
Memory-Adaptative Dynami SpatialApproximation Trees?Diego Arroyuelo1, Franisa Mu~noz2, Gonzalo Navarro2, and Nora Reyes11 Depto. de Inform�atia, Univ. Na. de San Luis, Argentina.2 Center for Web Researh, Dept. of Computer Siene, Univ. of Chile.fdarroy,nreyesg�unsl.edu.ar, ffranmuno,gnavarrog�d.uhile.lAbstrat. Dynami spatial approximation trees (dsa{trees) are eÆientdata strutures for searhing metri spaes. However, using enough stor-age, pivoting shemes beat dsa{trees in any metri spae. In this paperwe ombine both onepts in a data struture that enjoys the featuresof dsa{trees and that improves query time by making the best use ofthe available memory. We show experimentally that our data strutureis ompetitive for searhing metri spaes.1 Introdution\Proximity" or \similarity" searhing is the problem of looking for objets in aset lose enough to a query. This has appliations in a vast number of �elds. Theproblem an be formalized with the metri spae model [1℄: There is a universeU of objets, and a positive real-valued distane funtion d : U� U �! R+de�ned among them, whih satis�es the metri properties: strit positiveness(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)), and triangle inequality(d(x; z) 6 d(x; y) + d(y; z)). The smaller the distane between two objets, themore \similar" they are. We have a �nite database S � U that an be prepro-essed to build an index. Later, given a query q 2 U, we must retrieve all similarelements in the database. We are mainly interested in the range query : Retrieveall elements in S within distane r to q, that is, fx 2 S; d(x; q) 6 rg.Generally, the distane is expensive to ompute, so one usually de�nes thesearh omplexity as the number of distane evaluations performed. Proximitysearh algorithms build an index of the database to speed up queries, avoidingthe exhaustive searh. Many of these indexes are based on pivots (Se. 2).In this paper we present a hybrid index for metri spae searhing built onthe dsa{tree, an index supporting insertions and deletions that is ompetitive inspaes of medium diÆulty, but unable of taking advantage of the available mem-ory. This is enrihed with a pivoting sheme. Pivots use the available memory toimprove query time, and in this way they an beat any other struture, but toomany pivots are needed in diÆult spaes. Our new struture is still dynamiand makes better use of memory, beating both dsa-trees and basi pivots.Unlike previous work [3℄, (1) we use loal rather than global pivots, andprovide empirial evidene in favor of this deision, (2) we use pivots for free.? Supported in part by CYTED VII.19 RIBIDI Projet and, the third author, Mille-nium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.



2 Pivoting AlgorithmsEssentially, pivoting algorithms hoose some elements pi from the database S,and preompute and store all distanes d(a; pi) for all a 2 S. At query time,they ompute distanes d(q; pi) against the pivots. Then the distane by pivotsbetween a 2 S and q gets de�ned as D(a; q) = maxpi jd(a; pi)� d(q; pi)j.It an be seen that D(a; q) 6 d(a; q) for all a 2 S; q 2 U. This is used to avoiddistane evaluations. Eah a suh that D(a; q) > r an be disarded beause wededue d(a; q) > r without atually omputing d(a; q). All the elements thatannot be disarded this way are diretly ompared against q.Usually pivoting shemes perform better as more pivots are used, this waybeating any other index. They are, however, better suited to \easy" metri spaes[1℄. In hard spaes they need too many pivots to beat other algorithms.3 Dynami Spatial Approximation TreesIn this setion we briey desribe dynami sa{trees (dsa-trees for short), inpartiular the version alled timestamp with bounded arity [2℄, on top of whihwe build. Deletion algorithms are omitted for lak of spae.3.1 Insertion AlgorithmThe dsa{tree is built inrementally, via insertions. The tree has a maximumarity. Eah tree node a stores a timestamp of its insertion time, time(a), andits overing radius, R(a), whih is the maximum distane to any element in itssubtree. Its set of hildren is alled N(a), the neighbors of a. To insert a newelement x, its point of insertion is sought starting at the tree root and moving tothe neighbor losest to x, updating R(a) in the way. We �nally insert x as a new(leaf) hild of a if (1) x is loser to a than to any b 2 N(a), and (2) the arity ofa, jN(a)j, is not already maximal. Neighbors are stored left to right in inreasingtimestamp order. Note that the parent is always older than its hildren.3.2 Range Searh AlgorithmThe idea is to repliate the insertion proess of elements to retrieve. That is, weat as if we wanted to insert q but keep in mind that relevant elements may beat distane up to r from q, so in eah deision for simulating the insertion of qwe permit a tolerane of �r. So it may be that relevant elements were insertedin di�erent hildren of the urrent node, and baktraking is neessary.Note that, at the time an element x was inserted, a node a may not havebeen hosen as its parent beause its arity was already maximal. So, at querytime, we must hoose the minimum distane to x only among N(a). Note alsothat, when x was inserted, elements with higher timestamp were not yet presentin the tree, so x ould hoose its losest neighbor only among older elements.



