
A Pratial Index for Genome SearhingHeikki Hyyr�o1? and Gonzalo Navarro2��1 Dept. of Comp. and Inf. Sienes, Univ. of Tampere, Finland. helmu�s.uta.fi2 Dept. of Comp. Siene, Univ. of Chile. gnavarro�d.uhile.lAbstrat. Current searh tools for omputational biology trade eÆ-ieny for preision, losing many relevant mathes. We push in the di-retion of obtaining maximum eÆieny from an indexing sheme thatdoes not lose any relevant math. We show that it is feasible to searhthe human genome eÆiently on an average desktop omputer.1 IntrodutionApproximate string mathing [5℄ is a reurrent problem in many branhes ofomputer siene, with important appliations to omputational biology. EÆ-ieny is ruial to handle the large databases that are emerging, so indexes arebuilt on the text to speed up queries later [12, 8℄. Although there exist severalindexed searh tools like BLAST and FASTA, these usually trade time for pre-ision, losing many relevant answers [12℄. In this paper we aim at building a fastindex that does not lose any answer. We ombine and optimize the best exist-ing previous lossless approahes [3, 7℄ and fous on the simpli�ed ase of DNAsearh using Levenshtein distane. This ase is important in the urrent stageof analyzing gene funtionality one the genome projets are ompleting their�rst task of obtaining the DNA sequenes. In partiular, approximate searhingin genomes is neessary to identify homologous regions, whih is fundamental topredit evolutionary history, biohemial funtion, and hemial struture [12℄.Our main result is a pratial produt that an be used to searh the humangenome on an average desktop omputer. Unique features of our index are: op-timized seletion of pattern piees, bidiretional text veri�ation, and optimizedpiee neighborhood generation. Our tools an be generalized to more omplexproblem suh as weighted edit distanes.2 Indexed Approximate String MathingThe problem we fous on is: Given a long text T1:::n, and a (omparatively) shortpattern P1:::m, both sequenes over alphabet � of size �, retrieve all substringsof T (\ourrenes") whose edit distane to P is at most k. The edit distane,ed(A;B), is the minimum number of \errors" (harater insertions, deletionsand substitutions) needed to onvert one string into the other. So we permit an\error level" of � = k=m in the ourrenes of P .? Supported by the Aademy of Finland and Tampere Graduate Shool in InformationSiene and Engineering. �� Partially supported by Fondeyt Projet 1-020831.

The most suessful approah to indexed approximate string mathing [8℄is alled intermediate partitioning [3, 7℄. It redues the approximate searh ofP to approximate searh of substrings of P . Their main priniple is that, if Pmathes a substring of T , j disjoint substrings are taken from P , then at leastone of these appears in the ourrene with at most bk=j errors. These indexessplit P into j piees, searh the index for eah piee allowing bk=j errors, and�nally hek whether the piee ourrenes an be extended to ourrenes ofP . The index is designed for exat searhing of piees, so approximate searhingis handled by generating the \d-neighborhood" of eah piee S, Ud(S) = fS0 2��; ed(S; S0) � dg, and searhing the index for eah S0 2 Ud(S).In [3℄ all the text q-grams (substrings of length q), where q = dlog� ne, arestored together with their text positions. Then the pattern is reursively splitinto 2 or 3 piees at eah level (dividing also the number of errors permitted),until the �nal piees are short enough to be searhable with the index (Fig. 1).The paper is not very expliit on how the partitioning is exatly done.kP bk=2 bk=2bbk=2=2 bbk=2=2 bbk=2=3 bbk=2=3 bbk=2=3Fig. 1. The pattern is reursively split into smaller and smaller piees, also dividingthe number of errors. Above eah piee we show the number of errors we permit for it.Assume that a bottom-level piee P i is to be searhed with di errors. Itsourrenes are found by generating its ondensed di-neighborhood UCdi(P i):A 2 UCd(B) i� A 2 Ud(B) and A0 62 Ud(B) for any A0 pre�x of A. Anyourrene of P i with di errors errors must have a pre�x in UCdi(P i). Then, allthese ourrenes are loated fast by searhing the q-gram index for eah stringin UCdi(P i). These ourrenes are then extended by going up the splittinghierarhy in stepwise manner. Eah step onsists of merging piees bak togetherand heking, with dynami programming, whether the merged piee ours inthe text with its permitted error threshold. This reursive proess is ontinueduntil either some internal node annot be found, or we �nd the whole pattern.In [7℄, a suÆx array [2℄ is used instead of a q-gram index, so it an hoose thepartition aording to optimization goals rather than guided by the onstrainton the �nal piee lengths. They show that the optimum is j = O(m= log� n).Other di�erenes are that text veri�ation uses an eÆient bit-parallel algorithminstead of dynami programming, and that hierarhial veri�ation is not used.3 Our ProposalThe design of our index is based on the following four assumptions: (1) Theindexed text is a DNA sequene. (2) The whole text is available in primary

