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lAbstra
t. Dynami
 spatial approximation trees (dsa{trees) are eÆ
ientdata stru
tures for sear
hing metri
 spa
es. However, using enough stor-age, pivoting s
hemes beat dsa{trees in any metri
 spa
e. In this paperwe 
ombine both 
on
epts in a data stru
ture that enjoys the featuresof dsa{trees and that improves query time by making the best use ofthe available memory. We show experimentally that our data stru
tureis 
ompetitive for sear
hing metri
 spa
es.1 Introdu
tion\Proximity" or \similarity" sear
hing is the problem of looking for obje
ts in aset 
lose enough to a query. This has appli
ations in a vast number of �elds. Theproblem 
an be formalized with the metri
 spa
e model [1℄: There is a universeU of obje
ts, and a positive real-valued distan
e fun
tion d : U� U �! R+de�ned among them, whi
h satis�es the metri
 properties: stri
t positiveness(d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)), and triangle inequality(d(x; z) 6 d(x; y) + d(y; z)). The smaller the distan
e between two obje
ts, themore \similar" they are. We have a �nite database S � U that 
an be prepro-
essed to build an index. Later, given a query q 2 U, we must retrieve all similarelements in the database. We are mainly interested in the range query : Retrieveall elements in S within distan
e r to q, that is, fx 2 S; d(x; q) 6 rg.Generally, the distan
e is expensive to 
ompute, so one usually de�nes thesear
h 
omplexity as the number of distan
e evaluations performed. Proximitysear
h algorithms build an index of the database to speed up queries, avoidingthe exhaustive sear
h. Many of these indexes are based on pivots (Se
. 2).In this paper we present a hybrid index for metri
 spa
e sear
hing built onthe dsa{tree, an index supporting insertions and deletions that is 
ompetitive inspa
es of medium diÆ
ulty, but unable of taking advantage of the available mem-ory. This is enri
hed with a pivoting s
heme. Pivots use the available memory toimprove query time, and in this way they 
an beat any other stru
ture, but toomany pivots are needed in diÆ
ult spa
es. Our new stru
ture is still dynami
and makes better use of memory, beating both dsa-trees and basi
 pivots.Unlike previous work [3℄, (1) we use lo
al rather than global pivots, andprovide empiri
al eviden
e in favor of this de
ision, (2) we use pivots for free.? Supported in part by CYTED VII.19 RIBIDI Proje
t and, the third author, Mille-nium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.



2 Pivoting AlgorithmsEssentially, pivoting algorithms 
hoose some elements pi from the database S,and pre
ompute and store all distan
es d(a; pi) for all a 2 S. At query time,they 
ompute distan
es d(q; pi) against the pivots. Then the distan
e by pivotsbetween a 2 S and q gets de�ned as D(a; q) = maxpi jd(a; pi)� d(q; pi)j.It 
an be seen that D(a; q) 6 d(a; q) for all a 2 S; q 2 U. This is used to avoiddistan
e evaluations. Ea
h a su
h that D(a; q) > r 
an be dis
arded be
ause wededu
e d(a; q) > r without a
tually 
omputing d(a; q). All the elements that
annot be dis
arded this way are dire
tly 
ompared against q.Usually pivoting s
hemes perform better as more pivots are used, this waybeating any other index. They are, however, better suited to \easy" metri
 spa
es[1℄. In hard spa
es they need too many pivots to beat other algorithms.3 Dynami
 Spatial Approximation TreesIn this se
tion we brie
y des
ribe dynami
 sa{trees (dsa-trees for short), inparti
ular the version 
alled timestamp with bounded arity [2℄, on top of whi
hwe build. Deletion algorithms are omitted for la
k of spa
e.3.1 Insertion AlgorithmThe dsa{tree is built in
rementally, via insertions. The tree has a maximumarity. Ea
h tree node a stores a timestamp of its insertion time, time(a), andits 
overing radius, R(a), whi
h is the maximum distan
e to any element in itssubtree. Its set of 
hildren is 
alled N(a), the neighbors of a. To insert a newelement x, its point of insertion is sought starting at the tree root and moving tothe neighbor 
losest to x, updating R(a) in the way. We �nally insert x as a new(leaf) 
hild of a if (1) x is 
loser to a than to any b 2 N(a), and (2) the arity ofa, jN(a)j, is not already maximal. Neighbors are stored left to right in in
reasingtimestamp order. Note that the parent is always older than its 
hildren.3.2 Range Sear
h AlgorithmThe idea is to repli
ate the insertion pro
ess of elements to retrieve. That is, wea
t as if we wanted to insert q but keep in mind that relevant elements may beat distan
e up to r from q, so in ea
h de
ision for simulating the insertion of qwe permit a toleran
e of �r. So it may be that relevant elements were insertedin di�erent 
hildren of the 
urrent node, and ba
ktra
king is ne
essary.Note that, at the time an element x was inserted, a node a may not havebeen 
hosen as its parent be
ause its arity was already maximal. So, at querytime, we must 
hoose the minimum distan
e to x only among N(a). Note alsothat, when x was inserted, elements with higher timestamp were not yet presentin the tree, so x 
ould 
hoose its 
losest neighbor only among older elements.