Range Searh (Node a; Query q; Radius r; Timestamp t)1. if time(a) < t ^ d(a; q) 6 R(a) + r then2. if d(a; q) 6 r then report a3. dmin  14. for bi 2 N(a) in inreasing timestamp order do5. if d(bi; q) 6 dmin + 2r then6. k minfj > i; d(bi; q) > d(bj ; q) + 2rg7. Range Searh(bi; q; r; time(bk))8. dmin  min fdmin; d(bi; q)gAlg. 1: Range query algorithm on a dsa{tree with root a.Hene, we onsider the neighbors fb1; : : : ; bkg of a from oldest to newest,disregarding a, and perform the minimization as we traverse the list. That is,we enter into subtree bi if d(q; bi) 6 min (d(q; b1); : : : ; d(q; bi�1)) + 2r.We use timestamps to redue the work inside older neighbors. Say thatd(q; bi) > d(q; bi+j)+2r. We have to enter subtree bi anyway beause bi is older.However, only the elements with timestamp smaller than time(bi+j) should beonsidered when searhing inside bi; younger elements have seen bi+j and theyannot be interesting for the searh if they are inside bi. As parent nodes areolder than their desendants, as soon as we �nd a node inside subtree bi withtimestamp larger than time(bi+j) we an stop the searh in that branh.Algorithm 1 performs range searhing. Note that, exept in the �rst invoa-tion, d(a; q) is already known from the invoking proess.4 A Dsa{tree with PivotsPivoting tehniques an trade memory spae for query time, but they performwell on easy spaes only. A dsa{tree, on the other hand, is suitable for searhingspaes of medium diÆulty. However, it uses a �xed amount of memory, beingunable of taking advantage of additional memory to improve query time. Ouridea is to obtain a hybrid data struture that gets the best of both worlds, byenrihing dsa{trees with pivots. The result is better than both building bloks.We hoose di�erent pivots for eah tree node, suh that we do not needany extra distane evaluations against pivots, either at insertion or searh time.Reall that, after we �nd the insertion point of a new element x, say x 2 N(a),x has been ompared against all its anestors in the tree, all the siblings of itsanestors, and its own siblings in N(a). At query time, when we reah nodex, some distanes between q and the aforementioned elements have also beenomputed. So, we an use (some of) these elements as pivots to obtain bettersearh performane, without introduing extra distane omputations. Next wepresent di�erent ways to hoose the pivots of eah node.