memory. (3) The index has to work eÆiently on seondary memory. (4) Theerror level � is typially < 0:25.The �rst assumption means that the alphabet size is small, � = 4, so wean store eah nuleotide in 2 bits and hene store the text in n=4 bytes. Thispermits storing the human genome in about 750 MB, whih makes the seondassumption more realisti in the ase of the human genome. This assumptionis important when evaluating the ost of aessing the text at piee veri�ationtime. The third assumption arises when one onsiders that the most eÆientindexes take a signi�ant amount of spae, and it might not be realisti toassume that also the index will �t in main memory. Thus the index should havea suitable struture for seondary memory. The fourth assumption is based onthe searh parameters used in real omputational biology appliations. It is alsovery onvenient beause no index works well for higher � values if � = 4.Like [3℄, we use a q-gram index, d-neighborhood generation and hierarhialveri�ation. However, we take some elements of [7℄ suh as optimizing patternpartitioning and piee veri�ation. We also onsider seondary memory issues.3.1 Index StrutureOur q-gram index is almost idential to that of Myers. Eah q-gram is oded asa base-4 number (e.g., \agt" ! 03214). The index has two tables, the headertable and the ourrene loation table. The header table Hq ontains, for eahq-gram, the start position of the interval in the loation table Lq , whih holdsin asending order all the loations of the q-gram in the text. The loation tableLq holds the intervals of loations onseutively in inreasing order numerialrepresentation. Hene, the ourrenes of the q-gram with numerial value x areloated in Lq[Hq [x℄ : : : Hq [x+ 1℄� 1℄.The value of q a�ets the length of the pattern piees that an be eÆientlyretrieved with the index. Having a large q is only a problem if the size of tableHq , O(�q), beomes an issue. This is beause a q-gram index an be used alsoin �nding shorter substrings. The loations of the (q �)-gram with numerialrepresentation x are those in the interval Lq [Hq[x�℄ : : : Hq[(x+1)�℄� 1℄. Thisorresponds to all q-grams having the given (q �)-gram as a pre�x. On theother hand, a small q may signi�antly degrade the performane.Using Myers' setting q = dlog� ne would result in the value q = 16 whenindexing the human genome. This would result in a huge header table. Eventhough the index an be in seondary memory, we prefer to keep the headertable in main memory (see Se. 3.5). Hene we have opted to use q = 12, whihresults in a header table of 67 MB. With the 3 billion nuleotides human genome,the loation table is roughly 12 GB, sine we use 32-bit integers for all entries.It is straightforward to build this index in O(n+ �q) time and spae.3.2 Optimizing the Intermediate PartitioningWe employ a hierarhial partitioning that di�ers from [3℄ in that it is donebottom-up. We �rst determine the piees and then build up the hierarhy. Thetop-down partitioning (Fig. 1) has less ontrol over whih are the �nal piees.

