assume that eah veri�ation osts O(m) then the ost of veri�ation is
n · pver · O(m) = n ·

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· O(m) .The total ost of searhing in our sheme is thus
O

(

n ·

(

1

m
+

aΣ̃

bΣ̃

+

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m

))and hene the optimal sampled alphabet Σ̃ minimizes the ost per text harater
E(Σ̃) =

1

m
+

aΣ̃

bΣ̃

+

(

aΣ̃

bΣ̃

+ 1 − bΣ̃

)m

· m

whih an be divided into the searh ost in the sampled text 1/m + aΣ̃/bΣ̃ andthe veri�ation ost (aΣ̃/bΣ̃ + 1 − bΣ̃)m · m.The veri�ation ost always inreases when a harater is removed from thealphabet so the searh ost in the sampled text must derease for the ombinedost to derease. If R = Σ\Σ̃ is the set of removed haraters, the funtion
hR(p) =

1

m
+

aΣ − aR − p2

1 − bR − pgives the searh ost in the sampled text, per text harater, if an additionalharater with probability p is removed. The derivative of hR(p) is
h′

R(p) = 1 −
(1 − bR)2 − (aΣ − aR)

(1 − bR − p)2whih has exatly one zero pz = (1−bR)−
√

(1 − bR)2 − (aΣ − aR) in the interval
[0, 1−bR]. We an see that the funtion hR(p) is inreasing until pz and dereasingafter that. Solving the equation hR(pR) = hR(0) we get pR = (aΣ−aR)/(1−bR).So removing a single additional harater dereases the searh ost in the sampledtext only if the probability of ourrene for that harater is larger than pR.Otherwise both the searh ost in the sampled text and the veri�ation ost willinrease and thus removing the harater is not bene�ial.Suppose now that we have already �xed whether we are going to keep orremove eah harater with probability of ourrene higher than pc and now weneed to deide if we should remove the harater c. If pc > pR, we will need toexplore both options as removing the harater will derease searh ost in thesampled text and inrease veri�ation ost. However, if pc < pR we know that ifwe added only c to R the searhing time in the sampled text would also inreaseand therefore we should not remove c. But ould it be bene�ial to remove ctogether with a set of other haraters with probabilities of ourrene less than
pR? In fat it annot be. Suppose that we remove a harater c with probability
pc < pR. Now the new removed set will be R′ = R∪{c} so we get aR′ = aR + p2

cand bR′ = bR + pc. Now the new ritial probability will be
pR′ =

aΣ − aR′

1 − bR′

=
aΣ − aR − p2

c

1 − bR − pc

.We know that hR(pc) > hR(pR) = hR(0) beause pc < pR. Therefore
1

m
+

aΣ − aR − p2
c

1 − bR − pc

>
1

m
+

aΣ − aR

1 − bRand so
pR′ =

aΣ − aR − p2
c

1 − bR − pc

>
aΣ − aR

1 − bR

= pR .Thus even now it is not good to remove a harater with probability less thanthe ritial value pR for the previous set and this will again hold if another har-ater with a small probability is removed. Therefore we do not need to onsider

Ropt = {}sort haraters of Σ in desending order�nd_opt(0, {})return Ropt�nd_opt(i, R)1. if (i = σ)2. if (E(Σ\R) < E(Σ\Ropt))3. Ropt = R4. else5. pR = aΣ−aR