4.1 H{Dsat1: Using Anestors as PivotsA natural alternative is to regard the anestors of eah node as its pivots. LetA(x) be the set of anestors of x 2 S. We de�ne P (x) = f(pi; d(x; pi)); pi 2A(x)g. We store P (x) at eah node x and use it to prune the searh.Insertion Algorithm. We set P (x) = ; and begin searhing for the insertionpoint of x. For eah node a we hoose in our path, we add (a; d(x; a)) to P (x).When the insertion point of x is found, P (x) ontains the distanes to the anes-tors of x. Note that we do not perform any extra distane evaluations to buildP (x). Thus, the onstrution ost of a H{Dsat1 is the same of a dsa{tree.Range Searh Algorithm. We modify the dsa-tree algorithm to use the setP (x) stored at eah tree node x. We reall that, given a set of pivots, the distaneby pivots D(a; q) is a lower bound for d(a; q).Consider again Alg. 1. If at step 1 it holds D(a; q) > R(a)+ r, then d(a; q) >R(a) + r, and we an stop the searh at node a without evaluating d(a; q). Anelement a in S is said to be feasible for query q if D(a; q) 6 R(a) + r. That is, itis feasible that a or some element in its subtree lie within the searh radius of q.We ompute D(a; q) at searh time without additional distane evaluations.Assume we reah node pk and want to deide whether the searh must entersubtree x 2 N(pk). At this point, we have omputed all distanes d(q; pi); pi 2A(x). If A(x) = fp1; : : : ; pkg, then these distanes are d(q; p1); : : : ; d(q; pk). In aH{Dsat1, we store P (x) = f(p1; d(x; p1)); : : : ; (pk; d(x; pk))g at node x. Hene,all the elements needed to ompute D(x; q) are present, at no extra ost.The distanes d(q; pi) are stored in a stak as the searh goes up and downthe tree. The sets P (x) are also stored in root-to-x order, so that referenes tothe pivots in P (x) (�rst omponent of pairs) are unneessary and we save spae.The feasible neighbors of node a, denoted F (a), are the neighbors b 2 N(a)suh that D(b; q) 6 R(b) + r. The other neighbors are said to be infeasible.At searh time, if we reah node a, we may onsider only its feasible neighbors,as other subtrees an be wholly disarded. Although they are disarded using D,whih is omputed for free, it does not immediately follow that we obtain for surean improvement in searh time. The reason is that infeasible nodes still serveto redue dmin in Alg. 1, whih in turn may save us entering younger siblings.Hene, by saving omputations against infeasible nodes, we may have to enternew siblings later. This is an intrinsi tradeo� of our method.Alg. 2 shows the basi searh approah. Note that in step 8 we run into therisk of omparing infeasible elements against q. This is done in order to usetimestamp information as muh as possible, but it also redues the bene�ts ofusing pivots. The following alternatives are improvements to this weakness.H{Dsat1D: Optimizing using D. We use D not only to determine feasibilityand hene prune subtrees, but also to derease the number of infeasible elementsdiretly ompared against q in step 8. Some of those omparisons an be savedby using D. The key observation is that d(bi; q) 6 D(bj ; q)+2r implies d(bi; q) 6



Range Searh H{Dsat1 (Node a; Query q; Radius r;Timestamp t)1. if time(a) < t ^ d(a; q) 6 R(a) + r then2. if d(a; q) 6 r then report a3. dmin  14. F (a) fb 2 N(a); D(b; q) 6 R(b) + rg5. for bi 2 N(a) in inreasing timestamp order do6. if bi 2 F (a) then7. if d(bi; q) 6 dmin + 2r then8. k min fj > i; d(bi; q) > d(bj ; q) + 2rg9. Range Searh H{Dsat1(bi; q; r; time(bk))10. if d(bi; q) has already been omputed then dmin  min fdmin; d(bi; q)gAlg. 2: Range searhing for query q with radius r in a H{Dsat1 with root a.d(bj ; q) + 2r, so we an onlude that bj is not of interest in step 8 withoutomputing d(bj ; q). Although we save some distane omputations and obtainthe same result, still there will be infeasible elements ompared against q.H{Dsat1F: Using Timestamps of Feasible Neighbors. Timestamps are not es-sential for the orretness of the algorithm. Although the optimal hoie is touse the smallest orret timestamp, any larger value would do. So we omputea safe approximation to the orret timestamp, while ensuring that no infea-sible elements are ever ompared against q. Note that every feasible neighborof a node will be ompared against q inevitably. So, if for bi 2 F (a) it holdsd(bi; q) 6 dmin + 2r, then in step 8 we ompute the oldest timestamp t amongthe redued set fbi+j 2 F (a); d(bi; q) > d(bi+j ; q) + 2rg. This uses as muhtimestamping information as possible without onsidering infeasible elements.4.2 H{Dsat2: Using Anestors and their Older Siblings as PivotsWe aim at using even more pivots than H{Dsat1, to improve even more thesearh performane. At searh time, when we reah a node a, q has been om-pared against all the anestors and some of the older siblings of anestors of a.Hene, we use this extended set of pivots for eah node a.Insertion Algorithm. The only di�erene in aH{Dsat2 is in the P (x) sets weompute. Let x 2 S and A(x) = fp1; : : : ; pkg be the set of its anestors, where piis the anestor at tree level i. Note that pi+1 2 N(pi). Hene, (b; d(x; b)) 2 P (x) ifand only if (1) b 2 A(x), or (2) pi; pi+1 2 A(x)^b 2 N(pi)^time(b) < time(pi+1).Range Searh Algorithm. As before, to ompute D(x; q) we need the dis-tanes between q and the pivots of x stored in a stak. But it is possible thatsome of the pivots of x have not been ompared against q beause they were