Previous partitioning methods have assigned di = bk=j errors to eah pieewhen the pattern P was partitioned into j piees P 1; : : : ; P j . However, in [8℄ amore aurate rule was proposed. If a string A ontains no pattern piee P i withdi errors, then ed(A;P) �Pji=1(di + 1) =Pji=1 di + j, as eah piee P i needsat least di + 1 errors to math. So we must have Pji=1 di + j � k + 1 to ensurethat no approximate ourrene of P is missed, whih an be rephrased as theonditionPji=1 di � (k+1)� j. Naturally the best hoie is to allow the fewestpossible errors, and thus we use the strit requirement Pji=1 di = k � j + 1.Sine we have a q-gram index, we partition the pattern into piees of lengthat most q. We also �x an upper bound dM on the di values (see later).We have tested two partitioning methods. A simple sheme, similar in natureto previous methods, is to partition the pattern into j = dk=dMe piees, theminimum yielding di � dM . Then, the pattern is split into j piees of lengthsbm=j or dm=je, pruning piees that are longer than q. To enfore the striterror limit Pji=1 di = k � j + 1, we set di = bk=j for (m modulo j) + 1 piees(giving preferene to the longest piees), and di = bk=j � 1 for the rest.The seond, more sophistiated, approah is to preompute and store for eahr-gram x, r 2 1 : : : q, and for eah d 2 0 : : :min(dM ; d0:25� re � 1), the numberof text ourrenes of all the r-grams in the d-neighborhood of x. This value,Cx;d, is used to �nd the optimal splitting. Let us de�ne Mi;t as the minimumnumber of text positions to verify in order to searh for Pi:::m with t errors. Thenthe following reurrene holds:Mi;t = 0; if t < 0; Mi;t =1; if i > m ^ t � 0;Mi;t = min(Mi+1;t; mind20:::min(t;dM);r21:::q(CPi:::i+r�1;d +Mi+r;t�d�1)); otherwise.so the minimum possible veri�ation ost isM1;k, and we an easily retrieve fromM the optimal partitioning reahing it. One the values Cx;d are preomputed(at indexing time), the above algorithm adds O(qmk2) to the searh time, whihis rather modest ompared to the work it saves.Preomputing Cx;d is not prohibitively slow. What is more relevant is theamount of memory neessary to store Cx;d. Sine the information for d = 0 hasto be kept anyway (beause it is the length of the list of ourrenes of x, andit is known also for every r � q), the prie is dM � 1 more numbers for eahdi�erent r-gram. A way to alleviate this is to use fewer bits than neessary andredue the preision of the numbers stored, sine even an approximation of thetrue values will be enough to hoose an almost optimal strategy.We form a hierarhy on the pattern piees similar to that of Myers (Fig. 1).However, as we begin by optimizing the piees at the lowest level, we form thehierarhy in bottom-up order.Let jh be the number of piees and P i;h the ith piee at the hth level of thehierarhy. Also let di;h be the number of errors assoiated to piee P i;h. The toplevel orresponds to the whole P at the root, so j1 = 1, P 1;1 = P and d1;1 = k.Assume that our optimized splitting leads to an `th level partitioning with j`piees P 1;`; : : : ; P j`;`. In general the (h�1)th level is formed by pairing together

two adjaent piees from the hth level, P i;h�1 = P 2i�1;hP 2i;h. If jh is odd, thelast piee will be added to the last pair, P jh�1;h�1 = P 2jh�1�1;hP 2jh�1;hP 2jh�1+1;h.We will always have jh�1 = bjh=2. This is ontinued until we reah level 1.The number of errors for piee P i;h�1 is found by loally enforing the rulePji=1 di = k�j+1. For the piee P i;h�1, this means d2i�1;h+d2i;h = di;h�1�2+1,whih de�nes di;h�1. If piee P i;h�1 is formed by joining three piees, then wehave di;h�1 = d2i�1;h + d2i;h + d2i+1;h + 2. Although the lowest level pieesmay not over P , upper level piees are strethed to over P . This redues theprobability of �nding them in the text.3.3 Generating d-neighborhoodsWe also use a di�erent way of generating d-neighborhoods. Given a string A,instead of omputing Myers' ondensed d-neighborhood UCd(A), we omputea \length-q arti�ial pre�x-stripped" d-neighborhood UPd(A). This is done byolleting all di�erent strings that result from applying d errors into A in allpossible ombinations, with the following restritions: (1) Errors are applied onlywithin the window of the �rst q haraters. (2) A harater is only substitutedby a di�erent harater. (3) No haraters are inserted before or after the �rstor the last harater. (4) The string is aligned to the left of the length-q window.That is, haraters to the right of a deletion/insertion are moved one position tothe left/right. (5) A harater introdued by an insertion or substitution is notfurther deleted or substituted.In pratie we have noted that UPd(A) is often slightly smaller than UCd(A).For example, if A = \atg" and d = 1, the strings \aatg", \tatg", \atg" and\gatg" belong to UCd(A), but of these only \aatg" belongs to UPd(A). Butthere are also strings in UPd(A) and not in UCd(A). For example if B = \attaa"and d = 2, then \ataaa" is in UPd(A) but not in UCd(A), as its pre�x \ataa" isin UCd(A). However, also Myers' index will feth q-grams with pre�x \ataaa" ifq � 5.The set UPd(A) � Ud(A) an be built in O((3q�)d) time [11℄. In our experi-ments with d � 2, our d-neighborhood generation was twie as fast as Myers'.3.4 Fast Veri�ationIn [3℄ they used dynami programming approximate string mathing algorithm inthe stepwise merging/heking proess. They also grouped into a single intervalpiee ourrenes that were lose to eah other, so as to proess the whole intervalin a single pass and avoid heking the same text multiple times. In [7℄ they useda faster bit-parallel algorithm, but a more rude approah: they searhed the textbetween the positions j�m� k : : : j+m+ k whenever a piee ourrene endedat text position j. They also merged heking of adjaent ourrenes.We hek eah piee ourrene separately on the bottom-level of the hier-arhy. We use a bit-parallel algorithm for omputing edit distane [1℄ instead ofapproximate string mathing. This method [6℄ was muh faster than previousones (Se. 4). On the upper levels we use interval merging and a bit-parallelapproximate string mathing algorithm [4℄.