Range Sear
h (Node a; Query q; Radius r; Timestamp t)1. if time(a) < t ^ d(a; q) 6 R(a) + r then2. if d(a; q) 6 r then report a3. dmin  14. for bi 2 N(a) in in
reasing timestamp order do5. if d(bi; q) 6 dmin + 2r then6. k minfj > i; d(bi; q) > d(bj ; q) + 2rg7. Range Sear
h(bi; q; r; time(bk))8. dmin  min fdmin; d(bi; q)gAlg. 1: Range query algorithm on a dsa{tree with root a.Hen
e, we 
onsider the neighbors fb1; : : : ; bkg of a from oldest to newest,disregarding a, and perform the minimization as we traverse the list. That is,we enter into subtree bi if d(q; bi) 6 min (d(q; b1); : : : ; d(q; bi�1)) + 2r.We use timestamps to redu
e the work inside older neighbors. Say thatd(q; bi) > d(q; bi+j)+2r. We have to enter subtree bi anyway be
ause bi is older.However, only the elements with timestamp smaller than time(bi+j) should be
onsidered when sear
hing inside bi; younger elements have seen bi+j and they
annot be interesting for the sear
h if they are inside bi. As parent nodes areolder than their des
endants, as soon as we �nd a node inside subtree bi withtimestamp larger than time(bi+j) we 
an stop the sear
h in that bran
h.Algorithm 1 performs range sear
hing. Note that, ex
ept in the �rst invo
a-tion, d(a; q) is already known from the invoking pro
ess.4 A Dsa{tree with PivotsPivoting te
hniques 
an trade memory spa
e for query time, but they performwell on easy spa
es only. A dsa{tree, on the other hand, is suitable for sear
hingspa
es of medium diÆ
ulty. However, it uses a �xed amount of memory, beingunable of taking advantage of additional memory to improve query time. Ouridea is to obtain a hybrid data stru
ture that gets the best of both worlds, byenri
hing dsa{trees with pivots. The result is better than both building blo
ks.We 
hoose di�erent pivots for ea
h tree node, su
h that we do not needany extra distan
e evaluations against pivots, either at insertion or sear
h time.Re
all that, after we �nd the insertion point of a new element x, say x 2 N(a),x has been 
ompared against all its an
estors in the tree, all the siblings of itsan
estors, and its own siblings in N(a). At query time, when we rea
h nodex, some distan
es between q and the aforementioned elements have also been
omputed. So, we 
an use (some of) these elements as pivots to obtain bettersear
h performan
e, without introdu
ing extra distan
e 
omputations. Next wepresent di�erent ways to 
hoose the pivots of ea
h node.



4.1 H{Dsat1: Using An
estors as PivotsA natural alternative is to regard the an
estors of ea
h node as its pivots. LetA(x) be the set of an
estors of x 2 S. We de�ne P (x) = f(pi; d(x; pi)); pi 2A(x)g. We store P (x) at ea
h node x and use it to prune the sear
h.Insertion Algorithm. We set P (x) = ; and begin sear
hing for the insertionpoint of x. For ea
h node a we 
hoose in our path, we add (a; d(x; a)) to P (x).When the insertion point of x is found, P (x) 
ontains the distan
es to the an
es-tors of x. Note that we do not perform any extra distan
e evaluations to buildP (x). Thus, the 
onstru
tion 
ost of a H{Dsat1 is the same of a dsa{tree.Range Sear
h Algorithm. We modify the dsa-tree algorithm to use the setP (x) stored at ea
h tree node x. We re
all that, given a set of pivots, the distan
eby pivots D(a; q) is a lower bound for d(a; q).Consider again Alg. 1. If at step 1 it holds D(a; q) > R(a)+ r, then d(a; q) >R(a) + r, and we 
an stop the sear
h at node a without evaluating d(a; q). Anelement a in S is said to be feasible for query q if D(a; q) 6 R(a) + r. That is, itis feasible that a or some element in its subtree lie within the sear
h radius of q.We 
ompute D(a; q) at sear
h time without additional distan
e evaluations.Assume we rea
h node pk and want to de
ide whether the sear
h must entersubtree x 2 N(pk). At this point, we have 
omputed all distan
es d(q; pi); pi 2A(x). If A(x) = fp1; : : : ; pkg, then these distan
es are d(q; p1); : : : ; d(q; pk). In aH{Dsat1, we store P (x) = f(p1; d(x; p1)); : : : ; (pk; d(x; pk))g at node x. Hen
e,all the elements needed to 
ompute D(x; q) are present, at no extra 
ost.The distan