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Retrieve 1%Fig. 1. Perentage of elements disarded using the latest pivots in H{Dsat1.infeasible. In order to retain the same pivot order of P (x), we push invalid ele-ments into the stak when infeasible neighbors are found. D is then omputedhaving this in mind. We de�ne the same variants of the searh algorithm forH{Dsat2, whih only di�er from H{Dsat1 in the way of omputing D.5 Limiting the Use of StorageIn pratie, available memory is bounded. Our data strutures use memory in anon-ontrolled way (eah node uses as muh pivots as the de�nition requires).This rules them out for many real-life situations. In order to adapt our struturesto �t the available memory, we restrit the number of pivots stored in eahnode to a value k, holding a subset of the original set of pivots. As a result,the performane of our data strutures may degrade at searh time. A way ofminimizing this e�et is to hoose a \good" set of pivots for eah node.We study empirially whih pivots disard more elements at searh time. SeeSe. 6 for details on the experiments.Good Pivots in H{Dsat1. Beause of the insertion proess, the latest pivotsof a node should be good sine they are lose, and hene good representatives,of the node. We verify experimentally that most disards using pivots were dueto the latter ones. Fig. 1 shows that a small number of latter pivots per nodesuÆe. In dimension 5, about 10 pivots per node disard all the elements thatan be disarded using pivots. In higher dimensions, even less pivots are needed.This alternative will be alled H{Dsat1 k Latest.Good Pivots in H{Dsat2. The anestors of a node are lose to it, but thesiblings of the anestors are not neessarily lose. So we expet that using the klatest pivots (H{Dsat2 k Latest) does not perform as well as before. An obviousalternative is H{Dsat2 k Nearest, whih uses the k nearest pivots, not the klatest. Fig. 2 on�rms that less nearest pivots are needed to disard the samenumber of nodes as latest pivots. However, note that for H{Dsat2 k Nearest weneed to store the referenes to the pivots in order to ompute D. Hene, givena �xed amount of memory, this alternative must use less pivots per node thanthe others.
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H-Dsat1FFig. 3. Comparison of query ost for variants of H{Dsat1.6 Experimental ResultsWe have evaluated our strutures over three metri spaes. First, a ditionaryof 69,069 English words under edit distane (minimum number of haraterinsertions, deletions and substitutions to make the strings equal), of interest inspelling appliations. The other spaes are real unitary ubes in dimensions 5and 15 under Eulidean distane, using 100,000 uniformly distributed randompoints. We treat these just as metri spaes, disregarding oordinate information.In all ases, we left apart 100 random elements to at as queries. The datastrutures were built 20 times varying the order of insertions. We tested arities4, 8, 16, and 32. Eah tree built was queried 100 times, using radii 1 to 4 in theditionary, and radii retrieving 0.01%, 0.1%, and 1% of the set in vetor spaes.Fig. 3 shows that H{Dsat1F outperformed H{Dsat1D, learly in the di-tionary and slightly in vetor spaes. The results are similar on H{Dsat2.Fig. 4 shows that our strutures are ompetitive, as our best versions ofH{Dsat1 and H{Dsat2 largely improve upon dsa{trees. This shows that ourstrutures make good use of extra memory. H{Dsat2 an use more memorythan H{Dsat1, and hene its query ost is better.However, there is a prie in memory usage, e.g., H{Dsat1 needs 1.3 to 4.0times the memory of dsa{tree, while H{Dsat2 requires 5.2 to 17.5 times. Henethe interest in omparing how well our strutures use limited memory omparedto others. Fig. 5 ompares against a generi pivot data struture, using the sameamount of memory in all ases. We also show a dsa{tree as a referene point, asit uses a �xed amount of memory. In easy spaes (dimension 5 or ditionary) we
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