The bottom-level veri�ation works as follows. Let P i = Pi:::i+b be a patternpiee, and let A 2 UPd(P i) our starting from Tj . Also let substring P f =Pi�u:::i+v be the \parent" of P i in the hierarhy, so P f ontains P i. Initiallywe set d = df + 1, where df is the number of errors for P f . Value d will be thenumber of errors in the best math for P f found so far. If P i is not the rightmostpiee in P f , then ed(Tj:::j+a; Pi:::i+v) is omputed for a = 0; 1; 2; : : : until eithered(Tj:::j+a; Pi:::i+) � d for all 2 [1 : : : v℄, or we obtain ed(Tj:::j+a; Pi:::i+v) = 0.Whenever a value ed(Tj:::j+a; Pi:::i+v) = d � 1 is found, we set d = d � 1. Thisforward edit distane omputation will proess at most v + df + 2 haraters,as after that the �rst stopping ondition must be true. If d = df + 1 afterstopping, we know that P f does not our. If d � df , we start omputing theedit distane ed(Tj�a:::j�1; Pi�u:::i�1) for a = 1; 2; : : : similarly as above, startingwith d = df�d+1 and this time stopping as soon as ed(Tj�a:::j�1; Pi�u:::i�1) < d,sine then we have found an ourrene of P f with at most df errors.3.5 Seondary Memory IssuesWe disuss now how to handle indexes that do not �t in main memory. Thebiggest disadvantage of seondary memory is slow seek time. That is, althoughdata transfer times are aeptable, performane worsens signi�antly if the datais not read from a moderate number of ontinuous loations. When using ourq-gram index, queries will typially aess more or less sattered positions oftable Lq. When d-neighborhood generation is used, the number of q-gram listsfethed, and hene seek operations over Ld, grows exponentially with d. Tolimit this e�et, we use bound dM , the maximum d value. Based on pratialexperiene we have hosen limit dM = 1 in seondary memory senarios. We alsostore the header table Hq in main memory to avoid an extra seek operation perq-gram. Hene the need to use a moderate q so that Hq �ts in main memory.The e�ets of seondary memory an also be onsidered when hoosing thepartitioning. We an weight the value Cx;d of the ourrene table (Se. 3.2) withan estimated ost for querying the q-gram index with the strings in UPd(x). IfCwx;d is the weighted ost for substring x and d errors, we use the formulaCwx;d = Cx;d � (veri�ation-ost+ disk-transfer-ost)+ d-neighborhood-size(x; d) � disk-seek-ostnormalized to the form Cx;d + � d-neighborhood-size(x; d). The weight value depends on the atual type of memory used in storing the index, and thus itshould be based on empirial tests.4 Test ResultsAs the test results in [7℄ found the index of Myers to be the best method in thease of DNA, we have ompared our performane against that index. The imple-mentation of Myers' index, from the original author, is only a limited prototypeonstrained to pattern lengths of the form q � 2x and q = dlog� ne.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 2 3 4 5

tim
e

(s
ec

)

k

S. cerevisiae
m = 24

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 3 7 11 15 19 23

tim
e

(s
ec

)

k

S. cerevisiae
m = 96

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 7 15 23 31 39 47 55 63 71 79 87 95

tim
e

(s
ec

)

k

S. cerevisiae
m = 384

Ours with bidirectional verification
Ours with conventional verification
Ours with ed-computed d-neighb.