es d(q; pi) are stored in a sta
k as the sear
h goes up and downthe tree. The sets P (x) are also stored in root-to-x order, so that referen
es tothe pivots in P (x) (�rst 
omponent of pairs) are unne
essary and we save spa
e.The feasible neighbors of node a, denoted F (a), are the neighbors b 2 N(a)su
h that D(b; q) 6 R(b) + r. The other neighbors are said to be infeasible.At sear
h time, if we rea
h node a, we may 
onsider only its feasible neighbors,as other subtrees 
an be wholly dis
arded. Although they are dis
arded using D,whi
h is 
omputed for free, it does not immediately follow that we obtain for surean improvement in sear
h time. The reason is that infeasible nodes still serveto redu
e dmin in Alg. 1, whi
h in turn may save us entering younger siblings.Hen
e, by saving 
omputations against infeasible nodes, we may have to enternew siblings later. This is an intrinsi
 tradeo� of our method.Alg. 2 shows the basi
 sear
h approa
h. Note that in step 8 we run into therisk of 
omparing infeasible elements against q. This is done in order to usetimestamp information as mu
h as possible, but it also redu
es the bene�ts ofusing pivots. The following alternatives are improvements to this weakness.H{Dsat1D: Optimizing using D. We use D not only to determine feasibilityand hen
e prune subtrees, but also to de
rease the number of infeasible elementsdire
tly 
ompared against q in step 8. Some of those 
omparisons 
an be savedby using D. The key observation is that d(bi; q) 6 D(bj ; q)+2r implies d(bi; q) 6



Range Sear
h H{Dsat1 (Node a; Query q; Radius r;Timestamp t)1. if time(a) < t ^ d(a; q) 6 R(a) + r then2. if d(a; q) 6 r then report a3. dmin  14. F (a) fb 2 N(a); D(b; q) 6 R(b) + rg5. for bi 2 N(a) in in
reasing timestamp order do6. if bi 2 F (a) then7. if d(bi; q) 6 dmin + 2r then8. k min fj > i; d(bi; q) > d(bj ; q) + 2rg9. Range Sear
h H{Dsat1(bi; q; r; time(bk))10. if d(bi; q) has already been 
omputed then dmin  min fdmin; d(bi; q)gAlg. 2: Range sear
hing for query q with radius r in a H{Dsat1 with root a.d(bj ; q) + 2r, so we 
an 
on
lude that bj is not of interest in step 8 without
omputing d(bj ; q). Although we save some distan
e 
omputations and obtainthe same result, still there will be infeasible elements 
ompared against q.H{Dsat1F: Using Timestamps of Feasible Neighbors. Timestamps are not es-sential for the 
orre
tness of the algorithm. Although the optimal 
hoi
e is touse the smallest 
orre
t timestamp, any larger value would do. So we 
omputea safe approximation to the 
orre
t timestamp, while ensuring that no infea-sible elements are ever 
ompared against q. Note that every feasible neighborof a node will be 
ompared against q inevitably. So, if for bi 2 F (a) it holdsd(bi; q) 6 dmin + 2r, then in step 8 we 
ompute the oldest timestamp t amongthe redu
ed set fbi+j 2 F (a); d(bi; q) > d(bi+j ; q) + 2rg. This uses as mu
htimestamping information as possible without 
onsidering infeasible elements.4.2 H{Dsat2: Using An
estors and their Older Siblings as PivotsWe aim at using even more pivots than H{Dsat1, to improve even more thesear
h performan
e. At sear
h time, when we rea
h a node a, q has been 
om-pared against all the an
estors and some of the older siblings of an
estors of a.Hen
e, we use this extended set of pivots for ea
h node a.Insertion Algorithm. The only di�eren
e in aH{Dsat2 is in the P (x) sets we
ompute. Let x 2 S and A(x) = fp1; : : : ; pkg be the set of its an
estors, where piis the an
estor at tree level i. Note that pi+1 2 N(pi). Hen
e, (b; d(x; b)) 2 P (x) ifand only if (1) b 2 A(x), or (2) pi; pi+1 2 A(x)^b 2 N(pi)^time(b) < time(pi+1).Range Sear
h Algorithm. As before, to 
ompute D(x; q) we need the dis-tan
es between q and the pivots of x stored in a sta
k. But it is possible thatsome of the pivots of x have not been 
ompared against q be
ause they were
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Retrieve 1%Fig. 1. Per
entage of elements dis
arded using the latest pivots in H{Dsat1.infeasible. In order to retain the same pivot order of P (x), we push invalid ele-ments into the sta