1−bR6. if (pi > pR)7. �nd_opt(i + 1, R ∪ {i})8. �nd_opt(i + 1, R)9. else10. �nd_opt(σ, R)Fig. 3. Pseudo ode for searhing for the optimal set of removed haratersremoving haraters with probabilities less than pR. Note however that removinga harater with a higher probability will derease the ritial probability pR andafter this it an be bene�ial to remove a previously unbene�ial harater. Infat, if the sampled alphabet ontains two haraters with di�erent probabilitiesof ourrene, the probability of ourrene for the most frequent harater inthe sampled alphabet is always larger than pR. Thus it is always bene�ial forsearhing in the sampled text to remove the most frequent harater.The above an be applied to prune the exhaustive searh for the optimalset of removed haraters. First we sort the haraters of the alphabet in thedereasing order of frequeny. We then �gure out if it is bene�ial for searhingin the sampled text to remove the most frequent harater not onsidered yet.If it is, we try both removing and not removing that harater and proeedreursively for both ases. If it is not, we prune the searh here beause none ofthe remaining haraters should be removed. Figure 3 gives the pseudo ode.In pratie when using this pruning tehnique the number of examined setsdrops drastially as ompared to the exhaustive searh, although the worst aseis still exponential. For example, the number of examined sets drops from 261 to2,810 when onsidering the King James Bible as the text.In our experiments, the optimal set of removed haraters always ontainedthe most frequent haraters up to some limit depending on the length of thepattern, as shown in Table 1. Therefore a simpler heuristi is to remove the kmost frequent haraters for varying k and hoose the set that predits the bestoverall time. However, if the veri�ation ost is very high for some reason (e.g.going to disk to retrieve the text, or unompressing part of it) it is possible thatthe optimal set of removed haraters is not a set of most frequent haraters.

6

4

7

1 baacabdaa

bdaa

cabdaa

daa

0 1 2 3 4 5 6 7 8 9
T = a b a a c a b d a a

Sampled SA

Fig. 4. The sampled su�x array for the text T = abaacabdaa with the sampled al-phabet Σ̃ = {b, c, d}. The sorted su�xes are only shown for onveniene. They are notpart of the struture.4 Sampled Su�x ArrayTo turn the sampling approah into an index, we use a su�x array to index thesampled positions of the text. When onstruting the su�x array, only su�xesstarting with a sampled harater will be onsidered, but the sorting will still bedone onsidering the full su�xes. The resulting sampled su�x array is like thesu�x array of the original text where su�xes starting with unsampled haratershave been omitted. The onstrution of the sampled su�x array an be done in
O(n) time using O(ñ) words of spae if we apply the onstrution tehnique ofthe word su�x array [4℄. The sampled su�x array for the text T = abaacabdaais shown in Fig. 4, where the sampled alphabet is Σ̃ = {b, c, d}.Searh on the sampled su�x array is arried out as follows. Given a pattern
P = p0p1 . . . pm−1 we �rst �nd the �rst sampled harater of the pattern. Let thisbe at index j. The pattern is now divided into the unsampled pre�x p0 . . . pj−1and the su�x starting with the �rst sampled harater pj . . . pm−1. We searhthe sampled su�x array for this su�x of the pattern like in an ordinary su�xarray. Eah andidate math returned by this searh will then be veri�ed byomparing the unsampled pre�x against the text.We ould also onstrut the su�x array diretly for the sampled text, butthis would entail more veri�ations as the unsampled haraters of the patternsu�x would not be required to math. We would also need to store the sampledtext, or to skip the unsampled haraters in the original text eah time we reada su�x.The sampled su�x array resembles a sparse su�x array [8℄, whih indexesregularly sampled text positions. However, we only need to make one searh onthe sampled su�x array, while using a sparse su�x array one would need tomake q searhes if the sparse su�x array indexes every q'th position. On theother hand, the sampled su�x array an only be used for patterns that ontainat least one sampled harater whereas the sparse su�x array an be used ifthe pattern length is at least q. The variane of the searh time when using thesampled su�x array is also larger than when using a sparse su�x array beausein the sampled su�x array we have muh less ontrol over the length of thestring that is used in the su�x array searh.