Myers’ index

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

tim
e

(s
ec

)

k

H. sapiens
m = 24

 0

 5

 10

 15

 20

 25

 3 7 11 15 19 23

tim
e

(s
ec

)

k

H. sapiens
m = 96

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 7 15 23 31 39 47 55 63 71 79 87 95

tim
e

(s
ec

)

k

H. sapiens
m = 384

Simple
OptimizedFig. 2. On the left, Myers' index versus three variants of our index, in main memory,searhing the � 10 MB genome of S: erevisiae (baker's yeast) [9℄. Our variants usesimple partitioning (Se. 3.2) and dM = 2. The �rst method uses bidiretional veri�a-tion and the seond onventional interval-merging ombined with approximate stringmathing. Both of these use the d-neighborhood generation method of Se. 3.3. Thethird method uses bidiretional veri�ation ombined with a d-neighborhood genera-tion method loser to Myers' (baktraking with edit distane omputation over thetrie of all strings). We run on a P3 600 Mhz with 256 MB RAM and Linux OS, andompile with GCC 3.2.1 using full optimization. On the right, simple versus optimizedpartitioning for our index (Se. 3.2). We use the best ombination of veri�ation/d-neighborhood generation from the tests on the left. Now the index is on disk, we usedM = 1 and enode the text using 2 bits per nuleotide. The text is the Aug 8th 2001draft of the human genome [10℄, of about 2.85 billion nuleotides. We run on an AMDAthlon XP 1.33 Ghz with 1 GB RAM, 40 GB IBM Deskstar 60GXP hard disk andWindows 2000 OS, and ompile using Mirosoft Visual C++ 6.0 with full optimization.

Fig. 2 (left) shows the results when searhing the small S: ervisiae genome,where the index �ts in main memory. We test three variants of our index, amongwhih the lear winner is bidiretional veri�ation of bottom-level piees om-bined with our d-neighborhood generation. This is 2 to 12 (typially above 4)times faster than Myers' index. In many ases a large part of our advantage isexplained by the strit rule Pji=1 di = k � j + 1. This is more lear in the plotswhen k goes above m=6: at this point the index of Myers sets di = 2 for allthe piees, whereas our index inreases the number of errors in a more steadymanner. The di�erene between the searh mehanisms themselves is seen whenk = m=6 � 1 or k = m=4 � 1, as at these points both indexes set di = 1 ordi = 2, respetively, for all the piees. In these ases our fastest version is alwaysroughly 4 times faster than Myers' index.Our best ombination from the above test was used for searhing the humangenome, where the index is on disk. We ompared simple and optimized parti-tioning. As shown in Fig. 2 (right), in most ases using optimized partitioninghad a non-negative gain, in the range 0-300%. There were also some ases wherethe e�et was negative, but they were most probably due to the still imma-ture alibration of our ost funtion. We also made a quik test to ompare ourdisk-based index with the sequential bit-parallel approximate string mathingalgorithm of Myers [4℄. For example in the ase m = 384 and k = 95 our indexwas still about 6 times faster.Referenes1. H. Hyyr�o. A bit-vetor algorithm for omputing Levenshtein and Damerau editdistanes. Nordi Journal of Computing, 10:1{11, 2003.2. U. Manber and E. Myers. SuÆx arrays: a new method for on-line string searhes.SIAM Journal on Computing, pages 935{948, 1993.3. E. Myers. A sublinear algorithm for approximate keyword searhing. Algorithmia,12(4/5):345{374, Ot/Nov 1994.4. G. Myers. A fast bit-vetor algorithm for approximate string mathing based ondynami progamming. Journal of the ACM, 46(3):395{415, 1999.5. G. Navarro. A guided tour to approximate string mathing. ACM ComputingSurveys, 33(1):31{88, 2001.6. G. Navarro. NR-grep: a fast and exible pattern mathing tool. Software Pratieand Experiene, 31:1265{1312, 2001.7. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate stringmathing. Journal of Disrete Algorithms (JDA), 1(1):205{239, 2000.8. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods forapproximate string mathing. IEEE Data Engineering Bulletin, 24(4):19{27, 2001.9. National enter for biotehnology information. http://www.nbi.nlm.nih.gov/.10. Us human genome projet working draft. http://genome.se.us.edu/.11. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.12. H.E. Williams and J. Zobel. Indexing and retrieval for genomi databases. IEEETrans. on Knowledge and Data Engineering, 14(1):63{78, 2002.