k when infeasible neighbors are found. D is then 
omputedhaving this in mind. We de�ne the same variants of the sear
h algorithm forH{Dsat2, whi
h only di�er from H{Dsat1 in the way of 
omputing D.5 Limiting the Use of StorageIn pra
ti
e, available memory is bounded. Our data stru
tures use memory in anon-
ontrolled way (ea
h node uses as mu
h pivots as the de�nition requires).This rules them out for many real-life situations. In order to adapt our stru
turesto �t the available memory, we restri
t the number of pivots stored in ea
hnode to a value k, holding a subset of the original set of pivots. As a result,the performan
e of our data stru
tures may degrade at sear
h time. A way ofminimizing this e�e
t is to 
hoose a \good" set of pivots for ea
h node.We study empiri
ally whi
h pivots dis
ard more elements at sear
h time. SeeSe
. 6 for details on the experiments.Good Pivots in H{Dsat1. Be
ause of the insertion pro
ess, the latest pivotsof a node should be good sin
e they are 
lose, and hen
e good representatives,of the node. We verify experimentally that most dis
ards using pivots were dueto the latter ones. Fig. 1 shows that a small number of latter pivots per nodesuÆ
e. In dimension 5, about 10 pivots per node dis
ard all the elements that
an be dis
arded using pivots. In higher dimensions, even less pivots are needed.This alternative will be 
alled H{Dsat1 k Latest.Good Pivots in H{Dsat2. The an
estors of a node are 
lose to it, but thesiblings of the an
estors are not ne
essarily 
lose. So we expe
t that using the klatest pivots (H{Dsat2 k Latest) does not perform as well as before. An obviousalternative is H{Dsat2 k Nearest, whi
h uses the k nearest pivots, not the klatest. Fig. 2 
on�rms that less nearest pivots are needed to dis
ard the samenumber of nodes as latest pivots. However, note that for H{Dsat2 k Nearest weneed to store the referen
es to the pivots in order to 
ompute D. Hen
e, givena �xed amount of memory, this alternative must use less pivots per node thanthe others.
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Dsat
H-Dsat1D
H-Dsat1FFig. 3. Comparison of query 
ost for variants of H{Dsat1.6 Experimental ResultsWe have evaluated our stru
tures over three metri
 spa
es. First, a di
tionaryof 69,069 English words under edit distan
e (minimum number of 
hara
terinsertions, deletions and substitutions to make the strings equal), of interest inspelling appli
ations. The other spa
es are real unitary 
ubes in dimensions 5and 15 under Eu
lidean distan
e, using 100,000 uniformly distributed randompoints. We treat these just as metri
 spa
es, disregarding 
oordinate information.In all 
ases, we left apart 100 random elements to a
t as queries. The datastru
tures were built 20 times varying the order of insertions. We tested arities4, 8, 16, and 32. Ea
h tree built was queried 100 times, using radii 1 to 4 in thedi
tionary, and radii retrieving 0.01%, 0.1%, and 1% of the set in ve
tor spa
es.Fig. 3 shows that H{Dsat1F outperformed H{Dsat1D, 
learly in the di
-tionary and slightly in ve
tor spa
es. The results are similar on H{Dsat2.Fig. 4 shows that our stru
tures are 
ompetitive, as our best versions ofH{Dsat1 and H{Dsat2 largely improve upon dsa{trees. This shows that ourstru
tures make good use of extra memory. H{Dsat2 
an use more memorythan H{Dsat1, and hen
e its query 
ost is better.However, there is a pri
e in memory usage, e.g., H{Dsat1 needs 1.3 to 4.0times the memory of dsa{tree, while H{Dsat2 requires 5.2 to 17.5 times. Hen
ethe interest in 
omparing how well our stru
tures use limited memory 
omparedto others. Fig. 5 
ompares against a generi
 pivot data stru
ture, using the sameamount of memory in all 
ases. We also show a dsa{tree as a referen
e point, asit uses a �xed amount of memory. In easy spa
es (dimension 5 or di
tionary) we
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ost among our stru
tures.do better when there is little available memory, but in dimension 15 H{Dsat2is always the best. More pivots are needed to beat H{Dsat in harder problems
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