5 Optimal Sampling for Su�x ArraySuppose that we have enough spae to reate the sampled su�x array for b · nsu�xes where 0 < b < 1. How should we now hoose the sampled alphabet
Σ̃ so that the searh time would be optimal? Obviously bΣ̃ = b but we stillhave a number of possible sampled alphabets to hoose from. The searh on thesu�x array will ompare the su�x of the pattern starting with the �rst sampledharater against a text string O(log n) times. The omparison time is minimizedwhen the probability of mathing for the �rst sampled harater is minimized.Thus the sampled alphabet Σ̃ should be a set of least frequent haraters.Let us then onsider the veri�ation. The probability that two random har-aters are unsampled and math is aR = aΣ − aΣ̃ where R is the set of removedharaters. Thus the average ost of a single veri�ation is 1/(1 − aΣ + aΣ̃).The probability that the su�x of the pattern starting with the �rst sampledharater mathes a random string of equal length is

bΣ̃

aΣ̃

b2

Σ̃

(aΣ)ms−1 =
aΣ̃

bΣ̃

(aΣ)ms−1where ms is the length of the su�x starting with the �rst sampled harater.This is also the probability of veri�ation per harater in the original text. Theaverage ost of veri�ation per text harater is then
aΣ̃

bΣ̃

(aΣ)ms−1 ·
1

1 − aΣ + aΣ̃

=
aΣ̃

1 − aΣ + aΣ̃

·
(aΣ)ms−1

bΣ̃

.Beause we attempt to determine the optimal sampled alphabet suh that bΣ̃ =
b, bΣ̃ and the distribution of ms do not depend on whih haraters we remove.Thus we should minimize f(aΣ̃) = aΣ̃/(1−aΣ +aΣ̃). The derivative of f(aΣ̃) is

f ′(aΣ̃) =
1 − aΣ

(1 − aΣ + aΣ̃)2
> 0so the veri�ation ost inreases when aΣ̃ inreases. To minimize aΣ̃ the sampledalphabet Σ̃ should be a set of least frequent haraters. This also minimizes thetotal ost beause also the su�x array searh ost is minimized by this hoie.Interestingly, this orresponds to the simpli�ed heuristi we proposed in Set. 3.6 Experiments6.1 Semi-IndexTo determine the sampled alphabet, we ran the exat algorithm of Set. 3 for dif-ferent pattern lengths to hoose the sampled alphabet that produes the smallestestimated ost E(Σ̃). For all pattern lengths the algorithm reommended remov-ing a set of most frequent haraters. To see how well these results orrespondto pratie, we tested the semi-index approah by removing the k most frequent

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

Mean

m=10
m=20
m=30
m=50
m=70

m=100

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

Distribution

m=20
m=50

m=100

Fig. 5. The running time for various pattern lengths for the basi method. The left�gure shows the mean running time; the right shows the median, minimum, maximum,and 25% and 75% quartiles.Table 1. Predited and observed optimal number of removed haraters for the KingJames Bible. The predited optima are omputed with the algorithm suggested by theanalysis, whih in our experiments always returned a set of most frequent haraters.
m 10 20 30 40 50 60 70 80 90 100Predited optimal number of removed haraters 3 7 9 11 12 13 14 15 16 16Observed optimal number of removed haraters 3 7 11 13 14 15 17 17 16 18haraters from the text for varying k. We used a 2 MB pre�x of the King JamesBible as the text, and the patterns are random substrings of the text. For eahpattern length 500 patterns were generated, and the reported running times areaverages over 200 runs with eah of the patterns. The most frequent haratersin the dereasing order of frequeny were � ethaonsirdlfum,wygbp� where isthe spae harater. The tests were run on a 1.0 GHz AMD Athlon dual oreproessor with 2 GB of memory, 64 kB L1 ahe and 512 kB L2 ahe, runningLinux 2.6.23. The ode is in C and ompiled with g using -O3 optimization.Figure 5 shows the results of these experiments with the basi method map-ping every 64'th sampled harater to its position in the original text. If we makethe mapping sparser the running time will start to inrease a little earlier, butthe e�et is quite mild. The results for zero removed haraters orrespond to theoriginal BMH algorithm. As we an see, the semi-index is up to 5 times faster,espeially when the patterns are long. Figure 5 also shows that, for eah patternlength, there is an optimal number of haraters to remove. A omparison ofthese optima and those given by the analysis is shown in Table 1. As we an see,the analysis gives reasonably good results although it reommends removing toofew haraters with long patterns, beause we estimated the veri�ation timequite pessimistially. When more haraters are removed it is unlikely that wewould need to san m haraters for eah veri�ed position.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

Mean

m=10
m=20
m=30
m=50
m=70

m=100

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

Distribution

m=20
m=50

m=100

Fig. 6. The running time for various pattern lengths for the tuned version where searh-ing in the sampled text is skipped if it looks like searhing in the original text is faster.The left �gure shows the mean running time; the right �gure shows the median, mini-mum, maximum, and 25% and 75% quartiles.The results for the tuned method, where we searh the original text if theratio n/ min(m, σ̄) looks unfavorable for searhing the sampled text, is shownin Fig. 6. Again we are mapping every 64'th sampled harater to its positionin the original text. As we an see, the optimal number of removed haratersis loser to being the same for all pattern lengths than in the basi approah.For example by hoosing to remove the 13 most frequent haraters, we woulddo reasonably well for all pattern lengths using just 0.18 times the original textsize to store the sampled text. Comparing Figs. 5 and 6 we see that the medianrunning times are almost the same, but the maximum and the 75% quartile arelower for the tuned method. This is also re�eted in the average values.6.2 Sampled Su�x ArrayFigure 7 shows the results obtained by omparing our sampled su�x arrayagainst our implementation of the sparse su�x array [8℄ and the loally om-pressed su�x array (LCSA) [6℄, an index that ompresses the di�erential su�xarray using Re-Pair. Note that when the spae usage of the sampled or sparsesu�x array is maximal (3.25 times the text) both of them index all su�xes andbehave exatly like a normal su�x array. The experiments were run on a PentiumIV 2.0 GHz proessor with 2 GB of RAM running SuSE Linux with kernel 2.4.31.The ode was ompiled using g version 3.3.6 with -O9 optimization. We used50 MB texts from the PizzaChili site, http://pizzahili.d.uhile.l.Our approah performs very well for moderate to long patterns. Already for
m = 50 it starts to dominate the other alternatives. For m = 100 the sampledsu�x array behaves almost like a su�x array (and muh faster than the othermethods), even when using less than 0.5 times the text size (plus text). Thenovel ompressed self-indexes [5,13℄ are designed to use muh less spae (e.g.0.8 times the text size inluding the text) but take muh more time, and thus

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

(m
ill

is
ec

s
pe

r
qu

er
y)

space (fraction of the text)

m=20

Sparse SA XML
Sampled SA XML

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

(m
ill

is
ec

s
pe

r
qu

er
y)

space (fraction of the text)

m=20

Sparse SA English
Sparse SA Proteins

Sampled SA English
Sampled SA Proteins

LCSA English
LCSA Proteins

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

(m
ill

is
ec

s
pe

r
qu

er
y)

space (fraction of the text)

m=50

Sparse SA XML
Sparse SA English

Sparse SA Proteins
Sampled SA XML

Sampled SA English
Sampled SA Proteins

LCSA English
LCSA Proteins

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 1.5 2 2.5 3 3.5 4 4.5

tim
e

(m
ill

is
ec

s
pe

r
qu

er
y)

space (fraction of the text)

m=100

Sparse SA XML
Sparse SA English

Sparse SA Proteins
Sampled SA XML

Sampled SA English
Sampled SA Proteins

LCSA English
LCSA Proteins

Fig. 7. Searh times for the sampled and sparse su�x arrays and LCSA for XML,English and protein data. LCSA uses little spae for XML data but it is muh slowerthan the other approahes, so these results are not shown. The top �gures show resultsfor pattern length 20 and the bottom �gures show the results for pattern lengths 50and 100. The spae fration inludes that of the text, so it is of the form 1+ index sizetext size .are inappropriate for this omparison. We hose the LCSA as an alternative thatompresses less but is muh faster than the other self-indexes [6℄. Its ompressionperformane varies widely with the text type, and is not partiularly good onEnglish and Proteins. On XML it requires extra spae equal to the size of thetext, yet its times are muh higher and fall well outside the plot (and this is stillmuh faster than the other self-indexes!). The LCSA, on the other hand, wouldperform better on shorter patterns, where our index is not ompetitive.7 Conlusions and Further WorkWe have presented two sampling approahes to speed up string mathing withlong patterns. The sampled semi-index pro�ts from nonuniform harater distri-bution to gain a speedup over online searhing, while the sampled su�x arrayworks also with a uniform distribution. It is also worth noting that in the semi-index approah the sampled text is an internal struture of the semi-index soany transform, like ompression or ode splitting [15℄, ould be applied to it.

The urrent approah is not appliable to small alphabets. To extend theapproah to smaller alphabets we ould use q-grams. In the semi-index approahwe would then de�ne a sampled alphabet for eah (q − 1)-long ontext and thesampled text would ontain those haraters that are sampled in the ontextwhere they our. When searhing for a pattern, we must always disard the�rst q−1 haraters of the pattern as their ontext is not known. Using q-gramswith the sampled su�x array is simpler. The sampled su�x array would justindex all su�xes starting with a sampled q-gram.Another interesting diretion to minimize the extra spae of the semi-indexis to replae the original text by the subsequene of the non-sampled haraters,and use a bitmap to indiate the subset eah symbol of T belongs to. Withrank/selet apabilities [13℄ this bitmap replaes the urrent position mapping forveri�ation and permits searhing on the sampled or the unsampled haraters.Referenes1. Abouelhoda, M., Kurtz, S., Ohlebush, E.: Replaing su�x trees with enhanedsu�x arrays. Journal of Disrete Algorithms 2(1) (2004) 53�862. Baeza-Yates, R.: String searhing algorithms revisited. In Dehne, F., Sak, J.R.,Santoro, N., eds.: WADS 1989. LNCS, vol. 382, Springer, Heidelberg (1989) 75�963. Crohemore, M., Czumaj, A., G¡sienie, L., Jarominek, S., Leroq, T., Plandowski,W., Rytter, W.: Speeding up two string-mathing algorithms. Algorithmia 12(1994) 247�2674. Ferragina, P., Fisher, J.: Su�x arrays on words. In Ma, B., Zhang, K., eds.: CPM2007. LNCS, vol. 4580, Springer, Heidelberg (2007) 328�3395. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:From theory to pratie! Manusript. http://pizzahili.d.uhile.l (2007)6. González, R., Navarro, G.: Compressed text indexes with fast loate. In Ma, B.,Zhang, K., eds.: CPM 2007. LNCS, vol. 4580, Springer, Heidelberg (2007) 216�2277. Horspool, R.N.: Pratial fast searhing in strings. Software � Pratise & Experi-ene 10 (1980) 501�5068. Kärkkäinen, J., Ukkonen, E.: Sparse su�x trees. In Cai, J., Wong, C.K., eds.:COCOON 1996. LNCS, vol. 1090, Springer, Heidelberg (1996) 219�2309. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern mathing in strings. SIAMJournal on Computing 6 (1977) 323�35010. Manber, U., Myers, G.: Su�x arrays: A new method for online string searhes.SIAM Journal on Computing 22(5) (1993) 935�94811. Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and �exible word searh-ing on ompressed text. ACM Trans. on Information Systems 18(2) (2000) 113�13912. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for ap-proximate string mathing. IEEE Data Engineering Bulletin 24(4) (2001) 19�2713. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys39(1) (2007) 1�6114. Navarro, G., Ra�not, M.: Flexible Pattern Mathing in Strings � Pratial on-linesearh algorithms for texts and biologial sequenes. Cambridge University Press(2002)15. Rautio, J., Tanninen, J., Tarhio, J.: String mathing with stopper enoding andode splitting. In Apostolio, A., Takeda, M., eds.: CPM 2002. LNCS, vol. 2373,Springer, Heidelberg (2002) 45�52

